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There has been dramatic progress in the development of electron correlation techniques for the accu
treatment of the structures and energies of molecules. In this review, we give brief and somewhat qualitat
descriptions of the different methods that have been developed in recent years. We also discuss the rang
applicability as well as the limitations of the methods with a few selected examples. We focus particul
attention on electron correlation methods which start from a Harffeek wave function since such single-
configuration-based approaches are most easily extended to larger molecules. Multiconfiguration-ba
correlation techniques are considered briefly. We also present a fairly thorough account of the rece
developments and applications using novel quantum Monte Carlo approaches.

I. Introduction prefer to define it with respect to restricted Hartré@ck theory
where the spatial orbitals foow and § spins are identical.
Sometimes, it may even be convenient to replace the HF
approximation in the above definition with another well-defined
approximation such as a multiconfiguration reference function.
For this rather general review, we adopt an attitude that a theory
of electron correlation refers to any method for accurate
treatment of interelectronic interactions starting from a suitable

The evaluation of the structures and energies of molecules
from first principles has long been a primary goal of quantum
chemistry. One of the major stumbling blocks to achieving this
goal has been the lack of an accurate theory of electron
correlation which is practical enough for reasonable applications
to chemically interesting problems. Thus, a dominant research
theme in this field for decades has been the development Ofreference wave function
new theoretical methods for the accurate evaluation of electron ) . ) )
correlation energies:® In the past few years, important Another factor_ needs to be conS|dere(_1I in most thgorles of
theoretical insights from many different research groups coupled electron correlatlor_L In actual computations, the_ orbitals are
with the increasing computational power of modern-day com- Usually expanded in terms of a finite basis set, i.e., a set of
puters have led to the development of sophisticated and accuratdinite atom-centered functions. This introduces an additional

theoretical techniques which can now be applied to a variety €MOr associated with basis set truncation effects. Typically, for

of problems of chemical interest. any given method, the correlation energy is defined within the
finite basis set used, and the convergence with respect to

increasing the basis set size is then considered separately. Fol
many of the popular quantum chemical methods, the conver-

Fock self-consistent-field thediprovides an excellent starting ~ 9€NC€ With respect to the inclusion of higher angular momentum
point which accounts for the bulke99%) of the total energy ~ Tunctions in the basis set is rather slow.
of the molecule. However, the component of the energy left ~ The physical ideas behind most theories of electron correlation
out in such a model, which results from the neglect of can be understood from an analysis of the bonding in the
instantaneous interactions (correlations) between electrons, issSimplest moleculeyiz. Ho. Hartree-Fock calculations with
crucial for the description of chemical bond formation. The large basis sets show that correlation effects contribute about
term “electron correlation energy” is usually defined as the 25 kcal/mol to the binding energy inz2H In fact, a frequently
difference between the exact nonrelativistic energy of the systemused rough rule of thumb is that correlation effects contribute
and the HartreeFock (HF) energy? Electron correlation is ~1 eV (23 kcal/mol) for a pair of electrons in a well-localized
critical for the accurate and quantitative evaluation of molecular Orbital? For many pairs of electrons in close proximity,
energies. correlation effects become very large. For example, they
Electron correlation effects, as defined above, are clearly not contribute more than 100 kcal/mol to the bond energy jn N
directly observable. Correlation is not a perturbation that can  The most important type of correlation effect which contrib-
be turned on or off to have any physical consequences. Ratherutes to chemical bonding is usually termed “tefight” cor-
it is a measure of the errors that are inherent in HF theory or relation? For H;, this refers to the tendency that when one
orbital models. This may lead to some ambiguities. While HF electron is near the first hydrogen, the other electron tends to
theory is well-defined and unique for closed-shell molecules, be near the second hydrogen. This is absent in the HF method
several versions of HF theory are used for open-shell molecules.where the spatial positions of the two electrons occupying the
Correlation energy for an open-shell molecule is usually defined lowest bonding molecular orbital are uncorrelated. The problem
with respect to unrestricted HartreEock (UHF) theory where  gets worse as the two atoms move apart and dissociate.
the spatial orbitals are different farandg spins. Some authors  Quialitatively, this can be corrected by including a second
configuration where both electrons occupy the antibonding
@ Abstract published ilddvance ACS Abstractguly 1, 1996. orbital. While this is unfavorable energetically, a mixture of
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One of the first steps in most theoretical approaches to the
electronic structure of molecules is the use of mean-field models
or orbital models. Typically, an orbital model such as Hartree
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the HF configuration with this second configuration provides a of size consistency to allow proper comparisons between small
better description of the system. This is referred to as and large molecules. Inits simplest realization, a size-consistent
“configuration interaction” and is the basis behind many of the method leads to additive energies for infinitely separated
electron correlation theories. The second configuration obvi- systems. While this appears to be a rather trivial requirement,
ously has only a small weight at the equilibrium distance in popular methods such as configuration interaction are not size
H,, but its weight increases as the bond distance increases unticonsistent and do not give additive energies for infinitely
the configurations have equal weights at dissociation. Such aseparated systems. For many years, the importance of size
left—right correlation is naturally included in valence-bond-type consistency was known but thought to be important only for
wave functions. large molecules. However, in recent years, it has been realized
Another type of correlation effect is “inout” correlation that a size-consistent method is necessary to reach quantitative
which corresponds to radial correlation in atomic systems. accuracy even for small molecules.
Typically, such effects can be included by having configurations A useful criterion for an accurate correlation method is
with occupation of higher radial functions, e.g.,o420) correctness for two-electron systems. The electron pair is a
configuration in B composed of 1s and 2s orbitals. A third central and useful concept in chemistry, and their exact
type of correlation is “angular” correlation which is typically correlation treatment (within a given basis set) is relatively easy
considered by the inclusion of higher angular momentum to implement. Several of the popular correlation techniques
functions, e.g., #u)? configuration in H composed of 2p do indeed correlate an electron pair exactly. More importantly,
orbitals. Large basis sets with higher radial and angular for any molecular system composed of reasonably well-defined
momentum functions are necessary to properly include the electron-pair bonds, such methods provide excellent starting
contributions of all the different correlation effects. points for inclusion of additional corrections such as those from
The field of electron correlation has an extensive literature three-electron correlations. It is now realized that such three-
with contributions from many different groups using a variety electron correlations, though expensive computationally, are
of approaches. In addition, the general availability of quantum crucial to reach quantitative accuracy. They are best imple-
chemical program8 has made it possible for an even wider mented in methods which treat an electron pair exactly.
set of authors to treat many different chemical systems with A final but very important aspect of any correlation scheme
the available computational schemes. It is clearly not possible is its computational dependence, which determines the range
to give a comprehensive account of all the different theories of applicability of the method to interesting chemical problems.
and applications within the space available. We have electedIn general, correlation techniques are more expensive than the
to give brief and somewhat qualitative descriptions of the HF method, and the computational requirements of many of
different methods that have been developed to describe electrorthe most accurate correlation methods scale as a fairly high
correlation effects. We have also attempted to discuss the rangepower of the size of the system. In addition, many of the
of applicability as well as the limitations of the methods with correlation techniques involve an iterative solution of a set of
a few selected examples. We focus particular attention on coupled equations which adds additional computational steps.
electron correlation methods which start from a HF wave
function since such single-configuration-based approaches ardll. Single-Configuration-Based Theories
most easily extended to larger molecules. Multiconfiguration-
based correlation techniques are considered briefly. We also
present a fairly thorough account of the recent developments
and applications using novel quantum Monte Carlo approaches.

As mentioned earlier, the most widely used techniques start
from a single configuration, typically that from a Hartreleock
(HF) self-consistent-field wave functida. In this section, we
present a brief discussion of such electron correlation techniques
and present their current status. In the HF method, the wave
functionW is a product of one-electron wave functions (referred
Before we discuss the details of the different theories of to as molecular spin orbitals), antisymmetrized with respect to
electron correlation, it is useful to understand the criteria which interchange of electronic coordinates. This is frequently referred
these approximate theories should attempt to satisfy. In otherto as a Slater determinantal form of wave function. The
words, a correlation theory constitutes a “theoretical model molecular spin orbitals themselves are expanded as a linear
chemistry? and should have certain desirable characteristics. combination of atom-centered basis functions. In a HF calcula-
For example, it should provide a unique total energy for each tion, each electron moves in an average field due to all the other
electronic state at a given geometry and should also provideelectrons, and the expansion coefficients of the molecular
continuous potential energy surfaces as the geometry changesorbitals are determined in a self-consistent fashion. The
A desirable property of approximate theories is that the resulting molecular orbitals are eigenfunctions of the “Fock
resulting energy should be variational; i.e., it should be an upper operator”. If there areé electrons andN atomic spin orbitals,
bound to the exact energy. For many years, this was consideredsolution of the HF equations results inoccupied molecular
to be an important criterion, and approximate theories such asspin orbitals and — n) unoccupied (or virtual) molecular spin
configuration interaction did satisfy this property. Interestingly, orbitals.
some of the most successful theories of electron correlation in  The representation of the wave function in terms of a single
practice today, such as coupled cluster theory, do not provide configuration as in HartreeFock theory is inadequate to treat
variational total energies. However, they are so accurate andthe correlations between the motions of different electrons.
well tested that the advantage provided by the variational bound While the antisymmetry which is implicit in a determinantal
to the energy is no longer present in many state-of-the-art wave function keeps electrons of the same spin partially
correlation theories. correlated, the correlation between the motions of electrons with
The most important criterion for an accurate electron cor- opposite spins is neglected in Hartreeock theory. The
relation theory is the property of size consistency or size correlation energy as defined above is thus a measure of this
extensivity:® This term refers to the linear scaling of the energy inadequacy of HF theory.
with the number of electrons in the system. It is intuitively In most techniques, electron correlation effects are introduced
obvious that an approximate method should have the propertyby allowing the wave function to be a linear combination of

Il. Requirements of Electron Correlation Theories
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many electron configurations. The other configurations are
generated by replacing occupied spin orbital$Hgby virtual
spin orbitals and may be classified as single, double, triple,
quadruple (S, D, T, Q)-- excitations. T, T, T3, Ty, -+~ are
operators which generate linear combinations of all single,
double, triple, quadruple,- excitations involving expansion
coefficients to be determined.

A. Perturbation Theory. One of the most common
treatments of electron correlation is based on perturbation theory.
Though extensive applications using perturbation theory have
been performed relatively recently compared to older methods
such as configuration interaction, low-order perturbation theory
has become very pervasive because of its wide applicability to
a variety of problems. We discuss it first in this review because
it provides a convenient framework to describe the dominant Figure 1. Icosahedral g molecule, viewed down a 5-fold axis.
electron correlation effects.

Mgller—Plesset (MP) or many-body perturbation thééry  studies including triple excitations were performed for the first
treats the electron correlation as a perturbation on the Hartree time 1>16.18and they showed that such three-electron correlation
Fock problem. Here the zeroth-order Hamiltonian is the Fock contributions are surprisingly large and cannot be neglected in
operator derived from the HF wave function. This provides a any quantitative treatment of electron correlation. Understand-
convenient and unique description for closed-shell systems anding the fifth-order terms (MP5) also contributed further to the
for open-shell systems based on an unrestricted HF waverefinement of electron correlation techniqdés® A complete
function1>16 For restricted open-shell wave functions (where analysis of the sixth-order terms (MP6) has also been performed
the a and 8 spatial orbitals are identical), however, the recently?!
perturbation treatment is not unique, and there are several Perturbation theory truncated at any order is size-consistent.
variants being explored. The computational dependence increases steeply with the order

In the MP scheme, the wave function and the energy are of perturbation theory. Thus, MP2, MP3, MP4, and MP5 scale
expanded in a power series of the perturbation. It is easily as the fifth, sixth, seventh, and eighth power of the size of the
shown that the HF energy is correct to first orderthus, system. A major advantage of these methods is that they are
perturbation energies start contributing from second order. We not iterative unlike configuration interaction or coupled cluster
use the common notation that the total energies correct to givenschemes. In MP4 theory, the term which scales as the seventh
order are denoted as MPS Thus, MP2, MP3, MP4-- denote power of the size of the system is the contribution of triple
the total energies correct to second, third, fourth, order, excitations. However, these terms can be evaluated using matrix
respectively. In perturbation theory, the different correlation operations and can be vectorized effectively on supercomputers.
contributions emerge through their interaction with the starting Thus, MP4 theory has been fairly widely used in spite of its
HF wave function®W,. Since the Hamiltonian contains only seventh-order dependence. If triples are excluded from the MP4
one- and two-electron terms, only single and double excitations method, the resulting MP4(SDQ) techniéftiincluding singles,
can contribute via direct coupling #, in the lowest orders.  doubles, and quadruples) can be evaluated with a sixth-order
However, the self-consistent optimization of the HF wave computational dependence. Fifth-order theory (MP5) has been
function prevents direct mixing between single excitations and implementeé® 2 though it is feasible only for small systems.
W,. Thus, the second- and third-order energies have contribu- MP2 or second-order perturbation theory is by far the most
tions only from double excitations. In higher orders, there is applicable method for the treatment of electron correlation
indirect coupling via double excitations, and thus the fourth- effects. There are two reasons for the wide applicability of the
and fifth-order energies have contributions from single, double, MP2 method. First, it is the only scheme discussed in this
triple, and quadruple excitations. section which scales as the fifth power of the size of the system.

The importance of the different terms that contribute to All other correlation schemes scale as sixth (or higher) power.
electron correlation energies can be judged from the order in In addition, the MP2 method can be formulated and imple-
which they first contribute in a perturbation expansion. Thus, mented completely without requiring the storage of two-electron
the importance of double excitations is immediately obvious integrals or many other intermediate quantifiésSuch “di-
from perturbation theory since they are the only correlation rect? formulations or “semidirect” schemes (where only a
contributions up to third order. Single, triple, and quadruple Specified storage space is used) have made it possible to perform
excitations first contribute in fourth order. When the MP4 Vvery large MP2 calculations even on workstations. For example,
method was first implemented in the late 1979%18 the MP2 geometry optimizations have been performed ag C
importance of some of these contributions was not fully (Figure 1) with fairly large polarized basis séfsTable 1 lists
recognized. The use of the HF starting point diminishes the the optimized bond lengths for the two distinct bonds i &
effects of single excitations, and their moderate correlation the HF and MP2 levels with three different basis sets. The
contributions were fairly well understood from previous con- experimentally observed difference between the two bond
figuration interaction studies. The connection between qua- lengths (0.05 A) is well reproduced at the MP2 level whereas
druple excitations in MP4 theory and size-consistency correc- HF theory overestimates this difference. These MP2 calcula-
tions in configuration interaction calculations or the relationship tions with the TZP basis set involved 1140 basis functions and
between MP4 and coupled cluster theomidé infra) are were performed using the full icosahedral symmetry of thg C
important factors that contributed to the development of more molecule?*
accurate correlation methods. Perhaps the most important Apart from the energy itself, evaluation of molecular proper-
outcome of the development of the MP4 method was in ties is also efficient for the MP2 method. Efficient implementa-
understanding the importance of triple excitations. Systematic tions of the analytical first and second derivatives of the MP2
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TABLE 1: Optimized Bond Lengths? (&) for C o superseded by size-consistent techniques such as perturbatior
parametér theory or coupled cluster methods. Many of the concepts related
method . . to the different electron correlation techniques are still conve-
68 676 niently introduced from the framework of configuration interac-
HF/DZ 1.451 1.368 tion.
HF/DZP 1.453 1.372 . . L L .
HE/TZP 1.448 1.370 Conceptually simple, configuration interaction is a straight-
MP2/DZ 1.470 1.407 forward application of the linear variational technique to the
MP2/DZP 1.451 1.412 calculation of electronic wave functions. A linear combination
MP2/TZP 1.446 1.406 of configurations (or Slater determinants) is used to provide a
expt 1.45 1.40

better variational solution to the exact many-electron wave
aFrom the work of Haer et aP*°rq_s refers to the bond length ~ function. In principle, by increasing the number of configura-
between a hexagon and a pentagon; refers to the bond length  tions included, the CI method is capable of providing arbitrarily
beltW?er:j ijobrllexagonstZ, ?Z_P' O‘l"‘”_d lTZP reger_to double-zeta,  accurate solutions to the exact wave function. Using common
polarize ouble-zeta, and polarized triple-zeta basis sets, respectivel ynotation, the CI wave function mixes the Hartrdeock wave
TABLE 2: Calculated Excitation Energies (eV) Obtained function with single, double, triple, quadruple;- excited
with MP and QCI Methods? configurations, and the coefficients which determine the amount
atom excitation HF MP2 MP3 MP4 QCISD(T) expt of mixing are determlned variationally. If_ all possible excnegl
configurations are included, the method gives the exact solution

.SI.IC gi: gzi tl):gé (l):ig é:% éjé’? (1):;1? (1):23 within the space spanned by a given basis set and is referred to

V R —dsl 023 —-024 020 012 0.21 0.11  as full configuration interaction (FCI).

Cr d¢—ds -107 -1.65 -1.04 -1.24 -110 -117 The number of configurations in a FCI expansion grows

'I\:"” dPe—ds 319 176 260 198 224 L97 exponentially with the size of the system. Clearly, FCI results
e d¢—d’ss 183 021 140 0.37 0.86 0.6 ‘ . X

Co dL—PBst 1.61 —058 1.12 —0.49 0.33 0.17 are not practical for many-electron systems with large basis sets.

Ni  d82—d%! 1.37 —1.37 0.92 —-1.46 -0.18 —10.33 However, they do provide “exact” solutions for small molecules

Ni  d%'—d® 432 —051 4.46 —3.42 1.70 1.57 with limited basis set®® Such FCI calculations, though they

Cu d&&—d'% -029 -328 —047 —3.63 -185 185 cannot be compared to experimental results due to basis set
2 From the work of Raghavachari and Truégs. limitations, nevertheless have been invaluable benchmarks for

the calibration of approximate correlation techniques. When

5.26 . . :
energy®2* are now available in popular quantum chemistry used with modest basis sets, they aid in evaluating the inherent

{)hrggm;nzs 'Ixglleﬁ;gvgeect’??H"aeSHEgerZEunéggfn\t}?b'rrgt%ﬁ;?d at errors due to the deficiency of the correlation methodology.

frequencies and other properties have also been studied exten- 1N€ number of configurations which can be included in a
sively with the MP2 method2® Recent results on NMR practical FCI calculation has grown dramatically over the years.
chemical shifts with the MP2 method also show pronifse. Novel algorithmic developments including sparse matrix tech-
There have been only a few applications with the Mp3 Niques utilizing the power of \3/$ctor supercomputers have
method. In most cases, the improvement obtained at third ordercOntributed toward th|§‘progre§%. Recently, thereégas been
does not justify the significantly higher computational expense. Significant progress in “controlled error” FCI methstiwhere
The fourth-order MP4 method, however, is used fairly widely. the energy is accurate to some specified tolerance. Extrapqla'uon
As mentioned earlier, the inclusion of the contributions of triple €chniques can then be employed to make accurate estimates
excitations for the first time has made MP4 studies fairly of the FCI energy in the limit of zero tolerance. Calculations

valuable. An analysis of the trends in the MP2, MP3, and Mp4 With up to several billion configurations have now been
energies shows, however, that for many systems the convergenc&erformed with the FCI method.

of perturbation theory is slow or oscillatory, indicating that ~ The current status of such FCI calculations for a variety of
higher-order terms are importaft32 Slow convergence is seen Mmolecular systems has been reviewed recently by Bauschlicher
in many molecules where spin contamination effects in the etal®> Among the earlier FCI calculatior®8 studies on water
starting UHF wave function are significatt. Oscillatory atRe, 1.5R,, and 2.®e with double-zeta and polarized double-
behavior is seen in multiply bonded systems such as/here zeta basis sets have been compared to the results of almost al
correlation effects are typically overestimated at fourth otéfer. ~ approximate electron correlation treatments. Other examples
An extreme case of oscillation occurs in transition metal are CH (singletand triplet), Niiat several bond lengths, simple
systems, particularly if 3d to 4s excitations are invol¥&@iable reactions such as f H, — FH + H, loosely bound systems

2 lists the atomic excitation energies for the first-row transition Such as Hg etc3® Future extensions of FCI methods to systems
metal elements SeCu using perturbation theory up to MP4. containing more valence electrons or with larger basis sets will
For the 2S to 2D electronic transition in the Cu atom, for be very useful.

example, the excitation energies using an spdf basis set at the It is clear from the above examples that FCI calculations are
MP2, MP3, and MP4 levels are 3.28, 0.47, and 3.63 eV, only feasible for small molecules containing very few valence
respectively, compared to the experimental value of 1.85%V. electrons. In order to turn the FCI equations into practical
Infinite-order techniques such as the quadratic configuration equations which can be applied to a much wider variety of

interaction method or the coupled cluster methodé infra) problems, truncation of the configuration space is necessary,

are replacing the perturbation treatments in such cases. leading to limited Cl techniques. The most common treatment
B. Configuration Interaction. Among the many schemes is ClI with all single and double excitations (CIS®)where

introduced to overcome the deficiencies of the Hartrieeck triple, quadruple;-- excitations are completely neglected. As

method, perhaps the most simple and general technique tomentioned earlier, double excitations contribute dominantly to
address the correlation problem is the method of configuration the electron correlation energies. Single excitations contribute
interaction (CI)3® The Cl method has been in practice from relatively little to the correlation energies, though they appear
the early 1950% and was the dominant and preferred electron to be important for accurate evaluation of molecular properties.
correlation technique until the early 1980s when it was The CISD method is an iterative technique where the compu-
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tational dependence of each iteration scales as the sixth poweto the resulting QCISD method reniterative treatment of triple
of the size of the system. Nevertheless, the CISD method hasexcitations was introduced, leading to the QCISD(T) technf§ue.
been applied to a wide range of chemically interesting problems.  we mention the QCI techniques only briefly in this review
With the computational power available in today’s workstations, since the coupled cluster method discussed in the next section
CISD calculations can be easily performed on systems contain-js formally a more complete theory. However, three points of
ing about 10 non-hydrogen atoms (e.g., naphthalene) usingthe QCI method are very important. First, as in the case of the
polarized double-zeta or triple-zeta basis sets. CISD method, the QCISD technique is exact for two electrons
The variational nature of the ClI method also makes the within the basis set space. However, unlike CISD, the QCISD
analytical evaluation of the energy derivatives considerably method is size consistent and thus also exact for the noninter-
simpler?®-42 The CISD method has thus been used to evaluate acting He gas. Second, the accuracy of the QCISD(T) method
a wide range of molecular properties such as geometries,has been well tested by extensive applications to a wide variety
vibrational frequencies, dipole moments, €tcHowever, all of molecules. For example, the atomic excitation energies
the advantages of the CISD method are offset by its major involving the transition metal atoms S€u are well reproduced
deficiency; viz. the CISD energy is not size-consistent. The by the QCISD(T) method as seen from Tabf 2The popularly
energy does not scale linearly with the size of the system, andused Gaussian-2 methodde infra) for the evaluation of bond
CISD energy is not additive for infinitely separated systems. energies of molecules relies on the accuracy of the underlying
For example, the CISD energy for two infinitely separated He QCISD(T) method. Third, the correction formula for triple
atoms is different from twice the energy of a single He atom. excitations in the QCISD(T) method included a novel feature
The reason for this deficiency is simple. For a single He atom which made it more accurate than previously proposed formulas.
which contains only two electrons, the CISD method is identical ~ When the QCISD method was proposed in 198it, was
to FCI. However, for two infinitely separated He atoms, the well recognized that triple excitations are crucial in deriving
CISD method does not include all excitations since it does not gccurate correlation energies. It was also realized that iterative
include the simultaneous excitation of electrons in both He atoms eyaluation of their contributions was not computationally
which is a quadruple excitation. In fact, for noninteracting He feasible. As mentioned earlier, the contributions of triple
gas, the CISD energy fdd atoms is proportional ta/N. excitations first occur in MP4 through their interaction with
Many correction schemes have been proposed to correct thedouble excitations. Computational schemes had been proposed
CISD energies for this lack of size consistency. Langhoff and Which included an MP4-like term for the contribution of triple
Davidsor* were the first to propose a correction (“Davidson excitationss! However, in the correction formula for triple
correction”) for the effects of quadruple excitatiodsipc = excitations proposed for the QCISD(T) method, there vivere
AEcisp(1 — Co?), whereAEgsp is the CISD correlation energy  different noniteratie terms. While one was analogous to the
andC;y is the coefficient of the HartreeFock configuration in MP4 term, the other resulted from the interaction of triple and
the normalized CISD wave function. Many variants of this Single excitations which is analogous to an interaction occurring
correction formul4 have been proposed though the original first in fifth-order perturbation theory. In retrospect, the
Davidson correction is used most widely. Such corrections are presence of two different contributions in the triples correction
easily justified by considering the contributions of quadruple has proved to be an important insight which is necessary for
excitations in a simple fourth-order perturbation expansion of gquantitative accuracy. In fact, the success of the QCISD(T)
the electron correlation energy. Alternative corrections for the method for difficult problems such as ozéAeventually led to
lack of size consistency have also been proposed. A carefulthe proposal of the analogous coupled cluster method. Very
analysis of N noninteracting He atoms yields a correction recently, the more computationally demanding QCISDT method
formula which is exact for that cade. The performance of these ~ Which includes the iterative contributions of triple excitations
and other size-consistency correction formulas has been carefullyhas also been proposedl.
analyzed recentl§” Overall, due to the approximate nature of D. Coupled Cluster Theory. Based on a well-founded
such corrections and due to the efficient formulation of exactly theoretical structural framework, coupled cluster theory (CC)
size-consistent schemes, traditional methods such as CISD arés steadily increasing in prominence as an effective and accurate
no longer the methods of choice in ground state quantum technique for the treatment of electron correlation effetts’
chemical applications. For electronic excited states, however, The CC method starts with the exponential form of wave
the ease of definition of the CI method for any state of interest function ¥ = exp(Wo whereT = T, + T, + -+-. The
makes it an attractive method, and such calculations are exponential form of the operator introduces an efficient way of
performed fairly widely. including the effects of higher excitations and also elegantly
C. Quadratic Configuration Interaction. Quadratic con- ~ €nsures size consistency in the calculated energy.
figuration interaction (QCI) is a technique suggested by Pople  While many of the theoretical ideas on coupled cluster theory
et al*® which introduces size consistency exactly in CISD for molecular systems were formulated in the late 1960s,
theory. It can be viewed as somewhat intermediate betweenwas not until the late 1970s that practical implementations
configuration interaction and coupled cluster theory considered started to take plac®. The earliest implementation of CC theory
in the next sectioA®> The CISD method consists of a set of used the wave function exp)W, and was referred to as CCD
linear equations in the configuration expansion coefficients (for (coupled cluster doubles) or CPMET (coupled pair many-
single and double excitations) which are solved iteratively. In electron theoryy®5° Today, the CC method is typically carried
the QCISD method, these equations are modified by the out including all single and double excitations (CCSD) with
introduction of additional terms, quadratic in the expansion the wave functiol! = exp(T1 + T2)Wo. Firstimplemented in
coefficients, which make the method size consistent. Specifi- 19828 the CCSD method has steadily increased in popularity.
cally, a termT;T, (“disconnected triples”) is included in the Today there are a wide variety of implementatfdnand
equation for single excitations and a tetlT,? (“disconnected computer program packadésavailable to perform CCSD
quadruples”) is included in the equation for double excitations. calculations which are being used by many groups. The CCSD
These terms are equivalent to including the higher excitations method is size consistent and exact for two electrons within
needed for size consistency in the CISD method. In addition the basis set space. Typically, a set of projection equations
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TABLE 3: CCSD(T) Performance for Structures and TABLE 4: Comparison of Correlation Techniques in
Vibrational Frequencies? Fourth Order @
basis mean basis mean cost method S D T Q
parametér set abserror paramefer set  abserror iterative v CISD v M
Fx—n spdf 0.0020 Vx—H spdf 11.0 QCISD v v
Ix—H spdfg  0.0014 Vx—H spdfg 8.3 CCSD v v
Fx—y spdf 0.0057 Vx—y spdf 14.8 BD v v
Ix—y spdfg  0.0024 Vx—y spdfg 6.4 iterative @v4 + one 6v¢ CCSD+ T(CCSD) + + +
0 spdf 0.44 Vbends spdf 115 QCISD(T) v v Y
60 spdfg  0.34 Vbends spdfg 8.6 CCSD(T) :; & j j
BD(T
aFrom the work of Lee and Scusef@?r, 0, andv refer to bond iterative Gv4 CC(SIZ))Tn v v v Y
length (A), bond angle (deg), and vibrational frequency (®mX and iterative évs CISDT v v oV x
Y represent first-row non-hydrogen atoms. QCISDT v v Y
CccsDT NEERVARRVERN

for th.e. Correlatlon energy and one for each O.f the. unknown a./ indicates that this term is included correctlyk indicates that
coefficients in theT operators-are used to solve iteratively for  iyis term is only included partially.
the wave function and the energy. The equations to be solved

are nonlinear in the configuration expansion coefficients, but polarized double- and triple-zeta spd basis sets for larger
fast convergence is achieved relatively easily in most cdses. 1 olecules. Though a direct and accurate evaluation of bond
As mentioned earlier, the contributions of triple excitations energies is not possible with such basis sets, they are frequently
have to be included in any quantitative treatment of electron adequate to provide reliable geometries, vibrational frequencies,
correlation. The CCSD method is exact for two electrons but and energy differences. The largest CCSD(T) calculation
still neglects these important three-electron correlations. Many reported to date has been the study of three structural isomers
schemes have been developed to evaluate their contributionsf C,, with a polarized double-zeta basis &&t.
effectively. One possible solution within coupled cluster theory  E. Other Correlation Techniques. Apart from the cor-
is to formulate the CCSDT meth@with the exponential form  rejation methods discussed above, there have been many othe
of the wave function = exp(Ty + T, + T3)Wo]. Though techniques which have been suggested and widely used over
accurate, the CCSDT method has an eighth-order dependencene years. In particular, several versions of CEPA (coupled
on the size of the system and is not practical. Several glectron pair approximatiof}7®and CPF (coupled pair func-
approximate schemes, referred to as CC3DWvere devised  tjonal)’! techniques have been successfully applied for a variety
by Bartlettet al®3to make the calculations tractable. However, f problems. With the advent of new methods such as
all these approximate CCSDTmethods involve the treatment  ccSD(T) which are size-consistent, exact within the basis set
of triples (a seventh-order step) in #arative manner. Such  for two electrons, and correct to fourth order in perturbation
calculations are still too expensive to be generally applicable. theory, the need for these older methods appears limited. In
Based on analogy with MP4 theory, a noniterative scheme, particular, CEPA and CPF neglect the effects of triple excitations
referred to as CCSBT(CCSD)?'*was proposed butwas found  and include the contributions of quadruples only approximately
to be insufficiently accurate for difficult examples. Finally, in in fourth order. These and other related methods are not
analogy with the QCISD(T) method, a scheme referred to as ¢onsidered in this review.
CCSD(T) was proposed by Raghavactetrial®* Again, the A noteworthy method which appears promising is based on
triples correction formula has two terms, one each resulting from gryeckner orbital@ instead of the HartreeFock orbitals as in
their interaction with single and double excitations. Proposed the other methods. Brueckner orbitals are defined to be that
in 1989, the CCSD(T) method has remained one of the most set of orbitals for which the single excitation coefficients are
accurate schemes available to evaluate electron correlationzero, and these are often close to the natural orbitals for the
effects?”.%° system. The interesting aspect of Brueckner orbital methods
The CCSD(T) method has been efficiently implemented in a which is not present in CC or QCI methods is that the equations
variety of quantum chemistry program packages. Analytical defining the method are sufficient to determine the Brueckner
energy derivatives can be evaluated for the CCSD method asorbitals themselves as well as the correlated total energy.
well as the CCSD(T) method. In conjunction with relatively ~ However, since the Brueckner orbitals are not known, they have
large basis sets (spdf or spdfg), the CCSD(T) method has beeno be evaluated in an iterative manner which makes these
used to investigate the equilibrium geometries, harmonic and calculations computationally more demandt&$.Handyet al.”3
fundamental vibrational frequencies, heats of formation, binding have proposed the BD and BD(T) methods based on Brueckner
energies, dipole moments, polarizabilities, and other propertiesorbitals which are analogous to the CCSD and CCSD(T)
of a variety of small molecule¥. Impressive accuracy has been schemes. Preliminary applicatidhsuggest that the BD method
attained for all the above properties, in most cases exceedingshould extend the range of applicability of UHF-based methods
that achieved by other theoretical techniques. Table 3 lists thein cases where spin contamination effects are significant.
mean absolute errors for bond lengths and vibrational frequen-However, sufficient numerical results to permit a critical
cies obtained with the CCSD(T) method for a set of small evaluation of the BD or BD(T) methods are not yet available.
molecules from a recent review by Lee and Scuseérianpres- The BDT method, analogous to the CCSDT method, has also
sive accuracy 0#0.002 A for bond lengths arst10 cnt? for been proposed:
vibrational frequencies can be seen from Table 3. Electronic F. Scaling and Limitations of Correlation Theories. The
excited state formalisms based on CCSD theory have also beeriifferent correlation methods discussed so far can be compared
developed by several groups.Accuracy of 0.1-0.2 eV has to each other based on different criteria. From a theoretical
been obtained for low-lying electronic states which are domi- point of view, a variety of techniques have been previously
nantly one-electron excitations from the reference configuration. compared to each other based on their correctness in a low-
Apart from the large basis set studies on small molecules, order perturbation expansidh. For example, Table 4 lists the
the CCSD and CCSD(T) methods have also been used withcomparison of different correlation techniques in fourth order,
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and similar comparisons have been performed in fifth and sixth  The slow convergence of the electron correlation energy with
orders?%53 Accurate schemes such as QCISD(T) or CCSD(T) the size of the basis set is now understood to result from the
are correct to fourth order in a perturbation expansion and differ singularity in the interelectronic Coulomb repulsion energy at
only slightly in fifth order. Another way of measuring the small separations, i.e., the existence of a cusp in the electronic
accuracy of different methods is by comparing their energies wave function which approaches 1 Y/,rjj) at smallrj. An

to the FCI energies for model problems or by calibrating their accurate solution of the electronic cusp can be achieved by
actual performance for difficult problems such as in calculating employing wave functions with explicit dependence on the

the geometry and vibrational frequencies of oz®&nklethods interelectronic distancg.” The difficulty of integral evaluation
including the perturbative triples correction such as QCISD(T) of such Hylleraas wave functions makes it difficult to implement
or CCSD(T) perform very well in such comparisons. such methods in a general manner. Recently, however, there

In this section, we summarize the computational dependencehave been two different approaches to deal with the electronic
of the different correlation techniques which is also listed in Cusp problem. Kutzelniggt al*® have used clever approxima-
Table 4. In this context, it is important to distinguish between tions in integral evaluations using closure approximations which
the iterative and noniterative computational requirements in make it possible to incorporate explicitly the interelectronic cusp
methods where there is a one-time evaluation at the convergencé€havior into the wave functions of polyatomic molecules. The
of an iterative scheme. In this discussion we use the symbolsmethod has been formulated for several electron correlation
o and v to denote the number of occupied and virtual spin Schemes including the coupled cluster me#ddough interest-
orbitals. We assume that v is much larger than o as is typical ing applications have only been possible thus far at the MP2
in most realistic calculations with reasonably large basis sets. level. The complete basis set (CBS) method of Petersson

Perturbation theoretical energies do not require any iterative &-° Provides an alternative approach in which extrapolation
steps. The rate-limiting steps in MP2, MP3, MP4, and MP5 techniques are l_Jsed to overcome the slow convergence cause
calculations scale as §vo?v4, o*v4, and Gv®. As mentioned by the electronic cusp. Using the asymptotic convergence
earlier, the seventh-order scaling of the MP4 energy is in properties of the pair energies, infinite basis set limits have been
evaluating the contributions of triple excitations. The eighth- ©Ptained for a variety of small molecules.

order step in the MP5 calculation is to evaluate a term resulting G- Gaussian-2 Theory. The accuracy and range of ap-
from triples—triples interactions. plicability of single-configuration-based correlation techniques

can be illustrated by the successes of a widely used composite
model referred to as Gaussian-2 (G2) the®nG2 theory and
other related metho&swere developed with the explicit goal

of evaluating bond energies, heats of formation, ionization
eenergies, and electron affinities of atoms and molecules to
chemical accuracy (within + 2 kcal/mol).

In G2 theory, a sequence of well-defined calculations are
performed to arrive at the total energy of a given molecular
species. A series of additivity approximations are made to make
these techniques fairly widely applicable. G2 theory depends
on the accuracy of the QCISD(T) correlation treatment and the
transferability of basis set effects from perturbation theory.

be evaluated only once. This, however, is still practical and Initially, a QCISD(T) calculation with a polarized triple-zeta

can be applied to reasonably large problems. The a roximatebaSiS set; 6-311G(d,p), is performed. The effects of diffuse
CCSDTnpr%odels all include¥ri Igs c%ntributidns in anpi?erative sp functions and multiple sets of polarization functions (2df)

. . pie: are evaluated with the MP4 level of theory. The effects of larger
manner including at least the linear terms. Thus, all these

. . : basis sets containing (3df) polarization functions on non-
methods require an*e* computation to be performed in each hydrogen atoms and (2p) functions on hydrogens are evaluated
of nyer iterations. This may limit the applicability of such ydrog P yarog

methods in the case of larger molecules. The complete CISDT with the MP2 method. The different corrections are all assumed

QCISDT, or CCSDT calculations involve the evaluation &f°0 to be additive. Since th_e b;’:lSIS .SEt convergence is still very slow,
. . . . . . a “higher level correction” which depends on the number of
interactions ireach iteration Thus, such schemes are applicable - . - .

ST electrons in the system is applied to take into account the
to only the smallest problems of practical interest. Overall, the

CCSD(T) and QCISD(T) methods appear to be the most remaining deficiencies. Using such a composite but completely

h efined scheme, the atomization energies of a large number of
accurate, yet computationally tractable, schemes though recen A,
- ; s molecules containing first- and second-row elements have been
experience on some challenging systems indicates that

) . . calculated with a mean deviation of 1.2 kcal/mol from experi-

CCSD(T) is applicable for a wider range of probleffs. ment (Table 5§ Similar accuracy is also achieved pl‘or

While the correlation effects within a given basis set are jonization energies, electron affinities, proton affinities, etc.
accurately treated by methods such as CCSD(T), the conver-appications to small clusters of carbon £6C;) and silicon
gence of the calculated results w_|th respect to ba5|s set expansions;,—si,) indicate that such bond energies can be evaluated to
is rather slow'® "8 If we consider the classic problem of 5, accuracy of 0:10.2 eV The exposed accuracy of G2
chemical bond formation, very high angular momentum func- {heory is high enough that in many instances these values have
tions appear to be necessary to derive the bond energies tq,een ysed to correct experimentally derived energies. Com-

chemical accuracy. Forgxample, extensive calibration sﬂi’dies prehensive reviews of applications involving the G2 method
of the contributions of higher angular momentum functions to 5ve peen recently reportétg’

the bond energy of Nhave shown that f, g, and h functions
contribute about 8, 3, and 1 kcal/mol, respectively, to the binding
energy of N. Even for problems simpler than explicit bond
breaking, basis sets involving spdf functions are typically  In the previous section, we discussed the different correlation
necessary to get accurate res#its. technigues which have been developed starting from a HF wave

The other techniques involve iterative steps. The leading term
in the different iterative schemes CISD, QCISD, CCSD, or BD
is 0?v* and is in fact identical for all the methods. However,
the CISD method involves fewer3@ steps and is thus
somewhat less expensive. In addition, these steps have to b
applied at each iteration, which requires a further multiplicative
factor nyer, the number of iterations required for a converged
solution.

The triples contributions introduce another order of complex-
ity but are necessary for a quantitative solution. The schemes
CCSD+T(CCSD), CCSD(T), QCISD(T), and BD(T) introduce
the triples in a noniterative manner, so that tRe*step has to

IV. Multiconfiguration-Based Theories
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TABLE 5: Atomization Energies (kcal/mol) Calculated with may still be a problem, particularly for larger molecules.
G2 Theory* Obviously, if all electrons and orbitals are included in the CAS
atomization atomization atomization space, the method is identical to full CI.
molecule energy  molecule energy  molecule energy The inclusion of nondynamical correlation effects by an
LiH 56.6(0.6) SH 173.060.2) CO 384.6(2.7) MCSCF method still is not adequate in many cases. Though
BeH 45.5¢14) CIH 102.6(0.4)  Na 19.2(2.6) qualitatively correct behavior is obtained, dynamical correlation
CH 80.5(0.6) Li 259(1.9) Si 73.6(-0.4) ffects h to be included f titativel ¢ It
CHo(®Br) 178.6C-1.0) LiF 137.5€0.1) P 114.7¢-1.4) effects have to be included for quantitatively accurate results.
CHo(!A;) 172.0(1.4) HCCH 387.%17) S 97.4(-3.3) The CI approach has been successfully used, particularly for
CHs 289.10.1) GHq4 531.7¢0.2) Ch 55.8(-1.4) the treatment of excited states of molecules or reactive potential
CHa 393.2(0.7) GHs  666.6(0.3)  NaCl 98.8(1.3) energy surfaces. In the MRD-CI meth&dall double excita-
NH 77.9¢1.1) CN 176.0€0.6)  SIO 188.8¢1.7) tions with respect to a modest number of MCSCF configurations
NH; 170.1(0.1) HCN 302.8(1.0) SC 170.5(1.0) . . )
NHs 276.5¢0.2) CO 258.0(1.8) SO 120.80.7) are considered, and those exceeding a certain threshold are
OH 101.6(0.3) HCO 271.4(1.1) Clo 61:22.1) included in the final variational treatment. Extrapolation
OH, 219.6((0.3)) HCO 359.352.1; C:_IT 61-((3(0-)7) procedures are sometimes used to estimate the approach to the
FH 136.3(1.1) HCOH 482.3(1.5 SHs  503.0(2.9 ]
Si(A) 1471(27) N 2238613) CHCl 3721(L1) full gl ener%y. SucthRD %I methods ?avebtlmeen ;uc?essfull_y
SiHh(B1) 123.8(04) HN,  404.4(10) CHSH 4450(0.1) used over the years for a wide variety of problems in electronic
SiH; 213.5¢0.5) NO 150.6(0.5) HOCI  156.8(0.5) spectroscopy? In other applications, multireference CI pro-
SiH,y 304.8(2.00 Q 115.6(-2.4) SQ 248.9¢-5.1) cedures based on a CASSCF wave function have been used tc
PH; 144.9(0.2) HOOH  252.30.2) calculate accurate binding energies of small molecifles.
PHs 226.4(1.0) R 36.6(-0.3) However, such Cl methods are still not size consistent, and a

aFrom the work of Curtisset al® Values in parentheses are generalized Davidson-type correction is frequently used to

differences between G2 theory and experiment (i.e. -G&periment). correct the energie¥. Size-consistent formalisms such as
multireference coupled cluster the#rpave also been developed

function. Methods such as CCSD(T) and QCISD(T) perform and applied to a modest number of systems.
very accurately in many cases. However, for such methods to A particularly successful method developed in recent years
be successful, the starting HF configuration should still be the 5 pased on second-order perturbation théérywhen applied
dominant component of the correlated wave function. In such 5 3 CAS wave function, the method is referred to as CASPT2.
cases, the correlation energies, though large, arise from relativelypjike the MallerPlesset perturbation theory based on the HF
small contributions from a vary large number of configurations. method, the choice of the zeroth-order Hamiltonian for the
This is usually referred to as “dynamical” electron correlation. ., tireference case is not unigue. In a popular implementa-

However, there are also many cases where such methods argsn, 97 the diagonal and nondiagonal elements of the Fock matrix
not very useful because the starting HF wave function is not 5re ysed in the zeroth-order Hamiltonian. While variations are
even qualitatively correct. For example, for a dissociating possible, well-defined models have been constructed and used
molecule with stretched bond lengths, the gap between they, optain electronic excited states for a fairly wide variety of
bonding and antibonding orbitals becomes very small, and organic molecules. Calculations up to about-15 active
excitations involving such antibonding orbitals become very qrpjtals have been performed with this meti¥8dRelatively
important. A correlation treatment starting from a single HF large systems up to the size of porphine have been used to yield

configuration with occupied bonding orbitals may have large glectronic excited states accurate to within 0.2 eV in many
errors in such cases. It may be preferable to treat the system.;qo98

starting from a small number of configurations which arise from
treating the bonding and antibonding orbitals on an equal
footing. Such correlation involving large contributions arising
from a few orbitals is referred to as “nondynamical” electron
correlation.

Multiconfigurational self-consistent-field (MCSCF) wave

The generalized valence bond (GVB) metfforepresents
another popularly used electron correlation technique. GVB
represents a class of MCSCF methods where valence bond type
coupling between electron pairs is used to simplify the wave
function. Chemical insight is frequently used to choose the
) ) ; active orbitals and to simplify the problem. Wave functions
functions are used to treat nondynamical correlation eff8éts. involving complicated spin couplings of a large number of

In this case, in_stead of a single configuration as i_n the_ HF electrons and orbitals can be used in the most general unre-
method, a relatively small number of selected configurations gicted GVB method. However. the form of GVB wave
are “S‘?d- The \{\/e!ghts .Of the COI’IfIgUI’fitIOﬂS n .SUCh an function which is most often used in practice is referred to as
expansion are optimized S|multaneous[y with the orbitals py @ GVB-PP, where PP denotes perfect pairing (simplest type of
variational procedure. By a proper choice of MCSCF configu- gnin hairing) between pairs of nonorthogonal orbitals coupled
rations, qualitatively correct behavior in processes such as bond,;, 5 singlet. The advantage of such GVB-PP wave functions
prelalélnglcan be achleveld. IT.radmonaII?/, thz co.nflgurr]athnsl is that physical interpretation through association of each
included in an MCSCF calculation are selected using chemical gjecron with an individual orbital is still possible, though some
|nS|ght_and a kn(_)wledge of the important orbnal; n th‘? problem ,ccount of electron correlation is already included. A properly
under investigation. Unfortunately, such a configuration selec- ¢qjacted GVB-PP wave function can qualitatively describe all

tion may introduce a bias in the calculations, particularly if o important aspects of the potential energy surface for the
convergence with respect to the selection of configurations is ,qjacule of interest including bond breaking. However, as in

not tested. most MCSCF calculations, some configuration interaction type

. The bias involved ir!the selection of individual configuration;s treatment is also necessary to attain quantitative accafacy.
in an MCSCF calculation can be removed by the complete active

space (CAS) approacf. Here a set of active orbitals are
identified, and all possible configurations of the active electrons
in the space of the active orbitals are included in the MCSCF  Many different Monte Carlo technigues have been proposed
expansion. All the other orbitals are kept doubly occupied or for solving the Schidinger equation, and they are collectively
empty as in a HF calculation. The selection of the active orbitals referred to as quantum Monte Carlo (QMC) methods. They

V. Quantum Monte Carlo Methods
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provide an entirely different way of treating the effects of
electron correlation. In most forms the QMC method treats
electron correlation explicitly, and in some forms it treats
electron correlation exactly. Unlike the conventional techniques
discussed in the previous sections, QMC methods provide “error
bars” in quantum calculatiori8?

Quantum Monte Carlo methods have given extremely ac-
curate predictions of energies and structures for molecular
systems containing a few electrons. For example, a QMC
calculatio®? for the Hs™ molecular ion was the first quantum
calculation to achieve an absolute accuracy ofih@rtree for
a polyatomic system. In many such ca¥¥s!11QMC methods
can provide solutions of the time-independent Sdhrger
equation without systematic error.

For systems with more than a few interacting electrons,
neither QMC nor any other method can at present provide such
“exact” results. However, for many larger systems QMC

calculations provide some of the lowest-energy, most accurate

results available. Many successful Monte Carlo calculations
have been carried out using approximately correct fixed nodal

Raghavachari and Anderson

distribution of walkers approaches a “steady-state” distribution
fluctuating about an average steady-state distribution which
corresponds to the lowest-energy wave function satisfying the
time-independent Schdinger equation.

The Green'’s function qguantum Monte Carlo method is similar
to the DQMC method but takes advantage of the properties of
Green'’s functions to eliminate errors associated with finite time
steps. It was first applied by Kalb$in studies of the quantum
mechanics of liquid helium clusters. The GFQMC method also
has advantages in the treatment of nodal surfaces (see below)
for few-electron problems, but it is seldom used for larger
problems.

The DQMC and GFQMC methods yield samples of the wave
function from which, in principle, all the properties of a system
may be determined. The enerfymay be determined directly
from the growth rate of a walker population, but an importance
sampling scheme proposed by Grimm and Stéresually gives
a higher accuracy in the energy.

Importance sampling can be used in a way which takes

hypersurfaces for systems ranging from atoms such as Be oradvantage of any prior knowledge of the wave function in the

Fe to solids such as carbon and siliéé#r.124
The several QMC techniques currently used in calculations
of electronic structure include the variational quantum Monte

form of a trial wave function. The variances in the local energy
and in the estimate of the true energy are greatly reduced by a
good trial wave function. An ideal trial wave function is not

Carlo method (VQMC), the diffusion quantum Monte Carlo only accurate but simple and compact to facilitate computations

method (DQMC), and the Green’s function Monte Carlo method Of the local energy which must be made repeatedly. The most
(GFQMC)125-127 Another method, the path integral quantum successful thus far have been based on single-determinant self-

Monte Carlo (PIQMC), has interesting possibilities but has not
yet found many applications. Several recent reviews of QMC
methods are availabf@®-133

The VQMC method is similar to the conventional analytic
variational method, but the integrals required are evaluated by
Monte Carlo procedures. The first applications with the VQMC
method for small molecules were made by Conroy in the late
1960s'26 In a typical VQMC application, the expectation value
of the energy for a trial function?; is determined using
Metropolis sampling based 8H?. The expectation valuED
is given by the average of local energigs. = HY/W:.

In determiningEL] it is not necessary to carry out analytic
integrations, and the trial wave function may take any desired
functional form. It may even include interelectronic distances
rj explicitly. Thus, relatively simple trial functions may
incorporate electron correlation effects rather accurately and
produce expectation values of the energy well below those of
the Hartree-Fock limit.

The DQMC or random walk simulation of the S¢Hinger
equation was suggested by Fermi in the 1940s and was applie
in calculations of a few simple problems. The DQMC method
may be considered as based on the similarity of the Sahger
equation to the diffusion equation. If the wave function is
defined as a function of imaginary time as well as position,
one may obtain the Schdinger equation in imaginary time:

W(X,7) R oo v,
o = 5V W(X) — Vip(X.1)

1)
This is identical in form to Fick’s diffusion equation to which
a first-order reaction rate term is added,

&)

A random walk procedure is used to simulate the differential
equation. An initial distribution of particles or “walkers” is

allowed to diffuse and multiply in a series of finite time steps.
With increasing time and number of iterations, the normalized

ACX,t)/at = DVAC(X,t) — KC(X.t)

%br

consistent-field functions multiplied by electreelectron cor-
relation functions of the Bijf8 or Jastrow type which satisfy
the cusp condition at; = 0. It is possible to obtain very high
accuracies by extending DQMC to calculate corrections to trial
wave functions rather than the complete wave functi§as”
Other more complex trial functions have also been proposed
and used successfully for a number of different molecular
systemg-15.139-141

Unless the distribution of walkers in a DQMC or GFQMC
calculation is restricted in some way, it will proceed to
the nodeless ground-state wave function of a boson system.
For a system of two or more electrons of the same spin the
wave function must be antisymmetric to the exchange of
electrons of the same spin and must contain one or more nodal
hypersurfaces. The problem of restricting the distribution in
order to obtain the desired solutions for fermion systethe
node problerf?143-has been the subject of a number of
investigations.

Until the development of QMC methods, the structure and
operties of nodal hypersurfaces received very little attention.
In general, the symmetry properties alone are insufficient to
specify the node structure of a system. DQMC calculations
for small atoms and molecules using approximately correct nodal
structures obtained from optimized single-determinant SCF
calculations typically recover more than 90% of the correlation
energies of these species and yield total electronic energies lower
than the lowest-energy analytic variational calculations. These
results suggest that optimized single-determinant wave functions
have node structures which are reasonably correct. A careful
investigation of the node structure of the wave function for the
water molecule-in the 30-dimensional configuration space of
this 10-electron systerrhas now been carried ot

A. Exact Cancellation Methods. The “exact cancellation
method” of QMCG“* may be used to solve the Schinger
equation for systems of a few electrons without systematic error.
It is not variational, and it does not give an upper bound to the
energy. It gives the energy directly along with an error bar
corresponding to a statistical or sampling error. To judge the
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Figure 2. H—H—H potential energy surface obtained with quantum
Monte Carlo technique$®

accuracy of the calculations, it is not necessary to compare the
results with experimental measurements. Neither “calibration”
nor “benchmarking” is required.

In the exact cancellation method, a collection of positive and
negative walkers (with appropriate enforcement of symmetry
restraints) can be made to reproduce the distribution of walkers
for the lowest-energy fermion ground state of a specified
symmetry. Cancellation of positive and negative walkers in
close proximity can be carried out efficiently on the basis of
probabilities!*> However, the requirements of cancellation limit
the applications to systems having a small number of electrons
(i.e., 2=4) or nonbonded systems in which the nodal surfaces
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molecules containing a few electrons and to extended systems
such as the electron gas. It has been applied to molecular
systems of 10 electrons with only limited success.

In this method, the nodes are released to obtain a “transient
estimate” of the wave function. The wave function is obtained
as the difference between positive and negative populations
which, in effect, are released from an approximate distribution
obtained from a fixed-node calculation. The higher states decay
away to produce a transient approximation to the fermion ground
state before both positive and negative distributions approach
the boson ground state, and the difference between them
disappears. The computational effort for high accuracy is large,
and use of the transient-estimate method is restricted to systems
with characteristics especially favorable to it.

Released-node calculations of several varieties have been
carried out for the molecule Lif8-111 The calculated energies
are lower than those of prior variational calculations, and they
are in excellent agreement with the nonrelativistic energies
derived from experimental measurements. For the most recent
calculations'* the uncertainty in the calculated total energy for
LiH at an internuclear separation of 3.015 bohrgi3.000 05
hartree.

Released-node calculations for the electron'fagith 54
electrons were carried out more than a dozen years ago. Results
of those calculations have provided data on electron correlation
essential for the LDA approximation of density functional
theory. It is likely that similar calculations will also provide

are favorably located. Several related cancellation methods havehe information essential for higher-level approximations in

also been investigatéd®147

One early application was that for the molecular iogrH
which gave an energy of1.343 8354 0.000 001 hartree$?
This was the first quantum calculation of any type to achieve
an accuracy of 1.@hartree in the total energy of a polyatomic

density functional theory.

C. Fixed-Node Methods. The fixed-node methdé?'3was
the first method to be proposed for treating the node problem
in QMC. It has the advantage of simplicity, and the energies
determined in such calculations, though not exact, are upper

system. Other applications to nodeless systems include calculahounds to the true energy. The energies are “variational” with

tions for nuclei and electrons of the molecule Hrhis avoids
the Born-Oppenheimer approximation in determining the
energy of the molecule and results in an uncertainty of only
0.2 cntlin that energy.

Exact quantum Monte Carlo calculatidfshave produced a
potential energy surface for the reactiontHH, — H, + H
accurate to withint0.01 kcal/mol at the saddle point and within
+0.10 kcal/mol or better elsewhere on the surface. This surface
is illustrated in Figure 2. For the dimer Héle exact quantum
Monte Carlo calculatiori8* yield energies accurate within
+0.000 0003 hartree at0.10 K at the equilibrium separation
of 5.6 bohrs. For the total energy, the quantum Monte Carlo
calculations are more accurate than the lowest-energy variationa
calculations by approximately 1200 K. Nevertheless, the
calculated potential energy curvethe energies relative to
separated atomdor the Monte Carlo and the lowest-energy
variational calculations are in excellent agreement with each
other and with an experimentatheoretical compromise curve
based mostly on experimental data. Other systems for which
exact cancellation has been used to overcome the node proble
include the weakly attractive HHe pait*®and the trimer Hg'%”

In its current form the exact cancellation method is limited
to applications similar to those listed here. The higher
dimensionality and lower symmetry of larger systems require
prohibitively large numbers of walkers for cancellation to be
effective. Nevertheless, when it can be used, the exact
cancellation method is clearly the method of choice for small
systems.

B. Released-Node Method.Another “exact” method giving

respect to the assumed node structure. Generally, it has beer
found that wave functions having nodes which are approxi-
mately correct yield excellent energies. Nearly correct nodal
surfaces are most readily available from approximate wave
functions provided by analytic variational calculations at the
SCF level.

Fixed-node calculations may be carried out using a simple
diffusion quantum Monte Carlo proceddtéwith importance
sampling!* or with a Green's function approaéht The
boundary condition off = 0 at the nodal surface is treated as
a sink for walkers. Importance sampling is easily incorporated
Iusing a trial wave function which specifies the nodal surface.

Accurate calculations for systems with nodes include those
for the first-row atoms, along with their negative and positive
ions, and the molecular systemg ¥ H—H—H,153154] jH, 155156
H,0,118 CH,,117118 HE 119 and many others. The trial wave
functions for most of these calculations were taken from
relatively simple analytic variational calculations at the SCF

ngvel. For example, a typical trial function for the 10-electron

system methaéis given by the product of the SCF function,
which is a ten-by-ten determinant made up of two five-by-five
determinants, and a Bijl or Jastrow function for each combina-
tion of electrons.

For systems of 10 or more electrons the fixed-node DQMC
total energies are generally lower than those of analytic
variational calculation&30.153.157.158 |n the case of methane,
fixed-node DQMC calculatiod’118 have given a total elec-
tronic energy 35 kcal/mol below that of the lowest analytic

results without systematic error is known as the released-nodevariational calculation and only about-2 kcal/mol above the

method!®8.149 This method has been applied with success to

energy estimated from measurements. This corresponds to the
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recovery of 99.3% of the correlation energy. FoiCHand HF
the recovery of correlation energy in similar calculations is 93
95%.

The case of the FH—H system-the potential energy surface
for the reaction H H, — HF + H—illustrates the problems
which may result from the residual node location error in fixed-
node calculations. The calculated barrier height (relative) for
collinear reaction from QMC calculations with nodes from SCF
calculations is about 4.6 kcal/m8P? The node location error
for reactants F- H; is about 8 kcal/mol, but that for the barrier
region is unknown, although it may be expected to be similar.
One is left with the same problem as in analytic variational
calculations: one must compare results with experiment to

Raghavachari and Anderson

diffusion quantum Monte Carlo calculations using simple
effective potentials. In these fixed-node calculatihghe
computed excitation energies for the transitions between the two
states were 1.5(3) and 1.4(2) eV respectively for Sc and Y. These
may be compared to the experimental values of 1.43 and 1.36
eV, respectively.

The valence correlation energy for Ne calculated by fixed-
node DQMC with a two-electron effective potential is in
excellent agreement with previous full-Cl benchmark calcula-
tions18° The calculation recovered 9800% of the valence
correlation energy, and no significant error due to the effective
potential approximation could be detected.

Fixed-node QMC calculatioh® with nonlocal pseudopo-

determine the accuracy of the calculation. In this case the (gniials have also carried out for a number of configurations of
collinear barrier height from the best available analytic calcula- -5rpon clusters G to Gy and indicate the utility of these

i 159 i i . . . .
tions™® is about 2 kcal/mol, and this appears to be consistent aihods. Companion calculations using HartrBeck, density

with experimental observations.

functional, and coupled-cluster methods allow a comparison of

For systems containing atoms heavier than Ne, the problemresults. In calculations for ring, bowl, and cage structures of

of treating both core and valence electrons in QMC calculations ¢, different methods make different predictions for the lowest-
Increases rapldly with nuclear charge. The energy aSSOCIaternergy structure as follows: HF, ring; LDA, cage; DQMC,
with the core electrons becomes Iarge, and the statistical €rrorpowl. Though the experimenta| energies for such species are
in that energy tends to produce an unacceptable statistical erroinot yet known, these results indicate the extreme importance

in the total energy. Further, the time step for core electrons of electron correlation in determining the structures of such
must be shorter than that for valence electrons, and this leadssystems.

to inefficient calculations. One method of improving the
efficiency is the “damped core” method in which the core b
electrons are treated by VQMC and the valence electrons bya

Applications to systems with larger numbers of electrons have
een made primarily in the area of crystalline solids. This is

DQMC 189 This method has been applied in a few cases and
several variants have been proposed, but the most successf

approach thus far has been to eliminate core electrons entirelyC

with the use of pseudopotentials.

n area in which QMC methods appear to have very definite
dvantages over other methods. One of the first applications
f QMC with pseudopotentials was in VQMC calculations for
arbon (diamond), carbon (graphite), and silicon (diamond
structure)t’® Cell sizes of up to 216 electrons (corresponding

D. Use of Pseudopotentials.As in conventional quantum {5 54 carbon atoms) were used. Results for several basic
chemical studies, quantum Monte Carlo calculations can be properties of these materials were found in very good agreement
applied to systems which have been greatly simplified by the yith experiment. Fixed-node DQMC calculations have also

use of pseudopotentials or pseudo-Hamiltonians (effective peen performed for silicon and have given an extremely accurate
potentials or effective Hamiltonians). Since this has the effect prediction for the cohesive energy of the lattiéé.

of eliminating the “variational upper bound” properties of fixed-
node QMC calculations and the “exact” properties of cancel-
lation QMC, one loses important characteristics and introducesVI'
uncertainties with the use of pseudopotentials, but often there Traditionally developed and applied to the study of solids,
is little choice. The available alternatives are less attractive. density functional theofis being increasingly applied to the
The optimistic expectation is that the errors in total energies study of molecules. In this method, the correlation energy
will be nearly the same for different nuclear configurations and (along with the exchange energy) is treated as a functional of
will cancel .each other when relative energies are determinedthe three-dimensional electron density. While the exact func-
by subtraction. tional is not known, many approximate functionals have been
The pseudopotentials normally used in analytic variational developed and used successfully for a variety of problems. The
calculations are nonlocal potentials which involve angular origina| scheme used W|de|y for soliddwas derived from the
projection operators which cannot be simply transferred into ayailable numerical results of the uniform electron‘and
QMC calculations. In the first QMC calculatiol¥$ to use s referred to as “local density functional” method. While quite
pseudopotentials, this difficulty was avoided with the use of syccessful for geometries and vibrational frequencies, the local
simplified effective potentials. Though their use has been density functional method is known to overestimate the binding
debated, the errors introduced have thus far been found to begnergies of molecules substantialy. A variety of “gradient
small. In later work nonlocal effective potentit&*%*have  corrected density functional” methdd!7shave been developed
been used with success as have their more complex counterpartsyhich have been remarkably successful for a range of problems
effective Hamiltonians. These too introduce errors which are ncjuding binding energies of molecul&®:176 The attractive
not easily analyzed or understood, but they appear to be small.aspect of such methods is that computationally they are
These matters have been discussed in recent revfews. comparable to or cheaper than Hartr€®ck calculations. They
Quantum Monte Carlo calculations using pseudopotentials converge relatively rapidly with basis set expansion so that
and pseudo-Hamiltonians have been made for atoms rangingmoderate polarized basis sets yield converged results. Their
from Lit% to Y.2%5 The number of noncore electrons treated major deficiency is that they cannot be systematically improved,
has been limited to about eight per atom as in the determinationand derivation of newer more accurate functionals appears to
of the electron affinity of BE®” In some cases as for PSCI, be difficult. While not as accurate as CCSD(T), the combination
positrons have been included in the same way as electfbns. of speed and sufficient accuracy makes them particularly
Calculations of energies for t#® and?F states of atomic  effective for larger molecules. With the advent of newer
Sc and Y illustrate the accuracies obtained in fixed-node algorithms with near-linear scalidg’178they are computation-

Density Functional Theory
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ally feasible for the study of large molecules. The reader is
referred to some recent reviews of this rapidly growing

(23) For a general description of direct methods, see: AlmlolIn
Modern Electronic Structure Thearnyarkony, D. R., Ed.; World Scien-
tific: Singapore, 1995; p 110.

i 178-180

field. (24) Hzser, M.; Almldf, J.; Scuseria, G. EChem Phys Lett 1991 181,
497.

VIl. Conclusions (25) (a) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, Jirs.

J. Quantum ChemQuantum ChenSymp 1979 13, 225. (b) Lauderdale,

It is clear that dramatic progress in the treatment of electron W. J.; Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, B. Ghem Phys
correlation effects has been achieved. Accurate techniques art%ggz 97,6606. (c) Gauss, J.; Cremer, Bdv. Quantum Chemm.992 23,
now available for evaluating the structures and properties of ~(26) (a) Helgaker, T.; Jargensen, P.: Handy, NT8eor Chim Acta
many small molecules. However, successful methods such asl989 76, 227. (b) Head-Gordon, M.; Trucks, G. W.; Frisch, MChem
CCSD(T) are not yet currently applicable to large molecules JPhgﬁe'ﬁt;#égfgé%‘ig?z;‘ézéc) Gauss, J.; Stanton, J. F.; Bartlett, R. J.
dge to the stringent basis set requirements and high-order scaling’ (27) Handy, N. C.; Amos, R. D.; Gaw, J. F.; Rice, J. E.; Simandiras, E.
with system size. Future work focusing on the development D.; Lee, T. J.; Harrison, R. J.; Laidig, W. D.; Fitzgerald, G. B.; Bartlett, R.

of efficient and accurate techniques for larger molecules is J- InGeometrical Detatives of Energy Surfaces and Molecular Propetties
I.Jﬂrgensen, P., Simons, J., Eds.; Reidel: Dordrecht, 1986; p 179.

needed. Among the promising avenues of exploration are local

orbital methodg481-182approximate integral schem&s,185and
pseudospectral techniqu¥§.187 For Monte Carlo methods,

additional techniques to evaluate energy derivatives and mo-
lecular properties are needed. As new techniques develop an

mature, exciting applications in novel areas of chemistry will
be possible.
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