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In general two-Higgs-doublet models (2HDMs) without scalar flavor changing neutral couplings

(SFCNC) in the lepton sector, the electron, muon, and tau interactions can be decoupled in a robust

framework, stable under renormalization group evolution. In this framework, the breaking of lepton flavor

universality (LFU) goes beyond the mass proportionality, opening the possibility to accommodate in a

simple manner a different behavior among charged leptons. We analyze simultaneously the electron and

muon (g − 2) anomalies in the context of these general flavor conserving models in the leptonic sector

(glFC). We consider two different models, I-glFC and II-glFC, in which the quark Yukawa couplings

coincide, respectively, with the ones in type I and in type II 2HDMs. We find two types of solutions that

fully reproduce both (g − 2) anomalies, and which are compatible with experimental constraints from LEP

and LHC, from LFU, from flavor and electroweak physics, and with theoretical constraints in the scalar

sector. In the first type of solution, all the new scalars have masses in the 1–2.5 TeV range, the vacuum

expectation values (vevs) of both doublets are quite similar in magnitude, and both anomalies are

dominated by two loop Barr-Zee contributions. This solution appears in both models. There is a second

type of solution, where one loop contributions are dominant in the muon anomaly, all new scalars have

masses below 1 TeV, and the ratio of vevs is in the range 10–100. The second neutral scalar H is the lighter

among the new scalars, with a mass in the 210–390 GeV range while the pseudoscalar A is the heavier, with

a mass in the range 400–900 GeV. The new charged scalar H� is almost degenerate either with the scalar or

with the pseudoscalar. This second type of solution only appears in the I-glFC model. Both solutions

require the soft breaking of the Z2 symmetry of the Higgs potential.

DOI: 10.1103/PhysRevD.102.035023

I. INTRODUCTION

After an improved determination of the fine struc-

ture constant [1], a new anomaly has emerged [2] con-

cerning the anomalous magnetic moment of the electron

ae ¼ ðge − 2Þ=2: there is a discrepancy among the exper-

imental determination and the Standard Model (SM)

prediction [3–8],

δae ≡ a
Exp
e − aSMe ¼ −ð8.7� 3.6Þ × 10−13: ð1Þ

Another well known and long standing anomaly concerns

the anomalous magnetic moment of the muon [9–15],

δaμ ≡ a
Exp
μ − aSMμ ¼ ð2.7� 0.9Þ × 10−9: ð2Þ

It is to be noticed that the anomalies in Eqs. (1) and (2) have

the opposite sign.

Because of this difference of sign, several New Physics

solutions addressing Eq. (2) tend to be eliminated as

solutions to both Eqs. (2) and (1). In particular, many

popular models in which the anomaly scales with the

square of the lepton mass [16] tend to generate too large δae
with the wrong sign. Some authors [17] argue that if the

origin of both anomalies is beyond the SM, the corre-

sponding model must incorporate some sort of effective

decoupling between μ and e. Recent beyond-SM explan-

ations of both anomalies can be found in [18–32]. A

minimal extension of the SM is the two-Higgs-doublets

model (2HDM) [33] which introduces, in general, a new set
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of flavor structures in the Yukawa sector. Those structures

could implement the decoupling between μ and e required

to explain δaμ and δae. Of course, the most popular

2HDMs shaped by symmetries [34,35], the so-called

2HDMs of types I, II, X, and Y [36–38], do not implement

in a straightforward way this decoupling between μ and e,
since the new Yukawa couplings in the lepton sector are

proportional to the charged lepton mass matrix.

Going one step further in generality, the so-called

“Aligned” 2HDM (A2HDM) [39] gives up stability of

the model under the renormalization group evolution

(RGE) [40] (the model is not shaped by a symmetry).

The A2HDM cannot, however, incorporate some effective

decoupling between μ and e since the new Yukawa

structures are still proportional to the fermion mass

matrices. It is nevertheless interesting to note that the

lepton sector of the A2HDM is stable under one loop RGE
1

[41–43]: scalar flavor changing neutral couplings

(SFCNC), absent at tree level, do not appear at one loop.

A generalization of the A2HDM is the general flavor

conserving (gFC) 2HDM where, at tree level, all Yukawa

couplings are diagonal in the fermion mass basis [44–46].

As in the A2HDM, it has been shown that the charged

lepton sector of the gFC-2HDM is one loop stable under

RGE, in the sense that SFCNC, absent at tree level, are not

generated at one loop [45]. This implies that a well behaved

and minimal 2HDM that can implement the effective

decoupling among μ and e is a gFC-2HDM in the leptonic

sector. Since this is all that is required to address the two

anomalies in Eqs. (1)–(2), we consider two minimal models

in which the quark sector is a 2HDM of either type I or type

II, while the lepton sector corresponds to a gFC-2HDM.We

refer to them as models I-glFC and II-glFC, respectively.

Note that these models do not have SFCNC at tree level,

neither in the quark nor in the lepton sectors. Additionally,

the new Yukawa couplings in the lepton sector are

independent of the charged lepton mass matrix. In the

appropriate limits, model I-glFC can reproduce 2HDMs of

types I and X while, similarly, model II-glFC can repro-

duce 2HDMs of types II and Y. In this sense model I-glFC

is a generalization of 2HDMs of types I and X, while model

II-glFC is instead a generalization of 2HDMs of types II

and Y. The convenience of adopting this kind of general-

ized flavor conserving 2HDMs for phenomenological

analyses was advocated in [45].

The paper is organized as follows. In Sec. II the models

are presented in detail. In Sec. III, the one and two loop

contributions to al are revisited. In a simplified analysis it

is shown that, with dominating two loop contributions, a

new simple scaling law follows:

δae

δaμ
¼ meReðneÞ

mμReðnμÞ
; ð3Þ

with ne, nμ, the new Yukawa couplings of the charged

leptons, in the lepton mass basis. In order to solve the

discrepancies in Eqs. (1)–(2) through the two loop con-

tributions, the scaling in Eq. (3) requires

ReðnμÞ ¼ −ð15.11þ15.11
−7.56 ÞReðneÞ ð4Þ

in the framework of models I-glFC and II-glFC. Besides

solutions with dominating two loop contributions, an

additional possibility with relevant one loop contributions

is also analyzed (similarly to [2]). In Sec. IV, a number of

constraints, relevant for a full analysis, are addressed in

detail. In Sec. V, the main results of such a full analysis are

presented and discussed. Details concerning some aspects

of the different sections are relegated to the Appendices.

II. THE I-GlFC AND II-GlFC MODELS

In 2HDMs, the Yukawa sector of the SM is extended to

LY ¼ −Q̄0
LðΦ1Yd1 þΦ2Yd2Þd0R − Q̄0

LðΦ̃1Yu1 þ Φ̃2Yu2Þu0R
− L̄0

LðΦ1Yl1 þΦ2Yl2Þl0R þ H:c:; ð5Þ

where Φ̃j ¼ iσ2Φ
�
j , and, as in the SM, neutrinos are

massless (in the leptonic sector only two flavor structures

are present). The vacuum expectation values vj of the

scalar fields Φj are in general nonvanishing; expanding

around the vacuum appropriate for electroweak symmetry

breaking,

Φj ¼ eiθj

� φþ
j

vjþρjþiηj
ffiffi

2
p

�

: ð6Þ

The so-called Higgs basis [47–49] is defined by

�

H1

H2

�

¼ Rβ

�

e−iθ1Φ1

e−iθ2Φ2

�

; with Rβ ¼
�

cβ sβ

−sβ cβ

�

;

RT
β ¼ R−1

β ; ð7Þ

in such a way that only one of the scalar doublets has a

nonvanishing vacuum expectation value: hH1i ¼ v
ffiffi

2
p ð0

1
Þ,

hH2i ¼ ð0
0
Þ. In Eq. (7), we have used cβ ≡ cos β ¼ v1=v,

sβ ≡ sin β ¼ v2=v, with v2 ¼ v21 þ v22 ¼ 1
ffiffi

2
p

GF

. Expanding

around the vacuum

H1 ¼
�

Gþ

vþH0þiG0
ffiffi

2
p

�

; H2 ¼
�

Hþ

R0þiI0
ffiffi

2
p

�

; ð8Þ

the would-be Goldstone bosons G0, G� and the physical

charged scalar H� are already identified. The neutral

scalars fH0; R0; I0g are not, in general, the mass

eigenstates.1
As in the SM, one is assuming massless neutrinos.
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It is in the Higgs basis where the Yukawa couplings have

the simplest interpretation:

LY ¼ −

ffiffiffi

2
p

v
Q̄0

LðH1M
0
d þH2N

0
dÞd0R

−

ffiffiffi

2
p

v
Q̄0

LðH̃1M
0
u þ H̃2N

0
uÞu0R

−

ffiffiffi

2
p

v
L̄0
LðH1M

0
l
þH2N

0
l
Þl0R þ H:c: ð9Þ

Since only the neutral component ofH1 has a nonvanishing

vacuum expectation value, the Yukawa couplings M0
f, for

all the fermions f ¼ u; d;l, will be the corresponding mass

matrices. Going directly to the fermion mass bases, we

obtain the relevant new Yukawa structures

LY ¼ −

ffiffiffi

2
p

v
Q̄LðH1Md þH2NdÞdR

−

ffiffiffi

2
p

v
Q̄LðH̃1Mu þ H̃2NuÞuR

−

ffiffiffi

2
p

v
L̄LðH1Ml þH2NlÞlR þ H:c:; ð10Þ

where Mf are the diagonal fermion mass matrices for f ¼
u; d;l and Nf are the new flavor structures that may be able

to explain the electron and muon anomalies in Eqs. (1)–(2).

As motivated previously, we consider two models.

(i) Model I-glFC is defined by
2

Nu ¼ t−1β Mu; Nd ¼ t−1β Md;

Nl ¼ diagðne; nμ; nτÞ: ð11Þ

The couplings Nu, Nd are the same as in 2HDMs of

types I or X.

(ii) Model II-glFC is defined by

Nu ¼ t−1β Mu; Nd ¼ −tβMd;

Nl ¼ diagðne; nμ; nτÞ: ð12Þ

The couplings Nu, Nd are the same as in 2HDMs of

types II or Y.

In both models Nl is diagonal, arbitrary, and stable at one

loop level under RGE, in the sense that it remains diagonal.

Note that the effective decoupling among the new cou-

plings of e and μ that is required in order to explain the

g − 2 anomalies is simply obtained from the independence

of ne and nμ.

To complete the definition of the model, in accordance

with the fact that the quark sector is a type I or type II

2HDM, we adopt a Z2 symmetric scalar potential

VðΦ1;Φ2Þ ¼ μ211Φ
†

1Φ1 þ μ222Φ
†

2Φ2 þ ðμ212Φ†

1Φ2 þ H:c:Þ
þ λ1ðΦ†

1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2

þ 2λ3ðΦ†

1Φ1ÞðΦ†

2Φ2Þ þ 2λ4ðΦ†

1Φ2ÞðΦ†

2Φ1Þ
þ ðλ5ðΦ†

1Φ2Þ2 þ H:c:Þ: ð13Þ

For μ212 ≠ 0, the Z2 symmetry is softly broken. This

potential generates the mass matrix of the neutral scalars

M2
0, which is diagonalized by a 3 × 3 real orthogonal

matrix R

RTM2
0R ¼ diagðm2

h; m
2
H; m

2
AÞ; R−1 ¼ RT : ð14Þ

The physical neutral scalars fh;H;Ag are:

0

B

@

h

H

A

1

C

A
¼ RT

0

B

@

H0

R0

I0

1

C

A
: ð15Þ

The Yukawa couplings of the neutral scalars are flavor

conserving
3
:

LN ¼ −
X

S¼h;H;A

X

f¼u;d;l

X

3

j¼1

mfj

v
Sf̄jðaSfj þ ibSfjγ5Þfj: ð16Þ

In the following we focus on a simplified case: we assume

that (i) there is no CP violation in the scalar sector and

(ii) the new Yukawa couplings are real, ImðnlÞ ¼ 0. In the

scalar sector, this corresponds to

R ¼

0

B

@

sαβ −cαβ 0

cαβ sαβ 0

0 0 1

1

C

A
; ð17Þ

with sαβ ≡ sinðα − βÞ and cαβ ≡ cosðα − βÞ, where α − π
2
is

the mixing angle parametrizing the change of basis from

the fields in Eq. (6) to the mass eigenstates in Eq. (15). The

alignment limit, in which h has the same couplings of the

SM Higgs, corresponds to sαβ → 1. Table I collects the

Yukawa couplings, as expressed in Eq. (16), in both models

I-glFC and II-glFC. The absence of CP violation is clear

from the exact relation aSfb
S
f ¼ 0 [50]; one important

consequence of this simplification is the absence of new

contributions generating electric dipole moments (EDMs),

in particular contributions to the electron EDM de, which is

quite constrained: jdej < 1.1 × 10−29 e · cm [51,52]. The

Yukawa couplings of H� are of the form

2
Here and in the following, tβ ≡ tan β and t−1β ≡ cot β.

3
The general form of the Yukawa couplings is given, for

completeness, in Appendix A.
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LCh ¼ −
1
ffiffiffi

2
p

v

X

f¼q;l

X

3

j;k¼1

fH−f̄−1
2
;jðαfjk þ iβ

f
jkγ5Þf1

2
;k

þ Hþf̄1
2
;kðαf�jk þ iβ

f�
jk γ5Þf−1

2
;jg; ð18Þ

where qþ1
2
;j ¼ uj, q−1

2
;j ¼ dj, lþ1

2
;j ¼ νj, l−1

2
;j ¼ lj, and the

corresponding couplings are given in Table II. Note that the

Yukawa couplings of the charged leptons in Tables I and II

are the same in both models I-glFC and II-glFC.

III. THE NEW CONTRIBUTIONS TO δal

The full prediction aTh
l

of the anomalous magnetic

moments of l ¼ e, μ has the form

aTh
l

¼ aSM
l

þ δal; ð19Þ

with aSM
l

the SM contribution and δal the corrections due

to the model. To solve the discrepancies in Eqs. (1)–(2), the

aim is to obtain δae ≃ δa
Exp
e and δaμ ≃ δa

Exp
μ within models

I-glFC and II-gII-glFC. It is convenient to introduce Δl

following:

δal ¼ KlΔl; Kl ¼
1

8π2

�

ml

v

�

2

¼ 1

8π2

�

gml

2MW

�

2

:

ð20Þ

The quantities Kl collect the typical factors arising

in one loop contributions; since Ke ≃ 5.5 × 10−14 and

Kμ ≃ 2.3 × 10−9, in order to reproduce the anomalies we

roughly need

Δe ≃ −16; Δμ ≃ 1: ð21Þ

It is well known that in the type of models considered

here, both one loop [53] or two loop Barr-Zee contributions

[54–59] can be dominant. Complete expressions used in the

full analyses of Sec. V, can be found in Appendix B. For the

moment, we consider in this section two approximations:

we only keep leading terms in a ðml=mSÞ2 expansion (for

the different scalars S ¼ h;H;A), and the alignment limit

sαβ → 1. With these approximations, the one loop contri-

bution to Δl in Eq. (20) is

Δ
ð1Þ
l

≃ n2
l

�

IlH

m2
H

−
IlA − 2=3

m2
A

−
1

6mH�2

�

; ð22Þ

where

IlS ¼ −
7

6
− 2 ln

�

ml

mS

�

: ð23Þ

Equation (22) applies to both model I-glFC and II-glFC.

We do not consider light scalars or pseudoscalars (see

Ref. [29]): in the different analyses it is assumed that h is

the lightest scalar, i.e., mh < mH; mA. For a typical range

mS ∈ ½0.2; 2.0� TeV, the loop functions IlS obey

IeS ∈ ½24.6; 29.2�; IμS ∈ ½13.9; 18.5�; ð24Þ

and thus the dominant contributions to Δ
ð1Þ
l

in Eq. (22) are

the logarithmically enhanced contributions from H and A.

Then,Δe ≃ −16 can only arise from the negative sign of the

A pseudoscalar contribution: Δe ≃ −½ReðneÞ�2IeA=m2
A.

Taking into account the IeA value in Eq. (24), it would

TABLE II. Fermion couplings to H�.

α
q
ij β

q
ij αlij βlij

I-glFC V�
jit

−1
β ðmuj

−mdi
Þ V�

jit
−1
β ðmuj

þmdi
Þ −ReðnliÞδij ReðnliÞδij

II-glFC V�
jiðt−1β muj

þ tβmdi
Þ V�

jiðt−1β muj
− tβmdi

Þ −ReðnliÞδij ReðnliÞδij

TABLE I. Fermion couplings to neutral scalars.

aSu bSu aSd bSd aS
l

bS
l

I-glFC h sαβ þ cαβt
−1
β

0 sαβ þ cαβt
−1
β

0 sαβ þ cαβ
ReðnlÞ
ml

0

H −cαβ þ sαβt
−1
β

0 −cαβ þ sαβt
−1
β

0 −cαβ þ sαβ
ReðnlÞ
ml

0

A 0 −t−1β 0 þt−1β 0 ReðnlÞ
ml

II-glFC h sαβ þ cαβt
−1
β

0 sαβ − cαβtβ 0 sαβ þ cαβ
ReðnlÞ
ml

0

H −cαβ þ sαβt
−1
β

0 −cαβ − sαβtβ 0 −cαβ þ sαβ
ReðnlÞ
ml

0

A 0 −t−1β 0 −tβ 0 ReðnlÞ
ml
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require ½ReðneÞ�2 ∼m2
A, which can easily violate perturba-

tivity requirements in the Yukawa sector or constraints from

resonant dilepton searches. Consequently, we do not expect

an explanation of δae in terms of one loop contributions.

For δaμ, any relevant one loop contribution in Eq. (22)

should arise from the H contribution attending, again, to the

required sign and the logarithmically enhanced value of IμH
in Eq. (24): Δμ ≃ ½ReðnμÞ�2IμH=m2

H. For IμH ≃ 16 such a

contribution needs ½ReðnμÞ�2 ∼ ½mH=4�2, that is a not too

heavy H (in order to have reasonably perturbative nμ) and

mA > mH in order to avoid cancellations with wrong sign

contributions. In the same approximation (leading ml=mS

terms and sαβ → 1), the two loop contributions are domi-

nated by Barr-Zee diagrams in which the internal fermion

loop is connected with the external lepton via one virtual

photon and one virtual neutral scalar H or A. The leading

contribution to Δl in Eq. (20) is (for detailed expressions,

see Appendix B)

Δ
ð2Þ
l

¼ −

�

2α

π

��

nl

ml

�

F: ð25Þ

The factor F depends on the masses of the fermions in the

closed loop, on the couplings of those fermions to H and A,

and, of course, on mH and mA; it is consequently different

in models I-glFC and II-glFC:

FI ¼
cot β

3
½4ðftH þ gtAÞ þ ðfbH − gbAÞ�

þ ReðnτÞ
mτ

ðfτH − gτAÞ;

FII ¼
cot β

3
½4ðftH þ gtAÞ − tan2βðfbH − gbAÞ�

þ ReðnτÞ
mτ

ðfτH − gτAÞ; ð26Þ

where

ffS ≡ f

�

m2
f

m2
S

�

; gfS ≡ g

�

m2
f

m2
S

�

: ð27Þ

The functions fðzÞ and gðzÞ are defined in Appendix B;

they are represented in Fig. 1. Their main features are:

(i) fðzÞ ≃ gðzÞ in the whole range of interest, (ii) the largest
values correspond to the heavier fermion (the top quark),

(iii) the values of f and g for the top quark contributions

vary between 0.1 and 1 in the relevant range of scalar

masses. Considering the dominant top quark terms, for tβ ≃

1 andmH ≃mA, it is easy to realize that formH ∼ 1–2 TeV,

δae can be explained with Yukawa couplings ReðneÞ ∼
3–7 GeV [ReðneÞ > 0 gives the right sign of δae]. If we
assume that δaμ must also be explained by the same kind of

dominant Barr-Zee two loop contributions, which are

independent of the specific charged lepton, it is straightfor-

ward that

δaμ ¼
mμReðnμÞ
meReðneÞ

δae: ð28Þ

With this relation, the origin of the different signs of δae
and δaμ relies on the freedom to have ReðneÞ and ReðnμÞ
with opposite signs, ReðnμÞ ≃ −15ReðneÞ, as anticipated in
Eq. (3). In terms of ReðnμÞ, with the same assumptions

(tβ ∼ 1, mA ∼mH ∼ 1–2 TeV), ReðnμÞ ∈ −½45; 105� GeV.
The previous arguments apply to both models, I-glFC and

II-glFC, since 4ðftH þ gtAÞ is the dominant term in both FI

and FII.

Attending to the flavor constraints discussed in Sec. IV

(Bd and Bs meson mixings, b→ sγ radiative decays), tβ ≪
1 are excluded in 2HDMs of types I and II, and thus also in

I-glFC and II-glFC models; there is no need to discuss the

tβ ≪ 1 regime.

Let us now analyze the two loop Barr-Zee contributions

in Eq. (26) for large values of tβ. As a reference, consider
the analysis above with tβ ∼ 1 and mA ∼mH ∼ 1–2 TeV;

for definiteness we now take tβ ¼ 50. For large tβ, it is clear

that these contributions in models I-glFC and II-glFC are

quite different. Starting with model I-glFC, in order to

maintain the right value of δae, the tβ suppression in

ReðneÞt−1β ðftH þ gtAÞ can be compensated with smaller

mH, mA, and larger ReðneÞ. For example, mA ∼mH ∼

200 GeV gives an increase of the loop functions by a

FIG. 1. Loop functions.
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factor of 10 with respect to mA ∼mH ∼ 1–2 TeV; increas-

ing then ReðneÞ by a factor of 5, the suppression t−1β ¼
1=50 is compensated. Therefore, the discrepancy in δae can
be explained in the I-glFC model through two loop

contributions, for large values of tβ and ReðneÞ∼
15–35 GeV. The question now is if one can explain, with

the two loop contributions, the muon anomaly δaμ.

Attending to Eq. (28), one would need ReðnμÞ ∈
−½225; 505� GeV, which would be in conflict with pertur-

bativity requirements in the Yukawa sector. However, as

the discussion on one loop contributions after Eq. (22)

shows, for lightmH, e.g.,mH ∈ ½200; 400� GeV, δaμ can be
obtained with H-mediated one loop contributions, and

mA > mH to avoid cancellations. One needs jReðnμÞj∼
mH=4, in which case jReðnμÞj ∈ ½50; 100� GeV is accept-

able from the perturbativity point of view.

Summarizing the previous discussion, we envisage, at

least, two kinds of solutions:

(i) The first is realized with scalars having masses in the

1–2 TeV range, tβ ∼ 1, and both anomalies produced

by two loop Barr-Zee contributions. The coupling

of electrons to the new scalar and pseudoscalar,

ReðneÞ, should be in the few GeV range. Following

Eq. (28), the corresponding muon coupling is larger.

This first solution can appear, a priori, in both

I-glFC and II-gII-glFC models. In Sec. V we refer

to this first type of solution as “solution [A]”.

(ii) The second solution corresponds to a lighter H,

mH ∈ ½200; 400� GeV and a heavier A; the required

values of tβ are larger, tβ ≫ 1. In this second solu-

tion, the electron anomaly is obtained with two loop

contributions while the muon anomaly is one loop

controlled; contrary to the first solution, there is no

linear relation among ReðnμÞ and ReðneÞ. This

second kind of solution can clearly appear in the

I-glFCmodel, but in this simplified analysis it cannot

be elucidated if this possibility is also open in the

II-glFC model. Anticipating the results of the com-

plete numerical analyses of Sec. V, this will not be the

case: within the II-glFC model there is no solution

with large tβ and relatively light H. In Sec. V we refer

to this second type of solution as “solution [B]”.

Notice also that, a priori, this second kind of solution

might be obtained with both signs of ReðnμÞ.

IV. CONSTRAINTS

In this section we discuss the different constraints that

can play a relevant role in the detailed analyses of Sec. V.

Each constraint is implemented as χ2 function; a global χ2

function, the sum of all separate contributions, is used to

drive the analyses (for an efficient exploration of parameter

space we employ Markov chain Monte Carlo techniques)

and represent the relevant regions for different parameters

and observables. The usual form χ2
O
¼ ðOTh−OExp

σExp
Þ2 is

adopted for the constraint corresponding to an observable

O, where the experimental input is a measurement OExp

with uncertainty σExp and the theoretical prediction is OTh

(for correlated measurements or asymmetric uncertainties,

appropriate modifications are incorporated). Not all con-

straints are implemented through the usual χ2 form: it is not

adequate to incorporate the bounds for perturbativity

requirements of the Yukawa couplings in Sec. IV C and

the bounds obtained in LHC searches in Sec. IV G. In those

cases, instead of sharp bounds or cuts, the bounds are

implemented as described in the respective subsections.

Furthermore, since δae and δaμ have a role much more

important than the rest of constraints, they are also

incorporated in a different manner (as described in detail

below) to ensure that the analysis focuses on the ability of

the model to reproduce values which are clearly non-SM.

A. δal constraints for the numerical analyses

The main motivation of this work is to accommodate the

departures from SM expectations in the anomalous mag-

netic moments of both electron and muon. We now discuss

how these departures are implemented as constraints in the

analyses presented in Sec. V. The g − 2 anomalies δa
Exp
l

¼
a
Exp
l

− aSM
l

in Eqs. (1)–(2) are

δa
Exp
e ¼ −ð8.7� 3.6Þ × 10−13;

δa
Exp
μ ¼ ð2.7� 0.9Þ × 10−9: ð29Þ

The theoretical prediction in the present models is aTh
l

¼
δal þ aSM

l
and thus a simple and natural measure of their

ability to accommodate the experimental results is a χ2

function

χ20ðδae; δaμÞ ¼
�

δae − ce

σe

�

2

þ
�

δaμ − cμ

σμ

�

2

; ð30Þ

where δa
Exp
l

¼ cl � σl in Eq. (29).

The interest in explanations of the experimental results

in terms of non-SM contributions is due to the 3 − 4σ

deviation χ20ð0; 0Þ ≃ 15. For the numerical exploration of

the regions in parameter space which could provide such

an explanation, rather than including a contribution

χ20ðδae; δaμÞ in the global χ2, we impose a stronger

requirement: instead of χ20ðδae; δaμÞ we include

χ2ðδae; δaμÞ

¼
�

0; if χ20ðδae; δaμÞ ≤ 1
4
;

106 × ðχ20ðδae; δaμÞ − 1
4
Þ; if χ20ðδae; δaμÞ > 1

4
;

ð31Þ

in order to guarantee that the models reproduce both

anomalies simultaneously within less than 1
2
σl of the

BOTELLA, CORNET-GOMEZ, and NEBOT PHYS. REV. D 102, 035023 (2020)

035023-6



central values (in the regions of interest, Eq. (31) approx-

imates a “sharp” box function). This approach is adopted in

order to ensure that, when representing allowed regions at a

given confidence level in the next section, they do not

include regions where one or both anomalies are only

partially reproduced. For illustration, Fig. 2 shows the

allowed region obtained in the complete numerical analyses

(which is identical in both models); that is, in the results of

Sec. V, within all the represented allowed regions, the

values of δae and δaμ belong to the allowed region of

Fig. 2. Notice, finally, that the SM prediction aSM
l

includes

Higgs-mediated contributions: since these are just the h

mediated contributions for exact alignment sαβ ¼ 1, they

have to be subtracted from the New Physics contributions

to δal mediated by h (quantitatively, however, this subtlety

is rather irrelevant).

B. Scalar sector

For the scalar sector, we use the set of independent

parameters fv;mh; mH; mA; mH� ; tβ; α − β; μ212g (from

which the quartic parameters λj are obtained) with v ¼
246 GeV and mh ¼ 125 GeV. We require the potential to

be bounded from below following [60], we also require the

quartic parameters to respect perturbativity and perturbative

unitarity in 2 → 2 scattering [61–64] (see also [65–67]),

and finally the corrections to the oblique parameters S and

T, which depend on the scalar masses and α − β, have to be

in agreement with electroweak precision data [68].

C. Fermion sector

In the fermion sector, the new couplings nl arise from

the dimensionless Yukawa couplings Ylj in Eq. (5). If one

required that Yukawa couplings remain perturbative, for

example not exceeding Oð1Þ values, this would translate

into nl’s smaller than v=
ffiffiffi

2
p

≃ 174 GeV. We adopt a more

conservative approach, and include a contribution of the

following form to the global χ2 function driving the

numerical analyses:

χ2PertðnlÞ ¼
� 0; for jnlj ≤ n0;

ðjnlj−n0
σn0

Þ2; for jnlj > n0:
ð32Þ

We choose n0 ¼ 95 GeV and σn0 ¼ 1 GeV. One could

have adopted a crude requirement such as imposing for

example jnlj ≤ 100 GeV with a sharp cut: Eq. (32) is

simply a smooth version (more convenient for numerical

purposes) of that kind of requirement.

D. Higgs signal strengths

Concerning the 125 GeV Higgs-like scalar, agreement

with the observed production × decay signal strengths of

the usual channels is also imposed [69–72]. The measured

signal strengths, with uncertainties reaching the 10% level,

tend to favor the alignment limit in the scalar sector; it is to

be noticed that since the models require jReðneÞj ≫ me and

jReðnμÞj ≫ mμ, the Higgs measurements in the μþμ−

channel such as [73,74] are even more effective in forcing

that alignment limit. Constraints on the total width Γh,

arising from off-shell ðggFþ VBFÞ → hð�Þ → WWð�Þ [75],
are also included [76,77], even if in the models considered

here their effect is negligible in the alignment limit. For

additional details, see [45,78,79].

E. H� mediated contributions

Flavor transitions mediated by W� can receive new

contributions where W�
→ H�. For tree level processes

involving leptons, one refers to “Lepton Flavor

Universality” constraints; we also consider constraints at

the loop level in the quark sector.

One may also worry about too large H�-mediated

contributions to processes like lj → lkγ: since in the

present models we are considering massless neutrinos,

lepton family numbers are conserved—i.e., there is a

½Uð1Þ�3 symmetry—and such processes are absent.

1. Lepton flavor universality

Contributions mediated by H� modify the leptonic

decays lj → lkνν̄:

Γðlj → lkνν̄Þ ¼
G2

F

192π3
m5
lj
fðxkjÞ

�

1þ 1

4
jgS;RRj→k j2

þ 2ReðgS;RRj→k Þ
mlk

mlj

gðxkjÞ
fðxkjÞ

�

× ð1þ Δ
ljlk

RC Þ;

ð33Þ

FIG. 2. Allowed δaμ vs δae region.
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where fðxÞ and gðxÞ are the usual phase space integrals
4

[80], xkj ≡ ðmlk
=mlj

Þ2) and Δ
ljlk

RC correspond to QED

radiative corrections and most importantly,

gS;RRj→k ¼ −
n�
lj
nlk

m2

H�
: ð34Þ

The notation gS;RRj→k reflects the fact that in the present

models the new contributions only affect, in an effective

description, the operator ν̄LljRl̄kRνL. The ratios

R

�

la → lb

lα → lβ

�

≡
Γðla → lbνν̄Þ

Γðla → lbνν̄ÞSM
Γðlα → lβνν̄ÞSM
Γðlα → lβνν̄Þ

ð35Þ

give the following constraints [81]:

R

�

τ → μ

τ → e

�

¼ 1þ ð3.8� 3.2Þ × 10−3;

R

�

τ → e

μ → e

�

¼ 1þ ð2.4� 2.3Þ × 10−3: ð36Þ

In addition, measurements of decay spectra with polarized

leptons impose

jgS;RRμ→e j < 0.035 at 90%CL;

jgS;RRτ→μ j < 0.72 at 95%CL; jgS;RRτ→e j < 0.7 at 95%CL:

ð37Þ

Besides purely leptonic decays lj → lkν̄ν, leptonic decay

modes like K; π → eν; μν and τ → Kν; πν, provide addi-

tional constraints on the different nl (together with the tβ
dependence of the quark couplings with H�). In particular,

we consider ratios

RP
l1l2

¼ ΓðPþ
→ l

þ
1 νÞ

ΓðPþ
→ l

þ
1 νÞSM

ΓðPþ
→ l

þ
2 νÞSM

ΓðPþ
→ l

þ
2 νÞ

¼
j1 − Δ

P
l1
j2

j1 − Δ
P
l2
j2 ;

ð38Þ

where the quark content of Pþ is uid̄j, and

j1 − Δ
P
la
j2 ≡

�

�

�

�

1 −
M2

P

M2

H�

kumui
þ k�dmdj

mui
þmdj

nla
mla

�

�

�

�

2

; ð39Þ

with ku ¼ kd ¼ t−1β in model I-glFC and ku ¼ −k−1d ¼ t−1β
in model II-glFC. Notice the enhanced sensitivity of these

observables due to the
nla
mla

factor: unlike the SM amplitude,

the new H�-mediated amplitude is not helicity suppressed.

For ratios involving τþ → Pþν decays, the expressions are
unchanged. The actual constraints [81–83] read

Rπ
μe ¼ 1þ ð4.1� 3.3Þ × 10−3;

Rπ
τμ ¼ 1 − ð5.9� 5.9Þ × 10−3;

RK
μe ¼ 1 − ð4.8� 4.7Þ × 10−3;

RK
τμ ¼ 1 − ð2.2� 1.4Þ × 10−2: ð40Þ

All these LFU violating effects scale with 1=m2

H� and

therefore one expects that in both models, I-glFC and

II-glFC, the effects for large mH� are much more sup-

pressed, including in particular the solution [A] region

introduced in Sec. III. This is quite clear in the pure leptonic

decays, where the most relevant constraints, Eq. (36) and

jgS;RRμ→e j in Eq. (37), can be comfortably satisfied, giving a

contribution to the corresponding χ2 at a level similar to the

SM. Since solution [A] corresponds to tβ ∼ 1, the effects in

semileptonic processes are similar in both models, with the

effects in kaons larger by a factor of 10 than the effects in

pions. The leading contribution to RK
μe − 1 is of the order of

the uncertainty: since in that channel there is essentially a

change of sign between the contributions in models I-glFC

and II-glFC, it turns out that in the II-glFC case the

corresponding χ2 value can improve over the SM one,

while in the I-glFC case it is the other way around. In any

case, for solution [A], these differences are small. For

solution [B], the situation is different since we have:

solution ½B�; model I-glFC; Δ
K
l
∼
M2

K

ml

nl

M2

H�tβ
; ð41Þ

solution ½B�; model II-glFC; Δ
K
l
∼ −

M2
K

ml

nltβ

M2

H�
; ð42Þ

considering that it requires tβ ≫ 1 and smaller mH�.

Clearly, lower values of mH� can be compensated by large

values of tβ in model I-glFC, and solution [B] is similar to

[A] concerning this constraint. On the contrary, in model

II-glFC, lower values of mH� and larger values of tβ
enhance the new contributions: this observable is highly

relevant to eliminate solution [B] in model II-glFC.

The new scalars can also give one loop corrections to

Z → l
þ
l
− decays. In the parameter space region corre-

sponding to solution [A], one can easily check that these

new contributions are at least a factor of 30 smaller than

the experimental uncertainties (in the limit mA ¼ mH ¼
mH� ≫ MZ they decouple, see [84]); in the parameter

space of solution [B], the new contributions are larger, but

still below uncertainties.

4
fðxÞ ¼ 1–8xþ 8x3 − x4 − 12x2 ln x, and gðxÞ ¼ 1þ 9x −

9x2 − x3 þ 6xð1þ xÞ ln x.

BOTELLA, CORNET-GOMEZ, and NEBOT PHYS. REV. D 102, 035023 (2020)

035023-8



2. b → sγ and B0
q − B̄

0
q

As loop level transitions mediated by the charged scalar,

we consider contributions to the mixing in Bd and Bs

meson systems (in particular to the dispersive part of

the mixing, which controls the mass differences) and

contributions to the radiative decay b→ sγ. In both cases,

concerning the dependence on CKM factors of the new

contributions involving H�, it is clear from Table II that

they are analog to their SM counterparts; this implies,

for example, that there is no need to worry about new

contributions to CP asymmetries in Bd → J=ΨKS or

Bs → J=ΨΦ. Contributions to the mentioned mass dif-

ferences in Bd and Bs are required to not exceed the 2–3%

level (that is already below the current level of theoretical

uncertainty in the relevant matrix elements obtained from

lattice QCD computations). For b → sγ, we impose that the

correction to the usual ΓðB → XsγÞEγ>1.6 GeV is below the

experimental uncertainty. Both observables are insensitive

to scalar-lepton couplings, they can only constrainmH� and

tβ. For mH� the effect is straightforward: for large values of

mH� , the new contributions are suppressed. Concerning tβ,

dominant new contributions with virtual top quarks are

further enhanced or suppressed by the t−1β dependence in

Table I: altogether, one expects that these two constraints

tend to disfavor tβ ≪ 1 and light H�. We refer to [85–87]

for further details.

F. e+ e − → μ+ μ− ; τ + τ − at LEP

LEP measured eþe− → μþμ−; τþτ− with center-of-

mass energies up to
ffiffiffi

s
p ¼ 208 GeV: although s-channel

contributions with virtual H and A do not interfere with SM
γ and Z mediated contributions, for light H, A, the resonant

enhancement together with the large couplings to leptons

might give predictions in conflict with data (e.g., [88]). The

effect of these LEP constraints is, essentially, to forbid

values of mH, mA below 210–215 GeV.

G. LHC searches

We consider constraints from LHC searches of scalars, in

particular,

(i) searches of dilepton resonances [89–94] which give
constraints on σðpp→SÞ½ggF�×BrðS→lþl−Þ, S ¼
H;A and l ¼ μ, τ, where the production cross

section σðpp→ SÞ½ggF� corresponds to gluon-gluon

fusion,

(ii) and searches of charged scalars [95–99] which

give constraints on σðpp → H�tbÞ × BrðH�
→ fÞ,

f ¼ τν; tb.
For production, the narrow width approximation (NWA)

is considered; the widths of H, A and H� can reach ∼10%

of their respective masses: if one incorporates finite

width effects through the convolution of the cross

section computed in the NWA with a (relativistic) Breit-
Wigner distribution for the scalars, the computed signal

would be partially “diluted”. In this sense, using the

NWA is conservative since it gives stronger pointwise

bounds. The constraints are incorporated as contributions

of the following form in the global χ2: for each

“production × decay” channel with experimental bound

½σ × Br�Exp and theoretical prediction ½σ × Br�Th, the con-

tribution is given by

χ2ð½σ × Br�ThÞ ¼

8

<

:

0; if ½σ × Br�Th ≤ 0.9 × ½σ × Br�Exp;

103 ×
	

½σ×Br�Th
½σ×Br�Exp − 0.9




; if ½σ × Br�Th > 0.9 × ½σ × Br�Exp:
ð43Þ

Equation (43) is a convenient smooth approximation of a “sharp” bound/cut.

Production cross sections incorporate corrections associated to the modified fermion-scalar vertices in the following

manner. For generic interaction terms

LSq̄q ¼ −
mt

v
St̄ðaSt þ ibSt γ5Þt −

mb

v
Sb̄ðaSb þ ibSbγ5Þb; ð44Þ

the gluon-gluon fusion production cross section reads

σ½pp→ S�ggF ¼ σ½pp → S�SM−like
½ggF� ×

jaStmtFðxtÞ þ aSbmbFðxbÞj2 þ jbStmtF̂ðxtÞ þ bSbmbF̂ðxbÞj2
jmtFðxtÞ þmbFðxbÞj2

; ð45Þ

with xq ≡ ðmq=mSÞ2, and FðxÞ and F̂ðxÞ the loop

functions corresponding to scalar or pseudoscalar cou-

plings, respectively; σ½pp → S�SM−like
½ggF� can be found in

[100–103]. This simple recipe also gives sufficiently

good agreement with results for a SM-Higgs-like neutral

pseudoscalar, which can be found in [103–106]. The

couplings in Eq. (44) for S ¼ H;A in each model can be

read in Table I.

Similarly, for the production cross sections pp → H�tb
(i.e., H� in association with tb), we refer to [107,108],

which provide results, labeled here σ½Ref�, for a type II

2HDM with tβ ¼ 1. For arbitrary values of tβ, we use
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Model I-glFC∶ σIðtβÞ ¼
ðmt=tβÞ2 þ ðmb=tβÞ2

m2
t þm2

b

× σ½Ref� ¼
1

t2β
σ½Ref�;

Model II-glFC∶ σIIðtβÞ ¼
ðmt=tβÞ2 þ ðmbtβÞ2

m2
t þm2

b

× σ½Ref� ¼
1

t2β

1þ t4βm
2
b=m

2
t

1þm2
b=m

2
t

σ½Ref�: ð46Þ

As an additional check, (i) the previous cross sections and

(ii) the computations of the decay branching ratios of the

scalars, have been compared with the results of MadGraph5_

AMC@NLO [109] at leading order. With FeynRules [110] and

NLOCT [111,112], the needed universal Feynrules Output

at next to leading order (NLO) of the I-glFC and II-glFC

models is produced. A good agreement in the gluon-gluon

fusion production cross section is found, given the fact that

theMadGraph5_AMC@NLO calculation is at leading order (one

loop in this case). For the branching ratios, there is

complete agreement.

V. RESULTS

As discussed in Sec. III, we expect, at least, two different

types of solution to the δal anomalies. In the following we

refer to them, as anticipated, as solutions [A] and [B].

Solution [A] corresponds to tβ ∼ 1, heavy neutral new

scalars (with masses in the 1–2 TeV range), and both

anomalies explained by two loop Barr-Zee contributions.

Solution [B] corresponds instead to large tβ, lighter new

scalars, with δae obtained through two loop Barr-Zee

contributions while in δaμ the most important contributions

are one loop and H-mediated. Note that in general one

would expect a set of intermediate solutions between [A]

and [B], at least in model I-glFC, where we have a priori

identified the presence of both solutions. For model

II-glFC we can only anticipate with some certainty the

presence of solution [A].

It is therefore very important to find out which con-

straints, if any, can distinguish among both types of

solutions. One should also remember that quite large

couplings of the new scalars to leptons are required to

explain the anomalies. This fact confers a special role to

dilepton resonance and charged scalar searches at the LHC.

Consequently the analyses are separated in two stages:

(i) one, labeled “No LHC”, which includes all constraints

discussed in Sec. IVexcept for the LHC searches which are

not imposed as constraints, and (ii) the complete analysis

with all constraints, including these LHC searches.

One should also remark, before presenting results, that

solutions [A] and [B] as discussed above, cannot be

realized when the scalar potential in Eq. (13) is exactly

Z2 symmetric, i.e., when μ212 ¼ 0. This was to be expected.

The reason to have difficulties obtaining solution [A] with

the exactly Z2 symmetric potential is simple: it does not

allow a “decoupling regime” [67,113,114], i.e., in that case

one cannot have scalars heavier than ∼1 TeV (without

violating requirements such as perturbativity). On the

other hand, concerning solution [B], the exactZ2 symmetry

does not allow large tβ. Introducing μ212 ≠ 0 removes both

obstacles. In the plots to follow, the results from the “No

LHC” analysis correspond to lighter red regions while the

results from the full analysis correspond to darker blue

regions. The regions represented are allowed at 2σ (for a

2D − χ2 distribution); the χ2 or likelihood function used

in the numerical analysis implements the constraints

of Sec. IV.

In Fig. 3 we have ReðnμÞ versus ReðneÞ; the full analysis
shows, clearly, three disjointed regions. As indicated in

the figure, the bottom left small region corresponds to

solution [A], and reproduces the linear relation of Eq. (28),

arising from the explanation of both anomalies through two

loop Barr-Zee contributions. The largest blue region to the

bottom right corresponds to solution [B] with ReðnμÞ < 0,

where δae is two loop dominated while δaμ also receives

significant one loop contributions. In this region there is no

linear relation among ReðneÞ and ReðnμÞ. For ReðnμÞ > 0,

solution [B] corresponds to the top blue region [the

subindex � in [B�] refers to the sign of ReðnμÞ]. It is
clear, from the underlying red region, that excluding LHC

searches, there is a smooth transition between solutions [A]

and [B−] where all kinds of contributions must be consid-

ered: we recall that the numerical analyses incorporate the

FIG. 3. ReðnμÞ vs ReðneÞ.
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complete expressions of Appendix B, which consider one

and two loop contributions with all possible fermions in the

fermion loop of Barr-Zee terms. It is important to stress

that, since the lepton couplings to H and A can be quite

large, it is mandatory to include all leptons in the compu-

tation of Barr-Zee terms.

Figure 4 shows results for ReðnlÞ versus tβ and mH.

From previous discussions, the regions corresponding to

solutions [A] and [B] can be easily identified. For example,

in Fig. 4(a), the blue region reaching larger values of

ReðneÞ, with tβ ≥ 13 and 200 GeV ≤ mH ≤ 370 GeV is

clearly associated to solution [B]. Figures 4(b) and 4(e)

illustrate the same aspects regarding now ReðnμÞ. For

ReðnτÞ it also follows from Figures 4(c) and 4(f) that

ReðnτÞ > 0 is required in solution [B] (one can indeed

check that it gives a subdominant but necessary two loop

contribution to obtain the appropriate value of δaμ).

To characterize more precisely solutions [A] and [B],

Fig. 5 shows correlations among scalar masses and with tβ.
In particular, it is clear that in solution [A] all new scalars

are heavy, with masses in the 1.2–2.3 TeV range, and mass

differences not exceeding �200 GeV. For solution [B],

some important results can be observed: (i) in addition to

the existence of separate regions [Bþ] and [B−] for

both signs of ReðnμÞ, there are two separate manners in

which solution [B] can arise, one region where mH� ∈

½0.4; 0.9� TeV and mA ¼ mH� to a high degree of accuracy

and another smaller region where mH� ∈ ½0.25; 0.35� TeV
and mH ¼ mH� to a high degree of accuracy; (ii) in all

cases, mH < mA. This last inequality, as analyzed later,

must allow the decay A → HZ (additionally, either H�
→

HW� or A → H�W∓ would also be allowed); together

with the electroweak precision constraints (in particular the

oblique parameter T), this forces either mA ¼ mH� or

mH ¼ mH� . These two results match nicely with the need

for H to be as light as possible (LEP constraints will force in

any case mH ≥ 210 GeV) in order to produce the main

contribution (at one loop) to δaμ.

Figure 6 shows the resonant ½pp�ggF → S→ μþμ− cross

sections with respect to mS for S ¼ H;A. The black line

(a) (b) (c)

(d) (e) (f)

FIG. 4. nl couplings versus tβ, mH.
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shows the LHC bounds included in the full analysis. In

gluon-gluon fusion production, for the same scalar mass,

the gluon-gluon-pseudoscalar amplitude is 2–6 times larger

than the corresponding gluon-gluon-scalar amplitude (that

is 22–62 larger pseudoscalar vs scalar production cross

sections). One could have expected, attending to this fact,

that the constraints from LHC searches on σðpp →
AÞggF × BrðA → μþμ−Þ versus mA would be responsible

for the separation among solutions [A] and [B]. Figure 6(a)

disproves this naive expectation, as Fig. 6(b) shows it is

rather σðpp→ HÞggF × BrðH → μþμ−Þ which shows how

the bounds from LHC searches separate the solutions by

excluding mH ∈ ½380; 1200� GeV (i.e., eliminating the red

region “bridge” connecting the blue regions). Comparing

the shape of the allowed regions in Figures 6(a) and 6(b) it

is also clear that, besides the production cross section, the

branching ratios BrðH;A → μþμ−Þ may play an impor-

tant role.

On this respect, let us start by observing that, since

values of jReðnμÞj larger than some minimal jReðnμÞjMin

are required to explain δaμ, both BrðH → μþμ−Þ and

BrðA → μþμ−Þ are bounded from below. The dominant

decay channels of the new scalars are shown in Fig. 8;

Figures 8(b) and 8(f) show that BrðH → μþμ−Þ and

BrðA → μþμ−Þ are indeed bounded from below, but in

the case of H → μþμ− the lower bound is larger than that

of A → μþμ− (it can even saturate the decay width of H).

This explains the narrowness of the red and blue regions

in Fig. 6(b) for mH > 400 GeV. One should keep in mind

that solutions [A] and [B] also differ quite substantially in

the values of tβ: in Fig. 5(e) it is clear that large mH >

1 TeV requires tβ ∼ 1, while mH < 500 GeV is compatible

with a broad range tβ ∈ ½1; 102�. This is the last ingredient
necessary to interpret the shape of Fig. 6(b). For

mH < 500 GeV, without constraints from LHC searches,

the broad range of tβ values gives a broad range for

σðpp → HÞggF: since the gluon-gluon fusion production

cross section is proportional to t−2β , and thus for solution [B]

there is a substantial suppression of σðpp→ HÞggF due to

tβ ≫ 1. Due to the larger production cross section of a

(a) (b) (c)

(d) (e)

FIG. 5. Scalar sector.
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pseudoscalar, despite the t−2β suppression, LHC searches

might rule out pp→ A → μþμ− predictions for solution

[B]: as Fig. 6(a) shows, that is not the case. This is

clearly achieved through a reduction of BrðA → μþμ−Þ;
Figures 8(f) and 8(e) show that A → HZ contributes

decisively to reduce BrðA → μþμ−Þ, evade LHC bounds,

and obtain a viable solution [B]. For this reason, as

anticipated, mA > mH þMZ. For the charged scalar H�,
the behavior of the most relevant decay channels

Hþ
→ μþν, τþν, tb̄, HW� mirrors the corresponding

A → μþμ−, τþτ−, tt̄, HZ, as Figures 8(j)–8(i) show. The

only minor difference arises for solution [B] in the small

region where mH� ≃mH: in that region, (i) H�
→ HW� is

forbidden and (ii) in addition to A→ HZ, also A → H�W∓

(not shown) has a large branching ratio.

Figure 7 shows that resonant τþτ− searches are less

constraining than the corresponding μþμ− searches in

Fig. 6. Concerning production of H�, Fig. 9 shows that

current results from searches at the LHC are much less

constraining than the results from resonant dilepton

searches in Figs. 7 and 6. Results in the previous figures

concern model I-glFC, where, in addition to solution [A]

in which both δae and δaμ arise from 2 loop contributions, a

second set of solutions [B] exists in which 1 loop

contributions are dominant in δaμ. For model II-glFC this

second possibility is not available, and only solution [A] is

obtained. Furthermore, since tβ ∼ 1 in solution [A], the

corresponding allowed regions do not differ much in both

models I-glFC and II-glFC. We do not show figures

corresponding to model II-glFC since the allowed regions

in that case very approximately coincide with “Sol. [A]”

regions in model I-glFC plots.

Finally, Fig. 10 illustrates with some examples the kind

of clear signal that solution [B] in model I-glFC gives in

(a) (b)

FIG. 6. ½pp�ggF → S → μþμ− versus mS.

(a) (b)

FIG. 7. ½pp�ggF → S → τþτ− versus mS.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 8. Dominant decay channels of H, A, H�.

(a) (b) (c)

FIG. 9. pp → H�ðtbÞ → lν; tb versus mH� .
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eþe− → μþμ− scattering at energies beyond the range

explored at LEP.

VI. CONCLUSIONS

General 2HDMswithout SFCNC in the lepton sector are a

robust framework, stable under renormalization group evo-

lution, in which the possibility of decoupling the electron,

muon, and tau interactions is open. In this context, lepton

flavor universality is broken beyond the mass proportion-

ality, and a different behavior among charged leptons can be

accommodated in a simple way, without introducing highly

constrained SFCNC. We have considered two of these

general flavor conserving models in the leptonic sector, to

address simultaneously the electron and muon (g − 2)

anomalies. These two models, I-glFC and II-glFC, differ

in the quark Yukawa couplings, which coincide, respec-

tively, with the ones in type I and in type II 2HDMs. There

are two types of solutions that fully reproduce both the muon

and electron (g − 2) anomalies, while remaining in agree-

ment with constraints from LEP and LHC, from LFU, from

flavor and electroweak physics, and theoretical requirements

in the scalar sector. In one solution, all the new scalars have

masses in the 1–2.5 TeV range, the vevs of both doublets are

quite similar and both anomalies are dominated by two loop

Barr-Zee contributions. This solution arises in both models,

I- and II-glFC. There is a second type of solution, where one

loop contributions are dominant in the muon anomaly, the

new scalars have masses below 1 TeV, and the vevs quite

different, with a ratio in the range 10–100. Among the new

scalars, the second neutral one H is the lighter, with a mass in

the range 210–390 GeV, while the pseudoscalar A is the

heavier, with a mass in the range 400–900 GeV. The new

charged scalar H� is almost degenerate either with the scalar

or with the pseudoscalar. This solution is only available in

the I-glFC model. In both solutions, soft breaking of the Z2

symmetry of the Higgs potential is required, together with

lepton Yukawa couplings with values from 1 to 100 GeV.

These results imply for LHC searches, in the light scalar

solution, that it should be easier to find both charged and

neutral Higgses in the muonic channel. The heavy channels,

like the top quark channels, are more suited to searches

addressing the heavy scalars solution.
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APPENDIX A: YUKAWA COUPLINGS

For completeness we show in this Appendix the form of

the Yukawa couplings in the general case with arbitrary

scalar mixing R and couplings Nd, Nu, Nl. For neutral

scalars they read
5

LSf̄f ¼−
S

v
f̄

�

R1sMf þR2s

Nf þN†

f

2
þ iϵðfÞR3s

Nf −N†

f

2

�

f

−
S

v
f̄γ5

�

R2s

Nf −N†

f

2
þ iϵðfÞR3s

Nf þN†

f

2

�

f;

ðA1Þ

where s ¼ 1, 2, 3 in correspondence with S ¼ h;H;A;
f ¼ u; d;l, and, in terms proportional to R3s, ϵðdÞ ¼
ϵðlÞ ¼ −ϵðuÞ ¼ 1.

The Yukawa couplings of H� read

LH�ud ¼
H−

ffiffiffi

2
p

v
d̄½V†Nu − N†

dV
† þ γ5ðV†Nu þ N†

dV
†Þ�u

þ Hþ
ffiffiffi

2
p

v
ū½N†

uV − VNd þ γ5ðN†
uV þ VNdÞ�d;

ðA2Þ

FIG. 10. eþe− → μþμ− for
ffiffiffi

s
p

∈ ½0.2; 1.0� TeV, examples of

solution [B] in model I-glFC.

5
Flavor indices are omitted for simplicity: e.g., Mf is the

diagonal mass matrix.
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and

LH�lν ¼ −

ffiffiffi

2
p

v
Hþν̄LU

†NllR −

ffiffiffi

2
p

v
H−l̄RN

†

l
UνL: ðA3Þ

V and U are, respectively, the CKM and PMNS mixing

matrices.
6

APPENDIX B: CONTRIBUTIONS TO ðg− 2Þ
l

1. One loop contributions

Yukawa interactions (of neutral scalars S) of the form

LSll ¼ −
ml

v
Sl̄ðaS

l
þ ibS

l
γ5Þl; ðB1Þ

give one loop contributions to the anomalous magnetic

moment of lepton l of the form

Δa
ð1Þ
l

¼ 1

8π2
m2
l

v2

X

S

f½aS
l
�2ð2I2ðxlSÞ − I3ðxÞÞ

− ½bS
l
�2I3ðxlSÞg; ðB2Þ

with xlS ≡m2
l
=m2

S and

I2ðxÞ ¼ 1þ 1 − 2x

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p ln

�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p

�

þ 1

2x
ln x;

ðB3Þ

I3ðxÞ ¼
1

2
þ 1

x
þ 1 − 3x

2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p ln

�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p

�

þ 1 − x

2x2
ln x: ðB4Þ

For x ≪ 1,

I2ðxÞ ≃ x

�

−
3

2
− ln x

�

þ x2
�

−
16

3
− 4 ln x

�

þOðx3Þ;

ðB5Þ

I3ðxÞ ≃ x

�

−
11

6
− ln x

�

þ x2
�

−
89

12
− 5 ln x

�

þOðx3Þ;

ðB6Þ

and, thus, for ml ≪ mS,

Δa
ð1Þ
l

¼ 1

8π2
m2
l

m2
S

m2
l

v2

�

−½aS
l
�2
�

7

6
þ ln

�

m2
l

m2
S

��

þ ½bS
l
�2
�

11

6
þ ln

�

m2
l

m2
S

���

: ðB7Þ

Yukawa interactions (of charged scalars C�) of the form

LClν ¼ −C−l̄ðaC
l
þ ibC

l
γ5Þν − Cþν̄ðaC�

l
þ ibC�

l
γ5Þl;

ðB8Þ

give one loop contributions to the anomalous magnetic

moment of lepton l of the form

Δa
ð1Þ
l

¼ −
1

8π2

X

C

fjaC
l
j2 þ jbC

l
j2gHðxlCÞ; ðB9Þ

where xlC ¼ m2
l
=m2

C� , and

HðxÞ ¼ −
1

2
þ 1

x
þ 1 − x

x2
lnð1 − xÞ;

HðxÞ ≃ x

6
þ x2

12
þOðx3Þ for x ≪ 1: ðB10Þ

2. Two loop contributions

In addition to Eq. (B1), Yukawa interactions of the form

LSf̄f ¼ −
mf

v
Sf̄ðαSf þ iβSfγ5Þf ðB11Þ

give the following type of two loop Barr-Zee contributions

to the anomalous magnetic moment of lepton l:

FIG. 11. Illustrative 1 and 2 loop contributions to δal.

6
Equation (A3) assumes massless neutrinos, in which case one

can indeed set U → 1.
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Δa
ð2Þ
l

¼ −
α2

4π2s2W

m2
l

M2
W

×
X

f

X

S

N
f
cQ

2
ffaSlαSffðzfSÞ − bS

l
βSfgðzfSÞg:

ðB12Þ

The sum over fermions f corresponds to the different

fermions appearing in the closed fermion loop (with N
f
c the

number of colours of f and Qf its electric charge and

zfS ¼ m2
f=m

2
S), while the sum over scalars S corresponds to

the different neutral scalars connecting the closed fermion

loop with the external lepton line, as Fig. 11 illustrates. The

functions fðzÞ and gðzÞ (see the discussion in Sec. III) read:

fðzÞ ¼ z

2

Z

1

0

dx
1 − 2xð1 − xÞ
xð1 − xÞ − z

ln

�

xð1 − xÞ
z

�

; ðB13Þ

gðzÞ ¼ z

2

Z

1

0

dx
1

xð1 − xÞ − z
ln

�

xð1 − xÞ
z

�

: ðB14Þ

For other 2 loop contributions see [59].
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