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ABSTRACT 

 
Piezoelectric semiconductors (PS) nanofibers, which simultaneously exhibit 

piezoelectricity and unique electric conductive behavior, have huge applications in sensors, 
energy harvesters, and piezoelectric field effect transistors. Electromechanical fields and charge 
carrier in PS nanofibers can be effectively controlled by a mechanical force. One-dimensional 
linear equations for PS nanofibers, which are suitable for small axial force and small electron 
concentration perturbation, are presented. Analytical expressions for the electromechanical fields 
and electron concentration in the fiber are obtained. Numerical results show that the 
electromechanical fields near the two ends are sensitive to the initial electron concentration and 
the applied axial force. 
 
INTRODUCTION 

 
Piezoelectric semiconductor (PS) materials and structures have found wide range 

applications in multi-functional electronic devices due to the unique synergy of piezoelectric and 
semiconducting properties [1].  The interaction between the piezoelectric potential and the 
charge carrier in PS materials and structures under a bias voltage or mechanical force, makes 
them exhibit a variety of novel mechanical, electronic, and optical behaviors. Relatively recently, 
various one-dimensional (1D) PS nanostructures have been synthesized, such as ZnO fibers, 
tubes, belts and spirals [2-4]. They can be made into single structures [5-8] or in arrays [9-12], 
and have been used to make energy harvesters for converting mechanical energy into electrical 
energy [13-17], piezoelectric field effect transistors [2, 3, 18] operated by mechanical fields, 
acoustic charge transport devices [19], and strain, gas, humidity and chemical sensors [2, 20]. 

A mechanical force can be utilized to effectively control and tune the properties of PS 
structures. For example, the external strain-induced piezoelectric potential can be as a ‘gate’ 
voltage [1], and can be used to improve the performance of optoelectronic devices [6]. It is 
important to theoretically comprehend the electromechanical behaviors of 1D PS structures under external 
stimuli for their applications in devices. There are many experimental and modeling investigations on 1D 
PS structures in the above-mentioned references. However, studies based on analytical models of PS 
structures are still very limited. By using the perturbation method, Gao and Wang first derived the 
analytical formula for electrostatic potential in a bent ZnO nanowire pushed by a lateral force; however, 
they neglected the effect of piezoelectric field on the mechanical deformation of the ZnO nanowire [21]. 
That is to say, the analytical model developed in [21] is semi-coupled, not a fully coupled one. Professor 
Z. L. Wang and his co-authors systematically investigated, with the finite element method, the coupled 
piezoelectric and semiconductive behavior of a ZnO wire under lateral bending [5] and compression [15]. 
Quasi-1D ZnO nanowires under axial stress were theoretically studied using fully coupled non-linear 
FEM calculations by Araneo et al.[7], who eventually found that quasi-1D piezo-semiconductor structures 
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with floating electrodes could achieve maximum piezopotential and conversion efficiency, in open-circuit 
condition. An accurate theoretical model can be very helpful to understand precisely the mechanical and 
electric behaviors of PS structures, which is the key to design PS devices with an optimized performance. 
We develop a fully coupled analytical model for one-dimensional PS structures in [22] very recently. The 
basic behaviors of piezoelectric semiconductors are described by the conventional 
phenomenological theory [23] consisting of the equations of linear piezoelectricity [24] and the 
equations of the conservations of charge of electrons and holes [25]. The anisotropy of 
piezoelectric materials, the electromechanical couplings in them, and the nonlinearity associated 
with the drift currents of electrons and holes which are proportional to the products of the 
unknown carrier densities and the unknown electric field, make theoretical analyses of 
piezoelectric semiconductor devices difficult. The analytical model in our previous paper [22] is 
linearized under the assumption of small axial force and hence small carrier concentration 
perturbations from the reference state. In this paper, we investigate the mechanical and electric 
behaviors of a fixed-free ZnO PS fiber under an axial force at the free end using the linear 
analytical model. The effect of the axial force and carrier concentration on the electromechanical 
fields in the PS fiber is thoroughly studied. It should be noted that ZnO fibers used in devices at 
present are at the nanoscale. Various small-scale effects, such as surface effect, flexoelectricity, 
and polarization gradient etc., may have an effect on the mechanical and electrical properties of 
ZnO nano-fibers, which however will not be considered here. 

 
Figure 1. A piezoelectric semiconductor fiber under an axial force F 

 

THEORETICAL FORMULATIONS  
 

Consider an n-type piezoelectric semiconductor fiber made of ZnO as shown in Figure 1. 
The length of the fiber is 2l, the shape of the cross section A may be arbitrary. The fiber is 
assumed to be long and thin, i.e., its length is much larger than the characteristic dimension of 
the cross section. For example, if the fiber is cylindrical in shape with the diameter being d, we 
assume that the fiber is sufficiently long and thin such that 1<<l/d. The c-axis of the ZnO crystal 
is along the axis of the fiber, i.e., the x3 axis. The lateral surface of the fiber is traction free. It is 
fixed at x3= l. The fiber is under the action of axial force F at x3=l, which produces an axial 
stress T=F/A. The classical infinitesimal deformation theory is adopted in this paper. 

The deformation of the fiber under the axial force is mainly an axial extension. For 
simplicity, one-dimensional model is employed here. Hence, there are the axial displacement 3u , 
the axial stress T3, the axial electric displacement D3, and the axial electric current 3

nJ . From 
(25), the equilibrium equation, electrostatic equation, and continuity equation for PS 1D fibers 
are, respectively, 

3 3 3

3 3 3

0, ( ), 0,
n

D
T D Jq N n
x x x

                                                         (1) 

where q is the magnitude of the elementary electronic charge, n the concentration of electrons, 
DN  the concentration of impurities of donors which are assumed to be uniform along the fiber. 
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Note: carrier recombination and generation is neglected in equation (1). In addition, the effect of 
the stress on the energy bands is not considered in this paper. From [22], the axial force, electric 
displacement, and electric current in PS fibers can be written as,  

3 33 3 33 3 3 33 3 33 3 3 33 3 33
3

, , ,n n n nT c S e E D e S E J qn E qD
x

                        (2) 

where 33
n  and 33

nD  are the mobility and diffusion constants of the electron, respectively. The 
effective material constants are 33 331 /c s , 33 33 33/e d s  and 2

33 33 33 33/d s . Here, 33s , 

33d and 33  are the compliance, piezoelectric, and dielectric constants[24]. The axial strain and 

the axial electric field in equation (2) are 3
3

3

uS
x

 and 3
3

E
x

, respectively.  

The ZnO fiber considered here is assumed to be the uniformly doped semiconductor with 
DN . The electron current in equation (2)3 includes the nonlinear term of the product of carrier 

concentration and electric field, which makes it difficult to get the analytical solution. Here, we 
employ a linearized method proposed in [22]. We assume that the carrier concentration Fn  in the 
nanofiber after being applied the small axial force F, has a small perturbation 1n at its equilibrium 
state 0n . Namely, the electron concentration in the nanofiber can be written as 0 1Fn n n . For 
the uniformly doped case, there is a relation of 0 Dn N . As a result, the electrostatic equation in 
equation (1)2 and the electron density in equation (2)3 become 

1
3,3 1 3 0 33 3 33

3

, .n n n nD qn J qn E qD
x

                                                         (3) 

The governing equations in equation (1) can be written as 
2 2 2 2 2 2

3 3 1
33 33 33 33 1 0 33 332 2 2 2 2 2

3 3 3 3 3 3

0, , 0.n nu u nc e e qn qn qD
x x x x x x

                   (4) 

Electromechanical Fields in the Fiber under a constant force 
 

The electromechanical fields in the fiber under the axial force F, for given mechanical 
and electric boundary conditions, can be obtained in a systematic and straightforward manner. 
The mechanical boundary conditions are 3( )T l T  and 3( ) 0u l . We consider the electrical 
boundary conditions of ( ) 0l , 3( ) 0D l  and 3 ( ) 0nJ l . The global charge neutrality condition 

of 1 3 0
l

l
n dx  should be satisfied as well. With the above boundary conditions, from equation (4), we 

can easily obtain the analytical solutions of electromechanical fields in the fiber, they are 
2
33 3

3 32
33 33

2 2
33 3 33 3

32 2
33 33 33 33

33 3 33 3
1 3

33 33

1 sinh( tanh ) ,
1+ cosh

sinh cosh( tanh ), ,
(1+ ) cosh (1+ ) cosh

sinh cosh, (1 ),
cosh cosh

T k xu l x l
c k l

Tk x Tk xl E
e k l e k l
Te x Te xn D
c q l c l

                   (4) 
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where 2
33 33 33 33 33/k e e c , 2 2

0 33 33 33 33/ (1+ )qn k D . Obviously, when 0n  approaches to zero, 
is close to zero, the fields in equation (4) for a PS fiber are degenerated into for a pure 

piezoelectric fiber. 
 
NUMERICAL RESULTS  

 
As a numerical example, consider the n-type ZnO fiber with the total length 2l=1.2μm, 

the radius is 100nm. In the following calculations, the compliance, piezoelectric, and dielectric 
constants [26] are 12

33 6.94 10S N/m2, 12
33 11.67 10d C/N, 10

33 1.12 10 F/m. We 
investigate the effect of the axial force on the electromechanical fields in the fiber. The initial 
carrier concentration is assumed to be 8 1022m-3. For different axial forces F (10nN, 15nN and 
20nN), we use equation (4) to calculate 1n , 1 0/n n , , 3E , 3u , 3D  in the fiber, respectively, and 
plot them in figures 2-4.  It can be seen that the carrier perturbation 1n , electric potential, and 
electric displacement vary more rapidly near the ends of the fiber than in the central part. As the 
axial force F increases, all fields become stronger. All the fields except for the axial 
displacement change greatly within 0.1μm near the two ends of the fiber for different axial 
forces. The axial displacement in figure 4 is linearly dependent of the axial position in the fiber, 
which shows that the axial displacement is dominated by the linear term. From figure 2, the 
value of 1 0/n n  is from -0.04 to 0.04, which indicates the carrier perturbation 1n  is far smaller 
than 0n . This shows that the linear model is valid, and hence numerical results are correct in this 
paper. 
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Figure 2. Axial distributions of 1n (left) and 1 0/n n (right) for different values of axial force F. 
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Figure 3. Axial distributions of electric potential  (left) and electric field E3 (right) for different 
values of axial force F. 
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Figure 4. Axial distributions of electric displacement D3 (left) and axial displacement u3 (right) 
for different values of axial force F. 
 

 To investigate the effect of 0n  on the electromechanical fields in the fiber, we fix the 
axial force F=10nN, and calculate 1 0/n n  and  for different values of 0n  (2 1022m-3, 4 1022m-3 
and 8 1022m-3).  The curves of 1 0/n n  and  versus the axial position of the fiber are plotted in 
figure 5. Similarly, the values of  1 0/n n and electric potential  vary rapidly near the two ends of 
the fiber. As the initial carrier concentration of 0n  increases, both 1 0/n n and  decrease. The 
value of  varies with the value of 0n , as a result, the regions of rapid variation for the electric 
potential and 1 0/n n  are different for different 0n . 
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Figure 5. Axial distributions of 1 0/n n  (left) and   (right) for different values of 0n .  
 

CONCLUSIONS  
 
One-dimensional linear equations are presented for the axial extension of a piezoelectric 

semiconductor fiber. The model is simple and valid for small loads and small carrier 
concentration perturbations. Within the linear model, the analytical expressions of the 
electromechanical fields and the carrier concentrations in the PS fiber under an axial force are 
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obtained. All the electromechanical fields except for the axial displacement vary rapidly near the 
two ends of the fiber.  
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