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Abstract This chapter deals with the charge, spin and momentum densities of elec-

trons in crystalline solids as obtained from ab-initio simulations. It describes state-

of-the-art approaches using plane waves or local basis functions, and comments

on their main advantages and drawbacks. The influence of computational parame-

ters on densities is demonstrated by way of examples. Ongoing developments are

briefly discussed: thermal effects, response to external perturbations, post-Hartree

Fock treatment of electron correlation.

1 Introduction

The aim of this chapter is to provide a general introduction to the ab-initio sim-

ulation of the density matrix (DM) of crystalline systems, and derived functions:

charge, spin and momentum densities generally indicated as “density functions

(DF)”, and to describe by way of examples the performance of state-of-the-art com-

putational tools in this respect.

Table 1 sketches possible standards of quality which may be pursued. Stepping

down from one level to that below corresponds to missing some aspects of the phys-
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Table 1 Different levels of approximation in the theoretical simulation (see text for comments).

Level 0: Complete “ensemble” description of the system

Relativistic effects:
core contraction,

spin-orbit coupling, etc.

Effects of
external fields

Coupling of nuclear
and electronic motions;

thermal effects

Level 1: Non-relativistic description of electronic ground-state
at fixed-nuclei equilibrium configuration

Instantaneous correlation
of electronic motions

Level 2: Single-determinantal HF or KS description of electronic ground-state

Selection of
exchange-correlation

KS potential

Selection of
representative BS

Algebraic solution
of HF or KS equations

within selected BS

Level 3: Approximate HF or KS description of electronic ground-state

ical description of the problem, and/or to adopting some simplifying assumptions as

specifi ed in the framed boxes in between.

We shall take as the center of our treatment the level marked “1” in that table,

that is, our reference exact DM and DFs will be those obtained from the ground-state

solution of the Schrödinger equation in the absence of external fi elds:

�

Hel Ψ0
✁ E0 Ψ0 (1)

In Section 2 the formalism is introduced. In Subsection 2.1 we defi ne the exact

DM and DFs for periodic structures, establish their relationship with the ideal ex-

perimental observables, and derive some general facts about them. The very fact that

we are interested in “infi nite” systems, makes the solution of equation (1) practically

impossible at the present state-of-the-art of computational techniques, in spite of the

simplifying constraint of translational symmetry. In order to obtain useful results,
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we are forced to adopt an “average-fi eld” approximation of the electrostatic Hamil-

tonian that is, to step down to level 2 of table 1, using either a Hartree-Fock (HF),

or a Kohn-Sham (KS) approach. In Subsection 2.2 these one-electron schemes are

considered. The general aspects of the corresponding single-determinant wavefunc-

tions are reviewed, and some peculiar properties of the resulting DM and DFs are

recalled. Specifi c problems related with the treatment of core electrons (the possible

use of pseudopotentials, the need for relativistic corrections) are briefly discussed.

Of course, substantial effort and computational approximations are required even

for obtaining a reasonable description of the single-determinantal solution of our

problem. In practice, we are working at level 3 of table 1, and our main aim will be

to assess the importance of computational parameters in determining the distance

with respect to level 2 quantities. Section 3 discusses explicitly the schemes of so-

lution which are most commonly adopted for this case. It is shown that the very

structure of the code and the technical peculiarities are to a large extent determined

by the basis set (BS) adopted, either plane waves (PW) or local functions attached

to the nuclei, conventionally indicated as atomic orbitals (AO). To be more specifi c,

two codes are illustrated in some detail, Quantum ESPRESSO [1] and CRYSTAL

[2], which adopt PWs and AOs respectively. It is only fair to state that a number

of excellent periodic programs exist nowadays which are in widespread use in the

scientifi c community (reference to some of them is provided in [3]). However, the

fact that the Authors of this Chapter are among the developers of those two codes

has permitted them to go deeper into the analysis of the effect of the various compu-

tational parameters on the quality of the resulting DM. As a matter of fact, this kind

of analysis is relatively new, since the primary (often exclusive) object of interest

for developers and users of the codes is the total energy of the system. On the other

hand, this quantity is of fundamental importance also in the present context because

it determines factors such as equilibrium geometries, pressure effects and normal

vibrational modes, which directly affect calculated DFs.

Section 4 considers precisely by way of examples the influence of computational

parameters (including the special form of the one-electron Hamiltonian and the BS)

on charge, spin, momentum densities. Some simple systems are considered which

cover a wide variety of electronic structures and types of bonding; for each of them

a few selected aspects are analyzed in depth.

Once we have reached a solution close to our level-2 objective, it is worth trying

to look back at the higher levels of the ladder of table 1, in order to see what in-

formation has been missed, and possibly to partly recover it. Three aspects will be

considered for this purpose in Section 5, with reference to ongoing research. In the

fi rst instance, the harmonic description of nuclear motions is shown to allow a statis-

tical estimate of zero-point and thermal effects on DFs. Secondly, we discuss how to

study the modifi cations induced by the presence of external fi elds. Thirdly, the ab-

initio re-introduction of instantaneous electron correlation that is, the upgrade from

level 2 to level 1, is entering into the realm of feasibility even for periodic systems,

and it may be interesting to understand how much this aspect may influence DFs.

Some general conclusions are tentatively drawn in Section 6.
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2 The theoretical frame

As anticipated in the Introduction, our reference level requires the solution of equa-

tion (1), where the non-relativistic electrostatic Hamiltonian for the N-electron sys-

tem in the fi eld of M nuclei of charge ZA at RA is given by the following expression:

�

Hel
✁

N

∑
n � 1

✁ ∇2
n

2

✂ N

∑
n � 1

M

∑
A � 1

✁ ZA

rnA

✂ 1

2

N

∑
n ✄ m � 1

☎
1

rnm

✂ 1

2

M

∑
A ✄ B � 1

☎
ZAZB

rAB

(2)

Atomic units (au) are here used (see Appendix); the primed double sums exclude

“diagonal” terms (n ✁ m, A ✁ B).
�

Hel depends parametrically on the sets ✆ R ✝✟✞✠✆ Z ✝
of the positions RA and charges ZA of the M nuclei, so the same is true for E0, Ψ0.

Ψ0 is an antisymmetric function of the space-spin coordinates xn ✡ rn ✞ σn of the

N electrons (n ✁ 1 ✞☞☛✌☛✌☛✍✞ N). The nuclear coordinates for which E0 ✎ ✆ R ✝✟✞✏✆ Z ✝✒✑ has its

minimum E
eq
0 will be labelled ✆ Req ✝ . The corresponding eigenfunction, Ψ eq

0 , can

then be written as follows:

Ψ eq
0 ✓ ☛☞☛✌☛✍✞ xn ✞☞☛✌☛☞☛✕✔ ✡ Ψ0 ✓ ☛☞☛✌☛✍✞ xn ✞☞☛✌☛✌☛ ; ✎ ✆ Req ✝✖✞✌✆ Z ✝✗✑✘✔ (3)

The special case of neutral periodic systems is the only one that will be treated

here. Consider a lattice of vectors Tm generated starting from D primitive linearly

independent basis vectors ai of ordinary space:

Tm
✁

D

∑
i � 1

mi ai (4)

where mi are integers, and D is the number of periodic directions (three for bulk

crystals, two for slabs, one for polymeric structures). The ai vectors defi ne (not

univocally) the unit cell of the crystal. It is assumed that the coordinates and charges

of all nuclei can be generated from those of a translationally irreducible fi nite set

✆ RA ✄ 0 ; ZA ✄ 0 ✝ as follows:

RA ✄m ✁ RA ✄ 0 ✂
Tm ; ZA ✄ m ✁ ZA ✄ 0 (5)

For the solution of equation (1), the Born-von Kármán (BvK) cyclic conditions

will be adopted. They correspond to assuming that Ψ0 is cyclically periodic with

respect to a super-lattice of vectors Wm defi ned as in equation (4), but starting from

D super-basis vectors Ai
✁ wiai:

if: xn
✁ ✓ rn ✞ σn ✔✙✞ x

☎
n

✁ ✓ rn
✂

Wm ✞ σn ✔✙✞
then: Ψ0 ✓ ☛✌☛☞☛☞✞ xn ✞☞☛✌☛✌☛✕✔ ✁ Ψ0 ✓ ☛☞☛✌☛✍✞ x

☎
n ✞✌☛✌☛☞☛ ✔ ✚ n ✞ m ✆ BvK ✝ (6)

(here and in the following ✆ BvK ✝ labels relationships that hold true owing to BvK

conditions). The integers wi defi ne the effective number of electrons in the system:

Neff ✁ W N0, with W ✁ ∏i wi, and N0
✁ ∑A ZA ✄ 0 the number of electrons per cell.
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Provided the wi’s are large enough (see Section 3.1), their choice is scarcely influ-

ential on the quality of the results as concerns energy dependent quantities. On the

other hand, account must be taken of the effect of the BvK conditions on DM and

DFs in order to avoid misinterpretation of the results (see for instance equation 23).

2.1 Definition and properties of exact DM and DFs

Following McWeeny [4], we can defi ne the one-particle generalized density func-

tion, our exact position-spin DM, as follows (by default, Ψ0
✁ Ψ eq

0 ):

γ ✓ x;x
☎ ✔ ✁ N � Ψ0 ✓ x ✞ x2 ✞✌☛☞☛✌☛✍✞ xN ✔✂✁☎✄Ψ0 ✓ x

☎ ✞ x2 ✞✌☛☞☛✌☛✍✞ xN ✔✝✆✟✞ dx2 ☛☞☛✌☛ dxN (7)

Higher-order DMs can be usefully defi ned, but they don’t matter in the present con-

text. The content of information of γ ✓ x;x
☎ ✔ is very rich. This function of only six

spatial and two spin coordinates provides the ground-state expectation value of any

observable described by a one-electron operator
�

F ✁ ∑n f̂ ✎ xn ✑ :
✠ �

F ✡ 0 ✁ �☞☛ f̂ ✎ x ✑ γ ✓ x;x
☎ ✔✍✌✏✎

x ✑✕� x ✒ dx (8)

By making explicit the dependence of γ ✓ x;x
☎ ✔ on the two-valued spin coordinates

with respect to the z direction ✎ σ ✞ σ ☎
✁ α ✞ β ✑ , we can defi ne the spin-projected com-

ponents of the DM:

Pσ ✓ r;r
☎ ✔ ✁ γ ✓ r ✞ σ ;r

☎ ✞ σ ✔
P ✓ r;r

☎ ✔ ✁ Pα ✓ r;r
☎ ✔ ✂

Pβ ✓ r;r
☎ ✔ ; Q ✓ r;r

☎ ✔ ✁ Pα ✓ r;r
☎ ✔ ✁ Pβ ✓ r;r

☎ ✔ (9)

P ✓ r;r
☎ ✔ is called the position DM, obtained by integrating γ ✓ x;x

☎ ✔ over both spin

components, while Q ✓ r;r
☎ ✔ is the excess DM of α- with respect to β -electrons.

The momentum DM is the six-dimensional Fourier transform (FT) of P ✓ r;r
☎ ✔ :

P ✓ p;p
☎ ✔ ✁ � P ✓ r;r

☎ ✔ exp ✓ ✁ ır ✓ p ✔ exp ✓ ır
☎ ✓ p ☎ ✔ drdr

☎
(10)

DFs are the “diagonal elements” of the DMs:

ρ ✓ r ✔ ✁ P ✓ r;r ✔ electron density (ED)

ρσ ✓ r ✔ ✁ Pσ ✓ r;r ✔ electron σ -spin density

ζ ✓ r ✔ ✁ Q ✓ r;r ✔ ✁ ρα ✓ r ✔ ✁ ρβ ✓ r ✔ electron (net) spin density (ESD) ✓ along z ✔
π ✓ p ✔ ✁ P ✓ p;p ✔ electron momentum density (EMD) (11)

They are observable quantities in a quantum-mechanical sense, since they are the

ground-state expectation value of one-electron operators ✎
�

Fy ✁ ∑n δ ✓ y ✁ yn ✔ ✑ .
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In a periodic system, the displacement of all rn quantities by the same lattice

vector Tm must just result in a change of the ground state wavefunction by a phase

factor. From equation (7) we then have:

γ ✓ r ✞ σ ;r
☎ ✞ σ ☎ ✔ ✁ γ ✓ r ✂

Tm ✞ σ ;r
☎ ✂

Tm ✞ σ ☎ ✔ ; P ✓ r;r
☎ ✔ ✁ P ✓ r ✂

Tm;r
☎ ✂

Tm ✔ (12)

All information about the position(-spin) DMs is thus obtained by confi ning the

variable r to within the unit cell. In equation (10), the integral over r can then be

limited to the unit cell. With this convention, which makes π ✓ p ✔ independent of the

“size” of the crystal: � π ✓ p ✔ dp ✁ N0, the number of electrons per cell.

The BvK conditions (equation 6) entail a stronger consequence on DMs:

γ ✓ r ✞ σ ;r
☎ ✞ σ ☎ ✔ ✁ γ ✓ r ✞ σ ;r

☎ ✂
Wm ✞ σ ☎ ✔ ; P ✓ r;r

☎ ✔ ✁ P ✓ r;r
☎ ✂

Wm ✔ ✆ BvK ✝ (13)

It is not our concern to discuss explicitly how information on these observables

can be obtained from actual experiments: this question is dealt with elsewhere in

this Book. But while commenting below on some general properties of the exact

DFs, with special attention to the consequences of translational periodicity, we will

also establish their relationship with “ideal” measurable quantities such as structure

factors, Compton profi les, etc.

Chapter 6 provides a more complete analysis of the relationships among the vari-

ous DMs and DFs, and between these and the chemical characteristics of the system.

2.1.1 Electron density

In many respects, the ED ρ ✓ r ✔ (also called electron charge density, ECD) and its spin

components have the same properties; we consider here only the former quantity

while we shall discuss some aspects of the ESD ζ ✓ r ✔ in Section 4.

ρ ✓ r ✔ plays a specially important role in the characterization of the many-electron

system. This is a simple function of the space coordinates (it is real, non-negative,

fi nite everywhere and regular except for isolated cusps) which reflects faithfully the

chemical composition and geometry of the system. In fact, the position RA and the

charge ZA of all the nuclei are identifi ed, respectively, through the location of the

cusps and through the Kato’s cusp condition [5]: ZA
✁ ✁ ρ

☎ ✓ RA ✔✂✁ ✓ 2ρ ✓ RA ✔☞✔ , where

ρ
☎ ✓ RA ✔ is the spherical average of the slope about the cusp. It therefore contains

transparently all information about the Schrödinger Hamiltonian of the system. The

recognition of this fact, although derived differently [6], is at the basis of density

functional theory (DFT) which has enjoyed enormous success especially in its KS

formulation [7] (see Subsection 2.2).

Bader’s Atoms in Molecules theory [8] and its application to crystals [9, 10]

allows a wealth of information about the chemical features of the system to be ob-

tained through a topological analysis the ED and its derivatives (see Chapter 1).

Recent literature concerning the comparison between experimental and theoretical

ED determinations is in fact often centered on the respective characterization of

Bader’s topological objects, in particular of the bond critical points [11].
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Since a non-degenerate ground-state wavefunction [hence the corresponding

ρ ✓ r ✔ ] has the same symmetry as the Hamiltonian, the ED of a crystalline system

is invariant to all operations of the related space group � :

✆ V ✁ T m
✂

sV ✝ ρ ✓ r ✔ ✡ ρ ✓ V ✂ 1r ✁ Tm
✁ sV ✔ ✁ ρ ✓ r ✔ (14)

The Seitz notation of the operators has been used [12], where V is a matrix repre-

senting a proper or improper rotation, and sV the associated fractional translation

(for the so-called symmorphic groups, ✚ V : sV
✁ 0). The rotations themselves form

a group of order h, the point group of the crystal. Because of equation (14), all infor-

mation about the ED is contained in a 1 ✁ h-th wedge of the unit cell (the irreducible

wedge). Integration of ρ ✓ r ✔ over the irreducible wedge gives N0 ✁ h.

A one-to-one correspondence exists between the ED and its 3-dimensional FT,

the form factor:

F ✓ κ ✔ ✁ � ρ ✓ r ✔ exp ✓ ıκ ✓ r ✔ dr (15)

Let us associate to the D unit vectors of direct lattice, ai, an equal number of unit vec-

tors of reciprocal lattice, B j defi ned by the relation: ai ✓ B j
✁ 2πδi j ✓ i ✞ j ✁ 1 ✞✌☛✌☛☞☛☞✞ D ✔ .

The general point of reciprocal space can then be written as a sum of a “periodic

part”: κ ✄ ✁ ∑D
i � 1 κi Bi, and of a “non-periodic part”, κ ☎ , perpendicular to the former.

The symmetry properties of the ED (equation 14) entail the following consequences

for the crystalline form factor (the case D=3 is considered for defi niteness, where

κ ✡ κ ✄ ):
1. Due to translational invariance, F ✓ κ ✔ is zero unless κ is a reciprocal lattice vector

Ghkl ✡ hB1
✂

k B2
✂

l B3, with h ✞ k ✞ l integers. The form factor is then defi ned by

the discrete (but infi nite) set of the structure factors:

Fhkl
✁ �

unit cell
ρ ✓ r ✔ exp ✓ ıGhkl ✓ r ✔ dr (16)

By this convention, structure factors are normalized so that F000
✁ N0, the number

of electrons in the (conventional) crystallographic unit cell.

2. Due to rotational invariance, F ✓ G ✔ ✁ exp ✓ ✁ ıG ✓ sV ✔ F ✓ VG ✔ : that is, Fhkl is the

same up to a phase factor for reciprocal lattice vectors which are obtained from

each other by a point group operation (belong to the same star).

3. Depending on the space group, some structure factors are systematically zero

(“general” extinction conditions); “extra” extinction conditions may apply to the

triplet hkl, when ρ ✓ r ✔ can be expressed as a sum of contributions from “spheri-

cal” atoms centered in some special Wyckoff positions: see e.g. reference [13].

In the dynamical limit and in the hypothesis of fi xed nuclei, the X-ray structure

factors provided by diffraction experiments are the ideal experimental counterpart

of the theoretical ones. When trying to reconstruct EDs from actual diffraction data,

apart from all the corrections that must be applied for obtaining a guess of the ideal

structure factors [11], a phase factor problem exists since only the modulus of the

latter is provided by the experiment. The comparison (Theory) ✁✝✆ (Experiment)
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as concerns EDs is then more natural than the reciprocal one, because a number

of corrections can easily be applied to the theoretical structure factors (including

approximate account of nuclear thermal motion, see Section 5.1), so as to make the

comparison with their experimental counterpart as justifi ed as possible.

2.1.2 Momentum density

The electron momentum density (EMD), π ✓ p ✔ , brings in complementary informa-

tion with respect to the ED, as is discussed at length in Chapter 6. In particular, the

features of π ✓ p ✔ near the origin are dominated by the contributions of the slow va-

lence electrons, while those at large ✁ p ✁ values reflect the properties of core electrons.

The convention introduced at the beginning of this Section is adopted, according to

which π ✓ p ✔ in a crystal is normalized to N0, the number of electrons per cell. Some

basic facts about the EMD are here recalled.

π ✓ p ✔ is a real, positive defi nite function which exhibits rotational invariance with

respect to all operators of the point group of the crystal ✎ π ✓ p ✔ ✁ π ✓ Vp ✔ ✑ .
It provides directly the ground-state expectation value of the total kinetic energy

per cell of the electrons in the system:

✠ �

T ✡ 0
✁

1

2
� π ✓ p ✔ p2 dp (17)

Due to the virial theorem, which holds true for the electrostatic Hamiltonian of

equation (2), the EMD also provides the total energy per cell at the equilibrium

confi guration:
1

2
� π ✓ p ✔ ✎✁�

R ✂✏� �
Req ✂ ✒ p2 dp ✁ ✁ E

eq
0 (18)

This important relationship, which derives from minimization of the expectation

value of energy with respect to the scaling of all coordinates, is not valid in more

general cases, for instance for volume-constrained optimized confi gurations.

Two interesting functions can be obtained from the EMD: the Reciprocal Form

Factor (RFF), B ✓ r ✔ , and the Compton Profile Function (CPF), J ✓ q ✔ :

B ✓ r ✔ ✁ � π ✓ p ✔ exp ✓ ✁ ıp ✓ r ✔ dp ✁
1

W
� P ✓ r

☎
;r

✂
r
☎ ✔ dr

☎

J ✓ q ✔ ✁ � π ✓ p ✔ δ
✄

p ✓ q

✁ q ✁
✁ ✁ q ✁ ☎ dp (19)

The two defi nitions of the RFF are easily seen to be equivalent; the second one

justifi es its alternative name of Autocorrelation Function. The normalizing factor W

is the number of cells in the cyclic crystal; we then have, as expected: B ✓ 0 ✔ ✁ N0.

The CPF results from the 2-D integration of π ✓ p ✔ over a plane through q perpen-

dicular to the q direction. Its main interest stems from the fact that it can be related

to the ideal experimental Compton profi les (CP) [14]. Consider the directional CP:
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Jhkl ✓ q ✔ ✁ J ✓ qehkl ✔
✄

ehkl
✁

ha1
✂

ka2
✂

la3

✁ ha1
✂

ka2
✂

la3 ✁ ☎ (20)

In the sudden-impulse approximation, this function is proportional to the distribu-

tion of the loss, in the direction ehkl , of the momentum of scattered photons, as is

measured in a Compton scattering experiment.

The directional RFF [Bhkl ✓ s ✔ ✁ B ✓ sehkl ✔ ] and the corresponding directional CP

are immediately seen to be related to each other by a one-dimensional FT:

Bhkl ✓ s ✔ ✁ � Jhkl ✓ q ✔ exp ✓ ✁ ı sq ✔ dq (21)

An interesting consequence of this relation can be cited. Due to limited resolution,

experimental directional CPs [J
exp
hkl ✓ q ✔ ] can be considered as the convolution of the

ideal CP by the experimental resolution function w ✓ q ✔ (usually a Gaussian):

J
exp
hkl ✓ s ✔✁� � Jhkl ✓ q

☎ ✔ w ✓ q
☎ ✁ q ✔ dq

☎
(22)

It then follows that Bhkl ✓ s ✔ is simply the FT of J
exp
hkl ✓ q ✔ divided by w ✓ s ✔ , the FT of

w ✓ q ✔ . The RFF is therefore easily accessible from the Compton scattering exper-

iment. Furthermore, its fi ne structure is not affected very much by experimental

errors; in particular its zeros can be located with relatively high precision.

A consequence of the BvK conditions on the calculated RFF can be noted: from

equation (13) it immediately follows that the latter has (artifi cially) the periodicity

of the superlattice:

B ✓ r ✔ ✁ B ✓ r ✂
Wm ✔ ✆ BvK ✝ (23)

The RFF conveys important information. Its oscillatory behaviour in direct space,

the position of its nodal surfaces, the value of its maxima and minima are closely

related to the chemical features of the system [15]: these topics are treated in detail

in Chapter 6 of this book.

2.2 HF and KS schemes, and related DM and DFs

The solution of equation (1) that is, the determination of the eigenfunction Ψ0, is

impossible for any system of real interest. Two simplifi ed schemes, HF and KS,

are usually adopted for describing periodic systems, which may provide valuable

information on their DMs and DFs. Here we consider their exact formulation, and

comment on some characteristic aspects of the resulting densities; in Section 3, we

shall describe their actual implementation and the simplifying assumptions which

must be adopted in order to obtain their approximate solution.

HF and KS have many features in common. In their spin-unrestricted formula-

tion (UHF,UKS), both are intended to obtain a set of N one-electron functions, the

molecular spin-orbitals (MSO) (or crystalline spin-orbitals, CSO, in the periodic
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case), ψX
j ✓ x ✔ ✁ φX ✄ σ

j ✓ r ✔ ω ✓ σ ✔ , with σ either α or β , which satisfy the equation:

ĥX ✄ σ φX ✄ σ
j ✓ r ✔ ✁

�
✁ ∇2

2

✂ ∑
A

✁ ZA

✁ RA
✁ r ✁

✂ � ρX ✓ r
☎ ✔

✁ r ✁ r
☎ ✁ dr

☎ ✂✂✁
V X ✄ σ ✄ φX ✄ σ

j ✓ r ✔ ✁ εX ✄ σ
j φX ✄ σ

j ✓ r ✔
(24)

The effective Hamiltonian ĥX ✄ σ which acts on the individual MSO contains, apart

from the kinetic, nuclear attraction and Hartree operators (the last one expressing

the Coulomb repulsion with all the electrons in the system), a corrective potential

operator,
✁
V X ✄ σ , which differs in the two schemes (X=HF or KS), as is seen below.

A single-determinant N-electron function can be defi ned, after assigning the N

electrons to the N MSOs corresponding to the lowest eigenvalues εX ✄ σ
j of equation

(24), and antisymmetrizing their product:

ΨX
0

✁ N ✂ 1 ☎ 2 ∑
P

✓ ✁ 1 ✔ sP

�

P ✆ ψX
1 ✓ x1 ✔ ✁ ✓ ✓✝✓ ✁ ψX

N ✓ xN ✔✞✝ ✡ ✁ ✁ ✓✝✓ ✓ j ✓ ✓ ✓ ✁ ✁ (25)

Here
�

P is the general N-order permutation operator which acts on the electron co-

ordinates and sP the respective parity. The orthonormal MSOs which defi ne ΨX
0 are

said to form the occupied manifold, all others belonging to the virtual manifold.

In the rest of this Section we shall assume, for simplicity, that we are describing a

spinless system, where the occupied MSOs are in pairs having the same eigenvalue

εX
n , the same spatial part φ X

n and α or β spin, to be labelled nα and nβ , respectively,

with n ✁ 1 ✞✝✓ ✓✝✓✌✞ N ✁ 2. In this case the spin index can be dropped from the effective

Hamiltonian and from the corrective potential, since they are the same for α and

β spin. Following the general defi nition (equations 7,9), it is easily seen that the

position DM and the ED associated with Ψ X
0

✁ ✁ ✁ ✓ ✓✝✓ nα nβ ✓ ✓✝✓ ✁ ✁ are simply:

PX ✓ r;r
☎ ✔ ✁ 2

N ☎ 2
∑
n � 1

φX
n ✓ r ✔ ✄ φX

n ✓ r
☎ ✔✝✆✠✟ ; ρX ✓ r ✔ ✁ PX ✓ r;r ✔ ✁ 2

N ☎ 2
∑
n � 1

✁ φX
n ✓ r ✔ ✁ 2 (26)

In the HF scheme, the corrective potential
✁
V HF is defi ned by imposing that the

HF energy EHF
0 that is, the Ψ HF

0 -expectation value of the electrostatic Hamiltonian

(which cannot be less than the true ground state energy E0) is a minimum with

respect to any other single-determinant N-electron wavefunction. Therefore, the oc-

cupied manifold resulting from the solution of equation (24) defi nes the optimal (in

a variational sense) single-determinant approximation of the true ground state Ψ0.

To achieve this goal,
✁
V HF must take the form of the exact-exchange operator

�

Vexch,

whose action on the general function χ ✓ r ✔ is defi ned as follows:

�

Vexch χ ✓ r ✔ ✁ ✁ 1

2
� PHF ✓ r;r

☎ ✔ χ ✓ r
☎ ✔

✁ r ✁ r
☎ ✁ dr

☎
(27)

We have, correspondingly:
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EHF
0 ✡ ✠

Ψ HF
0 ✁

�

Hel ✁ ΨHF
0 ✡ ✁ ✁ �✁� ∇2

2
PHF ✓ r;r

☎ ✔✄✂ ✎
r ✑ � r ✒ dr ✁ ∑

A

ZA � ρHF ✓ r ✔
✁ RA

✁ r ✁ dr
✂

✂ 1

2
� ρHF ✓ r ✔ ρHF ✓ r

☎ ✔
✁ r ✁ r

☎ ✁ dr dr
☎ ✁ 1

4
� ✁ PHF ✓ r;r

☎ ✔ ✁ 2
✁ r ✁ r

☎ ✁ dr dr
☎ ✂ 1

2

M

∑
A ✄ B � 1

☎
ZAZB

rAB ☎ E0

(28)

The KS scheme, formulated in the frame of DFT [6, 7], introduces, for any

given N-electron ED, ρ ✓ r ✔ , two universal functionals: εxc ✓ r; ✎ ρ ✑✘✔ and Vxc ✓ r; ✎ ρ ✑✘✔ .
The latter is obtained from the former via a functional derivative relationship:

Vxc
✁ εxc

✂ ρ ✓ δεxc ✁ δρ ✔ . When the exchange-correlation potential Vxc ✓ r; ✎ ρ ✑ KS ✔ is

used for
✁
V KS as a multiplicative operator in equation (24), the density from equation

(26) coincides with the exact ground-state ED (equation 11):

ρKS ✓ r ✔ ✁ ρ ✓ r ✔ (29)

The functional εxc ✓ r; ✎ ρ ✑✘✔ allows the exact ground-state energy to be calculated,

again with reference to the occupied KS manifold:

EKS
0

✁ ✁ �✆� ∇2

2
PKS ✓ r;r

☎ ✔✝✂ ✎
r ✑ � r ✒ dr ✁ ∑

A

ZA � ρ ✓ r ✔
✁ RA

✁ r ✁ dr
✂

✂ 1

2
� ρ ✓ r ✔ ρ ✓ r

☎ ✔
✁ r ✁ r

☎ ✁ dr dr
☎ ✂ � ρ ✓ r ✔ εxc ✓ r; ✎ ρ ✑ ✔ dr

✂ 1

2

M

∑
A ✄ B � 1

☎
ZAZB

rAB

✁ E0

(30)

Equation (24) must be solved self-consistently in both cases, because the Hartree

and the corrective potential are defi ned in terms of the occupied manifold. Two

important differences between the two schemes must be stressed, however.

1. In the HF case the corrective potential (the non-local operator of equation 27) is

perfectly defi ned. On the contrary, no exact formula exists for the local exchange-

correlation potential Vxc ✓ r; ✎ ρ ✑✘✔ (or equivalently, for εxc ✓ r; ✎ ρ ✑ ✔ ) ; we shall con-

sider in Section 3.2 some powerful though approximate expressions that have

been proposed for those functionals.

2. The single-determinant wavefunctionΨ X
0 defi ned in equation (25) has a different

meaning in the two schemes. Ψ HF
0 may be considered as the zero-order approx-

imation to the true ground-state wavefunction in a hierarchy of post-HF meth-

ods, which re-introduce the instantaneous electron correlation (see Section 5.3).

Instead, Ψ KS
0 is in principle only a useful mathematical construction which de-

scribes a set of non-interacting electrons in an effective potential, whose ED is

the same as that of the real system. It is however customary to use Ψ KS
0 as though

it were representative of some properties of Ψ0, for instance of the off diagonal

terms of the position DM ✎ PKS ✓ r;r
☎ ✔ � P ✓ r;r

☎ ✔ ✑ : this is what we shall do in the

following. Some justifi cations for this assumption and some indications for cor-

recting for its inadequacy have been provided, for instance, by Bauer [16].
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2.2.1 HF and KS solutions: Bloch functions, insulators, metals

Some general facts about the solution of equation (24) in its spinless, periodic for-

mulation are here recalled in order to fi x notations and to prepare the discussion of

the next sections.

Since the one-electron effective Hamiltonian ĥX commutes with all operations

of the space group � , in particular of the subgroup � of the pure translations, its

eigenfunctions, the COs, can be classifi ed according to the irreducible representa-

tions of that group. As is shown in standard textbooks [12], they are then character-

ized by an index κ , a vector of reciprocal space, such that the corresponding COs

are Bloch functions (BF), φ X
n ✓ r;κ ✔ , which satisfy the property:

φX
n ✓ r ✂

Tm;κ ✔ ✁ φX
n ✓ r;κ ✔ exp ✓ ıκ ✓ Tm ✔ (31)

Clearly, κ’s differing by a reciprocal lattice vector G defi ne the same irreducible

representation. Among all equivalent κ’s one can choose the one closest to the ori-

gin of the reciprocal space; this “minimal-length” set fi lls the so-called (first) Bril-

louin zone (BZ). The COs must also satisfy the BvK conditions ✎ φ X
n ✓ r ✂

Wm;κ ✔ ✁

φX
n ✓ r;κ ✔ ✑ , which means that exp ✓ ıκ ✓ Wm ✔ ✁ 1 or, otherwise stated, that the general

κ must belong to a Monkhorst grid [17]:

κh
✁

D

∑
i � 1

✓ hi
✂

si ✔ Bi

wi
✓ integer hi ✞ si

✁ 0 or
1

2
✔ ✆ BvK ✝ (32)

This is our standard choice: the exact solutions (no BvK conditions imposed) can

be obtained in the limit of infi nite wi’s. It is customary and useful to choose the

wi’s such that the super-unit-vectors defi ne the same Bravais lattice as the original

one either “undisplaced” or “displaced” with respect to the origin according to the

value of si. The κh vectors thus form a contracted reciprocal lattice with respect

to the original one. The number of κh vectors in the BZ equals W ✁ ∏i wi. As a

consequence of rotational symmetry, if two sampling vectors are related to each

other by a point group operator, the corresponding eigenvalues are the same, and

the eigenfunctions coincide except for a rotation. This permits the determination of

the solutions to be confi ned to κh’s belonging to the irreducible wedge of the BZ.

As the effective number of electrons in the system is N ✁ W N0 (see Section 2),

the number of occupied COs is WN0 ✁ 2 that is, on average, N0 ✁ 2 per sampling κh

point. After ordering the eigenvalues by energy ✎ εX
n ✓ κh ✔✂✁ εX

n ✄ 1 ✓ κh ✔ ✑ , a Fermi energy

EF can be defi ned such that there are exactly WN0 ✁ 2 eigenvalues εX
n ✓ κh ✔☎✁ EF . A

distinction can be made between insulators (including semiconductors) and metals.

With insulators, there are exactly N0 ✁ 2 eigenvalues below EF at each κh. The

occupied manifold is then made of N0 ✁ 2 fully occupied energy bands. This is easily

generalized to spin-polarized insulators, where the number of fi lled bands is differ-

ent for the two spin subsystems. A unitary transformation is here feasible from the

set of the occupied COs to an equivalent set of Wannier functions (WF) [18]:
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✆✟☛✌☛☞☛✌✞ ✓ nκh ✔ ✞☞☛✌☛☞☛ ✝ U� ✆ ✆✟☛✌☛☞☛☞✞ ✎ ✁
Tm ✑ ✞✌☛☞☛✌☛ ✝

✎ ✁
Tm ✑ ✡ w ✂ ✓ r ✁ Tm ✔ ;

✁
✁ 1 ✞ N0 ✁ 2 ✞ 0 ✁ mi ✄ wi (33)

The WFs ✎ ✁
Tm ✑ are real, localized functions which can be assigned to the general

cell Tm: due to the BvK conditions, we need to consider just W inequivalent cells

e.g., those contained in the Wigner-Seitz cell of the super-lattice. There are N0 ✁ 2

WFs in the reference cell, all the others are translationally equivalent. Since they are

obtained through a unitary transformation U from the orthonormal set of the COs,

they form themselves an orthonormal set; furthermore, U can be chosen such that

they are well localized according to some localization criterion, while reflecting

as far as possible the rotational symmetry properties of the system [19, 20]. The

ground-state wavefunctionΨ X
0 (25) for insulating spinless crystals can then be recast

in the form of an antisymmetrized product of spin-WFs:

ΨX
0

(i)
✁ ✁ ✁ ☛☞☛✌☛ ✎ ✁

Tm ✑ α ✎ ✁
Tm ✑ β ☛✌☛☞☛ ✁ ✁ (34)

The symbol
(i)

✁ means that this formulation is possible only for spinless insulators.

With metals, instead, the number of eigenvalues below EF is generally different

at different κh’s. Some bands are partially fi lled: in the limit of infi nite wi’s, the sur-

faces in reciprocal space which separate regions with a different number of occupied

COs constitute on the whole the Fermi surface of the metal.

2.2.2 Crystalline DM and DFs from single-determinant wave-functions

With the notations just introduced, the HF or KS DMs (equations 9, 10) can be

written as follows, f ✓ p ✔ indicating the FT of f ✓ r ✔ :
PX ✄ σ ✓ r;r

☎ ✔ ✁ ∑
h

∑
☎
φX ✄ σ

n ✓ r;κh ✔ ✎ φX ✄ σ
n ✓ r

☎
;κh ✔ ✑ ✟ ; PX ✓ r;r

☎ ✔ ✁ PX ✄ α ✓ r;r
☎ ✔ ✂ PX ✄ β ✓ r;r

☎ ✔

P
X ✄ σ ✓ p;p

☎ ✔ ✁ ∑
h

∑
☎
φ X ✄ σ

n ✓ p;κh ✔ ✎ φ X ✄ σ
n ✓ p

☎
;κh ✔ ✑ ✟ ; P

X ✓ p;p
☎ ✔ ✁ P

X ✄ α ✓ p;p
☎ ✔ ✂ P

X ✄ β ✓ p;p
☎ ✔

(35)

where the primed sums are restricted to the occupied CSOs of σ spin ✎ ε X ✄ σ
n ✓ κh ✔ ✄

EF ✑ , and φ X ✄ σ
n indicates the 3-D FT of the CO. The DM expressions simplify for

spinless systems:

PX ✓ r;r
☎ ✔ ✁ 2 ∑

h
∑

☎
φX

n ✓ r;κh ✔ ✎ φX
n ✓ r

☎
;κh ✔ ✑ ✟ (i)

✁ 2 ∑
✂ ✄ m

wX✂ ✓ r ✁ Tm ✔ wX✂ ✓ r
☎ ✁ Tm ✔

P
X ✓ p;p

☎ ✔ ✁
2

W
∑
h

∑
☎
φ X

n ✓ p;κh ✔ ✎ φ X

n ✓ p
☎
;κh ✔ ✑ ✟ (i)

✁ 2∑
✂

wX✂ ✓ p ✔ wX✂ ✓ p
☎ ✔ (36)
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The various DFs and their properties can be obtained as discussed in Section 2.1.

The following, however, should be noted.

While the KS ED, hence the corresponding structure factors, coincides in prin-

ciple with the exact one (equation 29), the HF ED is expected to present systematic

errors for instance, to overestimate the density in directed valence bonds (see Sec-

tion 4).

HF and KS EMDs are both incorrect, but there are signifi cant differences between

the two cases. Consider equations (17,18). The virial theorem is valid for HF, not

for KS. We can therefore write, at the HF equilibrium confi guration:

1

2
� πHF ✓ p ✔ p2 dp ✁ ✁ EHF

0 ✄ ✁ E0 ✄✌✆ R ✝ ✁ ✆ RHF ✄ eq ✝ ✆ (37)

which shows that the HF expectation value of the kinetic energy is systematically

underestimated, but by an (approximately) known amount. The same cannot be said

with the KS solution.

A notable property of the HF and KS RFF of insulators is obtained by using, in

equation (19), the expression (36) of the DM in terms of WFs:

BX ✓ r ✔ (i)
✁

2

W
∑

✂ ✄ m
� wX✂ ✓ r

☎ ✁ Tm ✔ wX✂ ✓ r
☎ ✂

r ✁ Tm ✔ dr
☎

✁ 2∑
✂

� wX✂ ✓ r
☎ ✔ wX✂ ✓ r

☎ ✂
r ✔ dr

☎

(38)

If r ✁ Tn �✁ 0 the last integral vanishes, since it is the overlap between WFs belong-

ing to different cells, meaning that BX ✓ r ✔ of insulators must be zero at all non-zero

lattice points. If such condition is not met experimentally, this could happen be-

cause of inaccuracies in the CP measurement and/or because of inadequacy of the

single-determinant description of the ground-state wavefunction (see Section 4.2).

2.2.3 The problem of core electrons

A commonplace fact of chemistry is that only “valence electrons” are really in-

volved in the formation of compounds (molecules, crystals), while “core electrons”

are practically unaffected. This amounts to say that the wavefunction can be ap-

proximately written as an antisymmetrized product of Ψv ✓ ☛✌☛☞☛☞✞ xn ✞✌☛☞☛✌☛ ✔ , a wavefunc-

tion describing Nv valence electrons, times Ψc ✓ ☛☞☛✌☛✍✞ xm ✞☞☛✌☛✌☛ ✔ , which describes instead

the remaining Nc core electrons; the latter can in turn be expressed as an antisym-

metrized product of Ψ A
c functions for the cores of the individual atoms A entering

the compound: Ψ A
c is obtained from the isolated atom solution except for a rigid

displacement along with the nuclear coordinate. Using this core-valence separation

Ansatz, which fi nds its fundamental justifi cation in the prevailing importance of the

nuclear attraction term in the proximity of nuclei, the problem is formally reduced

to the determination of Ψ X
v . This can be advantageous for different reasons.

1. Since HF and KS computational times scale rather rapidly with the number of

electrons (typically, as N3), getting rid of the core electrons may result in sub-
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stantial savings, especially when heavy atoms are involved where the number of

valence electrons is comparatively small.

2. The all-electron wavefunction has very sharp features in the proximity of the

cores. Describing them with PWs would require extremely high energy cutoffs

(see for details Section 3.3.1).

3. In the vicinity of nuclei, the speed of electrons is an appreciable fraction of the

speed of light, and relativistic effects become important, the more so the higher

the nuclear charge; the use of the non-relativistic Hamiltonian (2) can lead to

serious errors in the description of the density in that region. For instance, the

relativistic correction for the form factor of the Germanium atom at κ=0.75 and

1.5 Å ✂ 1 amounts to about 0.6 and 1 % of the total, respectively [21]. Analytical

expressions which permit the evaluation of relativistic atomic form factors up to

Z=54 have been provided by Coppens and coworkers [22]. In fact, in the frame

of DFT, exchange-correlation potentials Vxc ✓ r; ✎ ρ ✑ KS ✔ have been proposed which

include this kind of effects (see Section 3.2). The separation Ansatz offers an

easier solution for this problem, since it allows us to use different techniques for

the two terms, by limiting the relativistic treatment to the simpler (central-fi eld)

core problem for each atom.

The easiest and most popular way to exploit the separation Ansatz in the frame of

HF and KS schemes is to replace in equation (24) the nuclear Coulomb potential of

atom A ( ✁ ZA ✁ ✁ RA
✁ r ✁ ) with a (generally non-local) operator

�

V
X ✄ A
ps , which is called

the pseudopotential (PP) for atom A. From the solution of the modifi ed equation,

pseudo-orbitals ψX ✄ PP
j and pseudo-eigenvalues εX ✄ PP

j are obtained: the rest of the

procedure is the same but only the Nv pseudo-orbitals lowest in energy are occupied.

It is not in the scopes of this Chapter to refer about the variety of PPs that have

been proposed from their earliest formulations [23] to the present days. They can

differ for the type of potential (local, semi-local, non-local), for the sub-division

between core and valence electrons (large-core, small-core), for the criteria adopted

for the optimization of the parameters involved. A number of families of PPs which

cover a large part of the periodic system are included in most quantum chemical

codes, and in particular in Quantum ESPRESSO and CRYSTAL.

In general, the generation of a PP for any given atom type starts from the corre-

sponding isolated-atom solution, including relativistic corrections for its core elec-

trons. A reference electronic confi guration for the atom, typically the ground state,

is chosen. The basic step in PP generation consists in replacing the “true” atomic

valence orbitals with “pseudized” versions that are equal to the true ones in the outer

(valence) region (i.e. for r larger than some suitable chosen matching radius rc) and

are smooth functions in the inner (core) region (r ✁ rc). In the simplest approach,

the pseudized orbitals are nodeless and have the norm-conservation property, i.e.

they contain the same amount of charge for r ✁ rc as their atomic reference counter-

parts. By inverting the radial KS equation at the same eigenvalues ε KS ✄ PP
j of the cor-

responding true valence states, εKS
Nc ✄ j, one obtains the so-called Norm-Conserving

PPs [24]. By relaxing the norm-conservation property of the pseudized orbitals, one

obtains the Ultrasoft PPs (USPP) [25], having better smoothness and lesser require-
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ments in terms of number of PWs. The price to pay is the presence in the charge

density of augmentation terms to compensate for the missing charge, and the loss

of a simple orthonormality relation between orbitals.

The procedure outlined above is aimed at insuring that at a distance from any

core region, the PP solution resembles the all-electron one, and permits the energy

for any nuclear confi guration to be obtained accurately and economically from that

of the pseudo-system with reference to the energy of the constituent pseudo-atoms.

In the present context we are however interested in reconstructing DFs from the

knowledge of Ψ X
v and of the atomic core solutions. The use of PPs has a serious

drawback in this respect: since the pseudo-orbitals are not orthogonal to the core,

the “pseudo-charge” one gets, summed to the core density, is not the true charge

density. The same is true as concerns EMD. Special techniques for all-electron

charge-density reconstruction must be applied, based for example on the Projector

Augmented Waves (PAW) method [26]: see Section 3.3.1.

3 The solution of the HF and KS periodic problem

3.1 General solution schemes

As shown in the previous Sections, both the HF and the KS problems can be re-

cast under the form of single-particle Schrödinger equations under an effective self-

consistent potential (Hartree and exchange potential for HF, Hartree and exchange-

correlation potential for KS). The KS problem is simpler in this respect, since the

effective potential depends only upon the charge density ρ ✓ r ✔ , while in HF it de-

pends upon the DM P ✓ r ✞ r ☎ ✔ . The solution can be found using an iterative procedure

to achieve self-consistency: starting from a suitable initial guess for the potential,

single-particle orbitals are calculated, the effective potential is re-calculated with the

new orbitals, and so on until self-consistency is achieved. Several well-established

techniques for speeding up self-consistency are known. We remark however that the

self-consistent solution of HF or KS equations is not the only possible way to fi nd

the HF or DFT ground state. In the global minimization approach, one directly min-

imizes the energy as a function of the orbitals. This approach is perfectly equivalent

to the solution of HF or KS equations. In practice, it is used only in DFT with a PW

BS, for aperiodic systems or systems described by a large unit cell, and typically in

conjunction with ab-initio molecular dynamics [27].

In practical calculations, the orbitals must be expanded into some suitably chosen

BS. In periodic systems, it is convenient to use a BS of BFs fµ ✓ r;κ ✔ (see Section

2.2.1), so that determining the COs φ X
n ✓ r;κ ✔ reduces to a secular problem that in-

volves only basis functions of that given κ . The choice of the BS is crucial and

determines the algorithms and numerical methods used in the actual solution. Most

calculations use either PWs or atom-centered functions (AOs).
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PWs are the traditional choice in solid state physics, reflecting the delocalized

nature of valence and conduction electron states in crystals. PWs form an infi nite

complete BS uniquely determined by the crystal lattice:

fG ✓ r;κ ✔ ✁
1

�
Ω

exp ✎ ı ✓ κ ✂
G ✔ ✓ r ✑ ✞ (39)

where Ω is the volume of the BvK box, and G a reciprocal lattice vector (see Section

2.1.1). The Bloch condition (equation 31) is satisfi ed because G ✓ Tm
✁ 2nπ , with

integer n. A fi nite set can be obtained by considering all PWs whose kinetic energy,

✓ κ ✂
G ✔ 2 ✁ 2, is below a given value Ec, the so-called kinetic energy cutoff. PWs

present several advantages:

1. They are a numerically convenient, orthonormal set, allowing the usage of Fast

FT (FFT) techniques.

2. They form an unbiased BS, since they do not depend upon which atoms are

present and upon atomic positions: therefore, they do not suffer from incomplete

BS errors on forces (also known as Pulay forces [28]) or from BS superposition

errors on energy (see Section 3.4.2) that affect calculations performed with AOs.

3. Convergence of the results can be evaluated by varying the single parameter Ec.

PWs have also some serious shortcomings, the most obvious being the inability to

cope with the presence of core states in atoms. The standard solution is to introduce

PPs, as was discussed in Section 2.2.3: in particular, USPPs [25] allow the practical

usage of PWs in a large class of materials, including transition metals and fi rst-row

elements C, N, O, F. When the focus is on DFs, however, for the reasons explained

there, a better solution is offered by the PAW technique, which allows the “true”

all-electron charge density to be calculated, while retaining a PW BS of minimal

size (see Section 3.3.1).

Even with the best USPP or PAW techology, the size of the PW BS vastly exceeds

that of a well-designed basis of AOs: for typical systems, the average number of

PWs per atom in the unit cell is in the order of a few hundreds. The advantages of

PWs, coupled with algorithmic and numerical techniques specifi c for PWs, make

however their usage interesting in spite of the large size of the BS, at least for DFT

calculations. HF calculations in PWs are considerably slower than DFT calculations

in the same system, though, and the size of the PW BS makes the expansion of the

DM into PWs impractical for all but the simplest systems.

Localized BSs formed by atomic orbitals (AO), χµ ✓ r ✔ , are the traditional choice

in quantum chemistry, reflecting the atomic composition of the matter. In periodic

systems, one uses Bloch sums of AOs:

fµ ✓ r;κ ✔ ✁
1

�
W

∑
T

exp ✎ ıκ ✓ T ✑ χµ ✓ r ✁ T ✔ (40)

AOs used in periodic systems include Linearized Muffi n-Tin Orbitals, numerically

defi ned Orbitals (including Slater-type orbitals) and Gaussian-type Orbitals (GTO).

The CRYSTAL software described in this article shares with standard molecular
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quantum chemistry codes the use of GTOs: this technical similarity entails a num-

ber of useful consequences, as analyzed in more detail in Section 3.4.2. The other

main advantage of AOs is the limited number of functions required for a good de-

scription of the COs. Their main disadvantage is that they do not form a complete

BS: simply adding more AOs will eventually result in pseudo-overcompleteness (i.e.

linear dependencies among basis functions). As a consequence there is no mathe-

matically exact procedure to achieve convergence with respect to the BS. Since the

actual degree of convergence will depend upon the atoms that are present in the

cell and upon their positions, calculations with AOs suffer from BS superposition

errors on energy and have Pulay terms in forces (see again Section 3.4.2 for a more

complete discussion).

In the following we describe the two approaches, PWs and AOs, with reference

to the two software implementations: Quantum ESPRESSO and CRYSTAL. In both

cases, however, the expression of the corrective potential
✁
V X ✄ σ in equation (24) must

be specifi ed, which requires (apart from the HF case) selecting one in a variety of

proposals. We consider preliminarily this question by briefly examining in the next

section the choices available in the two codes.

3.2 The exchange-correlation potential in KS schemes

The quality of the KS Hamiltonian ĥKS, hence of the corresponding solution, de-

pends primarily on the expression adopted for Vxc ✓ r; ✎ ρ ✑✘✔ , the exchange-correlation

potential. Perdew [29] has suggested to classify the different proposals along a “Ja-

cob’s ladder”, having at its summit the “true” potential, that is, such that equations

(29) and (30) are exactly satisfi ed. At the lowest rung of this ladder we fi nd the local

density approximation (LDA) [7], where the exchange-correlation at r is a function

of the electron density at that point: V LDA ✓ r ✔ ✁ f LDA ✓ ρ ✓ r ✔✌✔ . The next rung is the

generalized gradient approximation (GGA) which uses also the gradient of the elec-

tron density at r to improve upon LDA [30]: V GGA ✓ r ✔ ✁ f GGA ✓ ρ ✓ r ✔ ✞ ∇ρ ✓ r ✔☞✔ . The

third rung, denoted meta-GGA, incorporates increasingly complex ingredients, such

as the kinetic energy density, τ ✓ r ✔ , or the Laplacian of the density ∇2ρ ✓ r ✔ [31]. At

higher levels of the ladder non-locality in both exchange and correlation components

can be included (which represents a non-standard form of the KS Hamiltonian).

Hybrid-exchange functionals that use a fraction of non-local HF exchange [32] can

be considered as semi-empirical fourth-rung functionals. At all levels, relativistic ef-

fects may be taken into account [33]. All these potentials contain parameters which

have been variously optimized to satisfy specifi c requirements; for instance, Zhao

and Truhlar have recently proposed modifi ed GGA-type functionals to recover the

correct gradient expansion of slowly varying densities, a quite important condition

for solids [35].

Molecular and crystalline codes in current use permit one in a variety of exchange-

correlation functionals to be chosen from input. Table 2 lists some that are presently

available in Quantum ESPRESSO and CRYSTAL (the list is continuously enlarged,
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and different combinations from those there reported can be created). Hundreds of

papers have appeared where the performance of the different functionals has been

tested with different families of compounds, molecules or crystals. It must be noted,

however, that the basic quantity taken into account in such analyses is energy and

energy derived quantities (formation energy, equilibrium geometry, vibrational fre-

quencies...). Sometimes, other features of practical importance are considered, like

the distribution of one-electron levels, etc., but almost never DFs. Suitably parame-

terized hybrid-exchange functionals are usually the best solution presently available

in most respects: see for example reference [45]. In the following, the influence of

the exchange-correlation functional on DFs is discussed by way of examples.

Type Name Exchange [Ref.] Correlation [Ref.] Availability

LDA SVWN Slater [36] VWN [37] (E) (C)
SPWLSD Slater [36] PWLSD [30] (E) (C)
SPZ Slater [36] PZ [34] (E) (C)

GGA PBE PBE [38] PBE [38] (E) (C)
PBEHCTH PBE [38] HCTH [41] (E) —
PW91 PW91 [39] PW91 [39] (E) (C)
PBEsol PBEsol [40] PBEsol [40] (E) (C)
SOGGA SOGGA [35] PBE [38] — (C)
WC WC [42] PBE [38] (E) (C)

Hybrid B3LYP B/HF [44] LYP [43] (E) (C)
PBE0 PBE/HF [38] PBE [38] (E) (C)
B1WC WC/HF [42] PW91 [39] — (C)

Table 2 Exchange-correlation functionals available in Quantum ESPRESSO (E) and CRYSTAL
(C). Most of them are a combination of expressions for the exchange and correlation part, each
described in the indicated Reference.

3.3 The Quantum ESPRESSO distribution

The Quantum ESPRESSO distribution [1] is a rather large set of packages and

utilities for electronic structure calculations using DFT and a PW BS. Quantum

ESPRESSO is based on a panoply of codes and tools developed and used during

many years by several research groups throughout the world. It is an open-source

project, currently maintained by researchers at the DEMOCRITOS National Sim-

ulation Center of the Italian National Research Council with the strong support of

several other institutions and of individual researchers interested in specifi c subjects

or in implementing new developments, as specifi ed in the web site [1].
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The package that implements the most general approach to the calculation of the

ED is PWscf. PWscf can perform single-point calculations, structural optimiza-

tion (including crystal cell optimization) and molecular dynamics on the electronic

ground state (including variable-cell dynamics), as well as the search for transi-

tion states and minimum energy pathways. Ab-initio Car-Parrinello molecular dy-

namics is instead performed by package CP. The basic ingredient of PWscf is the

self-consistent solution of the KS equations (24), using mixing techniques (modi-

fi ed Broyden) to fi nd the self-consistent charge, and iterative diagonalization (block

Davidson) to determine the COs. Iterative diagonalization does not require to store

the hamiltonian H as a matrix, since only Hψ products are required. Such products,

as well as the ED and the Hartree and exchange-correlation potential, are calculated

by taking advantage of the “dual-space technique”, i.e. the possibility to jump back

and forth, using the FFT algorithm, from real to reciprocal space. This allows to

perform the required operations in the space where it is more convenient.

Another important package is PHonon, allowing the calculation of dielectric

properties and of the full phonon dispersions using Density-Functional Perturbation

Theory [46]. A series of tools and auxiliary codes allow the analysis of the data

produced by PWscf and CP, including visualization and further processing of the

ED and of the ESD.

3.3.1 The treatment of core electrons in PW codes

Let us consider the representation of the ED when simple norm-conserving PPs are

used. The ED is simply given by equation (26), where the φ X
n orbitals are replaced by

the valence pseudo-orbitals φ X ✄ PP
j . The ED thus contains Fourier components up to

a maximum value of ✁ G ✁ such that ✁ G ✁ 2 ✁ 2 ✁ E
ρ
c , where E

ρ
c is four times larger than

the kinetic energy cutoff for PWs: E
ρ
c

✁ 4Ec. A three-dimensional grid in reciprocal

space (“FFT grid”) is introduced:

ρFFT ✓ h
☎ ✞ k ☎ ✞ l ☎ ✔ ✡ ρ ✓ Ghkl ✔ ✞ Ghkl

✁ hB1
✂

kB2
✂

lB3 ✞ (41)

where h
☎

✁ 0 ✞✌☛☞☛✌☛✌✞ N1
✁ 1 and h ✁ h

☎
if h

☎
✁ N1 ✁ 2 (N1 even) or h

☎
✁ ✓ N1

✁ 1 ✔ ✁ 2

(N1 odd); h ✁ h
☎ ✁ N1 otherwise. The equivalent relations holds for k ✞ k ☎ ✞ N2 and for

l ✞ l ☎ ✞ N3. The values of N1 ✞ N2 ✞ N3 are determined by the condition that this grid must

accommodate all G components of ED without any loss, i.e., components for which

h ✁ h
☎ ✁ N1 and so on should not overlap components for which h ✁ h

☎
and so on.

A three-dimensional discrete FT with dimensions N1 ✞ N2 ✞ N3 then directly yields the

ED on the corresponding real-space FFT grid, spanning the unit cell of the crystal:

ρFFT ✓ m1 ✞ m2 ✞ m3 ✔ ✡ ρ ✓ rm1 ✄ m2 ✄ m3
✔ ☛ rm1 ✄ m2 ✄ m3

✁
m1

N1
a1

✂ m2

N2
a2

✂ m3

N3
a3 ✞ (42)

where m1
✁ 0 ✞✌☛☞☛✌☛✌✞ N1

✁ 1 and the equivalent for m2 and m3. As mentioned earlier,

the ED so obtained is actually a pseudo-density.
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Let us consider now the cases of USPPs and of PAWs, which can be treated in

a unifi ed framework [47]. The starting point is the introduction of a linear transfor-

mation, connecting the true orbitals φn with pseudo-orbitals φ PP
n :

φn ✓ r ✔ ✁ � φPP
n ✓ r ✔ ✡ φPP

n ✓ r ✔ ✂ ∑
i

✄ ψi ✓ r ✔ ✁ ψPP
i ✓ r ✔ ✆ ✠

βi ✁ φPP
n ✡ ✞ (43)

where the ψi are atomic reference orbitals (not necessarily bound states), the ψ PP
i

are the corresponding pseudized atomic orbitals, the βi projectors are dual to the

pseudized orbitals:
✠
βi ✁ ψPP

j ✡ ✁ δi j. Both βi ✓ r ✔ and ✓ ψi ✓ r ✔ ✁ ψPP
i ✓ r ✔☞✔ are nonzero

by construction only in the core region. The sum over i runs over atoms and pro-

jectors for a given atom. Atomic functions are centered around the position of the

corresponding atom.

Under suitable assumptions, one can show that the expectation value, ∑n

✠
φn ✁ O ✁ φn ✡ ,

of an operator O can be expressed as expectation value between pseudo-orbitals,

∑n

✠
φPP

n ✁ ✁
O ✁ φPP

n ✡ , of an equivalent operator
✁
O that can be written as:✁

O ✡ � †O � ✁ O
✂ ∑

i j

✁ βi ✡ ✄ ✠
ψi ✁ O ✁ ψ j ✡ ✁ ✠

ψPP
i ✁ O ✁ ψPP

j ✡ ✆ ✠
β j ✁ ☛ (44)

With this relation, one can express the total energy as a function of smooth pseudo-

orbitals φPP
n ✓ r ✔ , that can be easily expanded into PWs. The ED can be expressed

via equation (44) by adding an “augmentation” term to the standard expression,

equation (26):

ρ ✓ r ✔ ✁ 2
N

∑
n � 1

�
✁ φPP

n ✓ r ✔ ✁ 2 ✂ ∑
i j

✠
φPP

n ✁ βi ✡ Qi j ✓ r ✔
✠
β j ✁ φPP

n ✡✂✁ (45)

The functions

Qi j ✓ r ✔ ✁ ✓ ψi ✓ r ✔ ψ j ✓ r ✔ ✁ ψPP
i ✓ r ✔ ψPP

j ✓ r ✔✌✔ (46)

are nonzero only in the core region(s) of the respective atom(s). These are however

quickly oscillating functions, due to orthogonality to core states, and are as such

unsuitable for Fourier expansion.

Within the USPP formalism, the Q functions are in turn pseudized and trans-

formed into equivalent but smoother functions that can be safely expanded into

Fourier components. The needed cutoff, however, often exceeds the cutoff E
ρ
c

✁ 4Ec

that would be needed in the absence of the augmentation term. The solution that is

typically adopted for USPP is the introduction of a second FFT grid, corresponding

to a cutoff E
ρ
c ✄ 4Ec. The ED is thus available, both in real and in reciprocal space

on this grid. The analogy with PAW suggests that the true charge density can be re-

constructed by replacing the pseudized Q functions with the original, unpseudized

Q functions of equation (46).

In the PAW method, instead, the augmentation term is calculated and stored on

radial grids centered around atomic positions. All energy and potential terms needed

in the formalism are calculated – under suitable assumptions – using either the FFT
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grid or the radial grids; there are no “mixed” terms involving both grids. If the ED

is desired e.g. for inspection or for visualization, however, both grids are needed.

3.3.2 The problem of “strongly correlated” systems (DFT+U)

The most commonly used DFT approximations, i.e. GGA (the “2nd rung of the

ladder”), are notoriously unreliable for “strongly correlated” systems, i.e. those con-

taining highly localized atomic-like orbitals. The big problem with DFT seems to be

getting the correct occupancy of atomic-like orbitals: 3d, 4d, 5d for transition met-

als, 4f for rare earths, 5f for actinides, in a sea of delocalized band electrons. Current

approximated exchange-correlation functionals tend to favor unphysical noninteger

occupancies. Such behaviour can be traced to an important feature of the exact func-

tional that is missing in approximate ones: a discontinuity, as a function of the num-

ber of electrons, when an integer number is crossed. This can in turn be traced to the

incomplete cancellation of the self-energy, a problem that is absent by construction

in HF, but is present to some extent in all approximate functionals.

DFT+U is a simple extension of conventional DFT that was devised to deal with

highly correlated electrons. The basic idea of DFT+U (originally called LDA+U)

is to add a Hubbard-like term for a suitably chosen subset of localized electron

states [48]. The presence of (at least) an adjustable parameter U , of various possible

choices for the manifold of localized states and for the Hubbard term itself, may

induce to think that DFT+U is more akin to a semiempirical correction to DFT than

to a real fi rst-principle technique. Still, DFT+U is a very useful tool that has proven

able to yield very good results in highly correlated materials at the price of a modest

computational overhead.

Quantum ESPRESSO implements a simplifi ed (“no-J”) rotationally invariant

form of the Hubbard term:

EHub
✁

U

2
∑
I ✄ σ Tr ✆ nIσ ✓ 1 ✁ nIσ ✔ ✝ (47)

where nIσ is the occupation matrix on the chosen manifold of localized states for

atom I, for spin σ , and U is the Hubbard parameter [49]. The occupation matrix is

defi ned as

nIσ
mm ✑ ✁ ∑

n

f σ
n

✠
φσ

n ✁ PI
mm ✑ ✁ φσ

n ✡ (48)

where PI
mm ✑ is the projector over the chosen manifold of localized states, f σ

n the oc-

cupation (between 0 and 1) for electron orbital φ σ
n . Typically the projector P simply

projects over atomic states, and only on strongly localized ones (e.g. 3d in fi rst-row

transition metals and so on). The most delicate decision in a DFT+U calculation is

probably the choice of the parameter U . For each atom in a given electronic con-

fi guration, experience and experiments indicate a typical range for U , usually a few

eV. One can use U as an adjustable parameter; a more satisfactory procedure, de-

scribed in Reference [49], allows a consistent value of U to be determined from
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fi rst principles. The introduction of the U parameter may have profound effects on

the electronic structure, and as a consequence, on the charge density of strongly

correlated materials.

3.4 The CRYSTAL package

3.4.1 General features

CRYSTAL was conceived more than thirty years ago [50] as an extension to periodic

systems of the powerful ab-initio molecular codes which were available at that time

[51, 52, 53]. It has since been developed by researchers of the Theoretical Chem-

istry Group in Torino (Italy) and of the Computational Materials Science Group in

Daresbury (UK), with important contributions from other scientists, as documented

in the CRYSTAL site [2]. CRYSTAL solves the periodic HF and KS equations with

a variety of exchange-correlation potentials (see Table 2). As in the molecular codes

that served as its template, it adopts a BS of GTOs; this choice has some advantages

and drawbacks as already anticipated in Section 3.1, and as analyzed in more de-

tail in Section 3.4.2. An attractive feature related to the local character of the basis

functions is that not only 3-dimensional crystals, but also structures periodic in 2

(slabs), 1 (polymers) and 0 (molecules) dimensions are treated by CRYSTAL with

the same basic technology without any need of artifi cial replication of the subunits.

In all cases, the symmetry of the system is fully exploited: for instance in carbon

nanotubes (a 1-dimensional polymer), profi t can be taken of the helicoidal sym-

metry with substantial time savings [54]. Among the many facilities embodied in

CRYSTAL we list below some which are of interest in the present context.

1. Full geometry optimization is feasible with respect to both lattice parameters

and atomic positions. It is also possible to perform volume constrained geometry

optimization: that is, for a given crystalline structure and for a given cell volume

V , the minimum energy confi guration is determined. From the corresponding

E ✓ V ✔ curves, the effect of pressure on various properties of the system, including

DFs, can be determined.

2. The vibrational frequencies at κ ✁ 0 ✓ Γ ✔ and the corresponding infrared inten-

sities are determined in the harmonic approximation; an anharmonic correction

is performed for the stretching mode of X-H bonds. Each normal mode is clas-

sifi ed by symmetry and can be visualized. The comparison with experimental

vibrational data becomes easy, and often results in extremely good agreement

[55]. Zero-point-motion and fi nite-temperature effects can be determined in the

frame of the harmonic approximation (there may be the need of complementing

the information at Γ with that at other points in the BZ, which may be obtained

from supercell calculations). The knowledge of nuclear motions can be used for

estimating Debye-Waller atomic factors or, more generally, for obtaining an en-

semble description of electronic DFs at fi nite temperatures (see Section 5.1).
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3. All-electron calculations are feasible in all cases, and are preferable to PP ones

when one is interested in DFs for the reasons discussed in Section 2.2.3. Note

however that no relativistic corrections for core electrons are yet implemented in

CRYSTAL.

4. Various tools are available for representing the ED and calculating the static

structure factors. Among the examples provided below of the use of these tools,

one concerns the “ED deformation map” of a molecular crystal, that is, the dif-

ference between the density in the actual system, and the superposition of the

densities of the isolated molecules at the geometry they have in the crystal (see

Section 4.2).

5. An essential descriptor of EDs is Bader’s topological analysis (see Section 2.1.1).

CRYSTAL is connected to Gatti’s TOPOND program [56] in the sense that it

provides the latter with the information required for determining all topological

properties of interest (see Chapter 1 in this Book).

6. The EMD, the directional CPs, the reciprocal form factor ✎ B ✓ r ✔ ✑ , and their

anisotropies can be calculated in different ways which provide results of differ-

ent accuracy according to the nature of the system (insulator, conductor). Again,

examples are provided below.

7. The effect of a static, uniform external electric fi eld on the DM can be studied

in CRYSTAL in two ways, either by superimposing a sawtooth potential (which

preserves periodicity on a supercell scale), or by calculating the fi rst and sec-

ond derivatives of the DM with respect to the fi eld components in the frame of

coupled-perturbative HF or DFT: see Section 5.2 for more details.

8. In its most recent version CRYSTAL is connected to CRYSCOR, a post-HF code

which permits the correction to the energy and to the DM of the crystalline sys-

tem to be calculated at the lowest order of perturbation theory (see Section 5.3).

3.4.2 The basis set problem

CRYSTAL shares with standard molecular codes the use of GTOs as basis functions.

Each atom A carries pA GTOs, each resulting from a “contraction” of MiA Gaussian

“primitives” of angular momentum components
✁ ✞ m centered in RA:

χiA ✓ rA ✔ ✁

MiA

∑
j � 1

ciA ✄ j N
✂ ✄ m ✓ αiA ✄ j ✔ X

✂ ✄ m ✓ rA ✔ exp ✎ ✁ αiA ✄ j r2
A ✑ ☛

Here rA
✁ r ✁ RA, X

✂ ✄ m are real solid harmonics and N
✂ ✄ m normalization coeffi cients;

ciA ✄ j are known as “coeffi cients”, αiA ✄ j as “exponents” of the GTO. As a rule, RA are

nuclear coordinates, but GTOs on “ghost atoms” at a general position can be added.

From its beginnings, CRYSTAL took over from molecular quantum chemistry

the experience gained in the preparation of these sets and the extremely effi cient

algorithms already available for performing one- and two-electron GTO-integrals.

During all these years other innovations were imported from computational quan-

tum chemistry, related to the use of GTOs. Just to mention an example, density-
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fi tting techniques, which permit incredible savings of time in the calculation of the

integrals needed in post-HF schemes [57], can be transferred with few modifi ca-

tions to periodic GTO-based schemes (see Section 5.3). Another side advantage of

the sharing of the same BS, is the possibility of one-to-one comparisons between

the results of periodic and standard molecular calculations; examples thereof are

provided below.

The evaluation of GTO-integrals in CRYSTAL entails problems related to the

periodically infi nite character of the system. Sophisticated techniques have been

implemented which permit the truncation or the accurate approximation of lat-

tice sums: Ewald techniques, multipolar treatment of non-overlapping distributions,

bipolar expansion, etc. On the whole, many thousand lines of code have been devel-

oped for this purpose, which contrasts the amazing simplicity of the corresponding

integral part in PW codes.

The real problem with GTO sets, however, is their inherent incompleteness. For

each system, for each atomic species inside, a choice must be performed of the num-

ber (pA), type ✓ ✁ ✞ m ✔ and contraction scheme (MiA ✞ ciA ✄ j ✞ αiA ✄ j) of the χiA functions.

Again, this contrasts with PW sets which are complete, in principle, and whose qual-

ity is determined by a single parameter (the energy cutoff). An enormous literature

exists on how to set up GTO sets which perform effi ciently for different types of

system. The quality of the GTO set on atom A can in principle be improved at will

by including more and more χiA functions, for instance following a precise strategy

[58]. Techniques for extrapolating the computed energy to the complete BS limit

have also been proposed [59]. For atoms in crystals, a number of AE or valence-

only GTO sets are proposed in the CRYSTAL site, based on past experience [2];

those suggested for oxygen, for example, are different according to whether this

species is present as an oxide ion (as in MgO) or is involved in semi-covalent bonds

(Ice). A clever choice permits a very accurate representation of the ground state (HF,

KS) wavefunction to be obtained with a surprisingly small number of functions, as

compared to PWs.

Two additional problems can fi nally be mentioned.

1. The potential energy surface, E0 ✓ ✆ R ✝✠✔ , that is, the dependence of the calculated

ground-state energy on the set of the nuclear coordinates, bears crucial impor-

tance because it determines not only reaction energies, but also equilibrium con-

fi guration and vibrational frequencies which directly influence DFs. In order to

have reliable values for these quantities, all errors that affect E0 ✓ ✆ R ✝✠✔ should be

approximately constant over the range of nuclear coordinates considered. The

part of this error related to the dependence of BS quality on ✆ R ✝ is known as

BSSE (BS superposition error) [60]. It affects in particular schemes, such as

CRYSTAL, using GTO functions centered in the nuclei: it is generally expected

that the same GTO set describes better structures where atoms are close to each

other than viceversa because in the former case the wavefunction in the inter-

atomic regions can be represented more accurately using “redundant” functions

from neighboring atoms. Many techniques have been proposed to estimate the

BSSE and to correct for it [61]. The automated geometry optimization in CRYS-
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TAL, however, does not take BSSE into account, and may therefore result into

too compact structures, for the reasons just explained.

2. The use of extended atomic sets comprising very diffuse (low exponent) prim-

itives may lead to quasi-linear-dependence effects between functions centered

in different atoms. With densely packed systems as are encountered in solid

state problems, this type of “overcompleteness” easily results in catastrophic be-

haviour. As concerns the use of high angular momentum functions, the present

version of CRYSTAL is limited to
✁ ✁ 3 (s ✞ p ✞ d ✞ f GTOs).

4 Role of computational parameters on density functions

We provide below a few examples of simulated DFs for crystalline systems ob-

tained with the two programs described in the previous Section. Different computa-

tional choices and their consequences on the results will be considered in the various

cases. The objective is to provide an outlook of present capabilities and an indica-

tion of possible pitfalls due to unwise selection of the computational parameters.

The cases of two typical covalent systems (Silicon, Diamond), of a molecular crys-

tal (Urea) and of a metal (Aluminium) are considered. As concerns ionic systems

(LiN3, MgO, for instance), reference can be made to the existing literature [62, 63].

Finally, the effect of the Hamiltonian on spin localization in an ionic spin-polarized

system (KMnF3) is discussed.

4.1 ED of Silicon and Diamond: Basis set and Hamiltonian effects

Silicon and Diamond are two prototypical covalent systems: for this reason and for

their intrinsic importance, they have been devoted enormous attention to. Among

the many papers concerning the properties of their DM (see for instance the recent

synchrotron-radiation experiment with powder samples [64]), we will refer in the

following to the study by Lu et al. [21], who compared the EDs resulting from their

all-electron LDA calculations for Diamond, Silicon and Germanium with those from

experimental data, and in particular from accurately analyzed X-ray diffraction data

for crystalline Silicon. Reference can also be made to the comprehensive studies

performed with CRYSTAL about contemporarily [65, 66], and aimed at analyzing

the quality of quasi-HF periodic solutions for this kind of systems. Here we consider

the effect on the calculated ED of the quality of the representative BS and of the

type of Hamiltonian adopted, by taking advantage of the availability of the two

computational tools. Silicon is fi rst considered in more detail; similar results are

next reported for Diamond.

Figure 1 documents the BS dependence of two quantities related to the ED: its

value at the Si-Si midpoint (δ ) and the “forbidden” F222 structure factor, whose

non-zero value is a measure of the asphericity of the ED about the individual
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atoms (see Section 2.1.1). All data here shown were obtained with the PBE choice

for Vxc ✓ r; ✎ ρ ✑✘✔ (see Section 3.2), but very similar trends were obtained with other

choices; the lattice parameter was set at its experimental value, a = 5.43 Å. The

Quantum ESPRESSO calculations were performed using the PAW technique (see

Section 3.3.1; PAW pseudopotentials were generated using the parameters given in

paw library, contained in the Quantum ESPRESSO distribution). Different Ec

values were tried as shown in the fi gure; correspondingly, the cutoff for the core

contribution was varied from 48 to 120 Ry. As concerns the sampling in k space, a

displaced Monkhorst grid with w=4, s=1/2 for all i’s (see equation 32) was generally

adopted, which may be labelled K4’; the adequacy of this choice is demonstrated

in the left panel, which shows the effect of using different undisplaced (Kw) or dis-

placed (Kw’) k-grids with Ec=20 Ry. In the CRYSTAL all-electron calculations, a

K8 sampling net was used, and a number of GTO sets were tried, which can be

classifi ed in two categories. The former category comprises double-zeta 8-41G sets

as in reference [66], complemented with n (the number of asterisks) polarization

functions of type d, d+d, d+d+f, respectively; the 8-41G***(sp) includes in addition

a single-GTO sp set at the midpoint of each bond, with exponent 1.4 a.u. The latter

category comprises the 6-21G and 6-21G* sets as in reference [66].

Fig. 1 Effect of basis set quality on ρ � δ ✁ , the calculated ED at the bond midpoint (left panel) and

on the F222 structure factor (right panel) for crystalline Silicon, using the DFT-PBE Hamiltonian.
The Quantum ESPRESSO results (triangles) are reported as a function of the cutoff energy Ec

(scale on top); the CRYSTAL ones along an arbitrary scale (at bottom) corresponding to GTO sets
of increasing quality: 8-41Gn ✂ (full circles) or 6-21Gn ✂ open circles). The two horizontal dashed
lines indicate the estimated experimental value [21]. See text for other details.

The regular trend of the Quantum ESPRESSO results is clear and, as far as these

quantities are concerned, the limit with respect to Ec seems reached. The CRYSTAL

results are more scattered, as expected. Note in particular that the 6-21G* results are

curiously very similar to the best PW results, which represents a warning against too

hasty conclusions about the adequacy of the adopted BS. From the present data it
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appears in fact that convergence of the GTO sets towards the BS limit may be slower

for DM related quantities than for energy: the PBE energy per cell for the three best

GTO sets here used is -578.7798, -578.7821, -578.7826 Eh, respectively.

The converged results are also quite close to the data proposed by Lu et al. [21],

by extrapolation to zero thermal motion of the best experimental results: ρ ✓ δ ✔ =

0.086 a.u., F222 = 0.181 e/atom.

Fig. 2 Silicon ED along
the Si-Si bond with
different one-electron
Hamiltonians, as indi-
cated, and using either
CRYSTAL (left panel)
or Quantum ESPRESSO
(right panel). The trian-
gles are the experimental
value [21].

Figure 2 reports the ED along the Si—Si bond for various Hamiltonians (see Sec-

tion 3.2), as a function of the distance r from the bond midpoint in units of the lattice

parameter. For the CRYSTAL calculations (left panel), the 8-41G***(sp) GTO set

was used. For the Quantum ESPRESSO calculations (right panel), a K4’ grid and

a cutoff of 30 Ry were adopted; the core charge and the augmentation term in the

valence charge were directly plotted in real space. Note that in the present version

of this code, the PAW technique cannot be used with non-local exchange Hamil-

tonians. The LDA functionals SVWN and PZ have been used with the two codes,

respectively. According to the CRYSTAL calculations, close to the bond midpoint

the HF EC lies highest followed by the hybrid functional (B3LYP), the GGA (PBE),

and the LDA ones; the Quantum ESPRESSO results with the pure DFT Hamiltoni-

ans are almost the same.

Fig. 3 Diamond ED.
Symbols as in Figure 2.

Results similar to those just presented were obtained with Diamond (see Fig-

ure 4.1). Again, the experimental geometry was adopted (a = 3.567 Å); a 6-31G**

GTO set taken from the literature [65] complemented with an additional f-type po-

larization set was used for the CRYSTAL calculations (left panel); for the Quantum

ESPRESSO ones (right panel), a K4’ grid and a cutoff of 45 Ry were adopted.
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For the two systems, the ED presents a Bader critical point of type (3,+1) at the

bond midpoint δ , and its value increases steadily moving away from it along the

bond. The case is different if one considers only the contribution to the ED from

valence electrons, ρval ✓ r ✔ . An “experimental” determination of this non-observable

quantity can be obtained by subtracting from the reconstructed ED the contribution

of core electrons from accurate atomic calculations: both in silicon and in diamond

ρval presents a relative maximum at two symmetry related points (γ) when mov-

ing from δ towards the cores [21]: in the case of silicon the difference between the

two values is almost undetectable experimentally. It may be interesting to compare

these experimental data with those from CRYSTAL all-electron calculations (but

using only the valence bands in the primed sums of equation 35), or from Quantum

ESPRESSO valence-only computations because the differences between the various

schemes become so more evident (see Table 3). The computational conditions are

as before; in particular, with CRYSTAL, two GTO sets of comparable quality: 8-

41G*** and 6-31G**, have been used for silicon and diamond, respectively; in the

PW calculations, norm-conserving pseudopotentials from the Quantum ESPRESSO

library 1, a K4’ grid and cutoffs of 30 and 70 Ry for Silicon and Diamond, respec-

tively, were adopted. The agreement with the experimental determinations is gener-

ally excellent, the hybrid B3LYP functional performing particularly well. The HF

data appear to exaggerate the value of ρ ✓ δ ✔ for both systems.

Silicon Diamond

Hamiltonian BS ρval � δ ✁ ρval � γ ✁ ∆ρval ρval � δ ✁ ρval � γ ✁ ∆ρval

HF GTO 0.093 0.094 0.001 0.251 0.285 0.034
PW 0.095 0.095 0.001 0.261 0.300 0.039

B3LYP GTO 0.087 0.088 0.001 0.240 0.285 0.045
PW 0.089 0.091 0.002 0.247 0.307 0.060

PBE GTO 0.084 0.085 0.001 0.235 0.281 0.044
PW 0.085 0.086 0.001 0.240 0.300 0.061

LDA GTO 0.083 0.084 0.001 0.233 0.280 0.047
PW 0.084 0.086 0.002 0.242 0.295 0.053

Experiment [21] 0.086 0.086 0.000 0.240 0.287 0.048

Table 3 Valence electron density data (a.u.) for silicon and diamond at the experimental geometry:
δ is the bond midpoint, γ the location of the maximum along the bond; ∆ρval � ρval � γ ✁✂✁ ρval � δ ✁
the depth of the minimum. See text for the computational conditions and other details.

4.2 Environmental effects on the DFs of a molecular crystal: Urea

In a molecular crystal the constituent molecules are clearly identifi able even if in a

geometry slightly different from the one they have in the gas phase. In the case of

urea, the one treated in this Section, there are two symmetry-equivalent molecules

per unit cell whose bond lengths and angles are modifi ed to a small extent with re-

1 For Si: Si.pbe-rrkj.UPF, Si.pz-vbc.UPF, Si.blyp-rrkj.UPF; for C:

C.pbe-mt.UPF, C.pz-vbc.UPF, C.blyp-mt.UPF.
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spect to the free molecule (in particular, they take a planar confi guration). On the

whole, however, the weak interactions which set in between the molecules when the

crystal is formed do not alter in any essential way their electronic structure. In order

to make evident the role of intermolecular forces on DFs, it is then customary to

consider so-called interaction DFs, ∆ρ ✓ r ✔ and ∆π ✓ p ✔ . Reference is made for this

purpose to a procrystal formed by N molecules in the unit cell (two in our case)

and from all their translationally equivalent copies, in the same geometry and posi-

tion they have in the crystal, but mutually independent. For each of those pseudo-

molecules (M ✁ 1 ✞ N), the appropriate DF ✎ ρM ✓ r ✔ ✞ πM ✓ p ✔ ✑ , is computed using the

same technique as for the crystal ✎ ρ cry ✓ r ✔ ✞ πcry ✓ p ✔ ✑ . We can so defi ne:

∆ρ ✓ r ✔ ✁ ρcry ✓ r ✔ ✁ ∑
M ✄ T ρM ✓ r ✁ T ✔ ; ∆π ✓ p ✔ ✁ πcry ✓ p ✔ ✁ ∑

M

πM ✓ p ✔ (49)

In the second equation, we have exploited the independence of FTs from the origin,

and used the normalization convention of Section 2.1.

The effect of the crystalline environment on the DFs of urea has been the ob-

ject of intense experimental and theoretical work, because of the simple and at the

same time intriguing structure of this system. In the crystal, the urea molecules are

arranged top-to-tail to form two series of planar tapes, oppositely oriented and mu-

tually orthogonal; hydrogen bonds are the main responsible for the links within the

tape and between the tapes: the terminal oxygen of each molecule is thus forming

four such bonds, an almost unique feature in molecular crystals.

Probably the most complete study to date of the ED of crystalline urea is the one

by Birkedal et al. [67], who have reported synchrotron diffraction data of unprece-

dented precision, very accurately analyzed; the reconstructed experimental ED is

there compared to that resulting from periodic HF calculations, by considering the

respective characterization of the most important critical points owing to Bader’s

theory [8]. Gatti has recently reviewed the power of this theory using precisely urea

as a test case [10] and extending the analysis performed in a pioneering ab-initio

HF study [68]: in particular, he demonstrated the ability of topological analysis to

describe quantitatively environmental effects on the ED, both as concerns the in-

termolecular and, indirectly, the intramolecular region (for instance, the apprecia-

ble change of the dipole moment of the molecule in the crystal with respect to its

gas-phase value). The important discussion about the detectability of environmental

effects from diffraction data by Spackman et al. [69] is also worth mentioning.

While in those studies only one type of periodic computation was considered

(HF, with GTO BSs of rather good quality), we document here briefly the influ-

ence of Hamiltonian and BS on the description of ρ ✓ r ✔ and ∆ρ ✓ r ✔ , and extend

the discussion to EMDs; for the latter case, which has been the object of a recent

study by some of us [70], only results obtained with CRYSTAL are reported, be-

cause the analysis of EMDs is not yet feasible with the current version of Quantum

ESPRESSO. In the following, all calculated data are referred to the experimental

crystalline geometry [71] in order to make them comparable to each other and to the

experimental data. Some of the GTO sets here used are taken from recent theoretical

studies performed with CRYSTAL on urea and other molecular crystals [72, 73]; in
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order of increasing quality: 6-31G(d,p) ✎ here and in the following, the fi rst set of

polarization functions is assigned to fi rst row atoms C,N,O, the second to H ✑ ; 6-

311G(d,p); 6-311G(2df,2pd); TZPP; QZVPP. The last two GTO sets belong to a

family devised by Ahlrichs and coworkers [74].

Figure 4 reports total and interaction ED maps obtained from HF CRYSTAL

calculations with a very good (TZPP) GTO set. The picture is very similar to that

provided by Spackman et al. [69]: with respect to the superposition of molecular

densities the most notable feature is a build-up of charge in front of the terminal

oxygen, due to the population of the hydrogen bonds with the neighboring molecule

and to the corresponding de-population of the N-H intramolecular bonds.

Fig. 4 Total (left panel) and interaction (right panel) charge density of crystalline urea in the � 110 ✁
plane, resulting from HF calculations using a TZPP GTO set (see text). In the ρ � r ✁ map, the
distance between consecutive lines is 0.01 a.u.; in the ∆ρ � r ✁ map, it is 0.001 a.u.

Fig. 5 Charge interaction density
�
∆ρ � r ✁✂✁ along the O ✄☎✄☎✄ C intermolecular direction (origin at O).

The plots on the left, obtained with Quantum ESPRESSO, show the dependence on the Hamilto-
nian. Those on the right, the dependence on the BS for the PBE Hamiltonian: they were obtained
with CRYSTAL except for the PW result, taken from the left panel. See text for details.
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Figure 5 describes the interaction ED along the line from the terminal O to the

central C in the neighboring molecule, at a distance of 3.42 Å: this may not be the

direction where environmental effects are the largest [10], but allows both inter- and

intra-molecular changes of the ED to be recorded. The left panel shows the depen-

dence on the Hamiltonian, as resulting from Quantum ESPRESSO calculations. In

fact, in this case the procrystal was simulated by only two molecules, those contain-

ing the two selected atoms: therefore, ∆ρ ✓ r ✔ is not accurate beyond 2.4 Å from O,

where the densities of other molecules become comparatively important. A cutoff

Ec=50 Ry was used, practically corresponding to convergence: the HF and LDA

solutions represent again two extremes as concerns the entity of the interaction den-

sity. The right panel, which refers to PBE calculations with different BSs, performed

with CRYSTAL and using the complete procrystal, shows that convergence towards

the PW solution in a vicinity of the O atom is achieved only with very sophisti-

cated GTO sets. Interestingly, convergence of the calculated cohesive energy of the

crystal to within 1 kJ/mol could be reached even when considering GTO sets of 6-

311G(2df,2pd) quality [72, 73]: this shows again that DFs can be more sensitive to

BS quality than energy related quantities.

The question has been raised by Spackman et al. [69] whether these environmen-

tal effects, unambiguously revealed by theoretical investigations, can be detected

from experimental structure factors. In spite of the availability of new high quality

data obtained either via X-ray [75] or synchrotron diffraction [67] and of very so-

phisticated tools for their interpretation, the debate on this matter is still open.

Information from directional CPs is shown below to provide clearer evidence of

the effect of the crystalline environment on the DM of urea; also the level adopted

for its theoretical description appears to play here a more relevant role.

We have considered the CPs in the main three crystallographic directions: ✎ 001 ✑ ,
along the tapes and perpendicular to the other two; ✎ 100 ✑ , forming an angle of π /4

with the planes containing the tapes; ✎ 110 ✑ , parallel to one set of tapes and per-

pendicular to the other. The experimental CP anisotropies ✎ Jhkl ✓ p ✔ ✁ Jh ✑ k ✑ l ✑ ✓ p ✔ ✑ , ob-

tained from very accurate measurements using synchrotron radiation [76], can be

compared directly with the calculated ones after correcting the latter for the lim-

ited experimental resolution (see Section 2.1.2). In examining the influence of the

Hamiltonian on EMDs, we have also performed post-HF MP2 calculations, owing

to the scheme (b) described in Section 5.3. We don’t analyze here the important

effects of BS quality, and report only the results obtained with the best BS feasible

with all techniques, namely the 6-311G(d,p) BS previously introduced.

Two independent CP anisotropies, ✎ J001 ✓ p ✔ ✁ J100 ✓ p ✔ ✑ and ✎ J110 ✓ p ✔ ✁ J100 ✓ p ✔ ✑ , are

shown in Figure 6. The fi rst one is comparatively large, since it describes in a way

the difference between the EMD in the direction of the tapes and perpendicular to

them; the second one, between the two perpendicular directions, is much smaller, as

expected, and still reveals the extreme sensitivity of CPs to directional effects. Com-

parison of the CP anisotropies for the crystal and the procrystal, the latter obtained

following the scheme of equation 49, shows that environmental effects are clearly

visible, both from the experimental and the theoretical viewpoint. Inspection of the
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Fig. 6 CP anisotropies of urea:
�
J001 � p ✁ ✁ J100 � p ✁ ✁ (left panel) and

�
J110 � p ✁ ✁ J100 � p ✁ ✁ (right panel),

obtained with different techniques (see inset), and given as percentage of the respective J001 � 0 ✁
value. All theoretical data were corrected for the experimental resolution.

results obtained with the different Hamiltonians, indicates that the HF+MP2 ap-

proach gives defi nitely better results than DFT, especially at intermediate moments.

This is not unexpected (see Section 2.2): the MP2 method, taking advantage of the

exact description of the electronic Fermi (exchange) correlation already provided

by the reference HF method, can also recover a signifi cant portion of the dynamic

Coulomb correlation of the electronic motions. On the contrary, DFT describes both

Fermi and Coulomb correlation as an average on the ground-state charge density and

therefore cannot perform particularly well in predicting EMDs [77, 78].

Fig. 7 Correlation contribution
JMP2

hkl � p ✁ to the three CPs along
the main crystallographic direc-
tions [001], [100], and [110].

Figure 7 shows JMP2
hkl ✓ p ✔ , representing the correlation correction to the HF CP,

JHF
hkl ✓ p ✔ , in the three directions. This correction is small (well within 1% of J001 ✓ 0 ✔ ,

whose value is � 24.70 a.u.) and would be hardly visible in the scale of Figure 6. Two

features can be noted, however: i), the MP2 correction is negative at low momenta,
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positive at high momenta, corresponding to the higher average kinetic energy of

correlated electrons and, ii), this correction reduces the HF CP anisotropies.

Fig. 8 Directional RFF
B001 � r �

RL ✁ calculated with
different techniques, as
indicated. RL=8.84 a.u. is the
length of the first non-zero

lattice vector along the [001]
direction.

More direct evidence of correlation effects is provided by the directional RFFs

(see Sections 2.1.2 and 2.2.3). Consider the data of Figure 8. The RFFs along the

[001] direction calculated with different Hamiltonians are there reported at an in-

termediate range as a function of the ratio r ✁ RL, RL being the length of the fi rst

non-zero lattice vector in that direction. Equation 38 tells us that all RFFs obtained

from single-determinant wavefunctions must be zero at r ✁ RL=1, independently of

the BS used. This is in fact what is observed in the two examples reported (HF,

PBE), and the same has been verifi ed to happen in all cases and for all directions,

provided that the calculations are numerically accurate. It is noteworthy that the

MP2 correction, though minute, results in a signifi cant departure from such zero

condition. This indication is susceptible of an easy experimental check, which is

however not possible from the data provided in reference [76].

4.3 ED, EMD, CPF of simple metals: the case of Aluminium

The accurate determination of the DM of metals involves a number of special prob-

lems, both fundamental and technical, which can be schematically stated as follows

with reference to the prototypical metallic system, namely the electron gas [79].

1. The single-determinant description of this system is by necessity an antisym-

metrized product of PWs: φ X
n ✓ r;κ ✔ ∝ exp ✓ ıκ ✓ r ✔ or φ X

n ✓ p;κ ✔ ∝ δ ✓ p ✁ κ ✔ . Since

the associated eigenvalue εX
n ✓ κ ✔ monotonously increases with ✁ κ ✁ (in a way de-

pending on X), the occupied ground-state manifold fi lls a sphere in reciprocal

space centered in the origin and of radius KF
✁ ✓ 3ρ ✁ 8π ✔ 1 ☎ 3, where ρ ✁ N ✁ V is

the number of electrons per unit volume. As is clear from equation (36), the cor-

responding EMD has then the constant value 2 ✁ ρ for ✁ p ✁ ✄ KF , zero otherwise.

For real metallic systems, these features are obviously modifi ed but the change in

the number of occupied states at the two sides of the Fermi surface always results

in a sharp discontinuity in the EMD at p ✁ κF
✂

G where κF lies on the Fermi

surface and G is a reciprocal lattice vector. This is an intrinsic defi ciency of one-
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electron approximations. A many-body analysis of the interacting-electron-gas

problem shows in fact that, due to electron correlation, the discontinuity of the

EMD at KF exists indeed, but is not as sharp: π ✓ p ✔ has a non-zero tail also for

✁ p ✁ ✄ KF , compensated for by a decrease of the EMD for ✁ p ✁ below KF . Explicit

expressions for correcting EMDs from one-electron approximations have been

proposed by Lundqvist and Lydén [80] and by Lam and Platzman [81].

2. The HF description of the DM of the free electron gas coincides with that pro-

vided by any one-electron Hamiltonian. This is no longer true when real metals

are considered, in particular as concerns the ED, for which the KS equation gives

in principle the exact result. One may wonder how the two kinds of approxima-

tion perform when considering the EMD of metals. For this kind of systems HF

is usually mistrusted because the κ dependence of the HF free-electron eigen-

values, εHF
n ✓ κ ✔ has an unphysical logarithmic singularity at ✁ κ ✁ ✁ KF . While this

fact has unpleasant consequences on band structures, it hardly influences DFs, as

is shown below.

3. From a technical viewpoint, it is generally believed that GTF BSs (or any set of

atom-centered local functions) cannot adequately describe conduction electrons,

and that the use of PWs is nearly mandatory.

The case of Aluminium is here briefly considered in order to provide indications on

the influence of these problems on calculated DFs of metals.

We fi rst note that the third of the questions raised above is not fully justifi ed.

Figure 9 shows that a GTO BS of triple-zeta plus polarization quality quite ac-

curately reproduces the valence ED obtained with a rich PW set and using norm

conserving PPs 2. The results here reported are obtained with the PBE Hamilto-

nian. The effect of other choices for the exchange-correlation potential on the ED

of Aluminium seems less relevant than in the case of the insulators considered in

the previous sections. For instance, the value of the ED at the midpoint between two

second-neighbor Al atoms is 0.0166 (0.0165); 0.0163 (0.0161); 0.0164 (0.0160) e

Bohr ✂ 3 for PBE, LDA, HF, respectively, using the same computational conditions

as in Figure 9 (data in parentheses are those obtained with CRYSTAL).

Fig. 9 Calculated valence
ED of Al along the main
directions using the PBE
Hamiltonian. The Quantum-
ESPRESSO results (crosses)
were obtained using a
PW cutoff of 25 Ry and
a 20 � 20 � 20 grid; for the
CRYSTAL calculations (con-
tinuous lines) a 5-311G**
BS (LBS) and a 16 � 16 � 16
grid were adopted.

2 Al.pbe-rrkj.UPF from the Quantum ESPRESSO web site.
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While no accurate experimental determination of the Al ED seems to exist to

compare with the present calculated results, the same is not true as concerns EMD

data from directional CPs, for which very detailed experimental data and an accurate

theoretical analysis exists [82, 84]. The case is more interesting here because, as

stated at the beginning of this Section, the limitations of the one-electron description

of metallic systems are more evident on EMD than on ED data.

As concerns the EMD, all the present one-electron calculations provide practi-

cally the same result, namely a quasi-free characterization of valence electrons, very

much in line with that provided by Canney et al. a few years ago [83].

Figure 10 reports calculated and experimental CPs along the ✎ 111 ✑ direction; the

following can be noted. The agreement with the experiment [82] of both LDA and

HF results is signifi cantly improved when the Lam-Platzman correlation correction

[81] is included which brings in, as expected, an increase of momentum densities

just above the Fermi momentum (KF � 0.92 a.u.), and a decrease at low momenta.

Apparently, HF performs slightly better than LDA.

Fig. 10 CPs of Al in
the

�
111 ✁ direction. LDA

(left panel) and HF (right
panel) all-electron re-
sults (thin continuous
lines), were obtained
with CRYSTAL using the
same setup as in Figure
9; the thick continuous
lines show the Lam-
Platzman-corrected data.
Experimental data (small
full circles) are from ref-
erence [82]. All calculated
data were corrected for the
experimental resolution.

CP anisotropies may provide additional information on the performance of var-

ious theoretical schemes, because many systematic errors which may be present in

the individual experimental CPs are cancelled when performing the difference. Fig-

ure 11 reveals non negligible differences between the two calculated anisotropies:

they are however quite small, of the same order as the experimental error (
�

0 ☛ 02

a.u.), so nothing defi nite can be inferred in the present case.

4.4 ESD: The effect of the Hamiltonian on spin localization

An important sector of DM studies aims at the determination of accurate ESD data

of spin-polarized crystals from diffraction experiments using polarized neutrons [86,

87] (see also Chapter 14). The treatment of non-collinear magnetism in solids is very



Electron densities from the ab-initio simulation of crystalline solids 37

Fig. 11 CP anisotropy�
J110 � p ✁ ✁ J111 � p ✁ ] for the

Al crystal, at the HF (dotted
line) and LDA (continuous
line) level of theory. Ex-
perimental data (small full
circles) are from reference
[82].

complex, and only recently some solutions have been proposed within KS-LDA

approaches [88]. In many instances, however, when the spins are essentially aligned

along one preferential direction, it may be expected that a single-determinant spin-

unrestricted approach can provide a satisfactory description of ESD. These cases

are ideally suited to ascertain the effect the expression adopted for the corrective

potential
✁
V X ✄ σ on the calculated ESD.

We consider here the case of a cubic perovskite (KMnF3). The Mn ✄ 5 ions, for-

mally in a d5 confi guration, are at the center of an octahedron of F✂ ions, while

K ✄ ions occupy the center of the vacancies between F ✂ octahedra. KMnF3 can be

found in a ferromagnetic (FM) confi guration (all spins aligned) or an antiferromag-

netic (AFM) one, where spins are opposite in sign on fi rst neighbor Mn ions. The

AFM confi guration is more stable, due to a super-exchange effect mediated by the

F ions midway between neighboring Mn ions. The magnetic coupling constant J

(calculated from the difference in stability between the two confi gurations with ref-

erence to the Ising Hamiltonian) is experimentally known to be -3.65 K [89].

The unrestricted (u-) results reported below were obtained with the CRYSTAL

program, by trying a variety of
✁
V X ✄ σ expressions (see table 2), and using an all-

electron BS of double-zeta quality (triple-zeta for fluorine). It is known that, while

HF eccessively favors spin localization (the exact-exchange operator
�

Vexch in equa-

tion 27 very effectively screens from each other electrons with the same spin),

the opposite is true with expressions of the
✁
V KS potential currently used; hybrid-

exchange schemes are expected to work optimally in this respect.

Figure 12 shows ESD data obtained for the FM and AFM confi gurations using

either the HF or an LDA (SVWN) Hamiltonian. Table 4 reports ESD and J data for

a variety of one-electron Hamiltonians.

The general picture is similar in all cases. Apart from a fi ne structure near the

nuclei, a very high ESD peak is observed at about 0.4 Bohr from the Mn nucleus,

and a much smaller one at about 0.3 Bohr from the F nucleus; broadly speaking,

the AFM picture can be obtained by reporting, in alternating cells, the opposite

of the FM ESD. On closer inspection, it is found that the height of the Mn peak

decreases and that of the F peak increases, when passing from HF, to the two hy-

brid schemes (PBE0 and B3LYP with a fraction of 25% and 20% exact exchange,



38 Cesare Pisani, Roberto Dovesi, Alessandro Erba and Paolo Giannozzi

respectively), to GGA (PBE), to LDA. This reflects the decreasing capability of lo-

calizing spin densities along this sequence. Higher values of the spin density on F

entail larger super-exchange effects, which explains why the spin coupling constant

is over-estimated with LDA, and under-estimated with HF. From a comparison with

the experimental value of J, it can be argued that the ESD calculated with PBE0 is

possibly the one closest to reality.

The alternative DFT+U scheme for favoring spin-localization in the frame of

KS theory has been described in Section 3.3.2. The parallel application of the two

techniques to the case of magnetic defects associated with O vacancies in metal-

supported NiO and MgO monolayers has recently permitted their relative merits

and problems to be analyzed [91].

maxima of ESD/(au)
Hamiltonian Mn-FM Mn-AFM F-FM F-AFM J/K

u-HF 1.095 1.094 0.027 0.025 -1.251
u-PBE0 1.039 1.033 0.040 0.034 -5.659

u-B3LYP 1.036 1.028 0.048 0.039 -7.879
u-PBE 1.005 0.980 0.047 0.037 -14.103

u-SVWN 0.998 0.967 0.047 0.035 -16.384

Table 4 ESD data for KMnF3. For a variety of Hamiltonians, the calculated height of the FM- and
AFM-ESD maxima in the valence region of Mn and F are reported, along with the calculated value
of the spin coupling constant J (in Kelvin) whose experimental value is -3.65 K.

5 Ongoing developments

The subjects dealt with below are by no means exhaustive of ongoing theoretical

research in the simulation of DMs and DFs in crystals. Rather, they serve the pur-

pose of providing an indication of promising developments intended to overcome

the limitations of existing software.

5.1 The harmonic treatment of thermal effects

It has been argued in Section 3.4.1 that a rather accurate description of the nu-

clear motions can often be obtained in the frame of the Born-Oppenheimer sep-

aration, by adopting the harmonic approximation. Vibrational modes in a crystal

(phonons) can be described in terms of displacements of atoms in the unit cell and

by a Bloch vector q in the Brillouin Zone. These modes can be conveniently cal-

culated at any q using Density-Functional Perturbation Theory, as implemented in

Quantum ESPRESSO [46].
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Fig. 12 ESD data for KMnF3. The four plots on top are ESD maps in a plane containing Mn ions
and four of their six nearest F ions, corresponding to the FM (left) and AFM (right) spin configu-

rations, and are obtained using unrestricted HF (above) or LDA (below). Continuous, dashed and
dot-dash isolines refer to positive, negative and zero ESD values, respectively; they are separated
by 0.005 au; those whose value is larger than 0.05 au (near the core of Mn) are not drawn. The
two bottom plots report the FM- and AFM-ESD values along the line F-Mn-F-Mn-F (the distance
from the F at the left is in Bohr). HF and LDA results are drawn as a continuous and a dotted line,
respectively. The thin lines near the central F ion are a blow-up of the same data in that region by
a factor 10.

In the following we instead suppose that the problem has been solved by using an

F-fold supercell containing F ✁ M nuclei. This amounts to defi ning S ✁ 3M ✁ F ✁ 3

normal modes each characterized by a normal coordinate QI and a characteristic

angular frequency ωI . The general eigenfunction for the nuclei can then be ob-

tained by assigning an excitation level nI
✁ 0 ✞ 1 ✞✌☛☞☛✌☛ to each mode, and by multi-

plying by each other the S corresponding normalized eigenfunctions HnI ✓ QI ✔ of the

one-dimensional harmonic oscillator:
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ΦNuc
n ✓ ✆ R ✓ ✆ Q ✝✠✔ ✝✠✔ ✁

S

∏
I � 1

HnI ✓ QI ✔ ; (50)

the associated energy is simply given (in au) by En
✁ ∑I ωI ✓ nI

✂
1 ✁ 2 ✔ . Here

✆ R ✓ ✆ Q ✝✠✔ ✝ gives the position of the F ✁ M nuclei in the supercell in terms of the

set ✆ Q ✝ of the normal coordinates.

For a given temperature T , a Boltzmann weight wB ✓ n ✞ T ✔ ✁ exp ✓ ✁ En ✁ kT ✔✂✁ Z can

be assigned to ΦNuc
n . Owing to a statistical ensemble approach we can then defi ne a

joint-probability density for the set of the nuclei at the temperature T :

ρNuc ✓ ✆ R ✝ ;T ✔ ✁ ∑
n

wB ✓ n ✞ T ✔ ✁ ΦNuc
n ✓ ✆ R ✝✠✔ ✁ 2 (51)

This function contains information on the correlated motion of all nuclei within

the supercell. It can incidentally be noted that only the softest modes contribute

signifi cantly to the probability density at ✆ R ✝ coordinates not too close to ✆ Req ✝ :

for them, the experimental information is usually insuffi cient to verify the adequacy

of the theoretical harmonic description.

If we are interested in the probability distribution for a given nucleus (the Y -th,

say), we have to integrate over the coordinates of all other nuclei:

ρY ✓ R;T ✔ ✁ � ρNuc ✓ ✆ R ✝ ;T ✔ RY � R d ✆ R ✝ A �� Y (52)

ρY ✓ R;T ✔ has the full periodicity of the lattice. It can be used in principle for cal-

culating iso-density surfaces enclosing a certain fraction (for instance 75%) of the

occurrence probability of nucleus Y , to be compared to the anisotropic displacement

parameters derived from X-ray and neutron diffraction experiments (especially im-

portant for hydrogens). In fact, simpler techniques are usually adopted for this pur-

pose, which combine semi-empirical information from diffraction data with that

resulting from normal mode analysis and take only approximately into account the

correlation of nuclear motions [94].

The joint nuclear probability distribution of equation (51) can be used in principle

to obtain thermally averaged DFs,
✠ ✠

ρ ✓ y ✔ ✡✝✡ T , where y can be x, r or p. Consider a

sample of nuclear confi gurations in the supercell, ✆ R ✝ Tj ✞ ✓ j ✁ 1 ✞☞☛✌☛✌☛☞✞ J ✔ , which has

been generated so as to reflect the distribution probability ρ Nuc ✓ ✆ R ✝ ;T ✔ (this may

be accomplished, for instance, using a Metropolis algorithm [97, 98]). For each of

them, the DF ρ j ✓ y ✔ ✡ ρ ✓ y; ✆ R ✝ T
j ✔ can be evaluated as seen in Section 2. If it is

assumed that the electron distribution follows istantaneously the nuclear motion, we

can write, for large J: ✠ ✠
ρ ✓ y ✔ ✡✝✡ T ; �

1

J
∑

j

ρ j ✓ y ✔ (53)

While this equation seems at present exceedingly costly for practical applications,

its use might be considered for benchmark studies with simple systems.
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5.2 The effect of external fields

Among experimentalists, the effect of external fi elds on the properties of condensed

matter, for instance, on their DFs is a subject of increasing interest [93]. We consider

here the case where a constant electric fi eld E acts on a fi nite (but macroscopic)

crystalline sample; the fi eld direction, E ✁ ✁ E ✁ , perpendicular to the crystalline planes

of Miller indices (h ✞ k ✞ ✁
), will be indicated conventionally as z. In the molecular

case, the addition of an external potential V ext ✁ E ✓ r
✂

c to the Hamiltonian (2)

introduces no essential complications for the solution of the corresponding problem

(equation 1). The situation is different with (pseudo-)periodic systems, because the

super-imposed potential destroys translational periodicity along z.

Two ways around this diffi culty are implemented in CRYSTAL and in Quantum

ESPRESSO. Both techniques are primarily intended to obtain the derivatives of en-

ergy with respect to the fi eld components, which are essential for calculating the

dielectric constant, the polarizability and hyperpolarizabilities of the crystal. These

quantities are not only important on their own, but also because they are a necessary

intermediate for evaluating the intensity of the vibrational excitations. A side ben-

efi t, however, which concerns us in the present context, is that information can be

obtained on the change induced by the fi eld on DM.

The fi rst technique consists in superimposing to the crystal a “sawtooth” po-

tential with periodicity D along z: V ext ✓ z ✔ ✁ Eζ , where ζ ✁ ✓ ✁ 1 ✔ n ✓ z ✁ nD ✁ 2 ✔ and

n ✁ int ✎ 2z ✁ D ✁ 1 ✁ 2 ✑ . If ✎ a ☎1 ✞ a
☎
2 ✞ a

☎
3 ✑ is a “plane adapted” basis, with a

☎
1 ✞ a

☎
2 in the

(h ✞ k ✞ ✁
) plane, and if D is a multiple of the interlayer distance d between those planes

(D ✁ md), then the crystal with unit supercell ✎ a ☎1 ✞ a
☎
2 ✞ ma

☎
3 ✑ preserves translational pe-

riodicity even in the presence of the added fi eld, and its solution can be achieved ac-

cording to the standard procedure [99]. In spite of the rather artifi cial device adopted

(the derivative of the added potential is discontinuous at z ✁ nD ✁ 2
✂

D ✁ 4), this tech-

nique performs surprisingly well [100] and, if m is large enough, in a region between

the discontinuity planes the solution appears “quasi-periodic” with respect to trans-

lations a
☎
3: this permits the changes in the DM to be analyzed by considering a cell

in that region and its neighboring ones.

The second technique aims at calculating the zero-fi eld derivatives of the energy

( � abc ✁ ✁ ✁ ) with respect to the fi eld components. For this purpose, an extension to pe-

riodic systems of coupled-perturbed HF and DFT has been implemented in CRYS-

TAL [101, 102]. It provides fi rst, second and third energy derivatives for systems

periodic in 0, 1, 2, 3 dimensions. A by-product of these calculations are the deriva-

tives of the DM elements in the GTO BS with respect to the fi eld components:✂
µν ✄ abc ✁ ✁ ✁ . This allows in principle the estimate of the effect of a fi nite (but small)

fi eld in the general (z) direction on the DM, through a truncated Taylor expansion

about its unperturbed value:

Pµν ✓ E ✔ ✁ Pµν ✓ 0 ✔ ✂ ✂
µν ✄ z E

✂ 1

2

✂
µν ✄ zz E2 ✂ ☛☞☛✌☛ (54)
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The results with the two techniques are in excellent agreement but the second

one is easier to use, more accurate and cheaper.

The recent study of the inverse piezo-electric effect in α-quartz performed with

the Wien2k code [3] provides a nice example of the use of the sawtooth technique

[103]: both the atomic displacements and the change of the structure factors as a

function of the fi eld strength were calculated, in fair agreement with the experiment.

We fi nally remark that Quantum ESPRESSO also implements, in the framework

of DFT, a third technique: fi nite macroscopic electric fi elds, treated via the modern

theory of polarizability and the Berry phase concept [104, 105].

5.3 Post-HF description of DMs: the perturbative approach

In the fi eld of molecular studies, the use of post-HF techniques allows extremely

accurate results to be collected, which is not possible using DFT-based schemes.

While the main objective is usually the evaluation of energy eigenvalues, signifi cant

information can also be obtained as concerns wave-function related properties, in

particular DMs and DFs. Among the many examples, we can cite the study on the

ED of bullvalene and concerning the different types of C-C bonds in this molecule

[92]: it is shown that both the use of a very good BS and the inclusion of correla-

tion effects (at an MP2 level) are important to bring the theoretical results to close

agreement with the experimental data. The advantage over DFT approaches should

be even more evident when considering the EMD and related DFs, for the reasons

expressed in Sections 2.1 and 4.2. The cost of post-HF techniques in their standard

formulation, which refers to the “canonical” HF COs delocalized over the whole

system, φ HF
n , scales however very rapidly with the number N of electrons, which

prevents their use with “large” systems.

The local-correlation techniques proposed long ago by Pulay and others [106]

provide a way out of this diffi culty: they use as a reference a representation of the

occupied HF manifold in terms of localized orthonormal functions like the WFs

in equation (33), and exploit the short-range character of the inter-electronic corre-

lation. Based on these ideas, N-scaling formulations of some of the most popular

correlation techniques have been implemented, e.g., in the MOLPRO code [107]:

Møller-Plesset perturbation techniques in second (MP2) and higher orders, coupled-

cluster algorithms including triple corrections, etc; very accurate correlated calcula-

tions for large molecules can thus be performed in reasonable times.

Quite recently, the CRYSCOR code has been developed [108] which imple-

ments an N0-scaling local-correlation approach for crystals in an AO BS, though

limited, for the time being, to an LMP2 level of approximation (“L” standing

for “local”) and to the case of spinless insulating systems. CRYSCOR uses as a

reference the HF solution provided by CRYSTAL in the form of equation (34):✆ ΨHF
0

✁ ✁ ✁ ☛☞☛✌☛ ✎ ✁
Tm ✑ α ✎ ✁

Tm ✑ β ☛✌☛✌☛ ✁ ✁ ✝ ; in addition, CRYSTAL provides all information

concerning structure, symmetry and Fock matrix of the crystal. An essential feature

of CRYSCOR which permits the LMP2 solution for relatively complicated peri-
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odic systems to be obtained in reasonable times, is the very effi cient treatment of

two-electron repulsion integrals, based on a combination of density-fi tting and of

multipolar techniques at short range and long range, respectively [109].

Energy related quantities are obviously the primary object of interest for such a

code, since its use permits the importance of correlation effects to be estimated as

concerns equilibrium geometries, elastic constants, vibrational spectra, cohesive en-

ergy, etc. However, as is clear from the preceding, DM related quantities in crystals

represent a very rich ground for comparison between experiment and theory: it is

therefore of interest to extract from a post-HF code also this kind of information.

Two computational schemes have been implemented in CRYSCOR for this pur-

pose, which provide an estimate P
✎
x ✒ ✓ r ✞ r ☎ ✔ of the correlated DM: they can be related

to the “expectation value” and the “response to an external perturbation” method,

respectively, as are adopted in molecular calculations (see for example [110] and

references therein).

The former technique (x ✁ a) [111] defi nes a locally-correlated wavefunction,

obtained by adding to the HF solution only those bi-excitations from two WFs to

the unoccupied manifold where one of the two WFs is in the zero cell, but using for

them the amplitudes from the periodic calculation. It can be viewed in a sense as

the result of an “embedding” calculation, where electrons are allowed to correlate

their motions in the zero cell and its neighborhood but are imposed to stay in their

HF state far from it. There is more than that, however: for instance, the amplitudes

include the effect of dispersive interactions up to infi nite distance. A size-consistent

periodic expression P
✎
a ✒ ✓ r ✞ r ☎ ✔ can be obtained from there, which can be used for cal-

culating the quantities of interest (ED, EMD, CPF, structure factors, etc.) by simply

feeding this corrected DM instead of the HF one to the corresponding subroutines

of CRYSTAL.

The second scheme (x ✁ b) [112] is based on the calculation of the DM as the

derivative of the LMP2 Lagrangian with respect to an external perturbation. In order

to obtain a closed and simple expression, the response of the excitation amplitudes

themselves to the external perturbation is not taken into account in this fi rst imple-

mentation. An example of application of this approach has been provided in Section

4.2. Its generalization for including self-consistently orbital relaxation is the object

of future work.

6 Final considerations

Present-day ab-initio computer codes for periodic systems have been shown to pro-

vide valuable information on the DM and related functions. This may help experi-

mentalists for the analysis and interpretation of their data concerning structure fac-

tors and CPs of crystals and their dependence on external conditions. Vice-versa,

the availability of high quality experimental data concerning DMs is extremely im-

portant to assess the limitations of these powerful tools.



44 Cesare Pisani, Roberto Dovesi, Alessandro Erba and Paolo Giannozzi

Two issues have been here devoted special attention to in this respect.

The Hamiltonian issue. Almost all present-day calculations of the electronic

structure of crystalline systems are performed using one-electron approximations

(DFT, HF or hybrid). Based on practical examples, it has been argued that very ac-

curate DM predictions can be so obtained, probably hybrid Hamiltonians providing

the best results on average. Defi nite discrepancies from the experiment, requiring

more advanced theoretical tools, seem more likely to concern EMDs, both due to

recent progress in the experimental determination of directional CPs, and to the fact

that the instantaneous correlation of electronic motions affects more directly their

momentum that their spatial distribution.

The basis set issue. It has been shown that the quality of the representative BS

is extremely important not only as concerns energy, but also densities. PWs provide

a reference in this respect, especially as concerns valence electrons. Calculations

based on local functions (GTFs) can approach the PW results, but only using exten-

sive sets allowing for large flexibility and including polarization functions.

We have fi nally tried to get a glimpse of the exciting new developments which

are expected in a near future in this area of research: they will contribute to make

the experiment-theory interaction even more fruitful in years to come.
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Appendix: Atomic units, Glossary of Abbreviations

Table 5 Atomic Units (au).

Quantity Atomic unit SI Equivalent � Notes

Mass m0 9 ✁ 1096 10 ✂ 31 kg � The rest mass of the electron

Charge e 1 ✁ 6022 10 ✂ 18 C � The elementary charge

Angular
Momentum

¯h � h
� � 2π ✁ 1 ✁ 0546 10✂ 34 J s

✄✄✄✄✄✄
The reduced Planck constant: angular
momentum operators have integer or
semi-integer eigenvalues in au’s

Length
a0 �

4π ε0 ¯h2
� � m0 e2 ✁ 5 ✁ 2918 10 ✂ 11 m

✄✄✄✄
The Bohr radius of H
(also called “Bohr”)

Permittivity 4πε0
1 ✁ 1126 10 ✂ 10

C2m ✂ 1J ✂ 1 � The vacuum permittivity

Energy
e4m0

� � 4π ε0 ¯h ✁2
= 1 Eh

4 ✁ 3598 10 ✂ 18 J

✄✄✄✄✄✄✄✄

The electrostatic repulsion energy
between two electrons separated by 1 a0

(also called “Hartree”, abbreviated Eh:
1 Eh=2 Ry=2625.9 kJ/mol=27.21 eV)

Speed
e2

� � 4π ε0 ¯h ✁
� cα 2 ✁ 1877 106 m s ✂ 1

✄✄✄✄✄✄✄✄

The speed of the electron in the
ground state of Bohr’s H atom;
c is the speed of light in vacuum,

α � 137 ✁ 036 ✂ 1 the fine structure constant

Time ¯h
�
Eh 2 ✁ 4189 10 ✂ 17 s � The time taken to travel 1 a0 at 1 au speed

E(S)D 1
�
a3

0 6 ✁ 7482 1030 m ✂ 3 � N. of (unpaired) electrons per unit volume

EMD m0 cα
�
a3

0

1 ✁ 3449 107

kg m ✂ 2s ✂ 1 � Electron Momentum Density
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Table 6 Glossary of Abbreviations

Acronym(s) Meaning Introduced in Section:

AE All-Electron 2.2.3
AO Atomic Orbital 1
BF Bloch Function 2.2.1
BS Basis Set 1
BSSE Basis Set Superposition Error 3.4.2
BvK Born-vonKarman (cyclic conditions) 2

BZ Brillouin Zone 2.2.1
CO,CSO Crystalline (Spin-)Orbitals 2.2
CP,CPF Compton Profile (Function) 2.1.2
DF Density Function (charge, spin or momentum density) 1
DFT Density Functional Theory 2.1.1
DM Density Matrix 1
ED,ESD Electron Density, Electron Spin Density 2.1
EMD Electron Momentum Density 2.1
ESD Electron (net) Spin Density along z 2.1
FT,FFT Fourier Transform, Fast Fourier Transformation 2.1,3.1
HF,UHF Hartree-Fock, Unrestricted Hartree-Fock 1,2.2
GTO Gaussian Type Orbital 3.1,3.4.2
KS,UKS Kohn-Sham, Unrestricted Kohn-Sham 1,2.2
LMP2 Local Møller Plesset perturbation theory at order 2 5.3
MO,MSO Molecular (Spin-)Orbitals 2.2
PAW Projected Augmented Waves 2.2.3,3.3.1
PP Pseudo-Potential 2.2.3
PW Plane-Wave 1
RFF Reciprocal Form Factor 2.1.2
USPP Ultra-Soft Pseudo-Potential 2.2.3
WF Wannier Function 2.2.1


