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Electron density learning of non-covalent systems†

Alberto Fabrizio,ab Andrea Grisafi,cb Benjamin Meyer,ab Michele Ceriotti cb

and Clemence Corminboeuf *ab

Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the

micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely

upon an in-depth understanding of the physical origin of these interactions, the quantification of their

magnitude and their visualization in real-space. The total electron density r(r) represents the simplest yet

most comprehensive piece of information available for fully characterizing bonding patterns and non-

covalent interactions. The charge density of a molecule can be computed by solving the Schrödinger

equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for

thousands of different molecules or very large chemical systems, such as peptides and proteins. Here we

present a transferable and scalable machine-learning model capable of predicting the total electron

density directly from the atomic coordinates. The regression model is used to access qualitative and

quantitative insights beyond the underlying r(r) in a diverse ensemble of sidechain–sidechain dimers

extracted from the BioFragment database (BFDb). The transferability of the model to more complex

chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8

polypeptides.

1 Introduction

Non-covalent interactions (NCIs) govern a multitude of chem-

ical phenomena and are key components for constructing

molecular architectures.1 Their importance fostered an intense

research effort to accurately quantify their magnitude and

develop an intuitive characterization of their physical nature

using quantum chemistry.2–6 Among the different approaches to

characterize non-covalent interactions, one of the simplest and

most generally applicable takes as a starting point the electron

density r(r) that encodes, in principle, all the information

needed to fully characterize a chemical system.7 Despite the fact

that the universal functional relationship between total energy

and r(r) remains unknown, existing approximations within the

framework of Kohn–ShamDFT (KS-DFT)8 do permit access to all

molecular properties within a reasonable degree of accuracy.9–11

Properties that can be derived exactly from the electron

density distribution include molecular and atomic electrostatic

moments (e.g., charges, dipole, quadrupoles), electrostatic

potentials and electrostatic interaction energies. Knowledge of

these quantities is fundamental in diverse chemical applica-

tions, including the computation of the IR intensities,12 the

identication of binding sites in host–guest compounds,13–15

and the exact treatment of electrostatics within molecular

simulations.16 Moreover, analyzing the deformation of r(r) in

the presence of an external eld provides access to another set

of fundamental properties, namely molecular static (hyper)

polarizabilities and, thus, to the computation of Raman

spectra17 and non-linear optical properties.18–21

The natural representation of the electron density in real

space makes it especially suitable for accessing spatial infor-

mation about structural and electronic molecular properties,

including X-ray structure renement22–27 and representations

using scalar elds.6 Routinely used examples include the

quantum theory of atoms in molecules (QTAIM),28,29 the density

overlap region indicator (DORI),30 and the non-covalent inter-

action (NCI) index.31,32

r(r) is generally obtained by solving the electronic structure

problem through ab initio computations. The main advantage

of this approach is that it returns the variationally optimized

electronic density for a given Hamiltonian. Yet, ab initio

computations can become increasingly burdensome if r(r) has

to be evaluated for thousands of different molecules or very

large chemical systems, such as peptides and proteins. These

large scale problems are typically tackled using a more scalable

approach that consists of either using linear scaling techniques

such as Mezey's molecular electron density LEGO assembler

(MEDLA)33,34 and adjustable density matrix assembler

(ADMA),35–37 as well as approaches based on localized molecular
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orbitals, such as ELMO.38–41 Another methodology belonging to

this second category involves the use of experimental tech-

niques, such as X-ray diffraction, to probe the electron density

and subsequently reconstructing r(r) through multipolar

models42–44 and pseudo-atomic libraries, such as ELMAM,45–48

ELMAM2,49,50 UBDB,51,52 Invarioms53 and SBFA.54 While

successful, these two methodologies have intrinsic limits: the

rst is unable to capture the deformations of the charge density

due to intermolecular interactions unless a suitable fragment is

generated ad hoc, while the second relies on experimental data

and is difficult to extend to thousands of different chemical

systems at once. Recently, the development of several machine-

learning models targeting the electron density has effectively

established a third promising methodology, with the potential

to overcome the limitations of the more traditional approaches.

The rst machine-learning model of r(r) was developed on

the basis of the Hohenberg–Kohnmapping between the nuclear

potential and the electron density.55,56 Although successful, the

choice of the nuclear potential as a representation of the

different molecular conformations and the expansion of the

electron density in an orthogonal plane-wave basis effectively

constrained this landmark model to relatively small and rigid

molecules with limited transferability to larger systems.

Recently, we proposed an atom-centered, symmetry-adapted

Gaussian process regression57 (SA-GPR) framework explicitly

targeting the learning of the electron density.58 Using an opti-

mized non-orthogonal basis set, pseudo-valence electron

densities could be predicted in a linear-scaling and transferable

manner, meaning that the model is able to tackle much larger

chemical systems than those used to train the regressionmodel.

A third approach, that can also achieve transferability between

different systems, uses a direct grid-based representation of the

atomic environment to learn and predict the electronic density

in each point of the molecular space.59–61 Representing the

density eld on a large set of grids points rather than on a basis

set effectively avoids the introduction of a basis set error, but

also dramatically increases the computational effort.

One should also consider that machine learning, being

a data-driven approach, requires high-quality, diverse reference

data. Fortunately, several specialized benchmark databases that

target NCIs have appeared over the past decade. From the

original S22 (ref. 62) to NCIE53,63 S66,64 NBC10/NBC10ext,65–67

and S12L,68,69 the evolution of these datasets has, generally,

followed a prescription of increasing the number of entries,

principally by including subtler interactions and/or larger

systems. In this respect, the databases of Friesner,70 Head-

Gordon,71 Shaw,72 and the recent BFDb of Sherrill,73 constitute

a special category because of their exceptional size (reaching

thousands of entries) which are now sufficiently large to be

compatible with machine-learning applications. Beyond their

conceptual differences, each of these benchmark sets aims at

improving the capability of electronic structure methods to

describe the energetic aspects of non-covalent interactions.

In this work, we introduce a dramatic improvement of our

previous density-learning approach by making the regression

machinery of r(r) compatible with density-tting auxiliary basis

sets. These specialized basis sets are routinely used in quantum

chemistry to approximate two-center one-electron densities.

Here, the auxiliary basis sets are used directly to represent the

electron densities that enter our machine-learning model, with

the additional advantage of avoiding the arbitrary basis set

optimization procedures on the machine-learning side. This

enhanced framework leverages the transferability of our

symmetry-adapted regression method and is capable of

learning the all-electron density across a vast spectrum of 2291

chemically diverse dimers formed by sidechain–sidechain

interactions extracted from the BioFragment Database (BFDb).73

The performance of the method is demonstrated through the

reproduction of r(r) between and within each monomer form-

ing the dimers. The accuracy of the predicted densities is

assessed by computing density-based scalar elds and electro-

static potentials, while the errors made with respect to the

reference densities are computed by direct integration on three-

dimensional grids. As a major breakthrough, the model is used

to predict the charge density of a set of 8 polypeptides (�100

atoms) at DFT accuracy in few minutes.

2 Methods

Gaussian process regression (GPR) can be extended to encode

all the fundamental symmetries of the O(3) group, effectively

allowing machine-learning of all the molecular properties that

transform as spherical tensors under rotation and inversion

operations.57,74 In the specic case of the electron density, the

scheme relies upon the decomposition of the eld into additive,

atom-centered contributions and the subsequent prediction of

the corresponding expansion coefficients.58 In SA-GPR, each

molecule is represented as a collection of atom-centered envi-

ronments, whose relationships and similarities are measured

by symmetry adapted kernels. An in-depth discussion about

how a symmetry adapted regression model of the electron

density can be constructed is reported in the ESI.†

The decomposition of the electron density in continuous

atom-centered basis functions is the cornerstone of the scal-

ability and transferability of our SA-GPR model. Besides being

generally desirable, these properties are actually crucial to

accurately describe the chemical diversity present in the Bio-

Fragment database within a reasonable computational cost. On

the other hand, the projection of the density eld onto a basis

set leads to an additional error on top of that which can be

ascribed to machine learning. In practice, all the efforts placed

into achieving a negligible machine-learning error are futile if

the overall accuracy of the model is dictated by a large basis set

decomposition error.

Standard quantum chemical basis sets are generally opti-

mized to closely reproduce the behavior of atomic orbitals75 and

results in unacceptable errors if used to decompose the elec-

tronic density (Fig. 1). In contrast, specialized basis sets used in

the density tting approximation (also known as resolution-of-

the-identity (RI) approximation)76–82 are specically optimized

to represent a linear expansion of one-electron charge densities

obtained from the product of atomic orbitals. Using the RI-

auxiliary basis sets {fRI
k }, the total electron density eld can be

expressed as:

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 9424–9432 | 9425
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rðrÞ ¼
X

Naux

k

 

X

NAO

ab

Dabd
ab
k

!

fRI
k
ðrÞ ¼

X

Naux

k

ckf
RI
k
ðrÞ (1)

where, Dab is the one-electron reduced density matrix and

dabk are the RI-expansion coefficients. Given a molecular geom-

etry, the value of the basis functions can be readily computed at

each point of space, leaving the ck expansion coefficients as the

only ingredient needed by the machine-learning model to fully

determine r(r) (more details in the ESI†).

As shown in Fig. 1, the use of the RI-auxiliary basis sets

results in nearly two orders of magnitude increase in the overall

accuracy with respect to the corresponding standard basis set.

The addition of diffuse functions marginally improves the

performance of the decomposition, but leads to instabilities of

the overlap matrix (high condition number) and increases

dramatically the number of basis functions per atom.

In practice, Weigend's cc-pVQZ/JKFIT81 basis set (henceforth:

cc-pVQZ-RI) offers the best trade-off between accuracy and

computational demand and therefore represents the best

choice for the density decomposition.

2.1 Computational details

The dataset of molecular dimers has been selected from the

side-chain side-chain interaction (SSI) subset of the BioFrag-

ment database (BFDb).73 The original set is made of 3380

dimers formed by amino-acids side-chain fragments taken from

47 different protein structures. Dimers withmore than 25 atoms

as well as those containing sulfur atoms were not considered.

While the total number of sulfur-containing structures is too

small to enable the machine-learning model to accurately

capture its rich chemistry, the inclusion of the larger systems

does not increase dramatically the chemical diversity of the

dataset. The nal dataset contains a total of 2291 dimers.

As shown in Fig. 2, the complete set of 2291 dimers spans

a large variety of dominant interaction types, ranging from

purely dispersion dominated complexes (in blue) to mixed-

inuence (green and yellow) to hydrogen-bonded and charged

systems (red). We retain the same classication criteria as in the

original database to attribute the nature of the dominant

interaction.

For each dimer, the reference full-electron density has been

computed at the uB97X-D/cc-pVQZ level using the resolution of

identity approximation for the Coulomb and exchange potential

(RI-JK). This implies that RI-auxiliary functions up to l ¼ 5 are

included for carbon, nitrogen and oxygen atoms while auxiliary

functions up to l ¼ 4 are used for hydrogen atoms.

3 Results and discussion

The training set for the density-learning model was chosen by

randomly picking 2000 dimers out of a total of 2291 possibili-

ties. The remaining 291 were used to test the accuracy of the

predictions. Given the tremendous number of possible atomic

environments (�40 000) associated with such a chemically

diverse database, a subset of M reference environments was

selected to reduce the dimensionality of the regression problem

Fig. 1 (left) Decomposition error of the electron density of a single
watermolecule: evolution of the absolute percentage error depending
on the choice of decomposition basis set. (right) Comparison of the
density error made with the standard and the RI-auxiliary cc-pVQZ
basis set (cyan and orange isosurfaces refer to an error of �0.005
bohr�3). Reference density: PBE/cc-pVQZ.

Fig. 2 Ternary diagram representation of the attractive components
of the dimer interaction energies for the 2291 systems considered in
this work. The values of the SAPT analysis are taken from ref. 73.

Fig. 3 Learning curves with respect to RI-expanded densities (ML
error). (left) weighted mean absolute percentage error (3r (%)) of the
predicted SA-GPR densities as a function of the number of training
dimers. The weights correspond to the number of electrons in each
dimer and the normalization is defined by the total number of elec-
trons. Color code reflects the number of reference environments.
(right) 3r (%) of the predicted SA-GPR densities (M ¼ 1000) divided per
dominant contribution to the interaction energy according to ref. 73.

9426 | Chem. Sci., 2019, 10, 9424–9432 This journal is © The Royal Society of Chemistry 2019
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(see ESI†). To assess the consequences of this dimensionality

reduction, the learning exercise was performed on three

different sizes M ¼ {100, 500, 1000} for the reference atomic

environments. Fig. 3 summarizes the performance of the

machine learning algorithm, expressed in terms of the mean

absolute difference between the predicted and the reference

densities (QM). Here, only the machine-learning error is shown

as the reference densities derive from the RI-expansion of the

computed ab initio densities. Since the test set contains mole-

cules of different sizes, the contribution of each dimer has been

weighted considering the ratio between its number of electrons

and the total number of electrons in the test set.

3r ð%Þ ¼ 100�
1

Ne

X

i

N
i
e

Ð

dr|riQMðrÞ � riMLðrÞ|
Ð

drriQMðrÞ
(2)

where the sum is performed over the 291 dimers of the test set,

Ne is the total number of electrons, Ni
e is the number of elec-

trons in a dimer, riQM(r) and r
i
ML(r) are, respectively, the ab initio

and the predicted density amplitudes at a point. Both integrals

of eqn (2) are evaluated in real-space over a cubic grid with step

size of 0.1 bohr in all direction and at least 6 Å between any

atom and the cube border.

As shown in the rst panel of Fig. 3, 100 training dimers were

sufficient to reach saturation of the density error around 0.5%

for M ¼ 100. This result already outperforms the level of accu-

racy reached in our previous work, which is remarkable given

the large chemical diversity of the dataset and the consideration

of all-electron densities. Learning curves obtained withM¼ 500

and M ¼ 1000 show steeper slopes, approaching saturation at

about 2000 training dimers with errors that were reduced to

�0.2–0.3%. The predicted full-electron densities are ve times

more accurate than the previous predictions of valence-only

densities (approximately 1%).58 A more detailed analysis of

theM¼ 1000 learning curve reveals a strong dependence on the

nature of the dominant interaction (Fig. 3). Specically,

a stronger non-local character in the interaction yields a larger

error. This is especially prevalent for dimers dominated by

electrostatic interactions (i.e., hydrogen bonds, charged

systems), which are characterized by errors that are twice as

large as those found in other regimes.

The origin of this slow convergence arises from two factors.

First, only about 20% of the dimers are dominantly bound by

electrostatics.73 The priority of the regression model is thus to

minimize the error on the other classes. Second, there is

a fundamental dichotomy between the local nature of our

symmetry-adapted learning scheme and the long-range nature

of the interactions. In fact, the electron density encodes infor-

mation about the whole chemical system at once, while the

machine-learning model represents molecules as a collection of

4 Å wide atom-centered environments. This difference in the

spatial reach of the information encoded in the target and in the

representation is a limitation. In this respect, a global molec-

ular representation, which includes the whole chemical system,

would be more suitable, but this would imply renouncing to the

scalability and transferability of the model. Given a large

enough training set, however, our SA-GPR model is able to

capture the density deformations due to the eld generated by

the neighboring molecule. The reason is rooted in the intrinsic

locality of density deformations and in the concept of “near-

sightedness”83,84 of all local electronic properties, which

constitutes a theoretical justication for a local decomposition

of such quantities.

The fundamental advantage of setting the electron density as

the machine-learning target is the broad spectrum of chemical

Fig. 4 DORImaps of representative dimers for each type of dominant interaction (DORI isovalue: 0.9). Isosurfaces are color-coded31 with sgn(l2)
r(r) in the range from attractive�0.02 a.u. (red) to repulsive 0.02 a.u. (blue). In particular, sgn(l2)r(r) < 0 characterizes covalent bonds or strongly
attractive NCIs (e.g. H-bonds); sgn(l2)r(r) � 0 indicates weak attractive interactions (van der Waals); sgn(l2)r(r) > 0 repulsive NCIs (e.g. steric
clashes).

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 9424–9432 | 9427
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properties that are directly derivable from r(r). For instance, the

predicted charge densities are the key ingredient in density-

dependent scalar elds aimed at visualizing and character-

izing interactions between atoms and molecules in real space.

Examples of the density overlap region indicator (DORI)30 are

given in Fig. 4 for representative dimers. Compared to the

rather featureless r(r), DORI reveals ne details of the electronic

structure, which constitute a more sensitive probe for the

quality of the machine-learning predictions. In particular, it

reveals density overlaps (or clashes) associated with bonding

and non-covalent regions on equal footing through the behavior

of the local wave-vector (Vr(r)/r(r)).85–87

As shown in Fig. 4, the intra- and intermolecular DORI

domains obtained with the SA-GPR densities are indistin-

guishable from those in the ab initiomaps. This performance is

especially impressive for the density clashes associated with

low-density values, as is typical for the non-covalent domains.

All the features are well captured by the predicted densities

ranging from large and delocalized basins typical of the van der

Waals complexes (in green) to the compact and directional

domains typical of electrostatic interactions to intramolecular

steric clashes (e.g. phenol, mixed regime). A quantitative

measure of the DORI accuracy for the most characteristic basin

of each type of interaction is reported in the ESI.† Overall, these

results illustrate that the residual 0.2% mean absolute

percentage error does not signicantly affect the density

amplitude in the valence and intermolecular regions that are

accurately described by the SA-GPR model. The highest ampli-

tude errors are concentrated near the nuclei in the region

dominated by the core-density uctuations.

The versatility of the machine-learning prediction is further

illustrated by using the predicted densities to compute the

molecular electrostatic potential (ESP) for the same represen-

tative dimers (Fig. 5). ESP maps based on predicted densities

agree quantitatively with the ab initio reference and correctly

attribute the sign and magnitude of the electrostatic potential

in all regions of space. Importantly, the accuracy of the ESP

magnitude remains largely independent of the dominant

interaction type. This is especially relevant for charged dimers

(electrostatics) as it demonstrates that despite slower conver-

gence of the learning curve for this category, the achieved

accuracy of themodel is sufficient to describe the key features of

the electrostatic potential.

Fig. 6 (left) Electrostatic potential maps 3.25 Å above the plane of the
tryptophan (TRP) side-chain. The van der Waals volume of TRP is
represented in transparency. The color code represents the electro-
static potential in kcal mol�1 according the scale chosen in ref. 88.
(Right) Stacking interaction energies of TRP with the phenylalanine
(PHE), tyrosin (TYR) and tryptophan (TRP) side-chains computed as
detailed in ref. 88 on the basis of ab initio (top) and ML-predicted
(bottom) ESP.

Fig. 5 Electrostatic potential (ESP) maps of representative dimers for each type of dominant interaction (density isovalue: 0.05 e� bohr�3). ESP
potential is given in Hartree atomic units (a.u.).

9428 | Chem. Sci., 2019, 10, 9424–9432 This journal is © The Royal Society of Chemistry 2019
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The most widespread applications of ESP maps exploit

qualitative information (e.g., identication of the molecular

regions most prone to electrophilic/nucleophilic attack) but the

electrostatic potentials can be related to quantitative properties

such as the degree of acidity of hydrogen bonds and the

magnitude of binding energies.88–92 As a concrete example

related to structure-based drug design, we used a recent model

that estimates the strength of the stacking interactions between

heterocycles and aromatic amino acid side-chains directly from

the ESP maps.88,91,93 This model derives the stacking energies of

drug-like heterocycles from the maximum and mean value of

their ESP within a surface delimited by molecular van der Waals

volume (at 3.25 Å above the molecular plane).88 Following this

procedure, we used the ESP derived from the ML predicted

densities to compute the binding energies between a represen-

tative heterocycle included in our dataset, the tryptophan side-

chain, and the three aromatic amino acid side-chains (Fig. 6).

Comparison between ab initio and ML predicted stacking

interaction energies shows that the deviations in the ESP maps

lead to minor errors on the order of 0.05 kcal mol�1. The largest

deviations in the ESP would appear further away from the

molecule, beyond the region exploited for the computation of

the energy descriptors (i.e., the sum of the atomic van der Waals

radii). The predicted ESP shows larger relative deviations far

from the nuclei owing to the error propagation of the density

predictions r(r) to the electrostatic potential f(r). This can be

best understood in the reciprocal space, where the deviations of

the potential at a given wave-vector k are related to the density

error by df̂(k) ¼ 4pdr̂(k)/k2. Because of the k�2 scaling, the error

on f(k) increases as k/ 0, implying that larger relative errors of

the electrostatic potential are expected in regions of space

where f(r) is slowly varying (i.e., thus determined by the long-

wavelength components).

3.1 Prediction on polypeptides

The tremendous advantage of the atom-centered density

decomposition is to deliver a machine-learning model that

depends only on the different atomic environments and not on

the identity of the molecules included in the training set.

Thanks to its transferability, the model provides access to

density information of large macromolecules, at the sole price

of including sufficient diversity, that can capture the chemical

complexity of a larger system. The predictive power of this

extrapolation procedure is demonstrated by using the machine-

learning model exclusively trained on the 2291 BFDb dimers to

predict the electron density of 8 polypeptides taken from the

Protein DataBank (PDB).94 The performance of the ML model

for each macromolecule, labeled by their PBD ID, is reported in

Fig. 8.

Fig. 7 (top left) predicted electron density of enkephalin (PBD ID: 4OLR) at three isovalues: 0.5, 0.1, and 0.001 e� bohr�3. For each isosurface, the
L(a,a0) similarity index with respect to ab initio density is reported. (top right) DORImap of enkephalin (DORI isovalue: 0.9) colored by sgn(l2)r(r) in
the range from �0.02 a.u. (red) to 0.02 a.u. (blue) (lower left) density difference between predicted and ab initio electron density (isovalues �
0.01e� bohr�3). (lower right) density difference between predicted and ab initio electron density of 3WNE (isovalues � 0.01e� bohr�3).

Fig. 8 Weighted mean absolute percentage error (3r (%)) with respect
to uB97X-D/cc-pVQZ densities of the predicted densities extrapo-
lated for 8 biologically relevant peptides (protein databank ID).

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 9424–9432 | 9429
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Overall, the predictions lead to a low average error of only

1.5% for the 8 polypeptides, which is in line with the highest

density errors obtained on the BFDb test set. Relevantly, the

largest discrepancies are obtained for 3WNE, which is the only

cyclopeptide of the set. The origin of these differences can be

understood by performing a more detailed analysis of a repre-

sentative polypeptide, the leu-enkephalin (4OLR). The errors in

this percentage range do not affect the density-based properties,

such as the spatial analysis of the non-covalent interactions

with scalar elds (Fig. 7 top right panel). Yet, the density

differences indicate that the highest absolute errors occur along

the amino acid backbone (Fig. 7 lower panels). In addition, the

analysis of the relative error with the Walker–Mezey L(a,a0)

index34 shows the highest similarity at the core (99.3%), slowly

decreasing while approaching the non-covalent domain (96.3%)

(Fig. 7 top le panel). The L(a,a0) index complements the density

difference information by showing that the actual density

amplitudes and the prediction error do not decrease at the same

rate. Nevertheless, the loss of relative accuracy remains modest

and the quality of the density is mainly governed by the

predictions along the peptide backbone, which are especially

sensitive for the more strained 3WNE cyclopeptide. Although

similar chemical environments were included in the training

set, the error is mainly determined by the lack of an explicit

peptide bond motif and cyclopeptides in the training set. While

this limitation could be addressed by ad hocmodication of the

training set, the overall performance of the machine-learning

model is rather exceptional as it provides in only a few

minutes, instead of almost a day (about 500 times faster for e.g.

enkephalin with the same functional and basis set), electron

densities of DFT quality for large and complex molecular

systems. For comparison, the superposition of atomic densities

(i.e., the promolecular approach), which has been used to

qualitatively analyze non-covalent interactions in peptides and

proteins (e.g. ref. 32) lead to much larger mean absolute

percentage errors (17 times higher, see Fig. S1 in the ESI†).

4 Conclusion

Given its central role in electronic structure methods, the total

electron density is a very promising target for machine learning,

since accurate predictions of r(r) give access to all the infor-

mation needed to characterize a chemical system. Among the

many possible properties that can be computed from the elec-

tron density, the patterns arising from non-covalent interac-

tions constitute a particular challenge for machine learning

models owing to their long-range nature and subtle physical

origin. An effective ML model should be transferable across

different systems, efficient in learning from relatively small

training sets, and accurate in predicting r(r) both in the quickly-

varying region around the atomic nuclei, in the tail and –

crucially for the study of non-covalent interactions – in those

regions that are characterized by low densities and low density

gradients. In this work, we have presented a model that fullls

all of these requirements, based on an atom-centered decom-

position of the density with a quadruple-zeta resolution-of-

identity basis set, a symmetry-adapted Gaussian Process

regression ML scheme, and training on a diverse database of

2000 sidechain–sidechain dimers extracted from the BioFrag-

ment database.

The model reaches a 0.3% accuracy on a validation set, that

is sufficient to investigate density-based ngerprints of NCIs,

and to evaluate the electrostatic potential with sufficient accu-

racy to quantitatively estimate residue–residue interactions.

The transferability of the model is demonstrated by predicting,

at a cost that is orders of magnitude smaller than by explicit

electronic structure calculations, the electron density for

a demonstrative set of oligopeptides, with an accuracy sufficient

to reliably visualize bonding patterns and non-covalent

domains using the DORI scalar eld. Even though the model

reaches an impressive accuracy (0.5% mean absolute

percentage error) for dimers that are predominantly bound by

electrostatic interactions, the comparatively larger error

suggests that future work should focus on resolving the

dichotomy between the local machine learning framework and

the long-range nature of the intermolecular interactions.
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Garćıa, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010,

132, 6498–6506.
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