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ELECTRON COOLING IN STORAGE RINGS
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(Received February 2, 1981)

It is found that the effect of '"flattening" of the electron velocity distribution is to increase the rate of cooling of
small betatron oscillations by a factor of 2.4, and not by a factor of 4 as often quoted. This is when the cooler
magnetic field is ignored. When it is allowed for, in the usual way, the cooling rate involves a divergent integral
whose regulation depends on the details of particular cases.

to Y. ORLOV

1. INTRODUCTION flattened distribution is

(9)

(6)

(7)

(5)

(4)

(V~y) == (V~z.) == kThn e

(V~-L) == 2kTlm e .

Betatron oscillation cooling times are often
written as 1-3

x exp[ - line V~-L/(kT)],

where K is a numerical constant, L e is the' 'Cou
lomb logarithm"', r e is the "classical electron ra
dius" == 2.82 x 10- 13 cm, rj is the "classical ion
radius" == Zjremehnj, mj is ion mass, Zj is ion
charge number, ne is electron density, in lab
frame, e is velocity of light, 'Y == (1 - ~2)-1/2,

~ == Vole, Vo is electron beam velocity, and d
== (cooler length)/(orbit length).

The reading of the literature is complicated by
the fact that Ref. 2 contains some obvious mis
prints at the critical point, and (we think) a less
obvious one. Presumably following Ref. 2,
S~rensen3 quotes formula (8) with the substitu
tion

Note that in both cases mean square transverse
velocity components are given by

where

(1)

(2)

with

The Maxwellian distribution, in the rest frame of
the electron gas, is

where me is electron mass and T temperature and
k is Boltzmann's constant. The corresponding

This is a revision of some aspects of the theory
of electron cooling1of ion beams in storage rings.
We consider a Maxwellian distribution of elec
tron velocities, and the corresponding "flat
tened" distribution in which longitudinal velocity
spread is suppressed. While agreeing with results
given in the literature for the Maxwellian case,
we find that "flattening" increases the rate of
damping of small betatron oscillations only be a
factor of 2.4, and not by a factor of 4 as often
quoted. This is when the cooler magnetic field
is ignored. When it is allowed for, in the usual
way, we find for the' 'flattened" case a divergent
integral in the cooling rate of idealized betatron
oscillations. It arises because the damping force
increases as transverse velocity decreases, and
arbitrarily small velocities ocCur in the course of
oscillation. The regulation of this integral de
pends on how the idealizations and approxima
tions of the theory fail in particular cases.

Let the electron velocity distribution be
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to confirm our reinterpretation above of his def
inition of K. For the conditions (14) we find [from
(25), (26) and (27) below1

and states that B-y8 c c is (in the electron gas frame)
root Inean square transverse velocity. From (6)
and (7) we would write rather, defining V-L as root
mean square transverse velocity,

L e == 12.3, (20)

(10) so that from (17)

K == 0.13. (21)
We will assume in what follows that this is is
what they really had in mind, the authors of Refs.
2 and 3, so that their definition of K is that of (8).
T'his is suggested for Budker et al. by words after
Eq. (11) of Ref. I, (their root mean square is of
just one of the two components of transverse
velocity), and for S~rensen by what he quotes as
his own result for K, as we will see.

We find (in the non-magnetic case)

Maxwell: K == 3/(2V2TI) == 0.60 (11)

flattened: K == 2/(TIV2TI) == 0.25 (12)

In (11) we agree with Budker et ale 1.2 but for
the flattened case they have instead of (12)

1/(2TI) == 0.16. (13)

This is for the flattened distribution, and seems
to agree more with Budker et aI's (13) than with
our (12). However, S~rensen considered only the
damping of free motion. For oscillatory motion
then his cooling time should be increased 1.4 by
a factor of 2 (see Section 3 below), already in
cluded in (11) and (12); then he agrees with us.

The numerical results (20) and (21) are for kT
== 1 eVe At first sight (16) might seem to require
aT-dependent K. But this would be to forget that
L c is weakly T dependent. The argument of the
logarithm [(25), (26) and (27) below] goes as T3

/
2

•

So we can generalize (20) to

L c == 12.3 + In (kTII eV)3/2

rx I + 0.12 In (kTII eV) ~ (kTII eV) . 12

(22)

Comparison with S~rensen3 is not so imme
diate because he has a more sophisticated ap
proach not assuming a constant Coulomb loga
rithm. His results, from numerical integration,
emerge in numerical rather than analytical form;
however, for beams with

n e ~ 3 x 108 cm- 3 , kT ~ leV (14)

he states that his results are fitted by (his equa
tions 2.22, 2.54)

(15)

/2 == 1.52 x 103 dr;rcncc (rn e c 21kT) 1.37)'-2

corresponding to

Allowing for this in (16) we see that S~rensen's

results correspond to a rather constant K.

In the following sections the arguments for (11)
and (12) are set out in some detail, so that you
can see if we go wrong. In Section 4 the magnetic
case is taken up.

2. NON-MAGNETIC CASE, NON
OSCILLATORY MOTION

An ion penetrating an electron gas is supposed
to be subject to a resisting force2 (in the rest
frame of the gas)

F(Vi ) = K f d 3V e (V e - V;)

x IVc - V; 1- 3!(Vc )C 2

This is close enough to S~rensen's own statement
of accord with

The Coulomb logarithm L c is more properly a
function of Ve and to the right of the integral sign.

== 1.09 x 10 -- 2 L c .

K == (1/2TI) L e /15

== 1.06 x 10 - 2 L c

(17)

(18)

(19)

where

Vi is ion velocity (23)

(24)
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But we suppose that it varies slowly and can be
fixed at a typical value

(25)

where, for small Vi

with mean life

to = [3V;mic!(4K)][2kTI(mcc2)]'/2

3 (2kT)3/2 mirc I
= 16V; mec2 me -;: ner/Lc '

(33)

(26)

and (in an unbounded medium)

pmax = rA V...Ic)/Y4'TTncr/, (27)

where V~ is defined in (10).
The mathematical problem of calculating F for

a given distribution f(V c ) is then the same4
.
5 as

that of calculating the electrostatic field set up
by a given charge distribution. Ideas familiar in
electrostatics can be pressed into service, in par
ticular Gauss' theorem relating the flux of field
through a closed surface to the charge within:

f ds' F(V) = - 4'TT f d 3 VKf(V)c2, (28)

where the first integral is over a closed surface
in velocity space and the second over the volume
contained by it.

Maxwell distribution

Consider first the symmetrical Maxwell distri
bution (3). By symmetry F(V) is in the direction
V.

This agrees with Spitzer [Ref. 5, Eq. (5.31),
with T;lmi ~ T,,!mc] when it is remembered that
he is interested in temperature, or energy, or ve
locity squared, rather than velocity, and so
quotes a cooling time which is half of the above,
because

[exp ( - tltoW = exp [ - tl(to/2)].

It also agrees with Budkeret at. [Ref. I, Eq. (11)]
when it is noted that they have divided by a duty
cycle factor (1] in their notation, d in ours) to
allow for the application of cooling to only a frac
tion of the ion orbit, and multiplied by a factor
of 2 as appropriate in application to betatron os
cillation4 (see Section 3).

Flattened distribution

We are more interested in the "flattened" dis
tribution (4).1.2 To calculate F(V) for small Vn
V, it suffices to calculate F, for Vz = V" = O.
For by applying Gauss' theorem to a small slim
cylinder on the V, axis (C I, in the figure) of radius

(29)

Applying (28) to a small sphere around the origin

4'TTV2a(0)V

= 4'TTK(4/3)'TTV3(2'TTkTlmc)~3/2c2, (30)

whence

So for small ion velocity (relative to the electron
gas as a whole)

F(V i ) = - (4/(3V;»(mcc 2/(2kD)3I2 KV;!c. (32)

If there are no other forces at work, (32) gives
rise to exponential damping

Vi 'X exp ( - tlto)

vx

Small regions C, and C~ in velocity space to which Gauss
theorem is applied. They are cylinders symmetric about the
V, axis. The flattened electron distribution lies in the V,. V.
plane. . .
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V, and length I. We have

71" V 2 Fx(E + I) - 71" V2 Fx(E)

for

(34)
(44)

whence

(45)371"/4 == 2.36.

Note that (42) can be obtained more quickly
by applying Gauss' theorem to a short fat cylinder
on the axis (C2 dotted in the figure).

Note that with (42), unlike (32), F
11

does not go
to zero with Viii. The longitudinal cooling is then
linear rather than exponential. However,3 with
very small Viii the theory used here fails (in par
ticular the Coulomb logarithm does not remain
constant), and F

11
does go finally to zero.

The transverse force (43) for the flattened dis
tribution, as compared with the symmetrical case
(32), for given Vi-!- (i.e., given n, is bigger by a
factor

(37)Fx == (ala Vx )<P( Vx )

that is,

for small V-L' the derivative being evaluated on
the axis V-L == O.

As in electrostatics it is convenient to intro
duce a potential

(38)

3. BETATRON OSCILLATION DAMPING

Change the integration variable to

(39)

During a small time ot the force (43) causes an
increment in, say, the vertical ion velocity

Then (46)

<P(x) == C foc dR exp [ - Y2m eR 2/(kT)] }
x (40)

C(x) == K [m ec 2/(kT)] exp [1/2meX2/(kT)]

with to given by (33). In the absence of other
forces, and with continuous application of the
cooling, we would have exponential damping of
Viz with mean life

But in the case of betatron oscillation there are
other forces, causing Viz to oscillate.

We neglect here any coupling between hori
zontal and vertical betatron oscillation. Then the
two degrees of freedom can be treated separately
and similarly. At some particular position in the
cooler let the undamped vertical velocity be

From (20), for Vx positive,

Fx(Vx ) == - K [m ec 2 /(kT)]

+ C(Vx) [meVx/(kT)] rYe dR (41)
v\

to 4/(371"). (47)

(which can be expressed in terms of the tabulated
error function erf). Then from (36) and (41) (fol
lowing earlier papers, we write II for the x direc
tion, Le., parallel to the cooler axis)

FII == - (Villi I Viii I ) Kln e c 2 /(kT) (42)

F-L == - Vi-L V; [m ec2/(2kT)]3/2 K/c (43)

ViZ == Vizmax sin (f-Ln + <p) (48)

on the n'th passage of the ion. The increment of
velocity (46) adds an extra oscillation which, if
induced on, say, the o'th passage goes subse
quently as

- Vizmax sin <p (371"/4) (otlto) cos f-Ln. (49)
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Writing here 4. MAGNETIC CASE

where rL is a typical electron Larmor radius

Suppose now that a strong magnetic field is ap
plied in the longitudinal direction. 7 The ion-elec
tron encounters are conventionally divided,
crudely, into two kinds, "fast" and "adiabatic."
The "fast" contribution to the drag force is again
(42) and (43), except that the Coulomb logarithm
in K is replaced

cos f.Ln = cos «f.Ln + <p) - <p)

= sin <P sin (f.L n + <p)

+ cos <p cos (f.Ln + <p)

we have for the combined oscillation (48) + (49)

sin (f.Ln + <p) {Vizmax

- Vizmax sin <p sin <p (31T/4) i)tlto}

+ cos (f.Ln + <PH - Vizmax sin <p cos <p (31T/4) i)tlto}

or

(57)

(58)

(Vizmax + i) Vizmax) sin (f.Ln + <p + i)<p) (50)

with, to first order in i)t,

i)Vizmax = - Vizmax (sin <pf (31T/4) i)tlto. (51)

(59)

The "adiabatic" contribution7
-

9 is rather com
plicated and couples together in general the three
degrees of freedom. We will consider only par
ticular simple cases.

of the time, we have finally on average

d = (cooler length)/(orbit length) (53)

(60)

(61)

ViII = Viy = 0 (i.e., pure vertical betatron
oscillation)

Horizontal betatron oscillation is entirely similar.
Note, however, that we omit here any coupling
between horizontal and vertical betatron oscil
lation, including that due to the cooler magnetic
field.

The complete drag force is now

Fz(Viz) = - Viz(KIL,.){V; (2kTlm e )-3/2Lr

+ 1/2 I Viz 1- 3 L lI }c 2
,

Vh = 0 (i.e., no betatron oscillation)

In this case there is no "adiabatic" contribution,
and the complete drag force is (42) with (58)

FII = - (Villi I Viii I )(me c 2/kT)

(56)

(52)

tf3 = to 8/(31Td).

with mean life

( - dVizma)dt)IVizmax = 31Tdl(8 to). (54)

We suppose that the damping becomes apprecia
ble only after many passages of the ion through
the cooler. Then in (51) we may average over all
values of the phase <p

This implies exponential damping

Vizmax ex exp ( - titf'» (55)

If we also take account of the fact that damping
occurs only in the cooler, and so only for a frac
tion

Apart from the trivial duty cycle factor, (56) has
doubled as compared with (47) because of the
oscillatory nature of the undamped motion. Cast
ing (56) into the form (8), and noting that 'Y 2 is
a relativistic correction arising in transformation
between lab. and electron gas systems, gives (12).
Taking out the flattening effect (45) gives (II).

where the two terms are "fast" and "adiabatic"
contributions respectively; L r is again (58) and

(62)

where rL is again (59) and

plImax = re ( I Viz 1/c)/Y(47Tner/). (63)
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In a small slice of cooler we now have or

(64) ( - dVizlllaxldt)IVizlllax == tI - I + to - I, (73)

(68)

or corresponding phase

(74)

(75)

x (LIILa)V;IR

R == (2/n) In (2 Vizmax/Vizmin). (76)

with, in terms of to defined in (33),

We warmly thank Allan Hvidkjaer Syjrensen for
correspondence confirming our interpretation of
his work, and indeed for showing us a manuscript
in which he explicitly and independently derives
the factor 31T/4 for the flattening effect, and Frank
Krienen for several useful remarks.

The determination of Vizmin in (76) depends on
particular study of particular cases. So the ap
plication of the result is not immediate. It perhaps
serves, however, to indicate the complexity of
the problem. It should be borne in mind moreover
that only simplified cases have been considered
here. The general problem is one of non-linear
equations and coupled motion in three degrees
of freedom, and with an electron distribution
varying radially. Then, it seems to us, computer
simulation is indicated, and a promising start on
that has been made. lo
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j
TI/2

d<p/(sin <p).
o

mi (dVizmaxldt)

sin <Pmin == Vizlllin/Vizlllax' (69)

In (66) the second term of (61) gives rise to the
divergent integral

8Vizmax == (Fz(Viz)ln1i) 8t sin <p.

Averaging over <p and around the orbit

giving rise to an increase in oscillation amplitude
[for n == 0 in (48)]

In this connection we have to recognize that the
theory predicting unlimited rise of F z with de
crease of Vz must fail for sufficiently small Vz .

It will no longer be permissible to neglect the
spread of longitudinal electron velocity, or mo
tion in the other transverse degree of freedom,
or the variation of th~ logarithm La, or whatever.
Then the divergent integral is cut off at some
velocity

Note that

( - dVizmaxldt)IVizmax
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