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ABSTRACT Heat generation by internal loss factors of piezoelectrics is one of the critical issues for high 

power density piezoelectric applications, such as ultrasonic motors, piezoelectric actuators and transducers. 

There are three types of internal losses in piezoelectric materials, namely dielectric, elastic and piezoelectric 

losses. In this paper, a decoupled equivalent circuit is proposed to emulate a piezoelectric disk in radial 

vibration mode considering all three types of internal losses. First, the decoupled equivalent circuit is 

derived according to the conventional electromechanical equivalent circuit model. Then, a piezoelectric 

disk configuration in radial vibration mode is explored and simulated. The resonance and antiresonance 

frequencies and their corresponding mechanical quality factors are achieved by the proposed circuit. In 

order to verify the accuracy of the simulation results, the piezoelectric disk is fabricated and tested. 

Simulation results with the new circuit exhibit a good agreement with experimental results. Finally, the 

equivalent circuit with only dielectric and elastic losses are simulated and compared which further validates 

the accuracy improvement of the new equivalent circuit considering all three losses. 

INDEX TERMS Piezoelectric material, equivalent circuit, radial vibration, loss factor, piezoelectric loss 

I. INTRODUCTION 

Piezoelectric ultrasonic motors have developed rapidly since 

the 1980s, due to the superiority of high efficiency in the 

mm-size motor area [1-3]. The bottleneck of piezoelectric 

ultrasonic motors has been identified as heat generation, 

which is a significant problem for high power density 

applications [4]. Internal losses in piezoelectric materials are 

considered in general to have three different mechanisms, 

namely dielectric, mechanical, and piezoelectric losses [5]. 

Accurate determination of three types of losses is critical, 

since they are closely related to the heat generation 

mechanism in piezoelectrics. 

Mechanical quality factors are basically related to the three 

types of losses and play a significant role in the study of heat 

generation of piezoelectric devices [6]. A higher mechanical 

quality factor reduces the heat generation and increases the 

efficiency. Electromechanical equivalent circuit (EC) model 

is one of the most effective method to analyze the properties 

of piezoelectric vibrator [7-9]. IEEE Standard only provides 

a method to obtain the mechanical quality factor (Qm) at 

resonance frequency according to an EC model [10]. 

However, the main issue of this standard method is that it 

assumes piezoelectric loss to be the average value of elastic 

and dielectric losses, which results in the equivalence of Q 

values at resonance and antiresonance. This conclusion is 

proved to be inaccurate because experimental results indicate 

there exists a conspicuous discrepancy between the 

mechanical quality factors at the resonance (QR) and the 

antiresonance (QA) in lead-zirconate-titanate (PZT)-based 

ceramics [11-13]. In recent, the equivalent circuit of 

piezoelectrics for k31 vibration mode considering all three 

losses have been proposed by researchers at Pennsylvania 

State University [14], which explains the variation of the 

mechanical quality factor between resonance and 
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antiresonance frequencies. Further, a six-terminal EC of a 

ring-type piezoelectrics is proposed including three types of 

losses, which is utilized in characteristic analysis of an 

ultrasonic motor [15].  

The piezoelectric disk of radial vibration mode is widely 

used as a vibrator for piezoelectric ultrasonic motors and 

transducers due to its large power density [16]. Although 

EC models of kp vibration mode reported in existing 

literatures is efficient for analyzing the resonance and 

antiresonance frequencies [17-19], it is insufficient to 

achieve accurate mechanical quality factors without 

considering all three losses in piezoelectrics. In this paper, a 

decoupled EC of a piezoelectric disk in radial vibration 

mode is firstly derived considering all three types of 

internal losses. Based on the proposed electromechanical 

EC model, mechanical quality factors at resonance and 

antiresonance frequencies are calculated as a function of 

three types of losses. In addition, the relationship between 

frequencies and material properties of the piezoelectric disk 

is discussed to facilitate the designing of piezoelectric 

vibrators. Finally, the simulation results obtained from the 

EC model are compared with and verified by experimental 

results. 

II. ELECTROMECHANICAL EQUIVALENT CIRCUIT OF A 
PIEZOELECTRIC DISK 

A. CONVENTIONAL EQUIVALNET CIRCUIT WITHOUT 
LOSSES 

The configuration of a piezoelectric disk in radial vibration 

mode is shown in Figure 1. The piezoelectric ceramic thin 

disk is polarized in its thickness direction and the electrode 

areas are applied on its upper and lower surfaces. The radial 

vibration mode is excited by applying an AC voltage at the 

electrode areas. The conventional electromechanical EC of 

the piezoelectric disk is shown in Figure 2 [20]. 
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FIGURE 1.  Schematic view of a piezoelectric disk. 
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Figure 2.  Conventional electromechanical equivalent circuit of the 
piezoelectric disk. 

 

In Figure 2, V and I denote the input voltage and current in 

the electrical branch (i.e., the primary side of the equivalent 

transformer), respectively. F is the output force and vr is the 

vibration velocity in the mechanical branch (i.e., the 

secondary side of the equivalent transformer). Cd is the 

damped capacitance expressed as 

 
2

31

33

11

2
[ ]

(1 )

T

d E

dS
C

t s



= −

−
 (1) 

in which 33

T  represents the absolute dielectric permittivity 

under constant stress; the Poisson’s ratio σ is expressed by 

12 11

E Es s = − ; 11

Es  and 12

Es  stand for the elastic compliance 

under constant electric field, and 
31d  denotes the 

piezoelectric constant; The area of the end of the 

piezoelectric disk can be described as 2S r= ; r is the 

radius; t is the disk thickness. 

The force factor n is the electromechanical conversion 

coefficient of the piezoelectric disk in radial vibration and 

expressed as 
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In the mechanical branch, X1p and X2p are impedances 

described as 
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Here,   is the density; Sr is the area of the side of the 

piezoelectric disk expressed as 2rS rt= ; J0 and J1 are 

Bessel functions of the first kind; the wave number k is 

expressed by / pk v= ;   stands for the angular frequency; 

vp represents the sound velocity and is expressed as 
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B. EQUIVALENT CIRCUIT WITH THE INTEGRATION OF 
THREE TYPES OF LOSSES 

The heat dissipation in the piezoelectric disk is generally 

originated from three types of loss factors: dielectric (
'

33tan ), 

mechanical (
'

11tan , 
'

12tan ), and piezoelectric (
'

31tan ) 

losses. Losses are integrated into the conventional 

electromechanical EC by complex parameters expressed as 
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where j is the imaginary notation. It is notable that the loss 

factors are very small (less than 10%), and therefore 

imaginary parts can be assumed as 
' '

33 33tan  , 
' '

11 11tan  , 
' '

12 12tan   and 
' '

31 31tan  , respectively. 
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Considering complex parameters in the electrical branch 

of the conventional EC, the damped capacitance in (1) is 

rewritten as 
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where the damped capacitance Cd denotes the electrical 

energy storage; Rd represents the extensive dielectric loss 

derived in the following form, 
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Similarly, the force factor in (2) is rewritten by complex 

parameters as 
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Here,   is the phase shift derived as 

 

' '

' 11 12

31
1

 
 



−
= −

−
  (14) 

In the mechanical branch, the sound velocity is adjusted as 
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The wave number k  can be expressed by the sound 

velocity as 

 (1 j )k


= = −
p

k
v

 (17) 

Further, impedances in (3) and (4) can be rewritten as 

 1 1jp pR X= +
1 p

Z   (18) 
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Here, the resistors 1pR  and 2 pR  denote the mechanical losses; 

the reactors 1 pX and 2 pX  represent the mechanical energy 

storage. It is notable that 1 pX  attributes to motional capacitor 

(i.e., elasticity), while the reactor 2 pX  attributes to inductor 

(i.e., mass). In order to clarify the physical meaning of the 

real and imaginary parts, the complex parameters are 

decoupled utilizing the properties of Bessel functions as 
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Then, applying the Taylor expansions yields 
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In order to simplify the equations, the first order 

approximations are used by neglecting higher order terms 

with respect to small loss factors. Therefore, the resistances 

in (18) and (19) are derived as 

 
( )

( )

2

0

1 2

1

1p p r

J kr
R v S kr

J kr
 

 
= +  

 
 (26) 

 
( ) ( )' '

12 11

2

2 1
p p rR v S

kr

    


− + −
= −   (27) 

According to the derivation above, the new decoupled 

electromechanical EC model of the piezoelectric disk 

considering three types of losses turns into Figure 3. 
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Figure 3. New decoupled electromechanical equivalent circuit model 
considering three types of losses. 

III. EXPERIMENTAL AND SIMULATION RESULTS 

A.  EXPERIMENTAL TEST AND RESULTS 

Piezoelectric ceramic disks (P-42, Hongsheng Acoustic 

Electronic Equipment Co., Ltd., Baoding, China) are 

fabricated with a radius of 10 mm and a thickness of 2 mm. 

The impedance magnitude and phase spectra of the actual 

samples are measured by the Precision Impedance Analyzer 

(E4990A, Keysight Technologies, Inc., Santa Rosa, CA), 

with specifications: the maximum voltage and current are 1 

Vrms and 20 mArms, the impedance measurement accuracy 

is 0.5%. The experimental result of impedance spectra 

measured on disk specimens under 500 mV applied on the 

thickness 2 mm is shown in Figure 4. The resonance 

frequency is 110.20 kHz and antiresonance frequency is 

123.67 kHz of the piezoelectric disk, in the first order radial 

vibration mode as marked in Figure 4.   
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Figure 4.  Experimental results of impedance spectra of the 
piezoelectric disk. 

 

The definitions of the mechanical quality factors at 

resonance and antiresonance are depicted schematically in 

Figure 5 [21]. QR and QA are utilized to denote the quality 

factors at the resonance and antiresonance, respectively, as 
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Figure 5. Definitions of mechanical quality factors at (a) resonance, (b) 
antiresonance. 

 

Here, 
Rf  is the resonance frequency; 

Af  is the antiresonance 

frequency; (
2 1R Rf f− ) and (

2 1A Af f− ) correspond to the 3dB 

bandwidth around the resonance and antiresonance crests in 

the impedance curves, respectively. 

The mechanical quality factors are calculated using the 

3dB bandwidth method based on three times measurement 

results of the impedance spectra. Experimental results of 

mechanical quality factors are 485 ± 13 at resonance 

frequency and 638 ± 19 at antiresonance frequency. 

B.  SIMULATION RESULTS OF THE PIEZOELECTRIC 
DISK 

In order to verify the accuracy of the proposed EC model, the 

configuration of the piezoelectric disk is simulated by 

MATLAB (Version R2017b, The MathWorks, Inc., Natick, 

Massachusetts). The essential material parameters of the 

piezoelectric ceramic disk used for the simulation are 

summarized in Table I. The real properties are measured and 

calculated according to the IEEE Standard [10]. The 

imaginary properties (i.e., intensive losses) are obtained by 

fitting the experimental impedance spectrum using the 

proposed EC model by MATLAB. It is notable that elastic 

losses are only related with the 3dB bandwidth at resonance 

frequency in impedance spectrum which could be directly 

determined, while the dielectric and piezoelectric losses are 

determined by 3dB bandwidth at both resonance and 

antiresonance frequencies in impedance spectrum which 

have to be determined after the determination of the elastic 

losses. When the piezoelectric disk vibrates freely, the two 

mechanical terminals of the proposed EC model in Figure 3 

are short-circuited. Figure 6 is the comparison of the 

impedance spectrum simulating with considering three types 

of inherent losses and fixed small losses for comparison 

(which may be analogous to the loss-free material just to 

escape from the infinite divergence). The resonance and 

antiresonance frequencies are 110.46 kHz and 123.17 kHz in 

both impedance spectra. Three small losses are chosen as 

0.1% of the three losses in order to demonstrate QR = QA 

condition. It is obvious that the resonance and antiresonance 

frequencies are not affected by losses. However, the 3dB 

bandwidth of the impedance spectra exhibits a tremendous 

difference for inherent losses. 

TABLE I 

MATERIALS PROPERTIES OF THE PIEZOELECTRIC CERAMIC  

 Dielectric properties Elastic properties Piezoelectric properties desnsity 

Real parameter 
33 0

T   
11

Es (m2/N) 
12

Es (m2/N) 31d (C/N)  (kg/m3) 

1200 1212.6 10−  12-3.78 10−  12-108 10−  7600 

Intensive loss 
'

33tan  '

11tan  '

12tan  '

31tan  - 

0.0075 0.0021 0.0024 0.0056 - 
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Figure 6. Simulation results of impedance with three losses and with 
fixed small losses. 

 

Figure 7 show simulation results of mechanical quality 

factors at resonance and antiresonance frequencies as 

functions of three types of internal losses. It is clearly seen 

that QR is not affected by dielectric and piezoelectric loss 

factors, while it descends slightly with the increase of elastic 

loss factor. At the same time, QA descends with the rise of 

dielectric and elastic loss factors, while it ascends with the 

increase of piezoelectric loss factor. In conclusion, the 

mechanical quality factor at resonance QR only relates with 

the elastic loss factor in the radial vibration mode of the 

piezoelectric disk, while at antiresonance, the mechanical 

quality factor QA is determined by all the three loss factors. It 

is notable that QR = QA when 

( )' ' '

31 33 11tan tan tan 2 0.0048  = +   in Figure 7 (c), 

which corresponds to the IEEE Standard model. 
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Figure 7.  Simulation results of mechanical quality factors: (a) QR and QA 
with regard to dielectric loss factor; (b) QR and QA with regard to elastic 
loss factor; (c) QR and QA with regard to piezoelectric loss factor. 

 

In the previous research, only dielectric and/or elastic 

losses are considered in EC models of piezoelectric disk in 

radial vibration. In order to verify the critical influence of the 

piezoelectric loss on the heat generation of piezoelectrics, the 

results of experiment, simulation with all three types of 

losses, and simulation without piezoelectric loss are 

compared and summarized in Table Ⅱ. The deviation of the 

measured mechanical quality factors is less than 3%. It can 

be seen that QR > QA without including the piezoelectric loss, 

which is entirely contradictory to the experimental results. 

By contrast, simulation with three types of losses have a 

much better agreement with the experimental results in the 

columns emphasized by gray shadow, which illustrates the 

significance of considering piezoelectric loss in equivalent 

circuit to the mechanical quality factor at antiresonance 

frequency. 
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TABLE Ⅱ 

RESULTS COMPARISON OF EXPERIMENT, SIMULATION WITH ALL THREE 

LOSSES AND SIMULATION WITHOUT PIEZOELECTRIC LOSS.  

 Experiment Three losses Without piezo-loss 

fR(kHz) 110.20 110.46 110.46 

fA(kHz) 123.67 123.17 123.17 

QR 485 ± 13 500 500 

QA 638 ± 19 601 233 

 

Similarly, the influence of relevant material properties on 

the resonance and antiresonance frequencies can be readily 

achieved utilizing the EC model. As shown in Figure 8, the 

resonance frequencies only show a downtrend with the 

growth of the elastic compliance, while the antiresonance 

frequencies decrease with the increase of relative permittivity, 

elastic compliance or piezoelectric constant. In addition, the 

relationship between the resonance or antiresonance 

frequencies and the structural parameters can be simulated. 

Here, we demonstrate the simulation results of resonance and 

antiresonance frequencies with regards to the radius of the 

piezoelectric disk by keeping the thickness t = 2 mm. As 

shown in Figure 9, both the resonance and antiresonance 

frequencies decrease linearly with the increase of the radius. 

To sum up, the simulation results using the EC model benefit 

the study of the heat generation and consequently the 

development of piezoelectric devices. 
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Figure 8. Simulation results of frequencies: (a) fR and fA as functions of 
relative permittivity; (b) fR and fA as functions of elastic compliance 
under constant electric field; (c) fR and fA as functions of piezoelectric 
constant. 
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Figure 9. Frequencies fR and fA as functions of radius. 
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IV. CONCLUSION 

In order to study the loss and heat generation in piezoelectric 

materials, this paper proposes a decoupled electromechanical 

EC model of a piezoelectric disk in radial vibration mode 

considering three types of internal losses. The EC model is 

utilized in simulation to obtain impedance spectra, and then 

the mechanical quality factors are calculated using the 3dB 

bandwidth method. A piezoelectric disk sample is fabricated 

and measured by experiment. Simulation results using the 

proposed EC model exhibit a better agreement with 

experimental results compared with the conventional model 

without piezoelectric losses, which verifies the importance of 

considering the piezoelectric loss for determining the 

mechanical quality factors (i.e., heat generation). Moreover, 

the proposed EC is an effective tool to study the influence of 

material properties and structural parameters on natural 

frequencies, which is beneficial for developing piezoelectric 

devices, such as ultrasonic motors, piezoelectric actuators, 

transducers and energy harvester, when utilizing a radial 

vibration mode of a piezoelectric disk. 
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