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Abstract This manuscript is concerned with a novel, unified

finite element approach to fully coupled cardiac electrome-

chanics. The intrinsic coupling arises from both the

excitation-induced contraction of cardiac cells and the defor-

mation-induced generation of current due to the opening of

ion channels. In contrast to the existing numerical approaches

suggested in the literature, which devise staggered algorithms

through distinct numerical methods for the respective elec-

trical and mechanical problems, we propose a fully implicit,

entirely finite element-based modular approach. To this end,

the governing differential equations that are coupled through

constitutive equations are recast into the corresponding weak

forms through the conventional isoparametric Galerkin

method. The resultant non-linear weighted residual terms are

then consistently linearized. The system of coupled algebraic

equations obtained through discretization is solved monolith-

ically. The put-forward modular algorithmic setting leads to

an unconditionally stable and geometrically flexible frame-

work that lays a firm foundation for the extension of constitu-

tive equations towards more complex ionic models of cardiac

electrophysiology and the strain energy functions of cardiac

mechanics. The performance of the proposed approach is

demonstrated through three-dimensional illustrative initial

boundary-value problems that include a coupled electrome-

chanical analysis of a biventricular generic heart model.
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1 Introduction

Heart disease is the primary threat to human life in developed

countries. In the United States, for example, half a million

people yearly die because of heart diseases such as cardiac

arrhythmias [44]. Recent research in medicine and bioengi-

neering striving for the treatment of infarcted cardiac tissue

advocates stem cell-based therapies. Undoubtedly, computa-

tional models of cardiac electromechanics are powerful tools,

used to guide a successful patient specific therapy design.

They do not only play a crucial role in reproducing biologi-

cal cardiac behavior by incorporating experimental findings

but also serve as a virtual testing environment for predictive

analyses where experimental techniques fall short [14,31].

The predictive quality of the computational tools crucially

hinges on physiologically well-founded, detailed constitu-

tive models and on their robust, efficient and stable algorith-

mic implementation. Therefore, it is the key objective of this

work to develop an efficient, robust, modular, and unified

finite element approach to the fully coupled cardiac elec-

tromechanical problem. In the remainder of this section, we

provide an introduction to computational cardiac electrom-

echanics in a nutshell. Hence, an exhaustive review of the

existing literature is not aimed; instead, only a few selected

references are addressed.

The heart is mainly made of contractile muscle cells, myo-

cytes, that constitute approximately 75% of the solid heart

volume. Myocytes have a cylindrical shape, range from 10

to 25 µm in diameter and can reach up to 100 µm in length.

The rest of the heart consists of pacemaker cells, conducting

tissue, blood vessels and extracellular media [15,28]. The

myocardium possesses a hierarchical micro-structure where

myocytes are arranged in bundles of myofibers. These fibers

wind around the heart in an organized way, thereby result-

ing in highly anisotropic and heterogeneous architecture.
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Directional orientation of the myofibers is relatively well

documented in the literature [26,32,36]. Roughly speaking,

the orientation of myofibers exhibits a left-handed spiral-

like pattern in the epicardium (outer wall) and a right-handed

spiral-like arrangement in the endocardium (inner wall). Var-

iation of the fiber orientation across the heart wall is

fairly smooth. This arrangement of myofibers is of vital

importance for the successful transduction of essentially one-

dimensional contraction of myocytes to the overall pumping

function of the heart.

On the lower scale of the hierarchical micro-structure,

myocytes contain bundles of contractile myofibrils that are

formed by sarcomeres, the basic contractile unit. Sarcomeres,

which measure about 2 µm in length, are connected in series

to form myofibrils. Two major protein molecules of sarco-

meres, thick myosin and thin actin, slide over each other,

thereby pulling the two ends (Z-lines) of the sarcomere. The

entire complex process, called cross-bridging, is where the

myosin heads interact with the binding side of the actin fila-

ments. Cross-bridging is triggered by calcium influx [3] upon

rapid depolarization of the myocyte from the polarized rest-

ing state with transmembrane potential of Φ ≈ −80 mV to

the depolarized state with Φ ≈ +20 mV. From the depolar-

ized state, the myocyte repolarizes back to its resting state

through complex ion in- and efflux dynamics across the cell

membrane. The depolarization, also referred to as excita-

tion, and repolarization result in the action potentials, Fig. 4,

whose characteristics are intrinsic to different kinds of excit-

able cardiac cells. The electrical depolarization activity of the

heart is initiated at its natural pacemaker, the sinoatrial node,

located in the right atrium. The depolarization wave travels

through the atria, the upper chambers of the heart, and is then

conducted to the ventricles, the lower chambers, via a spe-

cial conducting system involving the atrioventicular node,

left and right bundle branches, Purkinje fibers, and the myo-

cardium. The generation and propagation of excitation waves

are controlled by opening and closing of ion channels in the

cell membrane. Apart from the excitation-induced depolar-

ization and contraction of cardiac cells, myocytes can also

be excited through the stretch-induced opening of ion chan-

nels, commonly referred to as the mechano-electric feedback

[16]. This phenomenon is considered to be extremely crucial

to understand the interplay between electrophysiology and

mechanics of myocytes, especially regarding the transient

pacemaker organization and fibrillation [13]. Therefore, it

is of fundamental importance that a complete computational

modeling approach to cardiac electromechanics accounts not

only for the excitation-triggered contraction of myocytes but

also for the stretch-activated excitation of cardiac cells.

Quantitative modeling of electrophysiology of cells can be

traced back to the seminal work of Hodgkin and Huxley [10]

on neural cells. About a decade later, their celebrated four-

parameter model was considerably simplified by FitzHugh

[7] and Nagumo et al. [20] to a two-parameter phenomeno-

logical model involving only two ordinary differential equa-

tions for the rapidly evolving transmembrane potential Φ and

the recovery variable r that evolves slower than Φ. This pio-

neering work has then been followed by the action potential

models of cardiac cells proposed by Noble [27], Beeler and

Reuter [2], Luo and Rudy [18], to mention a few. We also

refer to the recent literature [4,6,12,33,37,41] for excellent

classifications of the cardiac cell models. To describe the spa-

tial propagation of excitations waves (depolarization front),

the local cell models have been extended to the reaction–dif-

fusion-type formulations through a phenomenological con-

duction term. In this context, Aliev and Panfilov [1] and

Fenton and Karma [5] suggested the numerical analysis of

traveling excitation waves with the help of explicit finite dif-

ference schemes. At the same time, one of the first finite ele-

ment algorithms for cardiac action potential propagation was

suggested by Rogers and McCulloch [34,35]. In our recent

work on computational cardiac electrophysiology [8], we

proposed a new, algorithmically efficient, fully implicit finite

element approach based on the global–local split of the fast

and slow variables. We have successfully applied this method

to three-dimensional fibrillation simulations [9] and to

patient-specific calculation of electrocardiograms [17]. The

formulation proposed in this paper extends this approach to

the fully coupled electromechanics of the heart where both

the excitation-induced contraction of myocytes and the defor-

mation-activated ion channels play an important role.

Apart from the approaches to computational rigid car-

diac electrophysiology, mentioned above, and models deal-

ing with purely mechanical passive behavior of the heart

[11,21], there have also been attempts aimed at incorpo-

rating the mechanical field through excitation–contraction

coupling. However, most existing algorithms are based on a

staggered time stepping scheme that combines a finite differ-

ence approach to integrate the excitation equations through

an explicit forward Euler algorithm with a finite element

approach for the mechanical equilibrium problem [13,22,

23,29]. Therefore, they require sophisticated mappings from

a fine electrical grid to a coarser mechanical mesh to map

the potential field, and vice versa, the deformation field. In

this line, the methods suggested, for example in [24,38,42]

among others, devise operator splitting schemes for the solu-

tion of the coupled problem. It, however, is a well known fact

that these algorithms have drawbacks regarding the numer-

ical stability. They are only conditionally stable [25], and

thus, the size of the time step is restricted to extremely small

values. Moreover, the latter approaches are only one-way

coupled, neglecting the mechano-electric feedback.

In contrast to the existing numerical approaches in the

literature; to the best of our knowledge, we, for the first

time, propose a fully implicit, entirely finite-element-based

approach to the strongly coupled non-linear problem of
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cardiac electromechanics. Accordingly, the governing

differential equations that are coupled through constitutive

equations are recast into the corresponding weak forms

through the conventional isoparametric Galerkin method.

The resultant non-linear weighted residual terms are then

consistently linearized in the Eulerian setting. The system

of coupled algebraic equations obtained through discretiza-

tion is solved simultaneously. This results in an uncondi-

tionally stable, modular and geometrically flexible structure.

The put forward framework accounts for both the excita-

tion-induced contraction of cardiac tissue and the deforma-

tion-induced generation of current due to the opening of ion

channels. The suggested algorithmic setting is tailored in

such a general way that it can readily be furthered towards

physiologically more complex ionic models of cardiac elec-

trophysiology where the concentration of ions directly enters

the formulation. We illustrate the performance of the pro-

posed approach by means of three-dimensional representa-

tive initial boundary-value problems that cover the re-entrant

scroll dynamics and impact loading-generated excitation in

a slice of contractile cardiac tissue and the coupled electro-

mechanical analysis of a biventricular generic heart model.

The paper is organized as follows. In Sect. 2, we introduce

the governing equations of a coupled initial boundary-value

problem of cardiac electromechanics. Section 3 is devoted

to the derivation of the weak forms of the field equations,

their linearization, and their spatio-temporal discretization.

In Sect. 4, we consider a model problem of cardiac elec-

tromechanics where the specific constitutive equations are

described and the associated consistent algorithmic tangents

are derived. Section 5 is concerned with several numerical

examples demonstrating the distinctive performance of the

proposed approach. We conclude the manuscript with some

closing remarks in Sect. 6.

2 Field equations of cardiac electromechanics

In this section, we introduce the fundamental equations of

the coupled boundary-value problem of cardiac electrome-

chanics. After briefly introducing the key geometric maps of

non-linear continuum mechanics, we present two essential

differential equations of the coupled problem along with the

corresponding boundary conditions. Apart from the kine-

matic and field equations, the specific functional dependen-

cies of constitutive equations are outlined to address the

intrinsically coupled electromechanical character of the prob-

lem of interest.

2.1 Kinematics

Let B ⊂ R
3 be the reference configuration of an excitable and

deformable solid body that occupies the current configuration

Fig. 1 Motion of an excitable and deformable solid body in the Euclid-

ean space R
3 through the non-linear deformation map ϕt (X) at time

t . The deformation gradient F = ∇X ϕt (X) describes the tangent map

between the respective tangent spaces

S ⊂ R
3 at time t ∈ R+ as shown Fig. 1. Material points X ∈

B are mapped onto their spatial positions x ∈ S through the

non-linear deformation map x = ϕt (X) : B → S at time t .

The deformation gradient F := ∇Xϕt (X) : TXB → Tx S acts

as the tangent map between the tangent spaces of the respec-

tive configurations. The gradient operator ∇X [•] denotes the

spatial derivative with respect to the reference coordinates

X . Moreover, the Jacobian J := det F > 0 describes the

volume map of the infinitesimal reference volume elements

onto the associated spatial volume elements. Furthermore,

the reference B and the spatial S manifolds are locally fur-

nished with the reference G and current g metric tensors in

the neighborhoods NX of X and Nx of x, respectively. These

metric tensors are required for calculating basic deformation

measures such as stretches, angle changes, and invariants.

2.2 Governing differential equations

A coupled problem of cardiac electromechanics is formu-

lated in terms of the two primary field variables, namely

the placement ϕ(X, t) and the action potential Φ(X, t). The

former has already been introduced above in Fig. 1. The lat-

ter refers to a potential difference between the intracellu-

lar domain and the extracellular domain within the context

of mono-domain formulations of cardiac electrophysiology

[8,12,22]. An electromechanical state of a material point X

at time t is then defined by

State(X, t) := {ϕ(X, t), Φ(X, t)} . (1)

Spatial and temporal evolution of the primary field variables

are governed by two basic field equations, namely the bal-

ance of linear momentum and the reaction–diffusion-type

equation of excitation.

The balance of linear momentum that assumes the follow-

ing well-known local spatial form

J div[J−1
τ̂ ] + B = 0 in B (2)

describes the quasi-static stress equilibrium in terms of the

Eulerian Kirchhoff stress tensor τ̂ and a given body force B

per unit reference volume. The operator div[•] denotes the

divergence with respect to spatial coordinates x. Note that
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Fig. 2 Depiction of the mechanical (left) and electrophysiological

(right) natural and essential boundary conditions

the momentum balance depends non-linearly on the primary

field variables through the Kirchhoff stress tensor τ̂ , whose

specific form is elaborated in the forthcoming subsection.

The essential and natural boundary conditions, Fig. 2 (left),

ϕ = ϕ̄ on ∂Sϕ and t = t̄ on ∂St , (3)

complete the description of the mechanical problem. The

union of the surface subdomains, on which the boundary con-

ditions (3) are prescribed, forms the total spatial surface ∂S =
∂Sϕ∪∂St where ∂Sϕ and ∂St are disjoint, i.e. ∂Sϕ∩∂St = ∅.

The surface stress traction vector t̄ , defined on ∂St , is related

to the Cauchy stress tensor through the Cauchy stress the-

orem t̄ := J−1
τ · n where n denotes the outward surface

normal on ∂S.

The second field equation of the coupled problem that falls

into the class of mono-domain formulations of electrophys-

iology is commonly referred to as the FitzHugh–Nagumo-

type model due to the seminal works of FitzHugh [7] and

Nagumo et al. [20].

The phenomenological excitation equation of the follow-

ing form

Φ̇ − J div[J−1q̂] − F̂φ = 0 in B (4)

describes the spatio-temporal evolution of the action poten-

tial field Φ(X, t) in terms of the diffusion term div[J−1q̂]
and the non-linear current term F̂φ . Henceforth, we employ

the notation ˙[•] := D[•]/Dt to denote the material time

derivative. In cardiac electrophysiology, the source term F̂φ

plays a key role in determining the excitability and oscil-

latory nature of cells. In particular, it governs whether the

excitation model exhibits the self-oscillatory pacemaker

behavior or the non-oscillatory excitable cell behavior [8,12].

The current source F̂φ also controls characteristics of the

action potential regarding its shape, duration, restitution, and

hyperpolarization along with another variable, the so-called

recovery variable r whose evolution is governed by an addi-

tional ordinary differential equation. Since the recovery vari-

able r chiefly controls the local repolarization behavior of the

action potential, we treat it as a local internal variable in our

formulation. This will be more transparent as we introduce

the explicit functional form of F̂φ and set out the algorithmic

setting of the formulation. Analogous to the momentum

balance, the Fitzhugh–Nagumo-type field equation of exci-

tation is also furnished by the corresponding essential and

natural boundary conditions, Fig. 2 (right),

Φ = Φ̄ on ∂Sφ and q = q̄ on ∂Sq , (5)

respectively. Note that the surface subdomains ∂Sφ and ∂Sq

are disjoint, ∂Sφ ∩ ∂Sq = ∅, and complementary, ∂S =
∂Sφ ∪∂St . The electrical surface flux term q̄ in (5)2 is related

to the spatial flux vector through the Cauchy-type formula

q̄ := J−1q̂ · n in terms of the spatial surface normal n.

Owing to the transient term in the excitation equation (4), its

solution requires the knowledge of initial potential field at

t = t0

Φ0(X) = Φ(X, t0) in B. (6)

Note that the “hat” sign used along with the terms τ̂ , q̂ and

F̂φ indicates that these variables are dependent on the pri-

mary fields through constitutive equations, which we intro-

duce next.

2.3 Constitutive equations

The two field equations along with the corresponding

boundary and initial conditions introduced in the preced-

ing subsection complete the strong description of a coupled

boundary-value problem of cardiac electromechanics. The

solution of the problem at hand, however, necessitates the

knowledge of constitutive equations describing the Kirchhoff

stress tensor τ̂ , the potential flux q̂, and the current source

F̂φ appearing in (2) and (4).

As suggested in the literature, see e.g. [22,38], the

Kirchhoff stress tensor τ̂ is assumed to be composed of the

passive τ̂
pas

and active τ̂
act

parts

τ̂ = τ̂
pas

(g; F) + τ̂
act

(g; F, Φ). (7)

The passive part τ̂
pas

is solely governed by mechanical

deformation, while the active part τ̂
act

is generated by exci-

tation-induced contraction of myocytes during the course of

depolarization. Since the formulation is laid out in the Eule-

rian setting, we need to explicitly include the current metric

g among the arguments of the constitutive functions.

The potential flux q̂ is assumed to depend linearly on the

spatial potential gradient ∇xΦ

q̂ = D(g; F) · ∇xΦ (8)

through the deformation-dependent anisotropic spatial con-

duction tensor D(g; F) that governs the conduction speed

of the non-planar depolarization front in three-dimensional

anisotropic cardiac tissue.
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The last constitutive relation describes the electrical source

term of the Fitzhugh–Nagumo-type excitation equation (4)

F̂φ = F̂φ
e (Φ, r) + F̂φ

m(g; F, Φ) (9)

that is additively decomposed into the excitation-induced

purely electrical part F̂
φ
e (Φ, r) and the stretch-induced mec-

hano-electrical part F̂
φ
m(g; F, Φ). The former describes the

effective current generation due to the inward and outward

flow of ions across the cell membrane. This ionic flow is

triggered by a perturbation of the resting potential of a car-

diac cell beyond some physical threshold upon the arrival

of the depolarization front. The latter, on the other hand,

incorporates the opening of ion channels under the action of

deformation [16,22].

Note that apart from the primary field variables, as we

briefly introduced in the preceding subsection, the recov-

ery variable r appears among the arguments of F̂
φ
e in (9). It

describes the repolarization response of the action potential.

Evolution of the recovery variable r chiefly determines the

shape and duration of the action potential locally inherent to

each cardiac cell and may change throughout the heart. For

this reason, evolution of the recovery variable r is commonly

modeled by a local ordinary differential equation

ṙ = f̂ r (Φ, r). (10)

From an algorithmic point of view, the local nature of the

evolution equation (10) allows us to treat the recovery vari-

able as an internal variable. This is one of the key features of

the proposed formulation that preserves the modular global

structure of the field equations as set out in our recent work

[8]. Furthermore, as mentioned in Sect. 1, cardiac tissue

possesses an anisotropic and inhomogeneous micro-struc-

ture. This undoubtedly necessitates the explicit incorpora-

tion of position-dependent orientation of myocytes, possibly

in terms of structural tensors, in the argument list of the con-

stitutive functions for τ̂ , D̂ and F̂
φ
m . At this stage, however,

we have suppressed this dependency for the sake of concise-

ness by leaving details out until Sect. 4 where we introduce

a model problem.

Having the field equations and the functional forms of the

constitutive equations at hand, we are now in a position to

construct a unified finite element framework for the mono-

lithic numerical solution of the strongly coupled problem of

cardiac electromechanics.

3 Finite element formulation

This section is devoted to the construction and consistent

linearization of weak integral forms of the local non-linear

field equations (2) and (4) introduced in the preceding sec-

tion. For this purpose, we employ conventional isoparametric

spatial discretization for the placement ϕ(X, t) and potential

Φ(X, t) fields to transform the continuous integral equations

for the non-linear weighted residual and for the Newton-type

update to a set of coupled, discrete algebraic equations. This

set of algebraic equations is then solved monolithically in an

iterative manner for the nodal degrees of freedom.

3.1 Weak formulation

We follow the conventional Galerkin procedure to construct

the weak forms of the governing field equations (2) and (4).

To this end, we multiply the residual equations by the square-

integrable weight functions δϕ ∈ U0 and δΦ ∈ V0 that sat-

isfy the essential boundary conditions (3) and (5) such that

δϕ = 0 on ∂Sϕ and δΦ = 0 on ∂Sφ . We then integrate

the weighted residual equations over the solid volume, and

carry out integration by parts to obtain the following weighted

residual expressions for the balance of linear momentum (2)

Gϕ(δϕ,ϕ, Φ) = G
ϕ
int(δϕ,ϕ, Φ) − G

ϕ
ext(δϕ) = 0 (11)

and for the FitzHugh–Nagumo-type equation (4)

Gφ(δΦ,ϕ, Φ) = G
φ
int(δΦ,ϕ, Φ) − G

φ
ext(δΦ,ϕ, Φ)=0,

(12)

respectively. Explicit forms of the internal G
ϕ
int and external

G
ϕ
ext terms in (11) are separately defined as

G
ϕ
int(δϕ,ϕ, Φ) :=

∫

B

∇x (δϕ) : τ̂ dV,

(13)

G
ϕ
ext(δϕ) :=

∫

B

δϕ · B dV +
∫

∂St

δϕ · t̄ da,

where the body force B and the surface traction t̄ are assumed

to be given. Likewise, we obtain the following expressions

for G
φ
int and G

φ
ext

G
φ
int(δΦ,ϕ, Φ) :=

∫

B

(δΦ Φ̇ + ∇x (δΦ) · q̂) dV,

(14)

G
φ
ext(δΦ,ϕ, φ) :=

∫

B

δΦ F̂φdV +
∫

∂Sq

δΦ q̄da,

respectively. The surface flux q̄ is prescribed as a natural

boundary condition through (5)2. Observe that, in contrast to

the mechanical external term in (13)2, G
φ
ext depends explic-

itly upon the field variables due to the non-linear source term

F̂φ introduced in (9).

Before proceeding with the consistent linearization of the

weak forms, it is convenient to introduce the discretization

of the time space T := [0, t]. For this purpose, we divide

up the time interval T into nstp divisions such that T =
⋃nstp−1

n=0 [tn, tn+1]. The current time step is denoted with

�t := t − tn where we have suppressed the subscript “n +1”
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for the sake of compactness. Having the temporal discreti-

zation defined, we use the implicit Euler scheme to compute

the time derivative of the potential Φ at time t

Φ̇ ≈ (Φ − Φn)/�t (15)

with Φn := Φ(X, tn). Substitution of this finite difference

approximation for Φ̇ into (14)1 yields the following algorith-

mic form

G
φ,algo
int (δΦ,ϕ, Φ) =

∫

B

( δΦ
Φ − Φn

�t
+ ∇x (δΦ) · q̂ ) dV .

(16)

With the weak forms of the field equations at hand, we can

then go on to carry out the consistent linearization.

Remark 1 Since the primary focus of the present formu-

lation is the numerical treatment of the strongly coupled

cardiac electromechanics; in the weak formulation of the

mechanical part Gϕ of the coupled problem, we restrict our-

selves solely to the displacement approximation. Neverthe-

less, a possible extension of the present mechanical setting

toward the well-established three-field (pressure-dilatation-

displacement) finite element formulation along with the

isochoric–volumetric decomposition of the deformation gra-

dient can readily be carried out if quasi-incompressibility

needs to be accounted for. The incompressibility of myocar-

dium, on the other hand, seems to be a rather controversial

issue due to the vascular network that constitutes 10–20%

of the total volume of the ventricular wall. According to the

experimental results reported by Yin et al. [43], for example,

the changes in wall volume range between 5 and 10% due to

the intravascular blood flow.

3.2 Consistent algorithmic linearization

The weighted residual equations (11) and (12) are non-lin-

ear functions of the field variables due to the spatial gra-

dient operators and the non-linear constitutive equations.

Therefore, simultaneous treatment of these equations neces-

sitates utilization of Newton-type iterative solution schemes

within the framework of the implicit finite element method.

Accordingly, we carry out the consistent linearization of the

weighted residuals with respect to the field variables at an

intermediate iteration step at which the field variables assume

the respective values ϕ̃ and Φ̃ to obtain:

Lin Gϕ(δϕ,ϕ, Φ)
∣

∣

ϕ̃,Φ̃
:= Gϕ(δϕ, ϕ̃, Φ̃)

+�Gϕ(δϕ, ϕ̃, Φ̃;�ϕ,�Φ) = 0 ,

Lin Gφ(δΦ,ϕ, Φ)
∣

∣

ϕ̃,Φ̃
:= Gφ(δΦ, ϕ̃, Φ̃)

+�Gφ(δΦ, ϕ̃, Φ̃;�ϕ,�Φ) = 0.

(17)

The incremental terms �Gϕ and �Gφ , which can be

obtained through the Gâteaux derivative, may be expressed

in the following decomposed form

�Gγ = �G
γ

int − �G
γ
ext for γ = ϕ, φ, (18)

based on the definitions in (11) and (12). We then start with

the elaboration of the increment �G
ϕ
int according to (13)1

�G
ϕ
int =

∫

B

�(∇x (δϕ)) : τ̂ + ∇x (δϕ) : �τ̂ dV . (19)

Linearization of the non-linear terms in (19) yields

�(∇x (δϕ)) = −∇x (δϕ)∇x (�ϕ) , (20)

�τ̂ = £�ϕ τ̂ + ∇x (�ϕ) τ̂ + τ̂ ∇T
x (�ϕ) + Cϕφ�Φ, (21)

where £�ϕ τ̂ denotes the objective Lie derivative along the

increment �ϕ and can be expressed as

£�ϕ τ̂ = C
ϕϕ : 1

2
£�ϕ g = C

ϕϕ : (g∇x (�ϕ)). (22)

in terms of the Lie derivative of the current metric

£�ϕ g = g ∇x (�ϕ) + ∇T
x (�ϕ) g. (23)

The fourth-order spatial tangent moduli C
ϕϕ in (22) and the

sensitivity of the Kirchhoff stresses to the action potential

Cϕφ introduced in (21) are defined as

C
ϕϕ :=2∂g τ̂ (g; F, Φ) and Cϕφ :=∂Φ τ̂ (g; F, Φ), (24)

respectively. Incorporation of the results (20) and (21) along

with (22)–(24) in (19) results in the following well-known

expression

�G
ϕ
int =

∫

B

∇x (δϕ) : C
ϕϕ : (g∇x (�ϕ))dV

+
∫

B

∇x (δϕ) : (∇x (�ϕ)τ̂ )dV

+
∫

B

∇x (δϕ) : Cϕφ�ΦdV . (25)

The three terms on the right-hand side of (25) clearly dem-

onstrate the inherent nonlinearities arising from the entirely

mechanical material response, from the geometry, and from

the coupled electromechanical stress response. Since the

body force B and the traction boundary conditions t̄ in (13)2

are prescribed, we have �G
ϕ
ext = 0 yielding the identity

�Gϕ ≡ �G
ϕ
int.

Recalling the explicit algorithmic form of G
φ
int from (16),

the increment �G
φ
int can be expressed as

�G
φ
int =

∫

B

δΦ
�Φ

�t
+ �(∇xδΦ) · q̂ + ∇x (δΦ) · �q̂dV .

(26)
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Analogous to (20), linearization of ∇x (δΦ) leads to

�(∇x (δΦ)) = −∇x (δΦ)∇x (�ϕ). (27)

Furthermore, based on the functional definition of the spatial

potential flux q̂ in (8), we obtain

�q̂ = £�ϕ q̂ + ∇x (�ϕ) · q̂ + D̂ · ∇x (�Φ) (28)

where £�ϕ q̂ denotes the Lie derivative of the potential flux

q̂ along the increment �ϕ

£�ϕ q̂ = C
φϕ : 1

2
£�ϕ g = C

φϕ : (g∇x (�ϕ)). (29)

In Eqs. (28) and (29), we introduced the second-order defor-

mation-dependent conduction tensor D̂ and the third-order

mixed moduli C
φϕ that are defined as

D̂:=∂∇x Φ q̂(g; F, Φ) and C
φϕ :=2∂g q̂(g; F, Φ), (30)

respectively. Substituting the results (27) and (28) and the

definitions (29) and (30) into (26), we end up with

�G
φ
int =

∫

B

δΦ
�Φ

�t
dV

+
∫

B

∇x (δΦ) · D̂ · ∇x (�Φ)dV

+
∫

B

∇x (δΦ) · C
φϕ : (g∇x (�ϕ))dV . (31)

In contrast to G
ϕ
ext, the external term G

φ
ext in (12) depends

non-linearly on the field variables through the source term

F̂φ(g; F, Φ) introduced in (9). For a given q̄ on ∂Sq , we

then obtain the following incremental form

�G
φ
ext :=

∫

B

δΦ �F̂φdV . (32)

In the Eulerian setting, linearization of the scalar-valued func-

tion F̂φ yields

�F̂φ = H : (g∇x (�ϕ)) + H�Φ (33)

where the tangent terms H and H are defined as

H := 2∂g F̂φ(g; F, Φ) and H := ∂Φ F̂φ(g; F, Φ), (34)

respectively. Based on the decomposed form introduced in

(9), the scalar tangent term H can be expressed as

H = He + Hm with He :=∂Φ F̂φ
e , Hm :=∂Φ F̂φ

m. (35)

Inserting the results (33) and (34) into (32), we obtain the

linearized external term

�G
φ
ext =

∫

B

δΦ
(

H : (g∇x (�ϕ)) + H�Φ
)

dV . (36)

This completes the linearization within the continuous spa-

tial setting. In the subsequent part, we carry out the spatial

discretization of the field variables to obtain algebraic coun-

terparts of the residual expressions (13) and (14).

3.3 Spatial discretization

To approximate the continuous integral equations for the

weak forms (11) and (12) derived in the preceding section,

we follow the conventional isoparametric Galerkin proce-

dure. To this end, we discretize the domain of interest B into

element subdomains Bh
e such that B ≈ Bh =

⋃nel

e=1 Bh
e with

nel denoting the total number of elements. We then interpo-

late the field variables and the associated weight functions

over each element domain by introducing the corresponding

discrete nodal values and C0 shape functions

δϕh
e =

nen
∑

i=1

N iδxe
i , δΦh

e =
nen
∑

j=1

N jδΦe
j ,

ϕ
h
e =

nen
∑

k=1

N k xe
k, Φh

e =
nen
∑

l=1

N lΦe
l , (37)

where nen refers to the number of nodes per element. Based

on the discretization (37), the spatial gradient of the weight

functions read as

∇x (δϕ
h
e ) =

nen
∑

i=1

δxe
i ⊗ ∇x N i ,

∇x (δΦ
h
e ) =

nen
∑

j=1

δΦe
j ⊗ ∇x N j . (38)

Likewise, we obtain the spatial gradient of the incremental

fields

∇x (�ϕ
h
e ) =

nen
∑

k=1

�xe
k ⊗ ∇x N k,

∇x (�Φh
e ) =

nen
∑

l=1

�Φe
l ⊗ ∇x N l . (39)

Incorporating the discretized representations (37) and (38) in

(11) and (12) along with (13) and (14), we end up with the

discrete residual vectors

R
ϕ
I = A

nel

e=1

⎧

⎪

⎨

⎪

⎩

∫

Bh
e

∇x N i · τ̂ dV

−
∫

Bh
e

N i B dV −
∫

∂Se
t

N i t̄ da

⎫

⎪

⎬

⎪

⎭

= 0,
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R
φ
J = A

nel

e=1

⎧

⎪

⎨

⎪

⎩

∫

Bh
e

(N j Φ − Φn

�t
+ ∇x N j · q̂) dV

−
∫

Bh
e

N j F̂φ dV −
∫

∂Se
q

N j q̄ da

⎫

⎪

⎬

⎪

⎭

= 0, (40)

where the operator A designates the standard assembly of

element contributions at the local element nodes i, j = 1,

. . . , nen to the global residuals at the global nodes I, J =
1, . . . , nnd of a mesh with nnd nodes. Following the analo-

gous steps, the discrete form of the linearized residual terms

(17) can readily be obtained by substituting the discretized

representations (37) and (39) in (25), (31), and (36). This

step, however, is left out for the sake of conciseness.

4 Model problem

In this section, we present specific forms of the constitutive

equations that are utilized in the representative numerical

examples in Sect. 5. In particular, we identify the concrete

expressions for the Kirchhoff stress τ̂ , the potential flux q̂,

and the current source F̂φ , whose functional dependencies

have already been briefly outlined in Sect. 2.3. These con-

stitutive equations include not only the explicit functional

evaluations but also the accompanying ordinary differen-

tial equations governing the temporal evolution of additional

internal variables. This, in turn, necessitates construction of

algorithmic procedures for the local update of these inter-

nal variables at quadrature points. Hence, the tangent moduli

introduced in Sect. 3.2 have to be computed consistently with

the employed algorithmic integration scheme for the update

of internal variables.

4.1 Active and passive stress response

Before going into the details of the model problem, it is cru-

cial to introduce an approach that we devise to account for

the fibrous micro-structure of cardiac tissue in the current

model. As mentioned in Sect. 1, cardiac tissue possesses a

highly anisotropic micro-structure that is chiefly made up

of unevenly distributed myofibers. This heterogeneous but

well-organized architecture is of fundamental importance for

the successful transduction of essentially one-dimensional

excitation–contraction of individual cardiac cells to the over-

all pumping function of the heart. For this reason, the consti-

tutive equations describing the passive and active tissue stress

response, as well as the one controlling the conductivity, have

to account for the inherently anisotropic micro-structure. It

is the objective of this section to demonstrate that an ele-

mentary constitutive approach accounting for basic physical

features of cardiac tissue can reproduce physiological results.

For this purpose, we restrict ourselves to transversely isotro-

pic cardiac tissue with one single, spatially varying preferred

direction that characterizes the local orientation of myofi-

bers. Specifically, we let a0(X) ∈ TXB be a unit vector, i.e.

|a0|G = 1, and denote the average preferred direction of

myofibers in the reference configuration at a material point

X . Under the action of ϕt , this vector is mapped onto its

spatial counterpart a(x) = Fa0 ∈ Tx S emanating from

x = ϕt (X). Moreover, we define the symmetric reference

structural tensor

M(X) := a0 ⊗ a0 (41)

as a key measure of the underlying transversely isotropic

material symmetry. Structural tensors are widely employed

to develop coordinate-free representation of isotropic ten-

sor functions for anisotropic response of materials, see e.g.

Spencer [40].

We now assume the following elementary form for the

purely mechanical, passive part of the Kirchhoff stress ten-

sor (7)1

τ̂
pas

(g; F, M) =
(

λ

2
ln I3 − µ

)

g−1 + µb

+ 2ϑ η(I4 − 1)m (42)

in terms of the inverse metric g−1, the left Cauchy–Green

tensor b := FG−1 FT , and the deformed structural tensor

m := a ⊗ a = FMFT . The Lamé constants λ and µ govern

the isotropic stress response, while the parameter η can be

conceived as the passive stiffness of myofibers. The aniso-

tropic part of the stress is assumed to be active only when the

fibers are under tension. This condition is imposed through

the following conditional definition of the coefficient ϑ

ϑ(λ̄) =
{

1 if λ̄ > 1,

0 otherwise,
(43)

where λ̄ := |a|g = √
a · ga refers to the stretch in the

preferred direction a. Furthermore, the invariants I3 and I4

appearing in the stress expression (42) are defined as

I3 := J 2 = det(FT g F) and I4 := g : m , (44)

respectively. Observe that the invariant I4 is none other than

the fiber stretch squared, I4 = λ̄2.

Since the active Kirchhoff stress τ̂
act

is generated by exci-

tation-induced contraction of spatially well organized cardiac

cells, this part of the stress tensor is considered to be of purely

anisotropic form

τ̂
act

(g; F, Φ, M) = σ(Φ) m. (45)

In contrast to recent constitutive equations proposed in the

literature, e.g. [22,25], where the active stress contribution

is incorporated as an isotropic function, we assume that the
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Fig. 3 Switch function ǫ(Φ) is plotted against the potential Φ for dif-

ferent values of the rate parameter ξ=0.1, 0.2, 0.4, 1 mV−1 and for

ǫ0=0.1 ms−1, ǫ∞=1 ms−1, Φ̄= − 30 mV

active part is entirely anisotropic. From the geometrical point

of view, the active stress expression (45) implies that the

direction of the active stress tensor is dictated by the deformed

structural tensor m, while its magnitude is chiefly determined

by the transmembrane potential-dependent active fiber ten-

sion σ(Φ). To model the twitch-like response of the fiber

tension σ(Φ), we adopt the evolution equation proposed by

Nash and Panfilov [22]

σ̇ = ǫ(Φ)[kσ (Φ − Φr ) − σ ] , (46)

where the parameter kσ controls the saturated value of σ

for a given potential Φ and a given resting potential Φr ,

which is about −80 mV for cardiac cells. That is, σ̇ vanishes

identically when σ admits the value σ∞ = kσ (Φ − Φr )

for ǫ(Φ) = 0. Moreover, contrary to its Heaviside form pro-

posed in [22], we use the following smoothly varying form

for the rate switch function

ǫ(Φ) = ǫ0 + (ǫ∞ − ǫ0) exp[− exp(−ξ(Φ − Φ̄))] (47)

in terms of the parameters ǫ0 and ǫ∞ that characterize the two

limiting values of the function for Φ < Φ̄ and Φ > Φ̄ about

the phase shift Φ̄, respectively. In addition, the transition rate

of ǫ from ǫ0 to ǫ∞ about Φ̄ is determined by the parameter

ξ . As depicted in Fig. 3, as the value of ξ gets higher, the

transition of the function ǫ from ǫ0 to ǫ∞ becomes sharper.

In order to compute the current value of σ , we use the

backward Euler scheme. For a typical time step �t = t − tn ,

we then obtain

σ = σn + �t ǫ(Φ)[kσ (Φ − Φr ) − σ ]. (48)

This immediately results in a closed-form algorithmic expres-

sion for the current value of the active fiber tension

σ(Φ) = 1

1 + �t ǫ(Φ)
[σn + �t ǫ(Φ) kσ (Φ − Φr )] (49)

in terms of the current action potential Φ and σn at time tn
that is stored as a history variable at each quadrature point

of the finite element model. Having the stress expressions at

hand, we are now in a position to determine the moduli based

on the definition (24)1

C
ϕϕ = λ g−1 ⊗ g−1 − (λ ln I3 − 2µ) Ig−1

+ 4ϑ η m ⊗ m (50)

where we have made use of the results ∂g I3 = I3 g−1, ∂g I4 =
m. The symmetric fourth identity tensor Ig−1 := −∂g g−1

has the indicial representation I
i jkl

g−1 := 1
2

(gik g jl + gil g jk)

in terms of the components of the inverse metric gi j . Sim-

ilarly, the sensitivity of the Kirchhoff stress tensor to the

transmembrane potential then follows from (24)2

Cϕφ = σ ′(Φ) m with σ ′(Φ) := ∂Φσ(Φ). (51)

Being consistent with the implicit integration scheme

employed in (49), it can be readily shown that

σ ′(Φ) = �t

1 + �t ǫ(Φ)

×
[

ǫ′(Φ)(kσ (Φ − Φr ) − σ) + ǫ(Φ) kσ

]

, (52)

where the derivative ǫ′(Φ) := ∂Φ ǫ̂(Φ) can be obtained from

the definition (47)

ǫ′(Φ) = ξ (ǫ(Φ) − ǫ0) exp[−ξ(Φ − Φ̄)]. (53)

4.2 Spatial potential flux

We have already introduced the spatial potential flux q̂ in (8)

in terms of the conduction tensor D (30)1, and the potential

gradient ∇xΦ. In this model problem, the second-order con-

duction tensor is additively decomposed into the isotropic

and anisotropic parts

D = diso g−1 + dani m (54)

in terms of the scalar conduction coefficients diso and dani,

where the latter accounts for the faster conduction along the

myofiber directions. Having D specified, we can express the

third-order mixed moduli Cφϕ based on their definition given

in (30)2

C
φϕ = −2 diso∇xΦ · Ig−1 . (55)

4.3 Current source

In order to complete the description of the model problem,

we finally need to specify the constitutive equations for the

electrical source term F̂φ . In the field of phenomenological

electrophysiology, it is common practice to set up the model

equations and parameters in the non-dimensional space. For

this purpose, we introduce the non-dimensional transmem-

brane potential φ and the non-dimensional time τ through
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the following conversion formulae

Φ = βφφ − δφ and t = βtτ. (56)

The non-dimensional potential φ is related to the phys-

ical transmembrane potential Φ through the factor βφ and

the potential difference δφ , which are both in millivolt (mV).

Likewise, the dimensionless time τ is converted to the phys-

ical time t by multiplying it with the factor βt in millisecond

(ms). Having the basic relations (56) at hand, we obtain the

following conversion expressions

F̂φ = βφ

βt

f̂ φ, H = βφ

βt

h and H = 1

βt

h (57)

for the normalized source term f̂ φ , and the non-dimensional

counterparts h := ∂φ f̂ φ and h := 2∂g f̂ φ of the tangent

terms defined in (34). The additive split of F̂φ , introduced in

(9) Sect. 2.3, along with (57)1 implies the equivalent decom-

position of f̂ φ = f̂
φ
e + f̂

φ
m into the purely electrical part

f̂
φ
e and the stretch-induced mechano-electrical part f̂

φ
m . This

also leads to the dimensionless counterpart of (35)

h = he + hm with he := ∂φ f̂ φ
e , hm := ∂φ f̂ φ

m . (58)

In this model problem, we use the celebrated Aliev–Panfilov

model, which favorably captures the characteristic shape of

the action potential in excitable ventricular cells,

f̂ φ
e = cφ(φ − α)(1 − φ) − r φ (59)

where c, α are material parameters. The evolution of the

recovery variable r is governed by the ordinary differential

equation (10) through the specific source term

f̂ r =
[

γ + µ1 r

µ2 + φ

]

[−r − c φ (φ − b − 1)]. (60)

The coefficient term [γ + µ1r/µ2 + φ] plays a key role in

controlling the restitution characteristics of the model

through the additional material parameters µ1, µ2, b and γ .

The phase diagram in Fig. 4 (top) depicts the solution trajec-

tories of the local ordinary differential equations ∂τφ = f̂
φ
e

and ∂τ r = f̂ r corresponding to different initial points φ0 and

r0. Note that the dashed nullclines, where f̂ φ = 0 or f̂ r = 0

vanish, guide the trajectories. The diagrams in Fig. 4 (bot-

tom) show the non-dimensional potential φ and the recovery

variable r curves plotted against the dimensionless time τ .

The action potential is generated by adding external stimula-

tion I = 30 to the right-hand side of ∂τφ = f̂
φ
e from τ = 30

to τ = 30.02.

Analogous to the algorithmic update of σ , we use the

backward Euler integration to calculate the current value of

r . Owing to the highly non-linear form of the source f̂ r ,

however, we need to introduce the residual

Rr = r − rn − �τ f̂ r (φ, r)
.= 0 (61)

Fig. 4 The Aliev–Panfilov model with α = 0.01, γ = 0.002,

b = 0.15, c = 8, µ1 = 0.2, µ2 = 0.3. The phase portrait depicts

trajectories for distinct initial values φ0 and r0 (filled circles) converg-

ing to a stable equilibrium point (top). Non-oscillatory normalized time

plot of the non-dimensional action potential φ and the recovery variable

r (bottom)

that has to be solved iteratively. Linearization of (61) leads

us to the local update equation of the recovery variable r

r ← r − (Crr )−1 Rr , (62)

where the scalar local tangent Crr is defined by

Crr := ∂r Rr

= 1 + �τ

[

γ + µ1

µ2 + φ
[2r + cφ(φ − b − 1)]

]

.

(63)

Calculation of the modulus he, defined in (58)2, necessitates

the knowledge of the derivative of the recovery variable r

with respect to the action potential φ. This derivative can

be calculated based on the persistency condition dφ Rr =
∂φ Rr + ∂r Rr dφr

.= 0, which implies the consistent ful-

fillment of (61) throughout the whole calculation. Solving

this equality for the sought derivative, we obtain dφr =
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Table 1 Local Newton update of the internal variable r

Given are rn and Φ

(i) Calculate φ = (Φ + δφ)/βφ (56)1

(ii) Set r ← rn

(iii) Compute Rr (61) and Crr (63)

(iv) Update recovery r ← r − (Crr )−1 Rr

(v) Check if |Rr | < tol, if no goto (iii), continue otherwise

(vi) Update history for rn

(vii) Compute Crφ and dφr (64)

(viii) Compute f̂
φ
e (59) and he (58)2

−(Crr )−1 Crφ , where Crφ is defined and obtained as

Crφ := ∂φ Rr

= �τ

[

[γ + µ1r

µ2 + φ
] c (2φ − b − 1)

− µ1r

[µ2 + φ]2
[ r + c φ (φ − b − 1) ]

]

. (64)

With this result at hand, we can obtain the tangent modulus

he = c
[

−3φ2 + 2[1 + α] φ + α
]

− r − φdφr, (65)

and convert it into its physical counterpart He = he/βt by

using (57)3. We summarize the local Newton iteration for the

update of the internal variable r and subsequent computation

of the corresponding source term f̂
φ
e and its linearization

dφ f φ in Table 1.

For the stretch-induced current generation f̂
φ
m , we adopt

the formula proposed by Panfilov, Keldermann and Nash [13,

29]

f̂ φ
m = ϑGs(λ̄ − 1)(φs − φ) (66)

where Gs and φs denote the maximum conductance and the

resting potential of the stretch-activated channels, separately.

This contribution to the current source term is due to the open-

ing of ion channels, and therefore, exists only when myofi-

bers are under tension. This condition is enforced through the

coefficient ϑ defined in (43). With (66) at hand, the tangent

terms hm, h can be immediately obtained as

hm = ϑGs(λ̄ − 1) and h = ϑGs(φ − φs)λ̄
−1m , (67)

and converted to their counterparts Hm and H (35) and (34),

through the conversion rules given in (57).

Having the specific expressions for the constitutive equa-

tions introduced and their algorithmic treatment elaborated,

we can now implement the model problem in a finite ele-

ment code according to the formulation outlined in Sect. 3.

The basic steps of the algorithmic implementation of the

model problem are briefly summarized in Table 2 where

Table 1 is implicitly embodied in Step v. In addition, the

material parameters of the specified model problem are listed

in Table 3 along with their brief description and the equation

numbers where they appear.

Table 2 Overall algorithmic setting of the model problem

Given are F = ∇X ϕt , Φ, ∇xΦ and history H = {σn, rn}
(i) Calculate m = F M FT and λ̄ := √

m : g

(ii) Set ϑ = 1 if λ̄ ≥ 1; ϑ = 0 otherwise

(iii) Calculate τ̂
pas

(42) and C
ϕϕ (50)

(iv) Compute φ = (Φ + δφ)/βφ and �τ = �t/βt (56)

(v) Update the recovery variable r based on Table 1

(vi) Compute f̂
φ
e (59), he (65), hm (67)1 and h (67)2

(vii) Perform conversion to F̂
φ
e , Hm, He and H (57)

(viii) Update σ(Φ) (49) and compute σ ′(Φ) (52)

(ix) Compute τ̂
act

(45) and Cϕφ (51)

(x) Calculate q̂ (8), D (54) and C
φϕ (54)

Table 3 Material parameters of the specified model

Parameter Description Equation

λ, µ Lamé constants (42)

η Passive stiffness of myofibers (42)

kσ Saturated active stress (46)

Φr Resting potential (46)

ǫ0, ǫ∞ Rate constants of contraction (Fig. 3) (47)

ξ, Φ̄ Transition rate and phase shift (Fig. 3) (47)

diso, dani Conduction speed (54)

α, b, c Dynamics of the AP-model (Fig. 4) (59) and (60)

γ, µ1, µ2 Restitution properties (Fig. 4) (59) and (60)

Gs , φs Stretch-induced excitation (66)
[

βφ, δφ, βt Conversion factors (56)
]

Table 4 Values of the material parameters used in analyses

Passive stress λ = 0.5 MPa, µ = 0.2 MPa, η = 0.1 MPa

Active stress kσ = 0.005 MPa mV−1, Φr = −80 mV

Switch function Φr = −80 mV, ǫ0 = 0.1 mV−1, ǫ∞ = 1 mV−1

ξ = 1 mV−1, Φ̄ = 0 mV

Conduction diso = 1 mm2 ms−1, dani = 0.1 mm2 ms−1

Excitation α = 0.01[−], b = 0.15[−], c = 8[−]
γ = 0.002[−], µ1 = 0.2[−], µ2 = 0.3[−]
Gs = 10[−], φs = 0.6[−]

5 Representative numerical examples

This section is devoted to the illustrative numerical examples

chosen to demonstrate the key features and capabilities of the

proposed formulation. With this aim in mind, we consider

three initial boundary-value problems. First, we illustrate the

mechano-electric feedback on a slice of cardiac tissue whose

center is subjected to impact loading. The second example

is concerned with the formation and stable rotation of scroll

waves in excitable and deformable cardiac tissue. This phe-

nomenon is closely related to re-entrant cardiac arrhythmias,

and thus to atrial and ventricular fibrillation. Lastly, we pres-

ent a coupled electromechanical analysis of a biventricular

generic heart model that successfully demonstrates the main

physiological features of the overall response of the heart.

Unless stated otherwise, we used the values of the mate-

rial parameters given in Table 4 in the finite element analyses
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of the examples presented in this section. Observe that the

parameters belonging to the Aliev–Panfilov model f̂
φ
e and

to the stretch-induced part of the excitation source f̂
φ
m are

dimensionless. This is consistent with the non-dimensional

setting introduced through the conversion formulae (56) and

(57). In the conversion, we employ the factors βφ = 100 mV,

δφ = −80 mV and βt = 12.9 ms that are chosen to obtain the

physiological action potential response ranging from −80 to

+20 mV and the characteristic action potential duration, as

suggested in [1].

5.1 Deformation-induced excitation of cardiac tissue

In order to illustrate the phenomenon of mechano-electric

feedback, we consider a three-dimensional 100mm×100mm

× 12 mm slice of cardiac tissue, see the upper leftmost panel

in Fig. 6 for dimensioning. The tissue block is discretized into

21×21×2 eight-node coupled brick elements. The myofibers

are assumed to be oriented in x−direction, i.e. a0 = e1, with

respect to the global coordinate system depicted in Fig. 5.

Initial value of the transmembrane potential in the whole

domain is set to its resting value Φ(X, t0) = −80 mV. The

displacement degrees of freedom in the z-direction at the

nodes located on the four edges of the mid-plane (z = 6)

of the slice are restrained. Moreover, the displacements in

the x- and y-directions at (0, 0, 0) and the displacement in

the y-direction at the node located at (100, 0, 0) are fixed.

Furthermore, the outer surface of the tissue is assumed to

be electrically insulated, i.e. q̄ = 0 on ∂S. In order to ini-

tiate the excitation, the nodes located within the central,

20 mm × 20 mm × 12 mm, parallelepiped are subjected to

impulsive cyclic loading p̄(t) in z-direction, see the upper

leftmost panel Fig. 5. The loading p̄(t) is increased propor-

tionally up to 1 N within the first 5 ms and then decreased back

to the zero load level at the same rate. The snapshot taken at

t = 5 ms in Fig. 5 demonstrates the deformed shape of the

tissue at the instant of peak loading. Besides the deformed

shapes, the contour plots of action potential are also depicted

at each snapshot.

The impulsive loading in the transverse direction gives

rise to the tension-dominated deformation in the center of

the tissue. This region then undergoes the stretch-induced

excitation through the activation of ion channels due to the

source term F̂
φ
m introduced in (9) and (66) as depicted in

the panel at t = 10 ms in Fig. 5. The excitation leads to

depolarization of the tissue from the center, and in turn, exci-

Fig. 5 Deformation-induced excitation of deformable cardiac tissue.

Snapshots of the deformed model depict the action potential contours at

different stages of depolarization (upper row) and repolarization (lower

row). Note that the cardiac tissue recovers its original shape at t = 0 ms

upon completion of repolarization at t ≈ 360 ms
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Fig. 6 Initiation and rotation of scroll re-entry in excitable and deformable cardiac tissue. The re-entrant scroll is triggered by externally stimulating

tail of the repolarization wave through the addition of I = 5 to f̂
φ
e from 440 to 460 ms at the rectangular region

tation-induced contraction of myofibers that are located in

the x-direction, see the snapshot at t = 30 ms. Both the con-

traction of myofibers and the higher rate of conduction in the

x-direction result in faster depolarization along that direc-

tion. This non-uniform deformation pattern brings about the

bending of the slice, thereby triggering secondary excita-

tion at the upper and lower edges of the domain, as shown

in the panel corresponding to t = 55 ms. The two depo-

larization fronts then merge, and cause the whole tissue to

become completely depolarized, see the panel at t = 80 ms.

The snapshots taken at t = 280, 300, 330 ms illustrate the

sequence of tissue repolarization from the excited state with

Φ = +20 mV back to the resting state with Φ = −80 mV.

The repolarization process is also accompanied by the relaxa-

tion of myocytes leading to the recovery of the original shape

at around t = 360 ms.

5.2 Scroll waves in a slice of cardiac tissue

One of the key benchmark problems of computational cardiac

electrophysiology and electromechanics is the simulation of

three-dimensional scroll waves. These re-entrant waves are

closely related to cardiac arrhythmias, such as atrial and ven-

tricular fibrillation. Re-entry may arise from different inho-

mogeneities such as the uneven distribution of conduction

properties in diseased tissue as in the case of unidirectional

block or unsynchronized multiple pacemakers.

In order to simulate the re-entrant waves in deformable

cardiac tissue, we devise the same geometry and discretiza-

tion as the one used in the preceding boundary-value prob-

lem, see the panel at t = 3 ms in Fig. 6. The values of the

material parameters are selected to be the same as in Table 4

except that Gs = 0 such that mechano-electric feedback

effect is suppressed. To generate a scroll wave, we follow

the conventional procedure suggested in [8,9]. To this end,

we initiate a planar depolarization front in x-direction by

assigning elevated initial values to the nodal action potentials

Φ0 = −40 mV on the plane located at x = 0 mm. The initial

value of the nodal transmembrane potential at the remain-

der of the nodes is set to the resting value Φ0 = −80 mV.

The outer surface of the tissue is assumed to be electrically

flux-free. Moreover, the orientation of contractile myofibers

is assumed to be a0 = e1 with respect to the global coor-

dinate system depicted in Fig. 6. In contrast to the mechan-

ical essential boundary conditions utilized in the preceding

example, no degree of freedom is a priori prescribed here.

123



240 Comput Mech (2010) 45:227–243

Instead, the nodes on the plane situated at z = 0 are sup-

ported by uncoupled linear springs of directional stiffness-

es kx = ky = 10−3 N/mm and kz = 10−1 N/mm. This

has resulted in a system of equations that is stable enough

to tackle, while at the same time, providing a fairly uncon-

strained representation of deformed configurations.

Once the wave front has formed, it starts to travel in x-

direction, thereby depolarizing the whole domain and lead-

ing to contraction of myocytes, see the panel at t = 75 ms in

Fig. 6. The myocytes then start to relax in the region where the

repolarization tail has taken over, as shown in the snapshot at

t = 420 ms. To initiate the spiral wave re-entry, we externally

stimulate the rectangular region bounded by the coordinates

x ∈ [40, 50] mm, y ∈ [0, 55] mm and z ∈ [0, 12] mm with

respect to the initial configuration. The rectangular region is

depolarized by adding the extra current I = 5 to f̂
φ
e at time

t = 440 ms for 20 ms. Observe that the snapshots corre-

sponding to the time steps following the stimulation clearly

demonstrate the stages of initiation, development, and stable

rotation of the scroll wave re-entry.

It is important to note that, contrary to the purely electro-

physiology-based simulations of re-entrant waves on regular

domains, the center of the scroll does not remain station-

ary but drifts due to the deformation, see also [30]. Another

crucial observation concerns the substantial reduction of the

action potential duration once the scroll wave is initiated.

This is closely related to the restitution property of cardiac

cells that are able to adjust the action potential duration adap-

tively depending upon the frequency of excitation. This fea-

ture is well captured by the Aliev–Panfilov model through the

non-linear coefficient term in (60) as discussed extensively

in [1,8].

5.3 Excitation–contraction of a generic heart model

The key motivation for this work is its potential application

in guiding stem cell-based therapies in heart failure. As a first

attempt towards this objective, we carry out a three-dimen-

sional coupled electromechanical analysis of a biventricu-

lar generic heart model and show that basic features of the

heart function can be captured by our model. The solid model

of a biventricular generic heart is constructed by means of

two truncated ellipsoids as suggested in [39]. The generic

heart model whose dimensions and spatial discretization are

depicted in Fig. 7 is meshed with 13,348 four-node coupled

tetrahedral elements connected at 3,059 nodes. The unevenly

distributed average orientation of contractile myocytes a0 is

depicted with yellow lines in Fig. 8. This fiber organiza-

tion is consistent with the myofiber orientation in the human

heart where the fiber angle ranges from approximately −70◦

in the epicardium to +70◦ in the endocardium with respect

to the z-plane. Displacement degrees of freedom on the top

base surface (z = 0) are restrained and the whole surface of

Fig. 7 Geometry and discretization of a generic heart model generated

by truncated ellipsoids. Dimensions are in millimeters

the heart is assumed to be flux-free. Moreover, we use the

same values of the material parameters as in the preceding

example.

To initiate the excitation, the elevated initial value Φ0 =
−10 mV of the transmembrane potential is assigned to the

nodes located at the upper part of the septum (wall separat-

ing the ventricles) as indicated by the partially depolarized

region in the panel at t = 3 ms in Fig. 8. The initial trans-

membrane potential at the remaining nodes is set to the rest-

ing value Φ0 = −80 mV. The excitation at the top of the

septum generates the depolarization front travelling from the

location of stimulation throughout the entire heart, thereby

resulting in the contraction of the myocytes, see the snap-

shots taken at t = 75, 105, 135 ms in Fig. 8. At first glance,

we observe that the contraction of myocytes gives rise to the

upward motion of the apex (bottom part of the heart). More

importantly, we also note that the upward motion of the apex

is accompanied by the physiologically observed wall thick-

ening and the overall torsional motion of the heart. These

effects can be better appreciated by looking at the deforma-

tion of the two slices presented in the complementary images

shown in Fig. 9. Undoubtedly, it is the inhomogeneous dis-

tribution of myocyte orientation, which is incorporated in

the model both spatially over the surfaces and across the

transmural direction of the ventricular walls, that yields this

physiological response through the non-uniform contraction

of myofibers. The panels in the lower rows of Figs. 8 and 9

depict the relaxation of the heart during the course of repo-

larization. At the end of the repolarization process, the ref-

erence configuration of the heart is fully recovered. Note

that the repolarization starts from regions which depolarized

last. This is in accordance with the uneven action potential

duration distribution throughout the myocardium where the
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Fig. 8 Coupled excitation-induced contraction of generic heart model. Snapshots of the deformed model depict the action potential con-

tours at different stages of depolarization (upper row) and repolarization (lower row). The lines denote the spatial orientation a of contractile

myofibers

Fig. 9 Coupled excitation-induced contraction of the generic heart

model. Snapshots of two slices located at x = 0 and z = 25 mm

(Fig. 7) in the three-dimensional model favorably illustrate the phys-

iological wall thickening and overall torsional motion of the heart at

different stages of depolarization (upper row) and repolarization (lower

row)

action potential lasts longer in the endocardial cells than in

the epicardial cells [19]. In the present model, this is achieved

by altering the temporal converting factor βt inversely pro-

portional to the excitation time as originally proposed in

our recent work on computational modeling of electrocar-

diograms [17].
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6 Concluding remarks

In this manuscript, we have proposed a new, fully implicit,

entirely finite element-based numerical approach to the

strongly coupled non-linear problem of cardiac electrome-

chanics. The suggested unified algorithmic formulation has

been thoroughly set out by giving full particulars of the weak

formulation, consistent linearization, and discretization. This

has resulted in an unconditionally stable scheme and a mod-

ular framework that can readily be extended towards more

detailed constitutive approaches. The particular constitutive

model considered in this paper accounts for a two-way

coupling; that is, both the excitation-induced contraction of

cardiac tissue and the deformation-induced generation of

excitation have been incorporated. Apart from the

intrinsic coupling, the inherent anisotropic micro-structure of

cardiac tissue is reflected in the model by means of the mod-

ern notions of coordinate-free representation of anisotropy in

terms of structural tensors. This concerns not only the passive

and active non-linear stress response but also the deforma-

tion-dependent conduction tensor. The outstanding perfor-

mance of the proposed approach has been then demonstrated

by means of the three-dimensional benchmark problems that

include the re-entrant scroll dynamics and impact loading-

generated excitation in the contractile cardiac tissue and the

complete coupled electromechanical analysis of a biventric-

ular generic heart model. It is important to emphasize that

the fully implicit unified finite element setting allowed us

to carry out the benchmark computations with a consider-

ably less computational effort compared to the calculations

reported in the literature, which require much finer temporal

and spatial discretization.
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