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ABSTRACT

We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron–cyclotron maser
(ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short
timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that
a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which
rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting
from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the
external magnetic field and the electron beam current. Both significant linear polarization and circular polarization
of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves
show that harmonics may appear from 10 to 70νpe (νpe is the electron plasma frequency) in the non-relativistic case
and from 10 to 600νpe in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency
in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.
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1. INTRODUCTION

Ultracool dwarfs (UCDs) are those objects with spectral type
later than M7 and low luminosity. Recent observations of 193
UCDs reveal that 12 UCDs produce intense radio emission with
flux densities up to hundreds of μJy (e.g., Berger et al. 2001,
2005; Berger 2002; Burgasser & Putman 2005; Hallinan et al.
2006; Antonova et al. 2008; McLean et al. 2012). Some of
them show a highly circularly polarized radio pulse with regular
periods and a flux density up to 15 mJy (Hallinan et al. 2007;
Berger et al. 2009).

In a range of past studies, these radio features of UCDs
have been presented as a function of magnetic field, spectral
type, rotation, age, binarity, and association with the X-ray and
Hα emission (e.g., Berger et al. 2005, 2010; Hallinan et al. 2006;
Antonova et al. 2008; McLean et al. 2012). The regular periods
of radio pulses from TVLM 513-46546 and the L dwarf binary
2MASSW J0746425+200032 indicate that the radio activity of
UCDs is strongly in conjunction with their rotation (Hallinan
et al. 2007; Berger et al. 2009), which is one of the crucial factors
to influence the magnetic field by a differential-rotation-induced
dynamo theory (Parker 1955) although other mechanisms, such
as a turbulence-induced dynamo (Durney et al. 1993) (for small-
scale fields) or α2 dynamo (Chabrier & Küker 2006) (for large-
scale fields), can also contribute to the magnetic field. The
topology of the magnetic field on UCDs may be understood
as a dipole due to the narrow bunching of multiple pulses of
both left and right 100% polarization (Hallinan et al. 2007).
Berger et al. (2009), however, have suggested that the field
topology maybe more complex—due to a 1/4 phase lag of the
radio pulses compared to Hα. This is based on the assumption
that the emission is parallel to the magnetic field, but if the
emission is perpendicular to the field, then the 1/4 phase lag is
in agreement with a dipole magnetic field geometry. Hence, a

determination of the magnetic field and its structure is critically
important.

Precise analysis of the time domain of radio emission from
TVLM 513-46546 (Doyle et al. 2010) and sporadic radio
emission from UCDs (Antonova et al. 2007) show that large-
scale fields may be stable on UCDs for long periods, from a few
months to years. The steady magnetic fields on UCDs are also
confirmed by the multi-frequency observations of a late-M dwarf
binary (Osten et al. 2009). The field strength can be determined
using two specific radiation mechanisms—gyrosynchrotron or
electron–cyclotron maser (ECM). The first mechanism suggests
a field strength in the range of 0.1–1000 G (Berger 2002, 2006),
while the latter implies a kG field. However, the form of the
frequency–field-strength relation becomes complicated when
the ECM mechanism is applied to a many-electron system
since (1) the absorption and emission of different layers in the
magnetosphere (or atmosphere) would be significant due to the
different plasma environments and magnetic field configuration
(e.g., see the discussion of the gyromagnetic absorption in
Melrose & Dulk 1982); and (2) as we will show in this paper,
for the motion of a group of electrons in a magnetic field, the
ECM can generate a multiple peak structure for the spectral
energy distribution (SED). Hence, coverage of the full dynamic
radio spectrum, including the low-frequency band (hundreds
of MHz) and the very high frequency band, is important for a
proper understanding of the radiation process.

The observed power-law radio continuum and low-level cir-
cular polarization (<40%) from several UCDs, such as for the
M8.5 dwarf DENIS 1048-3956 between 3 and 30 GHz in four
2 GHz bandwidths (Ravi et al. 2011), may be interpreted as
gyrosynchrotron radiation if the surrounding plasma is opti-
cally thin. On the other hand, the high brightness temperature
(∼1015 K) and highly (up to 100%) circular polarization of the
radio pulses (Hallinan et al. 2007; Berger et al. 2009) suggest
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that the dominant emission mechanism is the ECM. This mech-
anism was initially assumed to be driven by a loss-cone velocity
distribution (Melrose & Dulk 1982, and references therein) but
was subsequently developed to ring shell distribution or horse-
shoe distribution (Pritchett & Strangeway 1985).

The operation of the ECM is rather simple, i.e., electrons
with an anisotropic distribution transversely move in an exter-
nal magnetic field. This leads to the application of the ECM to
the radio emission from the solar planets, magnetic-chemically
peculiar stars (e.g., Lo et al. 2012), and some compact extra-
galactic radio sources (e.g., Melrose & Dulk 1982; Dulk 1985;
Treumann 2006, and references therein). The generation of the
auroral kilometric radiation on the Earth has been interpreted in
terms of the ECM, where the velocity distribution of electrons
may not be a loss cone caused by the magnetic mirror effect, but
due to a horseshoe distribution associated with the acceleration
of particles in a magnetic-field-aligned electric field (Wu & Lee
1979; Chiu & Schulz 1978; Ergun et al. 2000). A similar inter-
pretation can be applied to the decametric radiation on Jupiter,
Saturnian kilometric radiation (Zarka 1998, 2004), and solar
millisecond microwave spikes (Aschwanden 1990b; Fleishman
et al. 2003). The ECM can also be a strong candidate for the
possible presence of radio emission in exoplanets (Zarka 2007;
Grießmeier et al. 2007; Jardine & Cameron 2008). Furthermore,
it can be an effective mechanism for the radio-frequency heating
of X-ray-emitting plasma in solar flares (Melrose & Dulk 1984).
Recently, it was suggested that the ECM generated by the low-
density relativistic plasma in many fine localized regions can
interpret the high brightness temperature detected from Blazar
jets (Begelman et al. 2005). More discussion and application of
the ECM can be seen in a review in Treumann (2006).

In fact, gyrosynchrotron radiation and ECM belong to the
same family—the motion of electrons in a magnetic field. ECM
may efficiently heat the surrounding electrons to form a high-
energy tail or even a bump in the velocity space that induces
gyrosynchrotron radiation to contribute to the radio continuum.
Combining the short timescale and self-quenching features of
the ECM, we can also understand the high brightness tempera-
ture of the radio pulses. Electron beams would be common in
the context of the astrophysical process since there are plenty of
sources for generating them. Recent cool atmospheric models
indicate that collisions of significant volume of molecular clouds
may trigger a tempestuous discharge process such as lightning,
resulting in a high-degree ionization in the local molecules or
atoms, and the release of a large number of electrons (Helling
et al. 2011), which increases the probability of magnetic recon-
nection events. The electrons may be released and accelerated
from the magnetic reconnection or outflow jets indicated by
oxygen forbidden emission lines (Whelan et al. 2007), which
might result from the intense activity below the chromosphere
of UCDs.

In order to understand the radio emission from UCDs and
infer the magnetic field and the plasma environment, an inves-
tigation of a many-electron system moving in an external mag-
netic field is essential. Numerical simulations can provide the
opportunity to obtain the detailed process self-consistently and
an interpretation for the radio emission. In this paper, we attempt
to interpret the radio pulses from UCDs using an electron-beam
(or current-beam) driven ECM, with concentration on the micro-
scopic energy transformation by treating the electron population
as charged particles in a simulation box. We also investigate the
growth rate and polarization of the released electromagnetic
(EM) waves and the SED. In Section 2, we briefly describe the

physical model, numerical method, and the initial conditions to
carry out the simulations. In Sections 3 and 4, we present the re-
sults for the non-relativistic beam-driven and loss-cone-driven
ECM. In Section 5, we present the results for the relativistic
beam-driven instability. We make a brief comparison with the
observations in Section 6 and then summarize the simulations
and draw conclusions in Section 7.

2. CONFIGURATION OF SIMULATION

2.1. Physical Model

We assume that electron beams are generated by some intense
events on UCDs, e.g., magnetic reconnection or jet events. When
the electron beams move to the magnetosphere of the UCDs,
they interact with the magnetic field and the surrounding plasma.
In the present study, we neglect the influence of heavy ions.
Here, we investigate the energy transfer, including the induced
EM field energy, the drift kinetic energy, and thermal kinetic
energy of electrons, plus the growth rate and polarization of the
EM fields and the SED.

We start the simulations from the fundamental physical laws.
The EM fields and the interaction between them and electrons
can be described by Maxwell’s equations, i.e., Ampère’s law,
Faraday’s law of induction, Gaussian’s law for magnetism,
Gaussian’s law, and the definition of current:

∇ × B = μ0J +
1

c2

∂E

∂t
, (1)

∇ × E = −
∂B

∂t
, (2)

∇ · B = 0, (3)

∇ · E =
ρ

ǫ0

, (4)

∇ · J = −
∂ρ

∂t
, (5)

where B and E are the magnetic field and electric field,
respectively, J is the current, t is the time, c is the speed of
light, ρ is the charge density, ǫ0 is the permittivity, and μ0 is the
permeability.

The motion of electrons is governed by the Lorentz force,
which can be written as

q(E + v × B) =
dmv

dt
, (6)

where v is the velocity of one individual particle, q is the charge
of a single particle (here it is for an electron), and m is the
electron mass. In the non-relativistic case, we have m = me,
where me is the rest mass of the electron. In the relativistic case,

we have m = γme, where γ = 1/(
√

1 − (v/c)2) is the Lorentz
factor. The relativistic case is also a general case for the motion
equation of particles.

2.2. Initial Configurations of the Simulations

These equations were solved self-consistently as a pure
initial value problem using a particle-in-cell method in a two-
dimensional space (x- and y-directions) and three velocity and
field dimensions (x-, y-, z-directions). Some of the numerical
methods used here are from Omura & Matsumoto (1993) and
Omura (2005). The Buneman–Boris method was used to solve
the equation of motion (Hockney & Eastwood 1981; Birdsall &
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Figure 1. Schematic diagram to present the simulation box for the radio emission
from ultracool dwarfs. In an orthogonal reference system with spatial directions
x, y, and z, vx , vy , and vz represent the velocity components of particles,
while Ex , Ey , Ez, Bx , By , and Bz represent the electric and magnetic field
components.

(A color version of this figure is available in the online journal.)

Table 1

Reference Values of Electron Densities and Related Parameters

ne νpe λD vth/Temperature

(cm−3) (s−1) (cm) (cm s−1/K)

1012 8.98 × 109 0.005 3 × 108/3 × 105

1010 8.98 × 108 0.05 3 × 108/3 × 105

108 8.98 × 107 0.5 3 × 108/3 × 105

106 8.98 × 106 5 3 × 108/3 × 105

104 8.98 × 105 50 3 × 108/3 × 105

102 8.98 × 104 500 3 × 108/3 × 105

Langdon 1985). The equation of continuity of charge was solved
by a charge conservation method (Villasenor & Buneman 1992).
The spacing grid for the EM field in the present simulations is
64 × 64. The time step in each simulation is ∆t = 0.001ν−1

pe ,
where νpe is the electron plasma frequency, while the space step
is ∆x = ∆y = 0.125λD, where λD = vth/(2πνpe) is the Debye
length, with vth being the thermal velocity of the electrons. All
the velocities in the simulations are normalized by the speed
of light c. The charge-mass ratio of electrons is assumed to
be −1. We use an open boundary in the simulated system.
This simulation configuration and the intrinsic properties of
the electrons do not vary in any of the simulations.

In each of the simulations, we assume that a constant external
magnetic field B0 exists in the spatial x–y-plane, and the angle
between B0 and x-direction is defined as θ with 0◦ � θ � 90◦.
The charged particles are initially distributed in the x–y-plane
randomly. We assume that background thermal electrons may
exist in the radio emission region, i.e., the magnetosphere of
UCDs, with number density nth and thermal velocity vth. The
injected electrons have a number density nd, thermal velocity
v′

th, and drift velocity vd along the x-direction. Figure 1 shows
the spatial simulation box schematically. In the simulations, we
determine the strength of the external magnetic field via its close
relation with the cyclotron frequency νce ≈ 2.8B0 MHz. The
relation between plasma frequency and the number of electrons
is νpe ≈ 8.98 × 10−3(ne cm−3)1/2 MHz.

Since we do not know the electron density in the radio
emission region on UCDs, a range of values and related plasma
parameters are listed in Table 1. From the values in the table, we
see that the present simulations are in a relatively microregion
and short timescale (0.1 ns to 10 μs).

In order to see the influence of the above parameters on
the released EM waves, we set a group of standard values for

Table 2

Various Parameters in the Simulations (Section 3) and Their Values

Parameters Symbols Standard Optional

Values Values

Plasma frequency νpe 1 . . .

Cyclotron frequency νce 10 0, 5

Angle: B0 and vd θ 90◦ 0, 45◦

Thermal velocity

of background e vth 0.01c 0.005c, 0.05c

Thermal velocity

of drift e v′
th 0.01c 0.005c, 0.05c

Drift velocity vd 0.05c 0.0c, 0.1c

Number of superparticles

of background e nth 16384 0, 32768

Number of superparticles

of drift e nd 16384 . . .

Note. Note that part of the values may vary in Sections 4 and 5.

them (see Table 2). In this model, we assume the direction
of the external magnetic field parallel to the y-direction. The
cyclotron frequency is set to be 10 times the plasma frequency.
We take the thermal velocity of the background electrons and the
drift electrons as 0.01c. This means that the temperature of the
electrons is about 3 × 105 K, determined by T = (1/2)mev

2
th/k

in the non-relativistic case, where k is the Boltzmann constant.
We take vd = 0.05c. We vary the value for one of the parameters,
while the other parameters remain as the standard values. These
parameters and their values are summarized in Table 2. We
will interpret these parameters in Section 3.2. The standard
values of these parameters are derived from estimations of solar
bursts (typically 0.1c to 0.5c for the drift velocity and 0.002c
to 0.05c for the thermal velocity; Dulk 1985) and the studies
on auroral kilometric radiation on the Earth, Jovian millisecond
bursts, and Saturnian kilometric radiation (∼1–10 keV for the
energetic electrons and ∼100 eV for the thermal electrons;
Zarka 1998; Hess et al. 2007a, 2007b; Zarka 2007; Lamy et al.
2010). The values of the electron velocities in the relativistic
case (see Section 5) refer to the work of Louarn et al. (1986),
and references therein. We choose the optional values over a
wide range so that the approximate functions between energies
and the parameters can be obtained.

In this paper, we distinguish the irregular thermal motion of
the electrons and their uniform motion. The thermal energy of
the electrons in the non-relativistic case is defined and calculated
from the thermal motion of the electrons by

Eth = Etk − Ed =

n
∑

i=1

(

1

2
mev2

i

)

−
1

2
me

(

n
∑

i=1

vi

)2

, (7)

where n is nth for the background electrons and nd for the drift
electrons, me is the electron mass, and vi is the velocity of the
ith particle. On the right-hand side of this equation, the first
term represents the total kinetic energy of the system Etk, and
the second term describes the drift energy of the electrons Ed.

In the relativistic case, the energy of one electron is defined
by the energy–momentum relation,

E2
ie = p2

iec
2 + m2

ec
4 = (γmec

2)2, (8)

where pie = γmevi is the momentum of the ith electron and

γ = 1/(
√

1 − (vi/c)2) is the Lorentz factor. Therefore, the
kinetic energy of one electron can be expressed as

Eiek = Eie − mec
2 = (γ − 1)mec

2. (9)
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Then the total kinetic energy of the system Etk is

Etk =

n
∑

i=1

Eiek. (10)

For the drift energy of the system Ed, we first define γd =

1/(

√

1 − (
∑n

i=1 vi/nc)2). Then we have

Ed = (γd − 1) · n · mec
2. (11)

So the thermal energy is Eth = Etk − Ed. The definition of
the drift energy of the system in both the non-relativistic and
relativistic cases realizes the uniform motion of the system along
one direction via eliminating the irregular random motion of
the electrons. Under these definitions, the non-relativistic case
(i.e., Equation (7)) is a good approximation of the relativistic
case (i.e., Equations (8)–(11)) when particles move with low
velocities compared to the speed of light. Our calculations
indicate that the equations for the relativistic case are valid
for the velocity range vi ∈ [0, c), while the non-relativistic case
is only valid for low-velocity particles. A general definition of
temperature then becomes kT = (γ − 1)mec

2.
The energy of the EM field w can be described by the Poynting

theorem, so that we have w = (1/2)ǫ0E2 + (B2/2μ0), where we
take ǫ0 = 1 and μ0 = (1/c2ǫ0). The first term on the right-hand
side of this equation gives the electric field energy, while the
second term represents the magnetic field energy. All kinds of
energies are normalized by the initial total energy of the system
to satisfy energy conservation. We exclude the energy of the
external magnetic field B0.

The growth rate is defined as

Γ =
ln

(

E2
(t+∆t)

)

− ln
(

E2
(t)

)

2∆t
. (12)

The degree of linear polarization in the EM fields Π is

Π =
w⊥ − w‖

w⊥ + w‖

, (13)

where w⊥ is the EM field energy in the direction perpendicular
to the external magnetic field and w‖ is the EM field energy in
the direction parallel to the external magnetic field.

The background electrons are assumed to be in thermal
equilibrium, so their velocity distribution obeys a Gaussian
distribution. In this paper it is always taken as the following
expression:

f0b = nthexp

(

−
v2

x + v2
y + v2

z

v2
th

)

, (14)

where vx, vy, vz are the components of the velocity vb of the
background electrons along the x-, y-, z- directions, respectively.

The injected electrons have an intrinsic thermal velocity
distribution, but due to the acceleration, they will obtain a drift
velocity along some direction. For the purpose of simplicity,
we assume that all of the injected electrons are accelerated
along one direction. We take the direction as the x-direction in
our simulations, so that the initial velocity distribution for the
injected electrons can be expressed as

f0d = nd

(

v′
x − vd

v′
th

)2l

exp

(

−
(v′

x − vd)2 + v′2
y + v′2

z

v′2
th

)

, (15)

where l = 0, 1, 2, 3, · · ·, and v′
x, v

′
y, v

′
z are the components of

the velocity vin of the injected electrons along the x-, y-, z-
directions, respectively. l is the parameter that describes the size
of the loss cone in velocity space. In the present simulations, we
take l = 0 and 3. All the particles are assumed to be randomly
distributed in space.

3. RESULTS I: l = 0

When l = 0, Equation (15) becomes a Gaussian distribu-
tion. In this section, we investigate the influence of the injected
electrons with the Gaussian velocity distribution on the evolu-
tion of the space and velocity distribution of the electrons, the
energy conversion efficiency, the transfer between drift kinetic
energy and thermal energy of the system, and the growth rate
and polarization of the released EM waves.

3.1. Standard Model for Beam-driven ECM

We first present the simulation with standard parameters in
detail; this we call the standard model. This standard config-
uration means that the background electrons and the injected
electrons have the same temperature (105 K) but the density of
the latter is higher. (Note that we use the definition of the temper-
ature in Section 2.2, which reflects the measure of the velocity
dispersion). This is for the purpose of modeling a dense electron
beam injected into the magnetosphere of a UCD.

Figure 2 shows the spatial evolution of the electrons (a movie
is available for the spatial evolution of the system at
http://www.arm.ac.uk/highlights/2012/600/beam/beam_space/).
The time in each snapshot is t = 0, t = 0.3, t = 1.04, t = 2.86,
t = 4.9, t = 6.52ν−1

pe from the top left to bottom right. Due to the
existence of the external magnetic field, the motion of the elec-
trons along the x-direction is confined and they can only freely
move along the y-direction, which is parallel to the magnetic
field. The motion of the injected electrons as a whole should be
in a helical orbit with the radius determined by rd = (mevd)/qB
since the induced magnetic field is very small. In this simula-
tion, rd is about 0.715. Since we only perform a two-dimensional
simulation, we see the oscillation of the injected electrons in the
x–y-plane instead of a helical motion.

The mix of background electrons and injected electrons in
the velocity space triggered by the EM field is rather in-
teresting. Figure 3 shows snapshots of the velocity distri-
bution of the electrons at the same time as in Figure 2 (a
movie is available for the velocity evolution at http://www.arm.
ac.uk/highlights/2012/600/beam/beam_velocity/). As seen in
the top left panel in the figure, the velocities of both back-
ground electrons and injected electrons are initially a Gaussian
distribution, with the injected electrons having a drift veloc-
ity of 0.05c. When time evolves, the current generated by the
injected electrons induces a strong electric field along the di-
rection perpendicular to the external B0, which only alters the
direction of the flow. This electric field accelerates a fraction
of the background electrons so that a tail at high velocity is
developed in vx and vz (see the velocity distribution in each
time snapshot), while the injected electrons are decelerated by
the electric field, losing their drift velocity along the x-direction
gradually and wavily. Also because of the perpendicular electric
field, the injected electrons gain a drift velocity in vz that oscil-
lates between −0.1c and 0.1c. The appearance of a double peak
in the distribution of vy is due to the magnetic constraint and the
acceleration of the induced electric field on the perpendicular
velocity vx − vy . One can imagine that if the evolutionary time

4

http://www.arm.ac.uk/highlights/2012/600/beam/beam_space/
http://www.arm.


The Astrophysical Journal, 752:60 (17pp), 2012 June 10 Yu et al.

Figure 2. History of the distribution of the background electrons (red points) and beam electrons (blue points) in spatial x–y-plane. Different panels from top left to
bottom right represent the snapshots for time t = 0.00, 0.30, 1.04, 2.86, 4.90, and 6.52ν−1

pe .

(A color version of this figure is available in the online journal.)

is sufficiently long, the electrons may separate into two groups.
One group has a velocity along the direction of the external B0,
while the other group has the opposite velocity direction.

The consequence of this process is that the velocities of the
electrons evolve from a concentrated Gaussian distribution to
an expanded quasi-Gaussian distribution with a high-velocity
tail. During the diffusion process of the particles in velocity
space, an energy transfer occurs between the kinetic energy of
the electrons and the induced EM field energy. As the injected
electrons move in the external B0 at time t = 0, they start
releasing their kinetic energy to the EM wave energy in the
manner of an increase in the induced EM field strength. After
some time, the EM field energy will reach its maximum while
Etk approaches a minimum. Then the EM field energy may
be absorbed by the electrons to compensate for lost kinetic
energy. The Etk will increase after a short time as the field
energy decreases. Oscillations in Etk and the field energy will
last for some time until the system is balanced and there is an
anti-phase relation between the two kinds of energies.

Figure 4 illustrates the evolution of the total kinetic energy
Etk, drift energy Ed, and thermal energy Eth of the electrons and
the field energy w. We plot the same time points for the space
and velocity distribution of the electrons in this figure as solid
black circles.

As we can see from this figure, Etk and w are exactly anti-
phase as expected. The multi-peaks of w should be associated
with the different wave mode in frequency space, which will
be shown later. The relation of the fine structure of Ed and Eth

is not as obvious as the relation between Etk and w since the
interaction between Ed and Eth is via the EM field as a time
and space delay can affect the phase relation. However, we see
that Ed decreases dramatically at the starting time when Eth

increases rapidly. After about 1.5ν−1
pe , when Ed and Eth have

approximately equal values, the decrease of Ed slows, and so
does the increase in Eth. At time 7.1ν−1

pe , at least 70% of Ed is
converted to Eth. This is interesting because it means that the
transverse motion of electrons in an external magnetic field may
be an efficient way to heat the ambient electrons.

5
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Figure 3. History of the velocity distribution of the background electrons (red points) and beam electrons (blue points). Different panels from top left to bottom right
represent the snapshots for time t = 0.00, 0.30, 1.04, 2.86, 4.90, and 6.52ν−1

pe .

(A color version of this figure is available in the online journal.)

The maximum growth rate of the EM wave in this simulation
is about 9.68 × 102νpe. The polarization of the released EM
waves is highly linear or circular, depending on the initial
configuration. More details on the growth rate and polarization
in the standard model will be shown in the next section.
Figure 5 shows the evolution history of the EM wave energy
perpendicular and parallel to the external magnetic field. Again,
we use the solid black circles to denote the time points for
the space and velocity distribution of the electrons shown in
Figures 2 and 3. From this figure, we clearly see that most of the
EM waves are polarized in the direction perpendicular to B0,
while only a very small fraction of the EM waves are released
parallel to B0 (∼10−3 of the perpendicular energy).

3.2. Influences of Parameters

In this section, we investigate the influence of the following
parameters on the energy history, growth rate, and polarization
of the EM waves:

1. The strength of the external magnetic field B0. B0 can be
determined by the cyclotron frequency,

B0 ≈ 0.357 × 103 νce

GHz
G. (16)

To date, all detected radio emission of UCDs is in the GHz
band, while observations performed with the NRAO very
large array in 2007 show no trace of radio emission from
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Figure 4. Energy history of the standard model. Blue line in the left panel denotes the total kinetic energy, and red line stands for the field energy. In the right panel,
purple line is for the total thermal energy of the system, and green line is for the drift energy of the injected electrons. Black points denote the time as in Figures 2
and 3.

(A color version of this figure is available in the online journal.)

Figure 5. History of the field energy along the direction of perpendicular (red
line) and parallel (blue line) to the external magnetic field. Black points denote
the time as in Figures 2 and 3.

(A color version of this figure is available in the online journal.)

two UCDs at 325 MHz, placing an upper flux limit of
∼900 μJy at the 2.5σ level (Jaeger et al. 2011). From this,
we infer that the magnitude of B0 is a few kilo gauss (if the
radio emission is truly at the cyclotron frequency). Here,
we take νce/νpe = 0, 5, and 10 to see how the magnetic
field can affect the simulation results. When νce/νpe = 0,
there is no external magnetic field.

2. The angle θ between the magnetic field and the drift velocity.
θ is one of the crucial parameters to influence the direction
of the radiated EM waves, i.e., the polarization. When
θ = 0◦, the injected electrons move uniformly parallel to
the external B0 in addition to the irregular thermal motion.
When θ = 90◦, the motion of the injected electrons is
perpendicular to B0.

3. The drift velocity vd . We expect that the radio emission may
be enhanced by increasing the value of vd . In this section,
we take vd = 0c, 0.005c, and 0.01c to avoid the relativistic
effect where gyrosychrotron emission plays an important
role. When vd = 0c, we see the effect of pure thermal
electrons moving in the external B0 on the induced EM
waves.

4. The temperature T. We investigate the response of the
radiated EM waves and the transfer between the energies
by varying vth. We take vth = 0.005c, 0.01c, and 0.05c,
for which the corresponding T is 7.5 × 104, 3 × 105, and
7.5 × 106 K.

5. The background electrons by changing nth/nd. Since our
computation capability is limited, we only investigate the
effect of the existence of the background electrons on the
EM waves and the energy transport. We take nth/nd =
0, 1, 2. When nth/nd = 0, there are no background
electrons.

Figure 6 shows the energy evolution in each simulation. We
see that the EM field energy (left panels) is in a very low level
in all three specific cases (see the colored lines). In the first
case, there is no magnetic field (which can be understood as the
injected electrons just passing by very quickly without sufficient
energy transfer via the EM field). In the second case, the motion
of the injected electrons is parallel to the external magnetic field.
In this case, the induced electrons cannot remain within the
simulation box since the magnetic field cannot constrain them.
In the third case, the drift velocity of the injected electrons is 0c;
although the injected electrons can remain and interact with the
background, there is no coherent current, i.e., the field energy is
still small although higher than in the other two cases.

A common expression of these cases is v × B0 = 0, which is
the Lorentz force induced by the external magnetic field. This
force makes the initially coherent current bend (i.e., the electrons
with drift velocity), leading to spatial curled EM fields that are
the medium to accomplish energy transport among different
kinds of energies.

In other cases except the above three cases, the field energy
can maintain a much higher level after they reach the maximum,
typically orders of 2–3 that of the above cases. As shown in
Figure 6, the field energies in all cases oscillate with large
amplitude caused by the transfer between the kinetic energy
and field energy. In other words, these oscillations reflect the
emission and absorption of electrons to the EM waves. With
the achievement of the diffusion process of the electrons in the
velocity space, a dynamic balance is approached. This results
in a gradual decrease in the amplitudes of the oscillations with
time. The time for relaxation of the field energy is >10ν−1

pe
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Figure 6. Evolution of the field energy (left panels), and total thermal energy and the drift energy (right panels). Different panels are for different parameters, i.e., first
row: νce/νpe = 0 (red line), 5 (blue line), 10 (black line); second row: θ = 0◦ (red line), 45◦ (blue line), 90◦ (black line); third row: vd = 0c (red line), 0.1c (blue line),
0.05c (black line); fourth row: vth = 0.005c (red line), 0.05c (blue line), 0.01c (black line); and fifth row: nth/nd = 0 (red line), 2 (green line), 1 (black line). In the
right panels, the solid line is the drift energy while the dot-dot-dot-dashed line is for the thermal energy. Note that the black colored lines in this figure are always for
the model with standard parameters.

(A color version of this figure is available in the online journal.)

which is much longer than the time taken for the field energy to
reach maximum, ∼0.14ν−1

pe .
As expected, increasing B0 by a factor of two, i.e., νce/νpe

from 5 to 10, leads to a rise in the field energy. It seems that the
mean value of the field energy is not sensitive to θ when θ = 45◦

and 90◦. However, the modes (or direction) of the EM waves are
affected. In the case of θ = 45◦, the EM waves have a similar
energy level in the direction perpendicular and parallel to B0,
which is shown in Figure 7 where we discuss polarization. The
increase of vd from 0.05c to 0.1c only raises the energy level
slightly in the present simulations. In fact, when vd is sufficiently
high, we have to consider the relativistic effect and hence
gyrosynchrotron radiation, which will be addressed in Section 5.
The mean energy level of the EM waves is not sensitive to the
thermal velocity and background electron number density. Note
that in the standard model, the initial density of the background
electrons is ∼100 times less than that of the injected electrons.

The polarization of the EM waves, or their energy distribution
with respect to the magnetic field direction, is shown in
Figure 7 quantitatively. The EM waves in the standard model
are 100% linearly polarized. When v × B0 = 0, the EM
waves frequently switch their direction from parallel-dominant
to perpendicular-dominant, and rarely do they have up to 50%
linear polarization. This behavior indicates that the waves have
a significant linearly polarized component. In addition to θ ,
thermal motion (i.e., temperature) of the electrons can influence
the level of polarization. As we see from the bottom second panel
in Figure 7, the electrons with temperature 7.5 × 106 K can

generate the EM waves with ∼50%–90% linear polarization,
while 100% linearly polarized waves are generated by the
electrons with temperature 7.5 × 104 and 3 × 105 K. A low
density of background electrons does not alter the highly linear
polarization in the present simulations.

The dissipation of the drift energy in the injected electrons
(when they move in the external magnetic field) is important
because this may be sufficient to increase the thermal energy of
the system. We show the history of the drift energy and thermal
energy in Figure 6. Comparing the right panels in Figure 6, we
find that (1) when v × B0 = 0, the energy transfer is the least
efficient. In this case, there is almost no energy exchange; (2)
when initially v × B0 �= 0 and Ed > Eth, Ed can be transported
to Eth rapidly; the timescale in which Ed and Eth reach the same
value is about ∼1–5ν−1

pe .
Figure 8 illustrates the growth rate of the EM waves in

the simulations. The increase of the system temperature (3 ×
105–7.5 × 106 K) will suppress the growth rate significantly.
The number of the electrons also affects the growth rate, but
their relation is not so obvious.

3.3. Spectrum

The EM field (wave) energy is the integral (or sum if the
signal is discrete) of the contribution from different frequencies.
In order to obtain the energy distribution of the EM field in
frequency space (i.e., the SED), we perform a fast Fourier
transform to the EM field energy history. Figure 9 illustrates
the SED.

8
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Figure 7. Time evolution of the degree of linear polarization in the simulations. Each panel is for one parameter, i.e., from top to bottom, νce/νpe, θ , vd, vth, nth/nd.
Different colors in each panel are for different values of the parameters as shown in the panel.

(A color version of this figure is available in the online journal.)

Figure 8. Maximum growth rate of the field energy in each simulation.

We clearly see many emission and absorption lines in Figure 9
that represent the EM field energy distribution at different
frequencies. We find that the majority of the field energy is from
frequencies <80νpe with bandwidth at half-maxima ∼6νpe.

4. RESULTS II: l = 3

In order to see the interactions of the electrons with dif-
ferent initial velocity distributions, we perform another se-
ries of simulations with l = 3. In this case, when vd = 0,
Equation (15) is a typical loss-cone velocity distribution. Note
that in this section, we take vd = 0 in the standard model
to exclude the effect of the electron beam. We vary the ther-

mal velocity of the electrons to see the effect of the temper-
ature on the energy exchange and release (movies are avail-
able for the spatial and velocity evolution of the system at
http://www.arm.ac.uk/highlights/2012/600/losscone/).

4.1. Standard Model and Influence of Parameters
in Loss-cone-driven ECM

Figure 10 illustrates the EM field in the left panels, and in the
right panel we have the thermal and drift energy of the electrons
from the loss-cone-driven ECM. From this figure, we see that
only a very small fraction of kinetic energy is converted to EM
field energy if there is no external magnetic field or the loss-
cone velocity distribution is along the direction parallel to the
external magnetic field.

In other cases, an increase in any one of the parameters B0,
θ , and v′

th leads to an increase in the induced EM field energy.
Raising the temperature of the background electrons (i.e., the
thermal level) can suppress the growth of the field energy. Since
we only vary the number of background electrons in a very
small range, it does not affect the field energy significantly.
As seen from the left bottom panel in Figure 10, increasing
the number of background electrons decreases the induced EM
field energy. These results are consistent with the growth rate of
the EM wave illustrated in Figure 11. From the right panels in
Figure 10, we see that the drift energies are rapidly dissipated,
eventually leading to irregular motion of the electrons in the
external magnetic field.

The history of the degree of the polarization of the EM
waves in each simulation is shown in Figure 12. The conditions
for the circularly polarized EM waves are notable, ranging
from (1) decreasing the magnetic field, (2) varying the angle

9
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Figure 9. Same as Figure 7 but for the spectral energy density (Pf ) in each of the simulations in the non-relativistic beam-driven instability.

(A color version of this figure is available in the online journal.)

Figure 10. Same as Figure 6 but for the loss-cone-driven ECM.

(A color version of this figure is available in the online journal.)
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Figure 11. Maximum growth rate of the field energy in the loss-cone-driven
ECM.

θ from perpendicular to non-perpendicular, to (3) increasing
the thermal level of the background electrons. We suggest that
these conditions may be associated with the circularly polarized
components of the radio emission from UCDs.

4.2. Spectrum

The influence of the parameters on the spectrum is shown
in Figure 13, in which we find that the magnetic field and the
angel θ can affect the SED significantly, while the thermal effect
and the number of background electrons only play a minor role.
Some frequency bands are notable, e.g., from 10 to 70νpe.

4.3. Comparison between Beam-driven
and Loss-cone-driven ECM

Comparison between the different initial velocity distribu-
tions can help us understand the roles of the initial parameters
in the process of releasing EM wave energy and the transfer
between drift energy and thermal energy. Combining Figures 6
and 7 (beam-driven) and Figures 10 and 12 (loss-cone-driven),
we see that

1. the existence of the drift kinetic energy of the electrons can
be considered as a coherent current (which is necessary to
generate the intense EM field energy), while the form of
the initial velocity distribution is not important;

2. in order to efficiently obtain the intense EM field energy,
the external magnetic field plays a crucial role. The angle
between the magnetic field and the coherent current signif-
icantly affects the strength of the released EM field energy
in a nonlinear relation (see Figures 8 and 11) and also the
propagation direction of the EM waves;

Figure 12. Time evolution of the degree of linear polarization in the loss-cone-driven ECM. Each panel is for one parameter, i.e., from top to bottom, νce/νpe, θ , vd,
vth, nth/nd. Different colors in each panel are for different values of the parameters as shown in the panel.

(A color version of this figure is available in the online journal.)

11



The Astrophysical Journal, 752:60 (17pp), 2012 June 10 Yu et al.

Figure 13. Same as Figure 9 but for the loss-cone-driven ECM.

(A color version of this figure is available in the online journal.)

3. pure thermal motion of the injected electrons in the external
magnetic field may play a role in generating the EM
waves (e.g., when vd = 0 in the beam-driven ECM, the
middle panel in Figure 6), while the thermal level of the
background electrons mainly suppresses the generation of
the EM waves.

The SED of the beam-driven and loss-cone-driven ECM indi-
cates that all the parameters (except the number of background
electrons in the present simulations) can affect the SED; how-
ever, certain harmonic frequency bands will appear if the co-
herent current is sufficiently strong, for example, see the region
from 10 to 70νpe. There is a negligible signal in the very high
frequency band >100νpe. Also, it seems that the SED weakly
depends on the number of background electrons, but this needs
further investigation since we do not vary the number of particles
over a sufficiently wide range in the simulations.

5. RELATIVISTIC BEAM-DRIVEN INSTABILITY

In this section, we show the case where a relativistic electron
beam moves in an external magnetic field. We take l = 0 in
Equation (15) and set the same standard parameter values as in
Section 3 except here we take a larger value for the drift velocity
of the electrons, i.e., vd = 0.98c for the standard model; and
0.58c and 0.78c for the optional values. Furthermore, we only
vary the thermal velocity of the background electrons, with
values of vth = 0.001c, 0.01c (standard value), and 0.1c.

5.1. Influences of Parameters

The history of the three kinds of energies, the polarization
of the induced EM field energy, and their growth rates are
illustrated in Figures 14–16. It is seen that the background
electrons in the simulations have a negligible influence on the
induced EM field energy and the linear polarization, while the
thermal energy level of the background electrons can suppress
the growth of the EM waves.

From the left panels in Figure 14, we find that the direction
and values of the magnetic field and the drift velocity can
significantly affect the induced EM field. The existence of the
magnetic field is necessary in order to obtain the fast growth of
the EM field energy, and the energy conversion efficiency seems
to have a nonlinear relation with the magnetic field strength.

The right panels in Figure 14 illustrate the drift energy and the
thermal energy of the electrons. If the magnetic field strength is
sufficiently high to constrain the motion (or spatial position) of
the injected electrons, the drift energy can be rapidly converted
to the thermal energy in a timescale that is similar to the non-
relativistic case. If the magnetic field is not very strong, we see
that it is possible for the system to still retain some residual drift
energy when the electrons escape from the local region.

The influence of the parameters on the polarization in the
relativistic case (Figure 15) is different from the non-relativistic
case. The strength of the magnetic field in the present simula-
tions affects the degree of the linear polarization. The existence
of a strong magnetic field is essential to generate the linear po-
larization. The non-perpendicular angle between the magnetic
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Figure 14. Same as Figure 6 but for the relativistic beam-driven instability.

(A color version of this figure is available in the online journal.)

field and the drift velocity plays an important role in the gener-
ation of the linear polarization. In fact, at high frequency, linear
polarization becomes dominant in the relativistic case. The drift
velocity, the thermal level of the background electrons, and the
relative number of drift electrons and background electrons do
not affect the polarization significantly in the present simula-
tions. As shown in Figure 16, the growth rate of the EM field
rapidly increases with the magnetic field strength and injection
angle. However, it seems that in the relativistic case the increase
of the drift velocity slightly decreases the growth of the EM
field, perhaps because of a strong interaction between the in-
duced EM field and the high-energy electron beam. The thermal
level of the background electrons can suppress the growth of
the EM field, and there is an ambiguous relation between the
number of background electrons and the growth rate of the EM
field in the present simulations.

The influence of the direction between the magnetic field and
the drift velocity is very interesting since the maximum energy
conversion efficiency occurs in the non-perpendicular injection,
which differs from the non-relativistic case. In order to deter-
mine the direction where we can obtain the maximum energy
conversion efficiency, we have done some extra computations by
varying the direction of the magnetic field. Figure 17 illustrates
the results in which we see that the maximum energy conversion
efficiency occurs at ∼75◦.

An interesting phenomenon in our simulations is that the
velocity distribution of the beam electrons may evolve from
an initially drifted Gaussian (or Gaussian-like) distribution to
ring distribution (or incomplete-ring or spiral-ring or horse-

shoe, e.g., see the standard models in both the relativistic
case and non-relativistic case; a movie is available for the ve-
locity evolution of the electron beam in the relativistic case
at http://www.arm.ac.uk/highlights/2012/600/relativistic_beam/
relativistic_beam_velocity/) or spherical-shell distribution (or
incomplete shell, e.g., if we change the angle between the mag-
netic field and the beam electron from perpendicular, e.g., 90◦,
to non-perpendicular, e.g., 45◦ or 75◦). This may imply that
the ring and shell (or ring-like and shell-like) velocity distribu-
tion would have a common origin–beam distribution. The influ-
ence of the angle on the evolution of the velocity of electrons
is mainly caused by the external magnetic field and the self-
induced EM fields. The spatial current induced by the motion
of the charged particles plays an important role in the process,
which initially causes the variation of a spatial magnetic field
and time-dependent electric field, i.e., Equation (1). This elec-
tric field will accelerate or decelerate the electrons to deform
the distribution values of the electron velocity.

5.2. Spectrum

The SED of the radiation in the relativistic electron beam
apparently differs from that in the non-relativistic case.
Figure 18 illustrates the SEDs in the relativistic case. In the
standard model, we clearly see that the energy may not only
distribute in the range of 10–100νpe but extend up to a fre-
quency of ∼500νpe and some negligible signal at an even higher
frequency harmonic.

For a single relativistic electron, the peak value of its
synchrotron radiation may be at νpeak ≈ γ 2νce sin θ (Rybicki &
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Figure 15. Evolution of the degree of linear polarization with time in the relativistic beam-driven instability. Each panel is for one parameter, i.e., from top to bottom,
νce/νpe, θ , vd, vth, nth/nd. Different colors in each panel are for different values of the parameters as shown in the panel.

(A color version of this figure is available in the online journal.)

Figure 16. Maximum growth rate of the field energy in the relativistic beam-
driven instability.

Lightman 1979). For a many-electron system, the frequencies
where we can obtain emission lines are strongly associated with
the distribution of the Lorentz factor γ . Figure 19 illustrates
the distribution of γ in different parameters. In the standard
model, we find that when the instability reaches saturation,
the distribution of γ expands only a little in the high-energy
part. However, when varying the angle θ from 90◦ to 75◦,

Figure 17. Energy history for the standard model with different angle between
the external magnetic field and the injected velocity direction in the relativistic
beam-driven instability, i.e., 45◦, 55◦, 65◦, 75◦, 85◦, and 90◦.

(A color version of this figure is available in the online journal.)

we see a distinct high-energy electron tail around γ = 9.5,
which corresponds to the kinetic energy Eiek = (γ − 1)mec

2 ≈
4.35 MeV. These high-energy electrons may contribute to
possible X-ray emission from UCDs via thermal or non-thermal
bremsstrahlung or even inverse Compton scattering.
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Figure 18. Same as Figure 9 but for the relativistic beam-driven instability.

(A color version of this figure is available in the online journal.)

Figure 19. Energy distribution of the electrons in the relativistic beam-driven
instability. Top panel is for the initially mildly relativistic electrons with drift
velocity 0.58c and 0.78c and incident angle 90◦; the bottom panel is for initially
mildly relativistic electrons with fixed drift velocity 0.98c and different incident
angle, i.e., 45◦, 75◦, and 90◦. The number of electrons in each bin is normalized
by the total number of injected electrons. The bin size is 0.001 for 0.58c, 0.01
for 0.78c, and 1 for 0.98c.

(A color version of this figure is available in the online journal.)

6. COMPARISON WITH OBSERVATIONS
AND OTHER STUDIES

It is possible to approximately compare our simulation results
with the observed radio spectrum from UCDs using some
reference values of νpe in Table 1. For example, if we assume that
the observed radio emission from TVLM 513-46546 at 8.5 GHz
corresponds to the simulated peak frequency at ∼12νpe in the
case of νce/νpe = 10 (the strongest in the simulation) in the non-
relativistic beam-driven instability, then νpe = 0.708 GHz and
νce = 7.08 GHz. Thus, the corresponding local plasma density
is ∼6.2 × 109 cm−3 and the strength of the magnetic field is
∼2529 G. We may find some weaker signal at a high-frequency
harmonic, such as ∼30νpe = 21.24 GHz, ∼42νpe = 29.74 GHz,
∼50νpe = 35.4 GHz.

In the relativistic case, the first significant signal appears at
∼20νpe when νce/νpe = 10, which might correspond to the
observed radio signal at 8.5 GHz. This gives νpe = 0.425 GHz
and νce = 4.25 GHz. Thus, the corresponding local plasma
density is ∼2.2 × 109 cm−3 and the strength of the magnetic
field is ∼1518 G. We may find some weaker signal at a higher
frequency harmonic, such as ∼40νpe = 17 GHz, ∼118νpe =
50.15 GHz, ∼195νpe = 82.875 GHz, etc. This means the
spectrum may extend to the extreme high frequency band or
even far-infrared in the extremely relativistic case.

If we choose νce/νpe = 5 in the relativistic case and assume
that the first significant signal appearing at ∼110νpe corresponds
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to the observed radio signal at 8.5 GHz, it gives νpe =
0.0773 GHz and νce = 0.386 GHz. Thus, the corresponding
local plasma density is ∼7.4 × 107 cm−3 and the strength of the
magnetic field is ∼138 G.

The above estimations of the properties of the emission region
and the spectrum distributions in the present simulations are
consistent with the analytical results in Dulk (1985) and Güdel
(2002).

We do not draw conclusions on the values of plasma param-
eters in this paper because, first, many parameters are free in
our simulations. Especially two of the key parameters, the local
electron density and magnetic field, are ambiguous. Second, the
present simulations are confined in a local microregion with no
consideration of absorption and emission by other regions. The
absorption and re-emission by the plasma in other regions need
to be further investigated. The radio spectrum can be affected
by the large-scale structure of a magnetic field (Kuznetsov et al.
2012). A combination of observations at other wavelengths will
help us determine the configuration of the magnetic field and
the plasma environment and thus entirely understand the mag-
netosphere and atmosphere of UCDs.

The simulation results of the radiopulses from one of the
radioactive UCDs in Yu et al. (2011) show that the loss-
cone-driven ECM in Aschwanden (1990a) can result in the
release of ∼0.5% of the kinetic energy, which therefore can
generate a strong radio flux of up to a few mJy. This depends
on other parameters, for instance, the local plasma density.
By comparison, the non-relativistic beam-driven ECM in the
present model can release ∼2% of the kinetic energy when the
process reaches saturation, which is about four times higher than
the results in the model of Aschwanden (1990a).

Our simulation results are also comparable with the studies
for auroral kilometric radiation regions. Pritchett et al. (2002)
investigated the auroral kilometric radiation source cavity using
two-dimensional particle-in-cell simulations. They found the
energy conversion efficiency to be ∼1%–5%, depending on the
velocity of the hot electrons (∼1–10 keV). The timescale of
the radiation bursts is ∼0.5 ms, which is probably associated
with the local plasma density (�1 cm−3; Strangeway et al. 1998;
Perraut et al. 1990; Calvert 1981) and the weak magnetic field.
The energy conversion efficiency in our results is in line with
that in their results in the non-relativistic cases. The spectra
obtained in the present simulations are also in good agreement
with the previous results (Melrose & Dulk 1982; Aschwanden
1990a; Pritchett 1986, 1984)—the waves are produced mainly
near the electron cyclotron frequency.

However, certain differences exist between our simulation
results and others. First, in our simulations, we can see the
different oscillation modes from the energy time history that
reflect the interaction between the particles and the induced
electric field. Second, we find that the energy conversion
efficiency can be influenced significantly by the drift velocity
of the particles and the angle between the drift velocity and the
magnetic field, which is perhaps caused by the self-induced
EM damping. The initial conditions and the technique to
solve Maxwell’s equations in our simulations and others are
also different. We considered a spatially localized electron
population with a beam or beam-like velocity distribution. In
contrast, previous works considered ring-like, horseshoe, and
Dory-Guest-Harris distributions (Pritchett et al. 2002; Pritchett
1986, 1984) and a larger space structure for the magnetic field.
The time advancement of Maxwell’s equations was performed
in Fourier space in Pritchett et al. (2002). Instead, we used

a staggered leap-frog method to solve the equations in the
time domain with the positions and velocities of the electrons
generated by a Monte Carlo method.

Recent computer simulations and experimental laboratory
work by Cairns et al. (2011) and Vorgul et al. (2011) show
that in the non-relativistic (or weakly relativistic) case the
energy conversion efficiency is 1%–2%, which is consistent with
our simulations. However, this energy conversion efficiency
varies significantly in our relativistic case, depending on the
parameters, e.g., the angle, the drift velocity, and the strength
of the external magnetic field. It may be mainly caused by the
effect of synchrotron radiation.

7. SUMMARY AND CONCLUSIONS

In this paper, we present the numerical simulations for
electron-beam-driven and loss-cone-driven ECM with different
plasma parameters and different magnetic field strengths. We
find that the beam-driven ECM can be an effective mechanism
to release EM waves and heat the surrounding plasmas. From
the diffusion process of the electrons in velocity space and the
energy distribution (see Figures 3 and 19), a high-energy tail of
the electrons may be rapidly developed along the direction near
perpendicular to the magnetic field, which can eventually evolve
to moderately or strongly relativistic electrons, depending on
the initial energy of the electron current, and contribute to
gyrosynchrotron or synchrotron radiation. This may lead to the
appearance of a radio continuum and the deformation of the
SED. Also, these high-energy electrons may be important to
generate X-ray emission.

The computation of the degree of polarization indicates that
the thermal level of the electrons can significantly affect the
degree of the circular or linear components of the observed
radio waves. In the case of the beam-driven ECM, the angle
between the direction of the magnetic field and the injection
direction of the injected electrons is another crucial factor to
affect the degree of circular polarization in the radio waves.

The SEDs of the radio waves depend weakly on the form of the
velocity distribution of the electrons in the present simulations.
The existence of the external magnetic field and the angle
between the direction of the magnetic field and the moving
direction of the electron current can significantly affect the SED.
Certain frequency bands, e.g., 10–70νpe in the non-relativistic
case and 10–600νpe in the relativistic case, may appear, which
increases the difficulty of finding the fundamental cyclotron
frequency in the observed radio frequencies. It is, however,
possible that magnetic field inhomogeneities may smooth out
some of these bands, thus producing a continuous spectrum.
In order to determine the plasma frequency and the cyclotron
frequency, wide frequency bands should be covered by future
radio observations.

The present study is limited in that only two-dimensional EM
simulations are performed, with no consideration of the change
of the magnetic field configuration and the influence of gravity.
We will continue to develop the simulations to match the plasma
environment and the magnetic topology on UCDs in order to
understand their radio emission.
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