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Preface 

Tetrachloroethene (PCE) is, mainly due to human activity, a common pollutant in soil 

and groundwater. PCE has been used in dry cleaning and industrial cleaning resulting 

in (accidental) spillage into soil and groundwater. Because of the toxicity of PCE and 

its degradation products, the clean-up of soils polluted with these compounds has been 

studied extensively since the last two decades. Chlorinated ethenes can be converted 

via both chemical and (micro)biological processes. PCE is considered to be persistent 

to microbial conversion under aerobic conditions, though this dogma has been 

questioned (Ryoo et ah, Nature Biotechnol. 2000, 18, 775-778). Under aerobic conditions 

lower chlorinated ethenes can be degraded via metabolic, growth-coupled processes 

and gratuitously via co-metabolic processes. Under anaerobic conditions PCE and its 

degradation products can be reductively dechlorinated by anaerobic microorganisms. 

In this process, the chloride atoms are stepwise replaced by hydrogen atoms to form 

the dechlorinated end product ethene (Figure 1). In this anaerobic reduction the 

chlorinated compound acts as electron acceptor. 

2 [H] HC1 , . 2 [H] HC1 2 [H] HC1 2 [H] HC1 
CI f e l l I ^ CI |_Hj , ^ H H I ^ H H I ^ H H 

CI CI CI CI CI CI H CI • H H 

tetrachloroethene trichloroethene cis-1,2-dichloroethene vinyl chloride ethene 
(PCE, PER) (TCE.TRI) (ris-l,2-DCE) (VC) 

Figure 1: Anaerobic microbial reduction of tetrachloroethene 

A number of bacteria that couple this anaerobic reductive dechlorination of PCE to 

growth has been isolated. Only one of these bacteria, "Dehalococcoides ethenogenes" 

dechlorinates PCE completely to ethene, the others dechlorinate PCE only partially to 

produce trichloroethene (TCE) or dichloroethene (DCE). 

Complete reduction of chlorinated ethenes has been observed at many polluted sites. 

However, at other sites no or only partial dechlorination of chlorinated ethenes has 

been found. Especially partial dechlorination may cause significant problems since the 

gaseous intermediate vinyl chloride is more toxic than PCE itself. Partial 

dechlorination of PCE may be due to a number of reasons. The absence of 

microorganisms able to reduce the pollutant completely is often postulated. Another 

reason may be that the electron donor required for the reduction of PCE is either not 

present in sufficient amounts or consumed by other microorganisms present. 

11 



Halorespiring bacteria present may also preferentially use other possible electron 

acceptors. 

The experimental work described in this dissertation focuses on microorganisms able 

to degrade chlorinated ethenes. Chapter 1 reports on the phylogenetic position and 

physiological features of a newly isolated halorespiring bacterium Sulfurospirillum 

halorespirans PCE-M2. This bacterium turned out to be phylogenetically related to 

Sulfurospirillum species that are known as sulphur- and metal-reducing bacteria. 

Based on this finding, Sulfurospirillum halorespirans and a number of different other 

halorespiring and related bacteria were screened for their ability to reduce oxidized 

metals as well (Chapter 2). A screening for the oxidation and reduction capacity of 

A(H2)QDS, a humic acid analogue, is also described in this chapter. Humic 

substances play an important role as electron shuttles in soil. Our work and research 

by others shows that many halorespiring bacteria are able to reduce a broad spectrum 

of other electron acceptors. The ability of halorespiring bacteria to use other electron 

acceptors raises the question whether the presence of these alternative electron 

acceptors influences the degradation of PCE. In the third chapter we describe the 

effect of some alternative electron acceptors, such as nitrate, sulphate and oxidized 

metals on the reduction of PCE. 

The efficiency of anaerobic reductive dechlorination depends on the type of electron 

acceptor, but is also influenced by the electron donors available. Molecular hydrogen 

is thought to be an important electron donor of possible electron-accepting processes 

in soil. Each electron-accepting process appears to have a distinct hydrogen threshold 

concentration. Chapter 4 describes hydrogen threshold values for several reducing 

processes by bacteria that are able to halorespire. These threshold values are 

compared with hydrogen concentrations measured during an in-situ bioremediation 

project. 

No microorganisms had been isolated able to metabolically reduce vinyl chloride 

under anaerobic conditions at the start of the research described in this thesis. The 

isolation of such an organism will help to expand the knowledge on the complete 

anaerobic (in-situ) biodegradation of chlorinated ethenes in polluted environments. 

The last experimental chapter (Chapter 5) describes the enrichment of two bacterial 

cultures able to reduce vinyl chloride at relatively high rates. Unfortunately, this work 

has not resulted in the isolation of an anaerobic vinyl chloride respiring 

microorganism. 
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Preface 

This final experimental chapter is followed by a review (Chapter 6) that combines our 

results with the available literature data. Finally, this dissertation closes with some 

concluding remarks and future perspectives. 

13 
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Sulfurospirillum halorespirans 

1 

Description of Sulfurospirillum halorespirans sp. 

no v., an anaerobic, tetrachloroethene-respiring 

bacterium, and transfer of Dehalospirillum 

multivorans to the genus Sulfurospirillum as 

Sulfurospirillum multivorans comb. nov. 

Maurice L.G.C. Luijten, Jasperien de Weert, Hauke Smidt, Henricus T.S. 

Boschker, Willem M. de Vos, Gosse Schraa and Alfons J.M. Stams 

Int. J. Syst. Evol. Microbiol. 2003, 53, 787-793 
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Chapter 1 

Abstract 

An anaerobic, halorespiring bacterium (strain PCE-M2T = DSM 13726T = ATCC 

BAA-5831) able to reduce tetrachloroethene to cw-l,2-dichloroethene was isolated 

from a soil polluted with chlorinated aliphatic compounds. The isolate is assigned to 

the genus Sulfurospirillum as a novel species, Sulfurospirillum halorespirans sp. nov. 

Furthermore, on the basis of all available data, a related organism, Dehalospirillum 

multivorans DSM 12446T, is reclassified to the genus Sulfurospirillum as 

Sulfurospirillum multivorans comb. nov. 
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Sulfurospirillum halorespirans 

Introduction 

Chlorinated ethenes are widespread soil and groundwater pollutants. Because of 

industrial activities, large amounts of chlorinated ethenes were discharged into the 

environment over the last few decades. Tetrachloroethene (perchloroethene; PCE) is 

used mainly in dry-cleaning processes and as an organic solvent (Distefano et al., 

1991). It is a suspected carcinogen and is thought to be persistent under aerobic 

conditions (Bouwer and McCarty, 1983; Fathepure et al., 1987). However, Ryoo et al. 

(2000) reported the aerobic conversion of PCE by toluene-o-xylene mono-oxygenase 

of Pseudomonas stutzeri 0X1. Under anaerobic conditions, PCE can be reductively 

dechlorinated via trichloroethene, dichloroethene and vinyl chloride to the non-toxic 

end-products ethene (Distefano et al., 1991; Freedman and Gossett, 1989) and ethane 

(De Bruin et al, 1992). 

Over the last decade, several bacteria that are able to couple the anaerobic reductive 

dechlorination of PCE to growth have been isolated. This respiratory process is also 

known as halorespiration. PCE is reduced to either trichloroethene or dichloroethene 

by for example, Dehalospirillum multivorans, two Dehalobacter species and several 

Desulfitobacterium species (Scholz-Muramatsu et al., 1995; Holliger et al, 1993; 

Wild et al., 1996; Gerritse et al, 1996, 1999; Miller et al, 1997). One organism, 

"Dehalococcoides ethenogenes", is able to reduce PCE to vinyl chloride, and couples 

these steps to energy conservation. Vinyl chloride is dechlorinated further to ethene 

by this organism, but this final reduction step is not coupled to growth (Maymo-Gatell 

et al., 1997, 1999). The ecological, physiological and technological aspects of 

halorespiring organisms have been reviewed in detail (El Fantroussi et al., 1998; 

Holliger et al, 1998; Middeldorp et al., 1999). 

Here, we describe the isolation of a novel organism from soil from a polluted site in 

The Netherlands that is able to reduce PCE to cw-l,2-dichloroethene. Initial analysis 

showed our isolate to have high similarity to members of the genus Sulfurospirillum 

and to Dehalospirillum multivorans. Therefore, we included data for the type strains 

of Sulfurospirillum barnesii, Sulfurospirillum deleyianum, Sulfurospirillum 

arsenophilum, Sulfurospirillum arcachonense and Dehalospirillum multivorans. 

Evaluation of all physiological and phylogenetic properties makes it clear that the new 
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Chapter 1 

isolate, strain PCE-M2T, is a member of the genus Sulfurospirillum. We propose 

strain PCE-M2 as the type strain of a novel species within the genus 

Sulfurospirillum, Sulfurospirillum halorespirans sp. nov. Furthermore, on the basis of 

all available data, we propose to reclassify Dehalospirillum multivorans as 

Sulfurospirillum multivorans comb. nov. 

Materials and methods 

Inoculum source 

A soil sample from a polluted site in Maassluis near Rotterdam harbor in The 

Netherlands was used as inoculum for laboratory-scale flow-through columns as 

described by Middeldorp et al. (1998). A liquid sample from one of these columns 

was used to start the enrichment culture. 

Anaerobic medium and experimental set-up 

A phosphate-/bicarbonate-buffered medium with a low chloride concentration, as 

described by Holliger et al. (1993), was used for the experiments. Electron acceptors 

and donors were added from aqueous, concentrated, sterile stock solutions to 

respective final concentrations of 10 and 25 mM, unless otherwise stated. PCE was 

added from a concentrated (1 M) stock solution in hexadecane. Hexadecane was not 

converted during experiments by the different bacteria. Yeast extract was omitted 

from the medium unless otherwise stated. 

Incubations were carried out in 117-ml serum bottles containing 20 ml anaerobic 

medium. The headspace consisted of N2/C02 (80:20) or H2/C02 (80:20); the latter 

was used when molecular hydrogen was used as electron donor. Acetate was added as 

a carbon source when molecular hydrogen or formate was used as electron donor. For 

isolation purposes, the roll-tube method was used. The medium was solidified with 

Noble agar (22 g/1; Difco). 
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Sulfurospirillum halorespirans 

Organisms 

Sulfurospirillum multivorans (former Dehalospirillum multivorans) DSM 12446 , S. 

deleyianum DSM 6946T, S. arcachonense DSM 9755T and S. arsenophilum DSM 

10659T were purchased from the DSMZ. S. barnesii ATCC 700032T was obtained 

from the ATCC. 

Escherichia coli XL-1 Blue (Stratagene) was used as the host for cloning vectors. The 

strain was grown in Luria-Bertani medium at 37 °C (Sambrook et al., 1989) and 

ampicillin was added at 100 (xg/ml when appropriate. 

DNA analyses 

Both G + C content analysis and DNA-DNA hybridization were performed at the 

DSMZ. DNA was isolated by chromatography with hydroxyapatite (Cashion et al., 

1977). G + C contents were determined using HPLC, as described by Mesbah et al. 

(1989). DNA-DNA hybridizations were carried out as described by De Ley et al. 

(1970), with the modifications described by Hup et al. (1983) and Escara and Hutton 

(1980). Renaturation rates were computed according to Jahnke (1992). 

Analytical techniques 

Chloride anion concentrations were determined with a Micro-chlor-o-counter 

(Marius). Prior to analysis, 0.6 ml samples were acidified with 10 /xl pure sulfuric acid 

and purged for 5 minutes with nitrogen gas to eliminate sulfide anions, which 

interfered with the chloride measurement. Volatile fatty acids were determined by 

HPLC, as described by Scholten and Stams (1995). Inorganic anions were separated 

on a dionex column as described by these same authors. 

All chlorinated ethenes and ethene were determined qualitatively in headspace 

samples using a 43 8A Chrompack Packard gas chromatograph (GC). The gas 

chromatograph was equipped with a flame-ionization detector connected to a capillary 

column (25 m x 0.32 mm inner diameter; df 10 urn; 100 kPa N2 (Poraplot Q; 

Chrompack)) and a splitter injector (ration 1:10). The injector and detector 

temperatures were 100 and 250 °C, respectively. The column temperature was 

initially 50 °C for 1 minute and was then increased by 39 °C per minute to 210 °C; 

finally, the temperature was kept at 210 °C for 7 minutes. 
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Chapter 1 

Fatty acid composition 

Bacterial cultures were harvested by centrifugation (20000 g, 20 min., 4 °C) and 

pellets were extracted directly with a modified Bligh-Dyer extraction. The total lipid 

extract was fractionated on silicic acid and mild alkaline transmethylation was used to 

yield fatty acid methyl esters from the phospholipid fraction. Concentrations of 

individual polar-lipid fatty acids as fatty acid methyl esters were determined by using 

a capillary GC/flame-ionization detector. Identification of polar-lipid fatty acids was 

based on comparison of retention-time data with known standards (for further details, 

see Boschker et al., 1999). 

Transmission electron microscopy (TEM) 

For TEM, cells were fixed for 2 hours in 2.5 % (v/v) glutaraldehyde in 0.1 M sodium 

cacodylate buffer (pH 7.2) at 0 °C. After the cells had been rinsed in the same buffer, 

they were subjected to post-fixation using 1 % (w/v) OSO4 and 2.5 % (w/v) K2Cr207 

for 1 hour at room temperature. Finally, the cells were post-stained in 1 % (w/v) 

uranyl acetate. After sectioning, micrographs were taken with a Philips EM400 

transmission electron microscope. 

Amplification of 16S rDNA, cloning and sequencing 

Chromosomal DNA of strain PCE-M2T was isolated as described previously (Van de 

Pas et al, 1999). The 16S rDNA was amplified with a GeneAmp PCR system 2400 

thermocycler (Perkin-Elmer-Cetus). After preheating to 94 °C for 2 minutes, 35 

amplification cycles of denaturation at 94 °C for 20 seconds, primer annealing at 50 

°C for 30 seconds and elongation at 72 °C for 90 seconds were performed. The PCRs 

(50 ul) contained 10 pmol primers 8f [5'-CACGGATCCAGAGTTTGAT(C/T)-

(A/C)TGGCTCAG-3'] and 1510r [5'-GTGAAGCTTACGG(C/T)TACCTTGTTA-

CGACTT-3'] (Lane, 1991), 2 mM MgCl2, 200 uM each of dATP, dCTP, dGTP and 

dTTP and 1 U Expand Long Template enzyme mixture (Roche Diagnostics). PCR 

products were purified by the QIAquick PCR purification kit (Qiagen) and cloned into 

E. coli XL-1 blue by using the pGEM-T plasmid vector (Promega). Plasmid DNA was 

isolated from E. coli by using the alkaline lyses method, and standard DNA 

manipulations were performed according to established procedures (Sambrook et al., 

1989) and manufacturers' instructions. Restriction enzymes were purchased from Life 

Technologies. 

20 



Sulfurospirillum halorespirans 

DNA sequencing was performed using a LiCor DNA sequencer 4000L. Plasmid DNA 

used for sequencing reactions was purified with the QIAprep spin miniprep kit 

(Qiagen). Reactions were performed using the Thermo Sequenase fluorescent labeled 

primer cycle sequencing kit (Amersham Pharmacia Biotech). Infrared dye (IRD800)-

labeled oligonucleotides using labeled primers 515r [5'-ACCGCGGCTGC-

TGGCAC-3'] (Lane, 1991), 338f [5'-ACTCCTACGGGAGGCAGCAGGTA-3'] and 

968f [5'-AACGCGAAGAACCTTA-3'] (Nttbel ef a/., 1996). 

Sequences were analyzed using the DNAstar software package and ARB software 

(Strunk and Ludwig, 1995). Initial sequence alignments were performed using the 

LALIGN utility at the GENESTREAM network server 

(http://www2.igh.cnrs.fr/bin/lalign-guess.cgi). The phylogenetic tree was constructed 

using the neighbor-joining method (E. coli positions 72-1419) (Saitou and Nei, 1987). 

Results 

Isolation of strain PCE-M2 

A PCE-degrading culture was enriched from soil polluted with chlorinated ethenes by 

using, alternately, hydrogen and lactate as electron donor and PCE as electron 

acceptor. The enrichment degraded PCE via trichloroethene to (mainly) cis-1,2-

dichloroethene. Minor amounts of vinyl chloride and ethene were also produced. A 

microscopically pure culture was obtained via serial dilution in liquid medium. This 

culture reduced PCE, via trichloroethene, to cw-l,2-dichloroethene. No other reduced 

products could be found in this enrichment. This culture was used to prepare a 

dilution series in roll tubes. In these roll tubes, only lens-shaped colonies were 

observed. Single colonies from these roll tubes were transferred back into liquid 

medium. Immediately, a new dilution series in liquid medium was prepared and 

incubated in parallel on solidified medium in roll tubes. After growth, single colonies 

were again transferred back to, and maintained in, liquid medium. One of these 

cultures was checked for purity by incubation in a rich Wilkins-Chalgren medium 

(Oxoid). This resulted in growth of, presumably, the PCE-reducing organism only. 

This culture, strain PCE-M2T, was used for further characterization. 

21 
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Chapter 1 

Morphology 

Cells of strain PCE-M21 were slightly curved rods, 2.5-4 um long by 0.6 um wide 

(Figure 1). The bacteria stained Gram-negative and formation of endospores was 

never observed. Cells in actively growing cultures were motile. 

& * * 
• * & 

£* 
« ''^jf 

*'A& 

J** 
' I « • 

... y •n 
\S 
Figure 1: Transmission electron micro-
graph of cells of Sulfurospirillum 

halorespirans sp. nov. PCE-M2 . Bar 
0.5 um. 

Growth conditions 

Strain PCE-M2T was routinely cultivated with PCE as electron acceptor and lactate as 

electron donor. It was able to couple the oxidation of lactate molecular hydrogen, 

formate and pyruvate to growth in the presence of PCE as terminal electron acceptor. 

Organic electron donors, except for formate, were oxidized incompletely to acetate. 

Formate and molecular hydrogen sustained growth only when acetate was present as 

carbon source. Strain PCE-M2T was able to couple the reduction of a number of 

electron acceptors to growth (Table 1). Oxygenated sulphur compounds (sulphate, 

sulphite and thiosulphate) could not replace PCE as electron acceptor, nor could 3-

chloro-4-hydroxyphenylacetate or 1,2-dichloroethane. 

Strain PCE-M2T grew fermentatively on both fumarate and pyruvate, whereas lactate 

could not be fermented. All known Sulfurospirillum species are also able to ferment 

fumarate (Stolz et al., 1995; Finster et al, 1997). Scholz-Muramatsu et al. (1995) 

reported that fumarate could not be fermented by Dehalospirillum multivorans DSM 
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12446T. However, we were able to grow Dehalospirillum multivorans fermentatively 

on fumarate. Pyruvate fermentation is also reported for S. deleyianum and D. 

multivorans, whereas S. arcachonense is not able to ferment pyruvate (Schumacher et 

al., 1992; Scholz-Muramatsu et al., 1995; Finster et al., 1997). No data on pyruvate 

fermentation have been reported for the other two Sulfurospirillum species. 

Strain PCE-M2T was able to grow at moderate temperatures. Optimal growth occurred 

between 25 and 30 °C. 

Table 1: Terminal electron acceptors used by strain PCE-M2T and related strains. Strains are 
indicated as: 1 = PCE-M2T; 2 = Dehalospirillum multivorans DSM 12446T; 3 = 5. arsenophilum 

DSM 10659T; 4 = S. deleyianum DSM 6946T; 5 = S. bamesii ATCC 700032T; 6 = 5'. 
arcachonense DSM 9755T. 
Acceptor 

S° 
As04 

Se04 

PCE 
NO, 
N0 2 

Sulphite 
Thiosulphate 
Microaerophilic 
Fumarate 

1 
+ 
+ 
+ 
+ 

+ (->NH4) 
+ 

-
-
+ 
+ 

2 
nd 
+b 

+b 

+a 

+a (->N02) 
a 

nd 
nd 
nd 
+a 

3 
+s 
+6 

_g 

nd 
+6 (->NH4) 

+s 

nd 
+6 

+8 

nd 

4 
+'" 
_g 

_g 

nd 
+f(-»NH4) 

+f 

+f 

+f 

+f 

+f 

5 
+e 

+e 

+d 

-
+" (^NH4) 

+' 
j , 

+' 

+e 

+e 

6 
+c 

nd 
nd 
nd 

C 

c 

c 

c 

+c 

nd 
nd = Not determined. Data obtained from: a = Scholz-Muramatsu et al., 1995; b = Holliger et al., 

1999; c = Finster et al., 1997; d = Oremland et al., 1994; e = Laverman et al., 1995; f = 
Schumacher et al., 1992; g = Stolz et al., 1999. 

Molecular analysis 

The nucleotide sequence of a 16S rRNA gene of strain PCE-M21 was determined and 

analysis revealed that strain PCE-M2T is clustered in the e-subclass of the 

Proteobacteria. The GenBank accession number for the 16S rDNA sequence of strain 

PCE-M2T is AF218076. A phylogenetic tree was constructed and showed that strain 

PCE-M2T groups within the genus Sulfurospirillum and is closely related to 

Dehalospirillum multivorans (Figure 2). DNA-DNA hybridization values and levels 
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iSulfurospirillum halorespirans, PCE-M2, DSM 13726T; AF218076 
J Sulfiirospirillum multivorans.DSM 12446T;X82931 

J Sulfiirospirillum arsenophilum, DSM 10659T; U85964 
1 _ | Sulfiirospirillum bamesii, ATCC 700O32T; AF038843 

^Sulfurospirillum deleyianum, DSM 6946T; Y13671 
— Sulfiirospirillum arcachonense, DSM 9755T; Yl 1561 

Wolinella succinogenes, DSM 1740T; M26636 
' Desulfomonik tiedjei, DSM 6799T; M26635 
A -I.J * L — . — r\CA,f 1 1 / 1 1 1 T . IMQ^ 

• Escherichia coli 8, D83536 

• Desulfiiromonas chloroethenica, DSM 12431; U49748 
_ _ | — Desulfitobaclerium TCE1, DSM 12704; X95972 

1— Desulfitobacterium PCE1, DSM 10344; X81032 
Dehalobacler reslriaus DSM 9455T; U84497 

Dehalococcoides ethenogenes, AF004928 

Figure 2: Phylogenetic tree constructed by the neighbour-joining method (Saitou and Nei, 1987), 
using 1347 nucleotides from 16S rDNA sequences, showing the position of strain PCE-M2T in 
relation to members of the genus Sulfiirospirillum and other (dechlorinating) organisms. Bar =10 
% divergence. 

of 16S rDNA sequence similarity between strain PCE-M27, the different 

Sulfurospirillum species and Dehalospirillum multivorans are given in Table 2. These 

data show that both strain PCE-M27 and Dehalospirillum multivorans should be 

included within the genus Sulfurospirillum and that they are related most to S. 

arsenophilum. 

The G + C content of strain PCE-M2T is 41.8 ± 0.2 mol%. With the exception of S. 

arcachonense (32.0 mol%; Finster et al., 1997), this agrees well with the G + C 

content of other Sulfurospirillum species and Dehalospirillum multivorans (Table 2). 

Table 2: DNA G + C content, DNA-DNA relatedness and 16S rDNA sequence similarity 
between strain PCE-M2T and related species. Values above the diagonal are 16S rDNA sequence 
similarity (%); values below the diagonal are DNA-DNA hybridization (%). 

Strain G + C 16S rDNA sequence similarity (%) to / 
content DNA-DNA hybridization (%) with: 
(mol%) 

PCE-M2T 

D. multivorans 

S. arsenophilum 

S. deleyianum 

5. bamesii 

S. arcachonense 

41.8 ±0.2 
41.5b 

40.9d 

40.6" 
40.8d 

32.0C 

1 

-
65.7 
33.2 
28.1 
29.2 
nd 

2 
98.8 

-
35.4 
30.8 
31.5 
nd 

3 
99.0 
99.0 

-
30.711 

49.7d 

nd 

4 
97.0 
98.0 
97.0 

-
55.0d 

nd 

5 
95.0 
98.0 
97.0 
98.0 

-
nd 

6 
93.0 
92.0 
93.0 
92.0 
91.7 

-
Strains are indicated as: 1 = PCE-M21, 2 = D. multivorans DSM 124461, 3 = S. arsenophilum 

DSM 10659T, 4 = 5. deleyianum DSM 6946T, 5 = 5. bamesii ATCC 700032T, 6 = 5. 
arcachonense DSM 9755T. Data obtained from: a = Schumacher et al. (1992), b = Scholz-
Muramatsu et al. (1995), c = Finster et al. (1997), d = Stolz et al. (1999). nd = not determined. 
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Fatty acid composition 

Strain PCE-M2T and the other four strains analyzed had similar polar-lipid fatty acid 

profiles, mainly comprising 16:lco7c, 16:0 and 18:lco7c (Table 3). The dominant fatty 

acids were similar in S. arcachonense, as reported by Finster et al. (1997): there were 

smaller amounts of an 18:1 fatty acid and larger amounts of 18:0 fatty acid. As 

discussed by Finster et al. (1997), the fatty acid composition detected is typical of 

bacteria belonging to the s-subclass of the Proteobacteria. 

Table 3: Polar-lipid fatty acid composition of strain PCE-M2T and related strains. Values are mol% 
of polar lipid fatty acids. 

Fatty acid PCE-M2 D. multivorans S. arsenophilum S. deleyianum S. barnesii 

14:0 
il5:0 
15:0 
il6:l 

16:lra7c 

16:lo)5 
16:0 
il7:l 
17:0 

18:lco7c 
18:0 
Minor 
components 

3.3 

-
2.1 
1.4 

47.4 

0.3 
38.3 

-
-

6.5 

0.5 
0.2 

5.1 

-
1.5 
0.6 

47.4 

0.3 
40.7 
1.1 

-
2.8 

-
0.6 

4.5 
2.1 
1.3 
1.1 

47.5 
0.6 

24.5 
2.1 
1.9 

12.2 

0.4 
1.7 

-
-

1.1 
0.6 
52.0 

-
29.2 

-
-

17.2 

-
-

1.8 

-
0.6 
0.6 

43.2 
0.5 
30.2 
1.1 
0.2 

21.6 

-
0.1 

Discussion 

An anaerobic bacterium able to use PCE, selenate, arsenate and some other 

compounds (Table 1) as terminal electron acceptors for growth was isolated. The 

organism was isolated from a soil polluted with chlorinated aliphatic compounds; this 

soil produced a rapid dechlorination of PCE in laboratory-scale flow-through columns 

(Middeldorp et al., 1998). Comparison of the physiological and phylogenetic features 

of strain PCE-M2T revealed a close relationship to members of the genus 

Sulfurospirillum and to Dehalospirillum multivorans (Schumacher et al., 1992; 

Oremland et al., 1994; Scholz-Muramatsu et al., 1995; Laverman et al., 1995; Finster 

et al, 1997; Holliger et al, 1998; Stolz et al, 1999). We used 16S rDNA sequences to 

construct a phylogenetic tree showing the position of strain PCE-M2T in relation to 
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closely related organisms and other (dechlorinating) organisms (Figure 2). DNA-

DNA hybridizations between all species tested are below the critical value of 70 % 

(the approximate threshold for delineation of separate species (Stackebrandt & 

Goebel, 1994)). 

Schumacher et al. (1992) established the genus Sulfurospirillum to describe 

'Spirillum'' 5175 as S. deleyianum, a Gram-negative, elemental sulphur-reducing 

spirillum. Since then, several bacteria have been identified as additional members of 

the genus Sulfurospirillum (Finster et al., 1997; Stolz et al., 1999). The data presented 

here justify the addition of our isolate, strain PCE-M2T, to the Sulfurospirillum clade. 

Since our strain differs from the other described species, e.g. in using PCE as a 

terminal electron acceptor for growth, we propose that strain PCE-M2T represents a 

novel species, Sulfurospirillum halorespirans sp. nov. 

Strain PCE-M2T is very similar to Dehalospirillum multivorans, especially with 

respect to the reduction of chlorinated ethenes. At the time of publication, the data 

that Scholz-Muramatsu et al. (1995) presented on Dehalospirillum multivorans 

justified the establishment of a new genus. However, over the last decade, more 

physiological data on Dehalospirillum multivorans have become available, such as the 

ability of this microorganism to reduce selenate and arsenate (Holliger et al., 1998). 

Combining these new data with the phylogenetic data presented here, it is necessary 

to reclassify Dehalospirillum multivorans DSM 12446 in the genus Sulfurospirillum 

as Sulfurospirillum multivorans comb. nov. 

Dehalobacter restrictus was the first organism isolated that is able to reduce PCE 

metabolically (Holliger et al., 1993). This organism is limited to the use of PCE and 

trichloroethene as electron acceptors and molecular hydrogen as electron donor. 

Several Desulfitobacterium strains that are more diverse in their substrate spectrum 

have also been isolated from distinct environment. This diversity could indicate that 

strains of the genus Desulfitobacterium play an important role in the attenuation of 

chlorinated compounds in nature. Members of the genus Sulfurospirillum also have a 

more diverse substrate spectrum. They are known specifically for the reduction of 

sulphur and oxidized metals such as arsenate and selenate. The isolation of strain 

PCE-M2T, a novel halorespiring species, and the addition of Dehalospirillum 

multivorans indicate the importance of the genus Sulfurospirillum in 

biotransformations in soils polluted with chlorinated ethenes and metal ions. 
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Emended description of Sulfurospirillum (Schumacher et al, 1993) 

The original description of this genus was provided by Schumacher et al. (1992). 

Additionally, some species are able to use arsenate, selenate, PCE or trichloroethene 

as terminal electron acceptors. The type species is Sulfurospirillum deleyianum. 

Description of Sulfurospirillum halorespirans sp. nov. 

Sulfurospirillum halorespirans (ha.lo.res'pi.rans. N.L. part. adj. halorespirans 

halorespiring, respiring halogenated compounds). 

Gram-negative, slightly curved, rod-shaped cells, 2.5-4 urn long by 0.6 um wide. 

Motile. Optimum growth between 25 and 30 °C. PCE, selenate, arsenate, nitrate, 

nitrite, sulphur and fumarate serve as terminal electron acceptors. Capable of 

microaerophilic growth. Nitrate and nitrite are reduced to ammonium. PCE is reduced 

to c«-l,2-dichloroethene. Selenate is reduced, via selenite, to elemental selenium. 

Hydrogen, formate, pyruvate and lactate serve as electron donors. Hydrogen and 

formate serve as electron donors only when acetate is present as carbon source. Can 

grow fermentatively on fumarate and pyruvate. The G + C content of the type strain is 

41.8 mol%. 

The type and only strain, strain PCE-M21 (= DSM 13726T = ATCC BAA-5831), was 

isolated from a soil polluted with chlorinated aliphatic compounds in Maassluis, near 

Rotterdam Harbor, The Netherlands. 

Description of Sulfurospirillum multivorans comb nov. 

Basonym: Dehalospirillum multivorans (Scholz-Muramatsu et al., 2002) 

The description was provided by Scholz-Muramatsu et al. (1995). Additionally, this 

species is able to use arsenate and selenate as electron acceptors. The type strain is 

DSM 12446T. 
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Abstract 

Halorespiring bacteria have been detected in soils that were not polluted with 

chlorinated compounds. In this study, we describe alternative electron acceptor 

utilization by some halorespiring bacteria and phylogenetically related bacteria. It 

appears that oxidized metals like selenate, arsenate and manganese are rather common 

electron acceptors for halorespiring species of Desulfitobacterium and 

Sulfurospirillum and related bacteria. All tested bacteria are able to reduce AQDS and 

4 tested organisms (Desulfitobacterium hafniense DP7, Sulfurospirillum barnesii, S. 

deleyianum and S. arsenophilum) are able to oxidize AH2QDS as well. 

The characteristic to reduce oxidized metals, and to reduce and oxidize quinone 

moieties coupled to energy conservation is a likely explanation for the presence of 

halorespiring microorganisms in unpolluted soils. 

32 



Quinone and metal reduction 

Introduction 

Over the last decade a number of bacteria able to use chlorinated aromatics and 

ethenes as terminal electron acceptors for growth has been isolated from a range of 

different environments contaminated with chlorinated compounds (Holliger et al, 

1993; Utkin et al, 1994; Scholz-Muramatsu et al, 1995; Sanford et al, 1996; Wild et 

al, 1996; Bouchard et al, 1996; Gerritse et al, 1996; Maymo-Gatell et al, 1997; 

Gerritse et al, 1999; Finneran et al, 2002; Luijten et al, 2003). Most of these 

organisms are known to respire oxidized sulfur or nitrogen compounds as well. 

Recently, two non-dechlorinating members of the otherwise halorespiring genus 

Desulfitobacterium have been isolated (Niggemeyer et al, 2001; Van de Pas et al, 

2001). Furthermore, by using molecular techniques it was shown that halorespiring 

bacteria are also present at sites where chlorinated compounds are absent (Loffler et 

al, 2000; Lanthier et al, 2001). These two findings raised the question whether 

halorespiration is the only mechanism of energy conservation of these halorespiring 

bacteria in nature. 

Recently, the possibility to reduce oxidized metals and humic acids was reported for 

some halorespiring bacteria (Holliger et al, 1999; Niggemeyer et al, 2001; Finneran 

et al, 2002; Cervantes et al, 2002; Luijten et al, 2003). Here we report the results of 

an extended screening of halorespiring and related bacteria for their capacity to reduce 

oxidized metals and the humic acid analogue anthraquinone-2,6-disulfonate (AQDS). 

We have also tested the possibility of bacteria to oxidize reduced anthrahydroquinone-

2,6-disulfonate (AH2QDS). Our results show that these features are common among 

halorespiring species of the genera Desulfitobacterium and Sulfurospirillum. They 

may represent an alternative growth mode for these bacteria at locations not 

contaminated with chlorinated pollutants. 
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Material and Methods 

Organisms 

Various pure cultures of anaerobic bacteria were used in this study. Sulfurospirillum 

halorespirans PCE-M2 (DSM 13726; ATCC BAA-583) and Desulfitobacterium 

hafaiense DP7 (DSM 13498) were isolated at the Laboratory of Microbiology, 

Wageningen University, The Netherlands (Van de Pas et al., 2001; Luijten et al., 

2003). Sulfurospirillum multivorans (formerly known as Dehalospirillum multivorans 

(Luijten et al., 2003)) (DSM 12446), Sulfurospirillum deleyianum (DSM 6964), 

Sulfurospirillum arsenophilum (DSM 10659), Desulfitobacterium dehalogenans 

(DSM 9161), Desulfitobacterium strain PCE1 (DSM 10344) and Desulfitobacterium 

chlororespirans Co23 (DSM 11544) were purchased form the German Collection of 

Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). 

Sulfurospirillum barnesii (ATCC 700032) was obtained from the American Type 

Culture Collection (ATCC, Rockville, MD, USA). 

Geobacter metallireducens (DSM 7210) was a kind gift from F.J. Cervantes of the 

sub-department of Environmental Technology from Wageningen University, The 

Netherlands. Desulfitobacterium hqfhiense TCE1 (DSM 12704) was a kind gift from 

J. Gerritse (TNO Environment, Energy and Process Innovation, Apeldoorn, The 

Netherlands). 

Anaerobic medium and experimental set-up 

Incubations were carried out in 117-ml serum bottles containing 20 ml anaerobic 

medium. A phosphate-bicarbonate buffered medium with a low chloride 

concentration as described by Holliger et al. (1993) was used. The medium was 

enriched with 3 ug/1 Na2Se04 and 8 ng/1 Na2WC>4.H20. Electron acceptors and 

electron donors were added from aqueous concentrated stock solutions, unless 

otherwise stated. All stock solutions were prepared anaerobically. Yeast extract (1 g/1) 

was added to experiments with Desulfitobacterium species. The headspace in the 

bottles consisted of N2/C02 (80/20) or H2/C02 (80/20), the latter when molecular 

hydrogen was used as electron donor. Acetate (5 mM) was added as carbon source 

when molecular hydrogen was used as electron acceptor. All experiments were 
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incubated at 30 °C and started with a 10 % inoculum. In all experiments performed to 

study the possible reductions, lactate was used as electron donor, except for 

experiments with S. deleyianum. This organism can not use lactate as electron donor 

(Schumacher et al., 1992) and pyruvate was used instead. To prove unambiguously 

that the tested metal ions were used as terminal electron acceptor the bacteria were 

sub-cultured several sequential times with hydrogen as sole electron donor present. 

Amorphous manganese(IV)oxide (8MnC>2) was prepared as described by Langenhoff 

et al. (1996). The final concentration of Mn(IV) in our experiments was 

approximately 10 mM. 

Anthrahydroquinone-2,6-disulfonate (AH2QDS) was produced biologically from 

AQDS with Geobacter metallireducens. An AQDS saturated solution (25 mM) was 

inoculated with G. metallireducens at 30 °C, molecular hydrogen was added as 

electron donor and acetate as carbon source. After reduction, the AH2QDS was added 

to a final concentration of approximately 5 mM via a 0.2 urn filter into the serum 

bottles for the experiments with AH2QDS as electron donor. To test the oxidation of 

AH2QDS the organisms were incubated with the following electron acceptors: nitrate 

for Sulfurospirillum arsenophilum, S. deleyianum, S. barnesii and Desulfitobacterium 

hafniense DP7; tetrachloroethene (PCE) for S. halorespirans PCE-M2 and S. 

multivorans; and 3-chloro-4-hydroxyphenylacetate (Cl-OHPA) for 

Desulfitobacterium strain PCE1, D. dehalogenans andD. chlororespirans Co23. 

Analyses 

Volatile fatty acids were determined by high-pressure liquid chromatography (HPLC) 

as described by Scholten and Stams (1995). Inorganic anions (nitrate, nitrite, 

arsenate, selenate) were separated on a dionex column and detected with suppressed 

conductivity as described by Scholten and Stams (1995). 

Fe(II) was determined quantitatively using the ferrozine method (Lovley and Phillips, 

1987) and visually assessed via the production of black FeS precipitates. The 

reduction of selenate and arsenate was also (non-quantitatively) visually confirmed 

via the production of red Se(0) precipitates and the production of yellow precipitates, 

presumably orpiment (AS2S3), respectively (Niggemeyer et al., 2001). The reduction 

of Mn(IV) was assessed visually via a color change from the black MnC>2 to the white 

MnCCh precipitates (Niggemeyer et al., 2001). The oxidation and reduction of 
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A(H2)QDS was also qualitatively determined. The reduced AH2QDS has a bright red 

color, whereas the oxidized AQDS has a brownish color. 

Cell numbers were determined by phase-contrast microscopy using a Burker-Turk 

counting chamber at a magnification of 1250 times. 

Transmission electron microscopy 

For transmission electron microscopy (TEM) cells were fixed for two hours in 2.5 % 

(v/v) glutaraldehyde in 0.1 M sodium cacodylate buffer (pH = 7.2) at 0 °C. After 

rinsing in the same buffer a post fixation was done in 1 % (w/v) OSCM and 2.5 % (w/v) 

K.2Cr2C<7 for 1 hour at room temperature. Finally, the cells were post-stained in 1 % 

(w/v) uranyl acetate. After sectioning, micrographs were taken with a Philips EM400 

transmission electron microscope. 

Results and discussion 

Reduction of oxidized metals 

Recently, we have isolated a tetrachloroethene respiring organism that 

phylogenetically groups in the Sulfurospirillum clade. This organism, Sulfurospirillum 

halorespirans PCE-M2, is also able to reduce oxidized metals like arsenate and 

selenate (Luijten et al., 2003). To study the relationship between respiration with 

chlorinated ethenes and oxidized metals we screened a number of halorespiring and 

related organisms for their capacity to reduce metals. 

The results show that the ability to metabolically reduce metals is a common feature 

among different halorespiring microorganisms of the genera Desulfitobacterium and 

Sulfurospirillum (Table 1). The growth of Desulfitobacterium strain PCE1 in medium 

with selenate as electron acceptor and lactate as electron donor is shown in Figure 1. 

In all positive experiments for selenate reduction a red precipitate was formed 

indicating at least partial reduction to elemental selenium. 

In contrast to the results obtained for the reduction of selenate, only one of the 

Desulfitobacterium species tested, Desulfitobacterium hafniense TCE1, was able to 

reduce arsenate (Table 1). Three other Desulfitobacterium isolates (strain GBFH, D. 
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haftiiense and D. frappieri) have been reported positive for arsenate reduction as well 

(Niggemeyer et al., 2001). During arsenate reduction yellow precipitates were 

formed, presumably orpiment (AS2S3). Reduction of arsenate was also observed for all 

tested Sulfurospirillum species (Table 1). 

Table 1: Utilization of oxidized metals as terminal electron acceptor by halorespiring and related 
organisms. ++ = Significant reduction within 2 weeks; + = significant reduction within one month; 
- = no significant reduction within one month. 

Se(VI) As(V) Fe(III) Mn(IV) 
Desulfitobacterium dehalogenans 

Desulfitobacterium strain PCE1 
Desulfitobacterium chlororespirans Co23 
Desulfitobacterium hafniense DP7 
Desulfitobacterium hafniense TCE1 
Sulfurospirillum deleyianum 

Sulfurospirillum barnesii SES3 
Sulfurospirillum arsenophilum 

Sulfurospirillum halorespirans PCE-M2 
Sulfurospirillum multivorans 
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Figure 1: The reduction of selenate by Desulfitobacterium strain PCE1. 
x = Cell number, • = selenate; • = lactate; o = acetate. 

Figure 2 shows a TEM picture of Sulfurospirillum halorespirans PCE-M2 grown on 

arsenate and lactate, where the accumulation of precipitates, presumably orpiment, 

around the cells can be seen. 

Desulfitobacterium hafniense TCE1, D. hafniense DP7 (Figure 3) as well as D. 

chlororespirans Co23 reduced 8Mn02 (Table 1). Growth on and reduction of 8MnC>2 
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was accompanied by the production of white precipitates that are likely to be MnC03. 

Desulfitobacterium strain PCE1, D. dehalogenans and Sulfurospirillum multivorans 

did not reduce manganese. All other Sulfurospirillum species did reduce manganese, 

albeit at a lower rate than the tested Desulfitobacterium species except for S. 

deleyianum. This bacterium reduced manganese at a rate comparable to that of 

Desulfitobacterium species. 

Desulfitobacterium hafniense TCE1 and D. chlororespirans Co23 reduced iron that 

was added as Fe(III)citrate (Table 1). D. hafniense DP7, Sulfurospirillum 

halorespirans PCE-M2 and S. multivorans were in initial incubations also able to 

reduce iron, but they lost this activity after transfer to following incubations. 

Figure 2: TEM picture from Sulfurospirillum 

halorespirans PCE-M2 grown on arsenate and 
lactate. Accumulation of precipitates, 
presumably orpiment, around the cells can be 
seen. Magnification is 17000. Bar represents 1 
|jm. 

All screening experiments were performed with either lactate or pyruvate as electron 

donor, substrates that may generate ATP via substrate level phosphorylation. To 

demonstrate energy conservation and growth via electron transport phosphorylation, 

several organisms were incubated and sub-cultured with molecular hydrogen as 

electron donor. Both Desulfitobacterium hafniense TCE1 and D. hafniense DP7 were 

able to grow with 8MnC>2 and H2. The growth of Sulfurospirillum deleyianum and 

Sulfurospirillum halorespirans PCE-M2 was tested with H2 and As(V) and Se(VI), 
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respectively. For all tested combinations, growth and thus energy conservation via 

electron transport phosphorylation took place. 

Recently, Niggemeyer et al. (2001) have reported the isolation of a new non-

halorespiring Desulfitobacterium species, strain GBFH, able to reduce arsenate 

metabolically. These authors found that Desulfitobacterium hafniense DCB-2 (DSM 

10664), D. hafniense PCP-1 (DSM 12420), D. dehalogenans JW/IU-DC1 (DSM 

9161) and D. chlororespirans Co23 (DSM 11544) are able to reduce different 

oxidized metals as well. Their results are in agreement with ours, showing that the 

reduction of metals is a common property of many (halorespiring) bacteria of the 

genera Desulfitobacterium and Sulfurospirillum. 

[days] 

Figure 3: The reduction of manganese by 
Desulfitobacterium hafniense DP7. x = Cell 
number; • = lactate; o = acetate. 

Nevertheless, data reported in literature show some contradicting results compared to 

our findings. S. arsenophilum, which was tested positive in our experiments on 

selenate, was tested negative in experiments by Stolz et al. (1999). Arsenate reduction 

by S. deleyianum was reported to be negative (Stolz et al., 1999) while D. 

dehalogenans was found to reduce manganese (Niggemeyer et al., 2001). These 

results are in contrast to ours. These differences may be caused by adaptation of the 

bacteria to certain growth conditions, which may influence the outcome of screening 

experiments. A possible loss of genes encoding specific processes may cause these 

differences as well (Stotzky and Babich, 1986; Van de Meer et al., 1987). 

Contradicting results for iron reduction have also been reported for 
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Desulfitobacterium hafiiiense TCE1 (negative) (Gerritse et al., 1999) and for 

Sulfurospirillum barnesii SES3 (positive) (Laverman et al., 1995). In experiments 

studying iron reduction the chelating agent used, citrate in our experiments, may also 

influence the results obtained. 

Reduction and oxidation ofquinone moieties 

Until recently, humic substances were thought to be inert to microbial conversion. 

However, Lovley et al. (1996) showed that anaerobic microorganisms are able to use 

humic substances as electron acceptor. Recently, three Desulfitobacterium species (D. 

dehalogenans, D. strain PCE1 and D. metallireducens) were reported to couple the 

reduction of humic acids and/or AQDS to energy conservation (Finneran et al., 2002; 

Cervantes et al., 2002). Anthraquinone-2,6-disulfonate (AQDS) is often used in lab 

scale experiments to mimic the quinone moieties of humic substances (Lovley et al., 

1999). Lovley et al. (1999) showed that AQDS is a suitable model compound for 

natural occurring, quinone containing humic substances. Our more extended screening 

of nine halorespiring and related bacteria for their ability to reduce AQDS showed 

that all tested microorganisms are able to use the quinone moiety in AQDS as 

terminal electron acceptor. This indicates that this may be a widespread feature 

amongst (halorespiring) bacteria of the genera Desulfitobacterium and 

Sulfurospirillum (Table 2). AQDS reduction could be sustained for at least two 

transfers by the tested microorganisms, whereas in different control experiments 

(without cells or electron donor) no reduction occurred. 

Table 2: The reduction and oxidation of A(H2)QDS by halorespiring and related organisms. 
+ = Significant reduction/oxidation within one month; - = no significant reduction/oxidation 
within one month. 

AQDS reduction AH2QDS oxidation 

Desulfitobacterium dehalogenans + 

Desulfitobacterium strain PCE1 + 
Desulfitobacterium chlororespirans Co23 + 
Desulfitobacterium hafiiiense DP7 + + 
Sulfurospirillum deleyianum + + 
Sulfurospirillum barnesii SES3 + + 
Sulfurospirillum arsenophilum + + 

Sulfurospirillum halorespirans PCE-M2 + 
Sulfurospirillum multivorans + ;_ 
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The chemical oxidation of reduced anthrahydroquinone-2,6-disulfonate (AH2QDS) 

coupled to the reduction of oxidized metals such as iron and manganese has been 

described by several researchers (Stone and Morgan, 1984; Lovley et al, 1996; Field 

et al, 2000). The biological oxidation of reduced AH2QDS has been reported with 

fumarate or nitrate as electron acceptors (Lovley et al., 1997). Lovley et al. (1997) 

have shown that Sulfurospirillum barnesii could oxidize AH2QDS but that it was not 

able to couple this oxidation to growth. Our experiments show that both the oxidation 

of AH2QDS and the reduction of AQDS can be performed by Desulfitobacterium 

hqfhiense DP7 and by several Sulfurospirillum species. We were able to sustain 

growth of all organisms marked positive in table 2, including S. barnesii, for at least 

two transfers in liquid medium. 

Implication for in-situ bioremediation 

Several of the studied bacteria are expected to be involved in the degradation of 

chlorinated pollutants at contaminated sites since they have been isolated from such 

sites. The potential of these bacteria to use oxidized metals and quinone moieties as 

electron acceptors instead of the (chlorinated) contaminants may therefore have 

negative effects on the degradation of chlorinated solvents. Sites that are polluted with 

chlorinated compounds may have an excess of these electron acceptors under 

anaerobic conditions. When the amount of electron donor present at such a polluted 

site is not sufficient, the addition of an electron donor is required to stimulate the 

bioremediation of these pollutants. Since the oxidized metals and AQDS will be 

reduced as well, they may consume part of the added electron donor. To calculate the 

theoretical/minimal amount of electron donor required, one has to take into account 

the amount of oxidized metals and AQDS as well as other possible electron acceptors 

present at the site. Only then one can obtain efficient and complete reductive 

dechlorination of the chlorinated compounds next to other possible (electron donor 

consuming) reducing processes. 

The apparent widespread possibility of bacteria to reduce quinone moieties is 

important for the reduction of metals as discussed before. Oxidized metal species, that 

are abundant in soils, are poorly available for microorganisms because of their low 

solubility. The presence of reduced quinone moieties may lead to a chemical 

reduction of these iron species. Our results indicate that all tested halorespiring 
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bacteria are able to recycle quinone moieties and thus able to reduce oxidized iron 

species indirectly. This includes those bacteria that cannot reduce iron metabolically. 

Occurrence at non-polluted sites 

The ability of halorespiring bacteria of the genera Desulfitobacterium and 

Sulfurospirillum to use chlorinated compounds and oxidized metals as electron 

acceptor sheds new light on the presence of these bacteria in the environment. Until 

recently, halorespiring bacteria were mainly found at sites polluted with chlorinated 

ethenes. The use of molecular techniques has also demonstrated the presence of 

halorespiring microorganisms at a variety of habitats including those that apparently 

do not contain chlorinated compounds (Loffler et al., 2000; Lanthier et al., 2001). 

Loffler et al. (2000) have speculated that the presence of halorespiring bacteria at sites 

not polluted with chlorinated compounds by human activity may be the result of biotic 

and/or a-biotic production of chlorinated compounds. However, the characteristic of 

several halorespiring bacteria to reduce oxidized metals, such as iron, manganese, 

selenate and arsenate as well as to reduce and oxidize quinone moieties is an 

additional and maybe a more likely explanation for the occurrence of halorespiring 

bacteria in non-polluted soils. 

In this view, it is very interesting to test halorespiring species of other genera such as 

Dehalobacter and Dehalococcoides for their ability to reduce metals and quinones. To 

date only a limited number of electron acceptors for these microorganisms is known. 

A possible ability of these bacteria to use other electron acceptors can help us to 

understand their niche in natural habitats and can facilitate studying these bacteria. 
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Abstract 

Most halorespiring bacteria are able to use a wide variety of compounds as electron 

acceptors. Not only chlorinated compounds, but also nitrate, sulphate, oxidized metals 

and humic acids are reduced. Here, we report on the usage of mixtures of electron 

acceptors by Sulfurospirillum species. 

Nitrate, which is reduced to ammonium by S. halorespirans, is reduced preferentially 

before PCE by this organism. After reduction of nitrate and the intermediate nitrite, 

PCE reduction by this bacterium recovers. In contrast, the closely related S. 

multivorans only reduces nitrate to nitrite. When nitrate is added to PCE reducing 

batches, PCE reduction ceases and does not recover. Sulphate does not influence the 

dechlorination by Sulfurospirillum species, but sulphite inhibits the dechlorination via 

a reversible chemical inhibition. 

Also, the physiological properties of S. halorespirans adapted to certain electron 

acceptors was tested. It appears that PCE is only reduced by cells pre-grown on PCE. 

The same was found for the reduction of selenate. Arsenate and nitrate, however, are 

reduced by cells pre-grown on all substrates tested (PCE, selenate, arsenate and 

nitrate). This indicates that the arsenate and nitrate reducing enzymes are 

constitutively present. 
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Introduction 

Tetrachloroethene (PCE) and trichloroethene (TCE) are major soil and groundwater 

pollutants, which can be degraded under anaerobic conditions via the process of 

reductive dechlorination (Vogel and McCarty, 1985; Middeldorp et al., 1999; Holliger 

et al, 1999). Nowadays, this reductive process is often used in in-situ bioremediation 

projects. By the addition of an appropriate electron donor the indigenous 

dechlorinating bacteria present at the polluted site are stimulated (Middeldorp et al., 

2002). 

A number of halorespiring bacteria belonging to different genera that can couple the 

(partial) reduction of PCE to growth, has been isolated (Middeldorp et al., 1999; 

Holliger et al, 1999; Luijten et al, 2003; Sung et al, 2003). All halorespiring 

bacteria, except Dehalobacter restrictus (Holliger et al., 1993; Wild et al., 1996; 

Holliger et al., 1998) can reduce chlorinated alkenes, as well as other oxidized 

compounds like nitrate, sulphite, chlorinated aromatics and oxidized metals (Holliger 

et al, 1999; Middeldorp et al, 1999; Niggemeyer et al, 2001; Luijten et al, 2003; 

Luijten et al, 2004). 

Sites polluted with chlorinated ethenes may contain other oxidized compounds as 

well. The presence of nitrate and/or sulphate, but also the presence of metals like iron, 

manganese, arsenate or selenate may affect the anaerobic reductive dechlorination at 

polluted sites. Competition for the available electron donor between halorespiring and 

other, e.g. denitrifying or sulphate-reducing bacteria may occur. Since most 

halorespiring bacteria are able to use different terminal electron acceptors, 

competition for the available electron donor may also occur within these bacteria. 

Therefore, high concentrations of nitrate or sulphate at a particular site will require the 

addition of an excess of electron donor to efficiently stimulate the dechlorination. 

To effectively enhance biodegradation at polluted sites using halorespiring bacteria, 

one has to understand the influence of different alternative electron acceptors on the 

dechlorinating capacity of these bacteria. Here, we report on the effect of nitrate and 

oxidized sulphur oxyanions on the reductive dechlorination of PCE by halorespiring 

species of the genera Sulfurospirillum and Desulfitobacterium. Furthermore, we 

49 



Chapter 3 

present data about the adaptation of Sulfurospirillum halorespirans PCE-M2 to 

different electron acceptors. 

Material and Methods 

Organisms 

Sulfurospirillum halorespirans PCE-M2 (DSM 13726 = ATCC BAA-583) was 

isolated at the Laboratory of Microbiology from a soil polluted with chlorinated 

ethenes (Luijten et al., 2003). Sulfurospirillum multivorans (DSM 12446), formerly 

known as Dehalospirillum multivorans, was obtained from the DSMZ 

(Braunschweig, Germany). Desulfitobacterium sp. PCE1 (DSM 10344) was a kind 

gift from J. Gerritse (University of Groningen, Groningen, The Netherlands). 

Anaerobic medium and experimental set up 

A phosphate-bicarbonate buffered medium with a low chloride concentration as 

described by Holliger et al. (1993) was used for the experiments. Electron acceptors 

and electron donors were added from anaerobic, aqueous concentrated stock 

solutions. Tetrachloroethene was added from a concentrated (1 M) stock solution in 

hexadecane. Yeast extract (1 g/1) was routinely added in experiments with 

Desulfitobacterium species. Incubations were carried out in 117-ml serum bottles 

containing 20 ml anaerobic medium. The headspace consisted of N2/CO2 (80/20 v/v). 

For the adaptation experiments, cells were pre-grown for at least two generations on 

the studied electron acceptor (10 mM) (PCE, arsenate, selenate or nitrate). Lactate (29 

mM) was used as electron donor. 

Analytical techniques 

Chloride anion concentrations were determined with a Micro-chlor-o-counter (Marius, 

Utrecht, The Netherlands) as described before (Luijten et al., 2003). Volatile fatty 

acids and inorganic anions were determined by high-pressure liquid chromatography 

and ion chromatography, respectively, as described by Scholten and Stams (1995). 
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Results and Discussion 

Effect of nitrate 

Sulfurospirillum halorespirans strain PCE-M2 reduces nitrate stoichiometrically to 

ammonium in the presence of a proper electron donor (Luijten et al., 2003). In the 

presence of lactate as electron donor, nitrate is preferentially used instead of PCE. 

When strain PCE-M2, pre-grown on PCE, is incubated with a mixture of PCE (10 

mM) and nitrate (5 mM), a delay of the PCE reduction occurs until all nitrate (and the 

intermediate nitrite) is reduced (Figure 1). The same preferential reduction of nitrate 

before PCE occurs when nitrate is added to actively dechlorinating cultures of 

Sulfurospirillum halorespirans strain PCE-M2. Dechlorination stops within a few 

hours after the addition of nitrate and only resumes after nitrate and nitrite have 

disappeared. 

Figure 1: The reduction of nitrate and PCE, both present 
before incubation, by Sulfurospirillum halorespirans strain 
PCE-M2. ( • ) = Nitrate; (•) = nitrite; (A) = chloride. 
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Sulfurospirillum multivorans reduces nitrate mainly to nitrite (Scholz-Muramatsu et 

al., 1995). This halorespiring bacterium does not reduce PCE when prior to incubation 

both nitrate and PCE are present. After addition of nitrate to an actively 

dechlorinating culture, PCE reduction ceases and S. multivorans only reduces the 

available nitrate stoichiometrically to nitrite (Figure 2). The PCE reduction by S. 

multivorans does not recover in these experiments. 

4 

[days] 

Figure 2: The reduction of PCE by Sulfurospirillum 

multivorans. After 2.8 days, nitrate (10 mM) was added. ( • ) = 
Nitrate; (•) = nitrite; (A) = chloride; (•) = chloride in control 
experiment without nitrate addition. 

Dechlorination of PCE by Desulfitobacterium sp. PCE1 is not inhibited by the 

presence of up to 10 mM nitrate (data not shown). This bacterium is not able to reduce 

nitrate (Gerritse et al., 1996). Desulfitobacterium frappieri strain TCE1, a bacterium 

that does reduce nitrate, was not inhibited by the presence of 2 mM nitrate (Gerritse et 

al., 1999). Dechlorination and nitrate reduction occurred simultaneously in their 

chemostat studies when an electron donor was present in excess. Under electron donor 

limitation, the dechlorination was completely blocked. Towsend and Suflita (1997) 

found that dechlorination of 3-chlorobenzoate by Desulfomonile tiedjei was not 

inhibited by nitrate, and that nitrate is not used for respiration by D. tiedjei. Van de 

Pas (2000) reported that nitrate did inhibit the 3-chloro-4-hydroxyphenylacetate (Cl-

OHPA) reduction in cell extracts but not in cell suspensions of Desulfitobacterium 
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dehalogenans, an bacterium that is able to reduce nitrate. Actually, D. dehalogenans 

reduced nitrate and C1-0HPA simultaneously (Mackiewicz and Wiegel, 1998; Van de 

Pas, 2000). 

Effect of sulphur oxyanions 

Sulphate is often found at sites polluted with chlorinated compounds (Middeldorp et 

al., 2002). Reductive dechlorination is possible under sulphate-reducing conditions 

(Bagley and Gossett, 1990), but most known halorespiring bacteria are not able to use 

sulphate as terminal electron acceptor (Van de Pas, 2000), except for some species 

belonging to the 5-subdivision of the Proteobacteria. Therefore, different groups of 

microorganisms will be active under these conditions. We tested the influence of 

sulphate on the reductive dechlorination of PCE by Sulfurospirillum halorespirans 

strain PCE-M2. Sulphate concentrations up to 20 mM had no effect on the PCE (or 

nitrate) reducing activity of strain PCE-M2. The reductive dechlorination by 

Sulfurospirillum multivorans and Desulfitobacterium sp. PCE1 was also not 

influenced by the presence of sulphate. Sulphate itself was not used as an electron 

acceptor by these bacteria, which may explain why sulphate has no effect on the PCE 

reduction. There was no inhibition of the dechlorination when sulphate was already 

present before inoculation nor when sulphate was added to actively dechlorinating 

cultures. Towsend and Suflita (1997) found that sulphate does inhibit the reduction of 

3-chlorobenzoate by the sulphate-reducing Desulfomonile tiedjei under growth 

conditions but not under non-growth conditions. 

Sulphite is a possible terminal electron acceptor for many halorespiring bacteria but 

not for Sulfurospirillum species. Sulphite (1 mM and higher) completely inhibited the 

dechlorination of PCE by both Sulfurospirillum halorespirans strain PCE-M2 and S. 

multivorans. Also, the reductive dehalogenase of Desulfitobacterium chlororespirans 

Co23 was strongly inhibited by sulphite (Loftier et al., 1996). Studies on purified 

tetrachloroethene reductive dehalogenases showed that these are cobalamine 

containing enzymes (Miller et al, 1998; Magnuson et al, 1998; Van de Pas, 2000; 

Smidt, 2001). Sulphite chemically reacts with cobalamine, thus affecting the reductive 

dehalogenase, which may explain the inhibition of the reductive dechlorination 

(Miller et al., 1997). Gerritse et al. (1999) showed in studies with Desulfitobacterium 

frappieri strain TCE1, a sulphite-reducing bacterium, that sulphite indeed inhibited its 
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dechlorination. Dechlorination was restored after reduction of sulphite, indicating to a 

reversible chemical inhibition. 

Adaptation of Sulfurospirillum halorespirans 

Most halorespiring bacteria are able to use a broad range of electron acceptors. We 

investigated the physiological properties of Sulfurospirillum halorespirans PCE-M2 

adapted to various electron acceptors. Cells of strain PCE-M2 were pre-grown on 

several electron acceptors (PCE, nitrate, selenate and arsenate) and then transferred to 

incubations with alternative electron acceptors. Table 1 shows that only cells pre-

grown on PCE are able to reduce PCE. The same was observed for the reduction of 

selenate. By contrast, arsenate and nitrate are reduced independently of the electron 

acceptor used to pre-grown the cells (Table 1). This indicates that the enzymes for the 

reduction of nitrate and arsenate are constitutively present in Sulfurospirillum 

halorespirans. 

Table 1: Adaptation of Sulfurospirillum halorespirans PCE-M2 to 
alternative electron acceptors. ++ = Complete reduction within 1 week; + = 
complete reduction within 2 weeks; - = no reduction within 1 month. 

PCE nitrate arsenate selenate 
PCE pre-grown ++ ++ + 
Nitrate pre-grown - ++ ++ 
Arsenate pre-grown - + + 
Selenate pre-grown - ++ ++ + 

Conclusion 

Halorespiring bacteria have been found in soils that are not polluted with chlorinated 

compounds (Loffler et al., 2000; Lanthier et al., 2001). Recently it was found that 

most halorespiring bacteria can use a broad spectrum of electron acceptors 

(Niggemeyer et al., 2001; Finneran et al., 2002; Luijten et al., 2004). This may 

explain the occurrence of these halorespiring bacteria in unpolluted environments. We 

showed that Sulfurospirillum halorespirans reduces PCE only when adapted to this 

substrate. Cells pre-grown on other electron acceptors (nitrate, arsenate, selenate) 
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seem to have lost their dechlorinating capacity. This indicates that the presence of 

halorespiring bacteria in a polluted soil does not necessarily mean that they grow via 

halorespiration. Still, at many sites, indigenous bacteria that are actively respiring 

chlorinated compounds, make it interesting to learn more about the evolutionary 

aspects of halorespiring bacteria and their dehalogenases. 
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Abstract 

Halorespiring bacteria are able to oxidize organic electron donors such as formate, 

acetate, pyruvate and lactate, but also H2. Since these bacteria have a high affinity for 

H2, this may be the most important electron donor for halorespiration in the 

environment. We have studied the role of ^-threshold concentrations in pure 

halorespiring cultures and compared them with mixed cultures and field data. We 

have found H2-threshold values between 0.05 and 0.08 nM for Sulfurospirillum 

halorespirans, S. multivorans and Dehalobacter restrictus under PCE and nitrate 

reducing conditions. 

The reduction of PCE and TCE can proceed at H2 concentrations below 1 nM at a 

polluted site. However, for the reduction of lower chlorinated ethenes a higher H2 

concentration is required. This indicates that the measured H2 concentration in-situ 

can be an indicator of the extend of anaerobic reductive dechlorination. 
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Introduction 

Over the last decade halorespiring bacteria were studied extensively. This has resulted 

in a better understanding of the degradation of toxic chlorinated ethenes. For 

bioremediation purposes this knowledge opened the possibility to effectively 

stimulate the in-situ clean-up of polluted soils by using halorespiring bacteria. To 

optimize this process research was done to understand the enhancement of reductive 

dechlorination by halorespiring bacteria in soils and their competition with other 

microorganisms for available electron donors. Organic matter is degraded under 

anaerobic conditions to small organic molecules and H2 by various fermenting 

bacteria. The H2 and lower fatty acids produced can be oxidized and coupled to the 

reduction of different terminal electron acceptors like nitrate, ferric iron, sulphate or 

CO2 by respiring bacteria. Halorespiring bacteria have been found to oxidize organic 

electron donors such as formate, acetate, pyruvate and lactate, but also H2. Several 

authors speculate that H2 is the most important electron donor for halorespiration in 

the environment (Smatlak et al., 1996; Fennell et al., 1997; Ballapragada et al., 1997; 

Loftier et al., 1999; Mazur and Jones, 2001). A high affinity for H2 results in a low 

H2-threshold, a value that represents the minimal H2 concentration that can be 

consumed under defined reducing conditions by a bacterium (Lovley and Goodwin, 

1988; Loffler et al., 1999). Table 1 lists H2-threshold concentrations for different 

metabolic processes reported in literature. The data for the dechlorination processes 

have been measured in sediment samples. Loffler and co-workers (1999) reported H2-

thresholds of below 0.3 nM for different Desulfitobacterium species reducing either 

tetrachloroethene (PCE), 3-Cl-4-hydroxybenzoate or 2-chlorophenol. To our 

knowledge, these data are the only data known for pure cultures of halorespiring 

bacteria. 

In this paper, we present F^-threshold values for different reducing processes from 

laboratory batch studies with different halorespiring bacterial strains. We compare 

these results with H2 concentrations and dechlorination efficiency from a soil polluted 

with chlorinated ethenes during an active in-situ bioremediation. 
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Table 1 :H2-threshold concentrations for different processes. 
Process 
Acetogenesis 
Methanogenesis 
Sulphate reduction 
Iron reduction 
Manganese reduction 
Ammonification 
Nitrate reduction 
Halorespiration* 
PCE & TCE reduction" 
Cis-1,2-DCE reduction 
VC reduction" 

H2-threshold [nM] 
>300 
5-100 
1-10 

0.1-0.8 
<0.05 

0.015-0.025 
<0.05 
<0.3 

0.6-0.9 
0.1-2.5 
2-24 

References 

1,2 
1,2,3,4,5,6 
1,2,3,4,6 
1,3,4,6 
6 
1,2 
1,6 
1, this study 
4 
4,5 
4,5 

= Pure culture studies; = mixed culture/field studies. 
References: 1 = Loffler et al., 1999; 2 = Cord-Ruwisch et al., 1988; 3 = 
Chapelle et al, 1996; 4 = Lu et al, 2001; 5 = Yang and McCarty, 1998; 
6 = Lovley and Goodwin, 1988. 

Materials and methods 

Organisms 

Sulfurospirillum halorespirans PCE-M2 (DSM 13726; ATCC BAA-583) was isolated 

in the Laboratory of Microbiology (Luijten et al., 2003). Sulfurospirillum multivorans 

(DSM 12446) (formerly known as Dehalospirillum multivorans), Dehalobacter 

restrictus (DSM 9455) and Desulfovibrio strain Gl 1 (DSM 7057) were obtained from 

the DSMZ, Braunschweig, Germany. 

Set-up H2-threshold experiments 

The threshold concentrations for H2 were determined in batch experiments at 30 °C 

using an anaerobic phosphate-bicarbonate buffered medium with a low chloride 

concentration (Holliger et al., 1993). Initially, the bacteria were pre-grown with an 

excess of H2 present in the headspace. After growth of the organisms, the headspace 

was changed under sterile conditions from H2/CO2 to N2/CO2 to remove the 

remaining H2. To avoid limitation during the experiment, the electron acceptor (10 

mM) was re-added to the medium. Finally, 2 ml of pure H2 was added to restart and 

the hydrogen concentration was followed in time. This experimental set-up was 

chosen to allow accurate measurements at low H2 concentrations. 
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Field data 

The Rademarkt site, located in the center of the city of Groningen in the north of The 

Netherlands, is polluted with PCE and trichloroethene (TCE). The site is characterized 

by mixed (iron- and sulphate reducing) redox conditions. Intrinsic reductive 

degradation takes place as evidenced by the detection of degradation products (cis-

1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC)). However, the intrinsic 

degradation rates were too low to prevent spreading of PCE and TCE. The in-situ 

microbiological degradation of PCE and TCE is stimulated at this site at a pilot of 20 

by 50 meter via the addition of electron donors in an infiltration, extraction and 

recirculation system. The pilot system, located in the source zone, consists of 10 

injection wells (5 m below surface level) in a row on one site of the pilot and a row of 

5 extraction wells situated at the other site. Part of the extracted groundwater is 

reinfiltrated via the infiltration wells, and a mixture of electron donors (methanol and 

compost extract) and NH4CI is added simultaneously. By circulating part of the 

extracted groundwater without purification, the soil is used as a bioreactor. This 

circulation system is located perpendicular to the groundwater flow (20 m/yr). 

Furthermore, a large number of monitoring wells has been installed. At the Rademarkt 

site various parameters have been monitored including the H2 and chlorinated ethenes 

concentrations. 

Analytical techniques 

Inorganic anions were measured after separation on a dionex column as described by 

Scholten and Stams (1995). H2 was analyzed on a RGA3 reduction gas analyzer 

equipped with a 60/80 unibeads pre-column and a 60/80 molecular sieve 5A column. 

The detector and column temperature were 265 °C and 105 °C, respectively. The 

detection limit was approximately 0.015 nM H2. 

Determination of the H2 concentration is done at the Rademarkt site according to the 

"bubble strip" method (Chapelle et ah, 1996). 
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Results 

H2-threshold concentrations in pure cultures 

We determined the H2-threshold concentration of Sulfurospirillum halorespirans 

PCE-M2 with PCE as electron acceptor (Figure 1). After two months the H2 

concentration had slowly leveled off to approximately 0.05 nM H2. The addition of 

yeast extract, a possible source of H2, did not alter the ̂ -threshold concentration of 

0.05 nM (Table 2). 

[days] 

Figure 1: The H2 concentration versus time for 
Sulfurospirillum halorespirans PCE-M2 incubated with PCE 
as electron acceptor in the presence of yeast extract. 

Figure 2: The H2 concentration versus time for 
Sulfurospirillum halorespirans PCE-M2 incubated with 
nitrate as electron acceptor in the presence of yeast extract. 
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Table 2: H-threshold concentrations determined in this study, n = The number of batches 
of which the reported threshold is the average value. S. = Sulfurospirillum, y.e. = yeast 
extract. 

Organism 

S. halorespirans PCE-M2 

S. multivorans 

Dehalobacter restrictus 

Desulfovibrio Gi l 

Electron acceptor 

PCE 
PCE + y.e. 
nitrate 
nitrate + y.e. 
nitrate + hexadecane 

PCE 
nitrate 

PCE 

sulphate 

H2-threshold 
[nMl 

0.05 ± 0.01 
0.05 ± 0.02 
0.04 ± 0.02 
0.04 ± 0.03 
0.05 ± 0.01 

0.08 ± 0.04 
0.06 ± 0.03 

0.06 

1.76 ±0.15 

n 

4 
4 
4 
5 
4 

5 
5 

1 

5 

The H2-threshold concentration under nitrate reducing conditions is comparable to the 

H2-threshold concentration under halorespiring conditions and also independent of the 

addition of yeast extract (Figure 2; Table 2). Tetrachloroethene was added from a 

concentrated solution dissolved in hexadecane. Since hexadecane was not added in 

incubations with nitrate, we confirmed that hexadecane did not affect the F^-threshold 

values for incubations with nitrate (Table 2). 

The H2-threshold concentrations for Sulfurospirillum multivorans and Dehalobacter 

restrictus were comparable to those of Sulfurospirillum halorespirans PCE-M2 

(Table 2). All halorespiring bacteria studied are able to reduce PCE to cw-l,2-DCE. 

To validate our H2-threshold concentration method against literature data, we included 

a sulphate reducing microorganisms, Desulfovibrio Gi l . We measured a Hb-threshold 

of 1.8 nM, which is in agreement with literature data for sulphate reducing bacteria 

(Cord-Ruwisch et al., 1988; Chapelle et al., 1996). 

Relation between dechlorination and hydrogen concentrations at afield site 

The Rademarkt site has been studied intensively during active stimulation of in-situ 

bioremediation. Figure 3 shows both the Hb concentration and the molar ratio of 

(chlorinated) ethenes in two monitoring wells at the Rademarkt site. In well 11, the H2 

concentration was below 1 nM during the pilot test, and accumulation of the partial 

dechlorinated intermediate cw-1,2-DCE occurred. This monitoring well is located in 

between the infiltration and extraction wells. We concluded that the infiltration well 
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near monitoring well 11 was not functioning properly, because only a small part of the 

added tracer (bromide) in the infiltration solution reached monitoring well 11 

compared to the amount of tracer in other monitoring wells. This also means that only 

a part of the added electron donor had reached monitoring well 11. Well 15 is located 

less than one meter downstream from an infiltration well, and had a 10 times higher 

H2 concentration than well 11. In well 15, a complete sequential dechlorination to the 

non-chlorinated ethene had occurred. 

10.000 

2? 60 
0.100 

10 20 30 40 

[week] 

10 20 30 

[week] 

40 

Figure 3: The H2 concentration and molar ration of 
(chlorinated) ethenes measured over time in well 11 (upper 
graph) and well 15 (lower graph) at the Rademarkt site. 
Please note the scales on the different axes. (•) = PCE; (•) = 
TCE; (A) = c«-l,2-DCE; (x) = VC; (•) = ethene, and (+) = 
H2. 
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Discussion 

Halorespiring bacteria are able to use H2 and a number of organic compounds such as 

formate, acetate, pyruvate and lactate as electron donor (Holliger et al, 1999; 

Middeldorp et al, 1999; Sung et al, 2003; He et al, 2003). Several authors have 

concluded that H2 may be the most important electron donor for the process of 

anaerobic reductive dechlorination in soil (DiStefano et al, 1992; Smatlak et al, 

1996; Fennell et al., 1997; Mazur and Jones, 2001). For the halorespiration process, 

Gibbs Free energies are still exergonic at very low H2 concentrations (Loffler et al., 

1999; Mazur and Jones, 2001). Therefore, halorespiring bacteria can outcompete 

methanogenic archaea, acetogenic bacteria, and sulphate-reducing bacteria at low H2 

concentrations. However, they have to compete for the available H2 with for example 

nitrate- and iron-reducing bacteria. These bacteria are also able to use H2 at low 

concentrations (Table 1). 

Several studies have been done to determine H2 concentrations in mixed batch 

cultures under dechlorinating conditions with polluted sediments as inocula. These 

studies show that the reductive dechlorination can proceed at H2 concentrations lower 

than 20 nM (Smatlak et al., 1996; Fennell et al., 1997; Yang and McCarty, 1998; Lu 

et al., 2001). The H2 concentrations were the result of ongoing ̂ -producing (organic 

matter fermentation) and ̂ -consuming (halorespiration) processes. However, the H2-

threshold concentration for individual halorespiring strains is much lower than the 

values found in the previously mentioned batch studies with mixed cultures. The H2-

threshold values for Sulfurospirillum halorespirans, S. multivorans and Dehalobacter 

restrictus under PCE reducing conditions were between 0.05 and 0.08 nM (Table 2). 

These values are in agreement with the ̂ -threshold data of below 0.3 nM reported by 

Loffler et al. (1999) for Desulfitobacteriwn species. We also found that the H2-

threshold concentrations for different reducing processes within halorespiring 

microorganisms are comparable (Table 2). This, together with the exergonic Gibbs 

Free energies, confirms that these halorespiring bacteria may have to compete with 

other anaerobic, respiring bacteria for the available H2. 

At sites polluted with chlorinated ethenes, accumulation of lower chlorinated ethenes 

has often been encountered (DiStefano, 1999; Bradley, 2000; Mazur and Jones, 2001; 
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Villarante et al., 2001). The actual H2 concentration may play an important role in this 

accumulation. The Rademarkt site data show that lower H2 concentrations are often 

accompanied by a partial dechlorination whereas at higher H2 concentrations often a 

complete dechlorination is observed. In batch studies, comparable results were 

obtained by Lu et al. (2001). They reported the requirement of a higher (up to 24 nM) 

H2 concentration for the reduction of lower chlorinated ethenes compared to the 

reduction of PCE to TCE (Table 1). In conclusion, the reduction of PCE to cis-1,2-

DCE can occur at low H2 concentrations as demonstrated by our pure culture and field 

studies. However, a high(er) H2 concentration is most likely required for the reduction 

of cis-1,2-DCE and VC as demonstrated by our field study. Thus, the measured (/'«-

situ) H2 concentration can be an indicator of the extent of anaerobic reductive 

dechlorination. This is in contrast with the conclusion of Loffler and co-workers 

(1999), who concluded that for complete and incomplete dechlorination similar H2 

concentrations occur in mixed culture experiments. 

Unfortunately, no bacterial strains are available in commercial culture collections to 

study the reduction of lower chlorinated ethenes such as cis-1,2-DCE and VC. Such 

studies would result in a better understanding of the complete reductive dechlorinatioili 

reactions during bioremediation processes at polluted sites. 
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Abstract 

Two bacterial enrichment cultures (DCE-1 and DCE-2) able to reduce civ-1,2-

dichloroethene and vinyl chloride under anaerobic conditions have been obtained, 

Both hydrogen and formate support the stoichiometric production of ethene from cis+ 

1,2-dichloroethene and vinyl chloride. The addition of (fermented) yeast extract is 

required to sustain dechlorination in both enrichments. Vinyl chloride is reduced at 

high rates (0.8 - 1.4 mmol/l/d) by both enrichments. High concentrations of vinyl 

chloride (up to 4.9 mM) are not toxic for the enrichments. Cis- 1,2-dichloroethene is 

reduced at approximately 20-30 fold lower rates and lower concentrations appear to 

be inhibitory for both enrichments. Our results indicate that the dehalogenating 

organisms present in the enrichments gain energy from the reduction of vinyl 

chloride. The reduction of cis- 1,2-dichloroethene seems to be the bottleneck in the 

complete reduction of higher chlorinated ethenes. The slow reduction of cis- 1,2-

dichloroethene cannot be explained theoretically by the hydrogen threshold 

concentration required for the reduction of cis-1,2-dichloroethene. The poor reduction 

of CM-1,2-dichloroethene by reduced cobalamine may explain why CM-1,2-

dichloroethene dechlorination is the limiting step in reductive conversion of 

chlorinated ethenes. 
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Introduction 

Chlorinated ethenes such as tetrachloroethene (PCE) and trichloroethene (TCE) are 

produced in large quantities during a number of industrial activities. Due to 

(accidental) spills PCE and TCE are among the most abundant pollutants of soils and 

groundwater worldwide. PCE is microbiologically resistant under aerobic conditions 

but TCE and lower chlorinated ethenes can be oxidized co-metabolically. 

Anaerobically, PCE can undergo a microbial, stepwise reduction via TCE, CM-1,2-

dichloroethene (cw-l,2-DCE) and vinyl chloride (VC) to ethene (Lee et al., 1998; El 

Fantroussi et al., 1998; Middeldorp et al., 1999) and sometimes ethane (De Bruin et 

al., 1992). This reduction pathway has been observed at many anaerobic polluted sites 

and is attributed to the indigenous microorganisms. However, sequential 

dechlorination is often incomplete and results in concomitant accumulation of mainly 

cw-l,2-DCE and sometimes VC (see Wickramanayake et al., (2000) for numerous 

examples). The same partial dechlorination pattern of PCE to either TCE or cis-1,2-

DCE has been observed with pure cultures of bacteria able to use PCE as terminal 

electron acceptor (Holliger et al., 1993; Scholz-Muramatsu et al, 1995; Gerritse et 

al, 1996; Lee et al., 1998; El Fantroussi et al., 1998; Middeldorp et al., 1999; 

Holliger et al., 1999). Only one, recently isolated, microorganism, "Dehalococcoides 

ethenogenes" strain 195, is able to dechlorinate PCE completely to ethene. In contrast 

to the reduction of PCE to VC is the final reduction step from VC to ethene not 

coupled to growth by this organism (Maymo-Gatell et al., 1997; Maymo-Gatell et al., 

1999). 

When we performed our studies, no organisms had been isolated that are able to 

couple the anaerobic reduction of cis-1,2-DCE and/or VC to microbial growth. 

However, recently He et al. (2003) isolated Dehalococcoides strain BAV1, which is 

able to couple the reduction of cis-1,2-DCE and VC to growth. Furthermore, a 

number of reports have been published, in which enrichment cultures that are able to 

convert lower chlorinated ethenes under anaerobic conditions are described. 

Anaerobic oxidation of ci?-1,2-DCE and VC to CO2 was reported under Fe(III)-

reducing and sulphate-reducing conditions (Bradley and Chapelle, 1997; Bradley and 

Chapelle, 1998). Anaerobic reductive dechlorination of cis-1,2-DCE and/or VC to 
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ethene was reported to occur in mixed cultures (Komatsu et al., 1994; Rosner et al., 

1997; Bradley and Chapelle, 1997; Bradley and Chapelle, 1998; Middeldorp et al., 

1999) and in cell extracts (Rossner et al., 1997). In this paper we report the anaerobic 

reduction of VC at relatively high concentrations in enrichment cultures. Our results 

show conversion rates of VC at apparent metabolic rates, indicating that the 

responsible organisms are able to use lower chlorinated ethenes as terminal electron 

acceptors and derive energy for growth from these conversions. 

Materials and Methods 

Chemicals 

Cw-1,2-DCE was obtained from Aldrich, Zwijndrecht, The Netherlands. Vinyl 

chloride (gaseous) and ethene were obtained from Hoekloos, Schiedam, The 

Netherlands. 

Enrichment cultures 

The dechlorination of lower chlorinated ethenes was carried out by two different 

anaerobic enrichment cultures. 

The first culture, tentatively called DCE-1, originated from a fixed bed column 

reducing PCE to ethane. The original inoculum consisted of a mixture of anaerobic 

sludge and sediment from the river Rhine near Wageningen in The Netherlands (De 

Bruin et al., 1992). Enrichment DCE-1 has been routinely transferred using VC as 

electron acceptor and molecular hydrogen as electron donor. Acetate was added as 

carbon source in these experiments. 

The second enrichment, tentatively called DCE-2, originated from a laboratory 

anaerobic packed bed reactor, which was fed with PCE as electron acceptor and 

acetate as electron donor and carbon source. Complete anaerobic reduction of PCE to 

ethene took place in this reactor (Henssen et al., 1997). A sample from this reactor 

was kindly provided by Bioclear Environmental Biotechnology BV, Groningen, The 

Netherlands. 
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Batch dechlorination assays 

A phosphate-bicarbonate buffered medium with a low chloride concentration as 

described before was used (Holliger et al., 1993). Incubations were performed in 117-

ml serum bottles containing 20 ml anaerobic medium. The headspace consisted of 

N2/C02 (80/20) or H2/C02 (80/20); the latter when molecular hydrogen was used as 

electron donor. Acetate was added as carbon source when either molecular hydrogen 

or formate was used as electron donor. Electron donors and electron acceptors were 

added from aqueous concentrated sterile stock solutions, unless stated otherwise. VC 

was added as a gas through a sterile 0.2 urn filter. Yeast extract (1.25 g/1 final 

concentration) or fermented yeast extract were added to the medium, unless otherwise 

stated. Yeast extract was fermented by adding anaerobic sludge and incubating at 30 

°C for at least 2 weeks. All experiments were performed at 30 °C or 20 °C for 

enrichment DCE-1 and DCE-2, respectively. 

For isolation purposes the roll tube method was used. The medium was solidified by 

adding 22 g/1 agar noble (Difco, Detroit, MI, USA). 

Analysis 

All chlorinated ethenes, ethene, ethane and methane were determined in headspace 

samples by a 43 8A Chrompack Packard gas chromatograph. The gas chromatograph 

was equipped with a flame ionization detector (FID) connected to a capillary column 

(Poraplot Q, Chrompack, The Netherlands; 25 m by 0.32 mm inner diameter; df 10 

urn; 100 kPa N2) and a splitter injector (ratio 1:10). The injector and detector 

temperatures were 100 and 250 °C, respectively. For calculating the distribution 

between gas and liquid phase, dimensionless Henry's law constants for VC at 20 °C 

and 30 °C were extracted from literature values (Gossett, 1987). Unless otherwise 

stated, all reported concentrations are expressed as nominal concentrations, i.e., the 

gas-liquid distribution is ignored and the component is considered to be solely in the 

liquid phase. 

Volatile fatty acids were determined by high-pressure liquid chromatography (HPLC) 

as described by Scholten and Stams (1995). 

75 



Chapter 5 

Results 

DCE-1 

Enrichment DCE-1, obtained from a lab-scale fixed bed column (De Bruin et al., 

1992), was enriched with H2 as electron donor. This enrichment is able to reduce both 

cw-l,2-DCE and VC to ethene. Incubations were regularly started with a 1 % (v/v) 

inoculum. Dechlorination was achieved until 10"5 dilutions in liquid medium. In initial 

incubations, bromoethanesulphonate (Bres) had been added to inhibit methanogenic 

activity. After several transfers methane production ceases, even in the absence of 

Bres indicating the disappearance of methanogenic microorganisms. The addition of 

yeast extract or fermented yeast extract was necessary to maintain the dechlorinating 

activity of enrichment DCE-1. Neither peptone, acetate, nor a mixture of lower 

volatile fatty acids did support dechlorination and could therefore not replace the 

(fermented) yeast extract. The addition of filter sterile medium from full-grown 

incubations did not enhance dechlorination rates. Both molecular hydrogen and 

formate were suitable electron donors for the reduction of lower chlorinated ethenes. 

No acetate production was found during the experiments, indicating that 

(homo)acetogenic bacteria were absent in this culture. Figure 1 shows the 

stoichiometric reduction of VC to ethene by enrichment DCE-1. The maximum VC 

reduction rate observed in this experiment was 0.97 mmol/1/day. 
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Figure 1: Stoichiometric anaerobic reduction of vinyl chloride (•) 
to ethene (•) by enrichment DCE-1 using H2 as electron donor. 

76 



Dichloroethene and vinyl chloride reduction 
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Figure 2: Reduction of cis-1,2-DCE (A) by enrichment DCE-1. 
Traces of VC (•) were produced and a stoichiometric amount of 
ethene (•) was produced. 

Figure 2 shows the reduction of cis- 1,2-DCE to ethene. In this experiment the CM-1,2-

DCE reduction rate was 32 umol/1/day. VC reduction by enrichment DCE-1 was not 

inhibited by initial nominal VC concentrations up to 10 mM. Nominal concentrations 

above 200 uM cis- 1,2-DCE caused a significant decrease of the cis- 1,2-DCE 

reduction rate. After several culture transfers using VC as electron acceptor the 

culture could still reduce cis- 1,2-DCE indicating that the same bacteria were possibly 

responsible for the dechlorination of both VC and cis- 1,2-DCE. 

DCE-2 

Initially a sludge sample from the laboratory reactor (Henssen et al., 1997) was 

incubated with PCE and acetate. This incubation showed complete reduction of PCE 

to ethene as well as formation of methane. A liquid sample from this incubation was 

transferred into fresh medium. New incubations were always started with a 10 % (v/v) 

inoculum. Initially, the culture was maintained using acetate (and yeast extract) as 

electron donor and cis-1,2-DCE as electron acceptor. Figure 3 shows the 

stoichiometric reduction of cis- 1,2-DCE via VC to ethene by enrichment DCE-2 using 

acetate as electron donor. After several generations, the culture was transferred into 

medium containing VC in stead of cis- 1,2-DCE and we started using molecular 

hydrogen as electron donor. 
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400 
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30 40 

Figure 3: Reduction of c£s-l,2-DCE (A) to VC (•) and ethene (•) 
by enrichment DCE-2 using acetate as electron donor 

Figure 4: Reduction of VC (•) by enrichment DCE-2 using H2 

as electron donor. VC was twice added after its depletion. 
Stoichiometric amounts of ethene (•) were produced. 

By that time the enrichment had lost its ability to produce methane. Whereas no Bres 

had been added, toxic effects of the chlorinated ethenes possibly killed the 

methanogens. As in enrichment DCE-1, the addition of yeast extract was necessary to 

sustain dechlorinating activity. Yeast extract could be replaced by fermented yeast 

extract without losing the dechlorinating capacity. Analysis of the lower fatty acids 
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revealed the production of acetate in the enrichment indicating the presence of 

(homo)acetogenic bacteria, in contrast to our findings for enrichment DCE-1. 

Figure 4 shows the reduction of VC by enrichment DCE-2 with H2 as electron donor. 

Over time VC was added to this culture after its depletion. Stoichiometric conversion 

of VC to ethene occurred in these incubations. Enrichment DCE-2 could reduce 

nominal VC concentrations of up to 25 mM (Figure 5). Maximal VC reduction rates 

measured in enrichment DCE-2 were between 0.8 and 1.4 mmol/1/day. Nominal cis-

1,2-DCE concentrations up to 400 uM could be reduced by enrichment DCE-2; 

measured reduction rates for cz's-1,2-DCE were around 30 umol/1/day. 

Isolation 

To date we have not been able to isolate the bacteria responsible for the 

dechlorination of either cis- 1,2-DCE or VC in these two enrichment cultures by using 

serial dilution in liquid medium or the roll tube method. The addition of (fermented) 

yeast extract seems to be required to sustain dechlorinating activity in these two 

enrichment cultures. The added (fermented) yeast extract may also cause the survival 

of other bacteria like (homo)acetogens. 

50 100 

[days] 

150 

Figure 5: Reduction of VC (•) to ethene (•) by enrichment 
DCE-2 using H2 as electron donor. The initial nominal VC 
concentration of 25 mM corresponds to an aqueous VC 
concentration of 4.9 mM. 
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Discussion 

Analyses of soils polluted with chlorinated ethenes (PCE and TCE) show the 

occurrence of reductive dechlorination via trichloroethene, dichloroethene and vinyl 

chloride to ethene under anaerobic conditions. However, partial dechlorination with 

the concomitant accumulation of mainly cw-l,2-DCE and sometimes VC is often 

found at these polluted sites. The accumulation of CJJ-1,2-DCE and/or VC may be 

caused by the lack of bacteria able to reduce lower chlorinated ethenes or by 

unfavorable environmental conditions for the bacteria involved in these 

biotransformations. 

Here, we report of two anaerobic bacterial cultures, DCE-1 and DCE-2, enriched form 

two different sources that are able to reduce cw-l,2-DCE and VC to ethene. To date 

we have not been able to isolate the bacteria responsible for the dechlorination of the 

lower chlorinated ethenes. Neither dilution series in liquid medium nor incubation on 

solidified medium resulted in a pure dechlorinating culture. Use of relatively high 

levels of chlorinated ethenes did also not result in isolation of the dechlorinating 

organism(s). The requirement for (fermented) yeast extract may have prevented the 

isolation of the responsible bacteria. Another possibility that cannot be excluded is 

that a syntrophic relation between microorganisms is required to reduce these lower 

chlorinated ethenes. 

In contrast to other studies which have reported conversion rates between 0.2 and 83 

umol/1/day achieved by enrichment cultures (Table 1) (Bradley and Chapelle, 1997; 

Haston and McCarty, 1999; DiStefano, 1999; Wickramanayake et ah, 2000; Flynn et 

ah, 2000), our experiments show conversion rates for VC that are 10- to 1000-fold 

higher. The nominal conversion rates of VC in our enrichment cultures were around 1 

mmol/1/day. Conversion rates comparable to our VC reduction rates were also 

reported for the metabolic reduction of PCE by pure cultures of Dehalobacter 

restrictus, Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE1 

(Table 1) (Holliger et ah, 1993; Scholz-Muramatsu et ah, 1995; Gerritse et ah, 

1996).The high VC conversion rates achieved by our enrichment cultures suggest that 

the reduction of VC may be used to obtain metabolic energy. 
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Table 1: Reductive dechlorination rates for lower chlorinated ethenes by enrichment cultures 
and for PCE by pure cultures (rates calculated from reported literature data). 

Reduction rate Reference 
umol/1/day 

VC-> ethene Sediment 0.2 1 
VC -> ethene Enrichment culture 13 2 
VC -> ethene Enrichment culture 42.5 - 82.5 3 
VC -»ethene Enrichment culture 0.2 4 

VC-> ethene Enrichment DCE-1 970 This study 

VC-> ethene Enrichment DCE-2 800-1400 This study 

PCE-»TCE Desulfitobacterium PCE1 1200 5 

PCE-»cw-1,2-DCE Dehalobacter restrictus 1800 6 
PCE -> cis-1,2-DCE Sulfurospirillum multivorans 4400 7 

References: 1 = Bradley and Chapelle, 1997; 2 = Haston and McCarty, 1999 ; 3 = Flynn et al., 

2000; 4 = DiStefano, 1999; 5 = Gerritse et al, 1996; 6 = Holliger et al, 1993; 7 = Scholz-
Muramatsu et al, 1995. 

It is noteworthy that we determined for both enrichment cultures 20- 30-fold lower 

conversion rates for cis-1,2-DCE than for VC. Comparable differences in rates 

between cis-1,2-DCE and VC (20-fold) were also reported by Rosner et al. (1997). 

Besides the lower conversion rates for cis-1,2-DCE as compared to VC we also found 

that the latter can be transformed at about 10- to 100-fold higher concentrations. The 

initial nominal VC concentration of 25 mM (Figure 5) used in our study corresponds 

to an actual aqueous concentration of 4.9 mM. 

The low rates for the reduction of cis-1,2-DCE and VC reported to date are often used 

to explain the accumulation of these compounds at polluted sites. However, the VC 

and cis-1,2-DCE reduction rates measured in our enrichment cultures indicate that the 

reduction of cis-1,2-DCE and not that of VC may be the rate-limiting step for the 

complete anaerobic dehalogenation of chlorinated ethenes. This may also explain the 

frequently encountered accumulation of mainly cis- 1,2-DCE in polluted sites. 

A theoretical explanation for the accumulation of cis- 1,2-DCE may be found in the 

thermodynamical aspects of these conversions in relation to the availability of 

hydrogen (H2). Calculations of the thermodynamical critical H2 concentrations, which 

are the calculated H2 concentrations for AGr = 0 kJ/mol, show that there is a 

difference between the different dechlorination steps (Table 2). The calculations show 

that the highest H2 concentration (2.9 * 10'3' M) is required for the reduction of cis-

1,2-DCE to VC. A comparable pattern is found for a AGr = -70 kJ/mol (Stams, 1994), 

the free energy required for biological systems to synthesize 1 mole of ATP (Table 2). 
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However, the H2 concentrations calculated for both the biological and 

thermodynamical critical point are too low to explain the accumulation of lower 

chlorinated ethenes in terms of H2 threshold values. Several authors have reported H2 

threshold levels for dechlorination of 1 - 10 nM (10"9 M) H2 in mixed cultures 

(Ballapragada et al, 1997; Yang and McCarty, 1998; Loffler et al, 1999). The 

difference between this measured threshold (10~9 M H2) and the theoretical threshold 

(10"31 M H2) (Table 2) has to be the result of some other limitations. To date it is not 

known what these limitations are, but one could speculate about the efficiency of the 

dehalogenating enzyme system and/or mass transfer limitations for both H2 and 

chlorinated ethenes. 

Several authors have reported the involvement of cobalamine in dehalogenating 

enzymes (Neumann et al, 1996; Miller et al, 1998; Van de Pas, 2000). In 

homogeneous aqueous solution, Glod et al. (1997) found that civ-1,2-DCE is the less 

reactive chlorinated ethene in reduction studies with cob(I)alamin. When cobalamine 

dependent enzymes are involved in reductive dechlorination of cis-1,2-DCE, this 

could explain the lower reduction rates for ciy-1,2-DCE found in our and other 

studies. 

Table 2: Calculated critical H2 concentrations for the separate reduction steps of PCE. 
H2 thresholds are calculated for the thermodynamical critical point and for the 
biological critical point at which 1 ATP can be produced (-70 kj/mol). 

PCE->TCE 

TCE->cis-l,2-DCE 
Os-l,2-DCE->VC 
VC -> ethene 

[H2] 
AGr = -70 kJ/mol 

5.9* 10-25 

3.8 * 10"24 

5.3 * 10-19 

9.4 * 10-21 

[H2] 
AGr = 0 kJ/mol 

3.3 * 10-37 

2.1 * 10"36 

2.9* 10"31 

5.2 * 10'33 

AGTvalues for PCE, TCE, cis-1,2-DCE, VC, ethene and CI" are 27.6, 25.4, 27.8, 59.6, 
81.4 and -131.2 kJ/mol, respectively (Hanselmann, 1991; Dolfing and Janssen, 1994). 
The following assumptions were made: concentrations of chlorinated ethenes and 
ethene 1 * 10"4 mol/1, Cf 1 * 10"3 mol/1, pH 7 and T 298 K. 
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Chapter 6 

Abstract 

Chlorinated ethenes are common soil and groundwater pollutants. They are of major 

concern because of their toxicity. Under aerobic conditions, higher chlorinated 

ethenes can only be degraded via co-metabolic reactions. In contrast, about fifteen 

anaerobic bacteria have been isolated which couple the degradation of higher 

chlorinated ethenes to growth. This degradation is called halorespiration, and consists 

of a (partial) reduction of chlorinated ethenes. For the lower, more reduced 

chlorinated ethenes this anaerobic reduction is relatively slow. Aerobic bacteria are 

able to mineralize these lower chlorinated ethenes and these lower chlorinated ethenes 

can also be oxidized under Mn(IV)- and Fe(III)-reducing conditions. All chlorinated 

ethenes can be co-metabolically reduced by methanogenic, acetogenic and sulphate 

reducing bacteria under anaerobic conditions. 

Halorespiring bacteria have to compete with other respiring bacteria in soils, where 

alternative electron acceptors may be present. Nitrate and sulphite appear to influence 

dechlorination by halorespiring bacteria, but sulphate does not influence the reductive 

dechlorination by halorespiring bacteria. 

Molecular hydrogen (H2) is thought to be an important electron donor for anaerobic 

reductive dechlorination by halorespiring bacteria. Halorespiring bacteria are very 

efficient in using H2. Threshold values below 1 nM H2 have been measured. This 

value is in the same range as for iron and nitrate reducing bacteria. 



Review 

Introduction 

Six chlorinated ethenes exist, tetrachloroethene or perchloroethene (PCE), 

trichloroethene (TCE), 3 isomers of dichloroethene, 1,1-dichloroethene (1,1-DCE), 

c«-l,2-dichloroethene (c«-l,2-DCE) and trans-1,2-dichloroethene (trans-1,2-DCE), 

and vinyl chloride (VC). Physical and chemical characteristics of these chlorinated 

ethenes are given in table 1. 

Worldwide PCE is used as dry cleaning solvent, in the production of 

chlorofluorcarbons, in vapor degreasing and metal cleaning. The chemical production 

of the colorless, nonflammable liquid PCE in the US is 400 million pounds 

(http://www.epa.gov/opptintr/chemfact/s_perchl.txt). This annual production 

decreases due to recycling and the use of alternative solvents. Although this chemical 

production is the main source of PCE in the environment, natural formation of 

chlorinated ethenes occurs as well. Abrahamson et al., (1995) reported the formation 

of PCE and TCE by various algae. Keppler et al. (2002) described the natural 

formation of VC during the oxidative degradation of organic matter in a reaction 

between humic acids, iron and chloride. 

Due to the use of PCE and TCE as solvents, large amounts have been spilled into the 

environment, and they have become major soil and groundwater pollutants. 

Aerobic microbial conversion of chlorinated ethenes 

Growth related conversions 

To date no aerobic microorganisms have been isolated able to grow by the oxidation 

of PCE and TCE. Aerobic mineralization of 1,2-dichloroethene (a mixture of the cis 

and trans isomers) in an enrichment culture has been found by Bradley and Chapelle 

(2000). Cw-1,2-DCE can function as sole carbon and energy source for aerobic 

growth of strain JS666, a B-Proteobacterium (Coleman et al., 2002). This organism is 

not able to grow on VC or ethene. 
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Review 

Vinyl chloride can be mineralized by Mycobacterium aurum LI under aerobic 

conditions, thereby serving as carbon and energy source (Hartmans and De Bont, 

1992). Vinyl chloride can also be used as sole carbon and energy source under aerobic 

conditions by Pseudomonas aeruginosa MF1 (Verce et al., 2002). 

Co-metabolic conversion 

Co-metabolic conversion is a non-specific fortuitous reaction, where conversion of a 

non-growth substrate occurs via a non-energy gaining reaction by an enzyme or co-

factor active in the conversion of the primary substrate (Alexander, 1994; Van Eekert, 

1999). 

PCE has long been considered to be persistent under aerobic conditions. However, 

aerobic co-metabolic conversions have now been reported for all chlorinated ethenes. 

Ryoo et al. (2000) reported the aerobic co-metabolic conversion of PCE by 

Pseudomonas stutzeri OX1. PCE is degraded by this organism through a toluene-o-

xylene monooxygenase. Mixtures of chlorinated ethenes, including PCE, are also 

degraded by a recombinant strain of Escherichia coli expressing constitutively the 

toluene-o-xylene monooxygenase of P. stutzeri OX1 (Shim et al., 2001). 

Co-metabolic aerobic conversion of all other chlorinated ethenes has been reported to 

occur by mono- and dioxygenases during growth on methane, propane, propene, 

isopropene, ammonia and aromatic compounds like phenol and toluene (Sipkema, 

1999; Van Hylckama Vlieg, 1999). Chlorinated ethenes themselves can also act as 

primary substrate for co-metabolic conversions. For example, Pseudomonas 

aeruginosa MF1 is an organism that co-metabolizes cis-1,2-DCE when grown 

aerobically on VC as sole carbon and energy source (Verce et al., 2002). 

Anaerobic microbiological conversion of chlorinated ethenes 

Chlorinated ethenes can microbiologically be converted via different mechanisms 

under anaerobic conditions. They can be reductively dechlorinated via an energy 

gaining respiratory process or via a fortuitous co-metabolic reaction. They can also be 

degraded via an oxidative process. These three processes will be discussed in more 
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detail with emphasis on the energy gaining respiratory process (halorespiration), 

which is the main topic of this thesis. 

Co-metabolic conversion 

Anaerobic reductive conversion of higher chlorinated ethenes, such as PCE and TCE 

is already known for two decades (Bouwer and McCarty, 1983; Barrio-Lage et al., 

1986). Initially, reduction of chlorinated ethenes was attributed to non-energy gaining 

co-metabolic processes occurring under methanogenic, sulphate reducing and 

homoacetogenic conditions (Vogel and McCarty, 1985; Fathepure et al., 1987; 

Fathepure and Boyd, 1988; Fathepure and Boyd, 1988a; Freedman and Gossett, 1989; 

Van Eekert et al., 2001). Pure cultures of methanogenic and homoacetogenic bacteria 

were shown to couple the conversion of a primary substrate like methanol and acetate 

to the reduction of PCE (Fathepure and Boyd, 1988a; Terzenbach and Blaut, 1994). 

This co-metabolic conversion is catalyzed by co-factors like co-enzyme F430 (Ni), 

vitamin B12 (Co) and hematin (Fe) (Gantzer and Wackett, 1991; Terzenbach and 

Blaut, 1994). The electrons needed for dechlorination are provided by the transition 

metal in the co-factor. 

Anaerobic oxidative conversions 

Vogel and McCarty (1985) speculated already in the mid eighties on the possible 

anaerobic oxidation of chlorinated ethenes. They found that labeled 14C-PCE was 

reductively converted, but that part of the labeled carbon also appeared in CO2. This 

indicated that an anaerobic oxidation of PCE or one of the more reduced intermediates 

(TCE, DCE or VC) took place. By now, vinyl chloride and m-l,2-dichloroethene 

mineralization has been observed under various redox conditions (Bradley and 

Chapelle, 1998; Bradley et al., 1998a; Bradley et al, 1998b; Bradley, 2000) 

The anaerobic oxidation of vinyl chloride is possible in the presence of a sufficient 

strong acceptor such as Fe(III) of Mn(IV) (Bradley and Chapelle, 1996; Bradley et al., 

1998a; Bradley, 2000). Anaerobic oxidation of vinyl chloride can also be coupled to 

the reduction of humic acids (Bradley et al., 1998b). The mineralization rate of VC 

seems to decrease with a decrease in redox potential (aerobic > Fe(III) > sulphate > 

CO2). Alternatively, vinyl chloride may be oxidized to acetate (oxidative 

acetogenesis) and then be converted to CO2 and CH4 (acetotrophic methanogenesis) 

(Bradley and Chapelle, 2000a). 
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The anaerobic oxidation of 1,2-dichloroethene has been observed under Fe(III)-, 

sulphate-, carbon dioxide and humic acid reducing conditions. The mineralization rate 

of DCE was lower than that of vinyl chloride under all electron accepting conditions 

tested (Bradley and Chapelle, 1998; Bradley et al, 1998b). Since the observed 

dichloroethene oxidation rates were comparable under all reducing conditions, these 

authors speculated that dichloroethene is first reduced to vinyl chloride in a rate 

limiting step, followed by the oxidation of vinyl chloride to CO2 (Bradley and 

Chapelle, 1998). Another explanation may be that Fe(III) and sulphate are not such 

strong oxidants as Mn(IV) (Bradley and Chapelle, 1998; Bradley, 2000). This last 

explanation was supported by the observation that under Mn(IV)-reducing conditions 

dichloroethene was mineralized without the intermediate production of vinyl chloride 

(Bradley et al, 1998a). 

Halorespiration 

Halorespiration is the process in which bacteria are able to use halogenated organic 

compounds as terminal electron acceptor for growth. Via this anaerobic reductive 

process these bacteria are able to gain energy for growth by electron transport 

phosphorylation. 'Dehalorespiration', 'chlororespiration' and 'chloridogenesis' are 

other terms used for the same process (Holliger et al, 1999; Bradley, 2003; Loffler et 

al, 2003). 

In the early nineties, Holliger et al. (1993) described strain PER-K23, an organism 

that completely depends for its growth on the presence of PCE or TCE as terminal 

electron acceptor. Strain PER-K23, later described as Dehalobacter restrictus 

(Holliger et al., 1998), was the first bacterium isolated able to use chlorinated ethenes 

as terminal electron acceptor. Strain PER-K23 is restricted in its substrate spectrum: 

only PCE and TCE are reduced by this organism, while molecular hydrogen is the 

only electron donor used. Other tested electron acceptors and electron donors were not 

used by this bacterium, nor by the closely related D. restrictus TEA (Table 3) 

(Holliger et al, 1993; Wild et al., 1996; Holliger et al, 1998). Hereafter, Scholz-

Muramatsu et al. (1994) isolated Dehalospirillum multivorans, another 

tetrachloroethene dechlorinating bacterium with a more versatile substrate spectrum 

than that of Dehalobacter restrictus. Dehalospirillum multivorans was recently 

renamed to Sulfurospirillum multivorans (Chapter 1; Luijten et al, 2003). Table 2 

gives an overview of the isolated bacteria that are able to couple the reduction of 
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chlorinated ethenes to growth via halorespiration. This table shows that a partial 

reduction/dechlorination of PCE can be performed by halorespiring bacteria that 

belong to six different genera. Figure 1 shows the phylogenetic position of known 

halorespiring bacteria. 

Table 3 summarizes features of halorespiring bacteria able to reduce chlorinated 

ethenes. The genera Desulfitobacterium, Dehalococcoides and Sulfurospirillum are 

not included in table 3, but are discussed separately in the following paragraphs. 

Table 2: Overview on bacteria able to reduce chlorinated ethenes via the process of halorespiration. 
Bacterium Reference 

PCE -» TCE Desulfitobacterium frappieri PCE1 
Desulfitobacterium sp. Vietl 

PCE —> cis-1,2-DCE Sulfurospirillum multivorans 

Sulfurospirillum halorespirans PCE-M2 

Desulfitobacterium frappieri TCE1 
Desulfitobacterium sp. PCE-S 
Desulfitobacterium metallireducens 853-15A 
Dehalobacter restrictus PER-K23 

Dehalobacter restrictus TEA 
Desulfuromonas chloroethenica TT4B 

Desulfuromonas michiganensis BB1 

Desulfuromonas michiganensis BRS1 
Enterobacter strain MS-1 

PCE -> VC Dehalococcoides ethenogenes 195 

Gerritse et al., 1996 

Loffler e7 a/., 1997 

Scholz-Muramatsu et 

al., 1995;Luijtene?a/., 
2003; Chapter 1 
Luijtene/a/., 2003; 
Chapter 1 

Gerritse et al., 1999 
Miller et al, 1997 
Finneran et al, 2002 
Holliger et al, 1993; 
Holliger et al, 1998 
Wilder / . , 1996 
Krumholz et al, 1996; 
Krumholz, 1997 
Loffler et al, 1997; 
Loffler et al, 1999; 
Sung et al, 2003 
Sung et al, 2003 
Sharma and McCarty, 
1997; Sharma and 
McCarty, 1999 

Maymo-Gatell et al, 

1997; Maymo-Gatell et 

al, 1999 

DCE -» ethene Dehalococcoides strain BAV1 He et al, 2003 
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Low G+C Gram positives 

Y-Proteobacteria 

:-Proteobacteria 

Proteobacteria 

Figure 1: Phylogenetic tree constructed by the neighbour-joining method using 16S 
rDNA sequences, showing the position of halorespiring and related bacteria. Bar = 10 % 
divergence. 

The genus Desulfitobacterium 

This genus groups phylogenetically within the low G+C gram positive bacteria and 

was established by Utkin et al. (1994). They described Desulfitobacterium 

dehalogenans, an anaerobic bacterium that is able to use chlorinated phenols as well 

as other oxidized compounds as terminal electron acceptor (Table 4). Since then, 

several Desulfitobacterium strains have been isolated that are not only able to reduce 

chlorinated phenols, but also chlorinated ethenes and chlorinated benzoates (Table 4). 

The occurrence and diversity of Desulfitobacterium species indicates that this genus 

plays an important role in the dechlorination of PCE and other chlorinated compounds 

at polluted sites. 

The genus Desulfitobacterium also contains species that are not able to reduce 

chlorinated compounds (Table 4). The isolation of Desulfitobacterium 

metallireducens and Desulfitobacterium strain GBFH shows that the diversity in 

terminal electron acceptors is even broader than initially thought. Nowadays, oxidized 

metals and humic acids are common electron acceptors for Desulfitobacterium species 

(Niggemeyer et al., 2001; Finneran et al., 2002; Luijten et al., 2004; Chapter 2). 
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Chapter 6 

The genus Dehalococcoides 

Maymo-Gatell et al. (1997) described strain 195, the first isolated organism able to 

dechlorinate PCE completely to ethene. Phylogenetically, strain 195 groups within the 

eubacteria without close affiliation to any known groups. The new genus 

"Dehalococcoides" was established and strain 195 was tentatively called 

"Dehalococcoides ethenogenes" (Maymo-Gatell et al., 1997). The final reduction of 

VC to ethene, as well as the reduction of Jram-l^-dichloroethene by strain 195, were 

found to be non-halorespiring reactions (Maymo-Gatell et al., 1999). 

Besides chlorinated ethenes, "Dehalococcoides ethenogenes" strain 195 is also able to 

reduce 1,2-dichloroethane to ethene (Maymo-Gatell et al., 1999). Similar as 

Dehalobacter restrictus, this organism uses only molecular hydrogen as electron 

donor. Cultivation of strain 195 is still difficult since several undefined additions such 

as extracts from mixed microbial cultures are required (Maymo-Gatell et al., 1997). 

Recently, a second chloroethene reducing member of the genus "Dehalococcoides" 

was isolated (strain BAV1). This isolate is, in contrast to strain 195, able to couple the 

reduction of VC to growth (He et al., 2003). It also reduces all DCE isomers, vinyl 

bromide and 1,2-dichloroethane. PCE and TCE do not support growth but can be co-

metabolized in the presence of a growth supporting substrate (He et al., 2003). Strain 

BAV1 is able to grow in a defined synthetic medium and does not require the addition 

of complex organic substances. It grows via the reduction of chlorinated ethenes with 

molecular hydrogen as electron donor. 

The physiologically different strain CBDB1 of the genus "Dehalococcoides" couples 

the oxidation of molecular hydrogen to the reduction of 1,2,3-trichlorobenzene (1,2,3-

TCB), 1,2,4-TCB, 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), 1,2,3,5-TeCB and 

1,2,4,5-TeCB to dichlorobenzenes or 1,3,4-TCB (Adrian et al., 2000). Strain CBDB1 

is the first and to date only bacterium isolated able to derive energy from the reductive 

dechlorination of higher chlorinated benzenes via a respiratory process. This 

bacterium cannot use any other electron donors and electron acceptors. Strain CBDB1 

is also, in contrast to "Dehalococcoides ethenogenes" 195, able to grow in a synthetic 

medium (Adrian et al., 2000). 

The genus "Dehalococcoides" exists of 3 isolated members: two are able to reduce 

chlorinated ethenes (strain 195 and strain BAV1) and one is able to reduce chlorinated 

benzenes (strain CBDB1). Several (to date) unculturable members of the genus 

"Dehalococcoides" have been found by molecular techniques (Pulliam Holoman et 
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al, 1998; Adrian et al, 2000; Loftier et al, 2000; Cutter et al, 2001; Fennell et al, 

2001; Hendrickson et al, 2002). These detected "Dehalococcoides" relatives are not 

only able to reduce chlorinated ethenes and chlorinated benzenes, but also chlorinated 

biphenyls. 

The importance of this group of organisms is indicated by the detection of increasing 

numbers of "Dehalococcoides" species in diverse environments. "Dehalococcoides" 

species degrade a wide range of chlorinated pollutants and they have a widespread 

distribution in soils. Hendrickson and co-workers (2002) showed, via molecular 

techniques, a link between the presence of "Dehalococcoides" species and complete 

degradation of PCE at polluted sites all over the world. Members of the 

"Dehalococcoides" group were detected at 21 sites and complete dechlorination 

occurred at all sites. No "Dehalococcoides" sequences were found at 3 sites, where 

only partial dechlorination occurred (Hendrickson et al., 2002). This functional 

relationship indicates that molecular techniques may be useful to assess the full 

dechlorination potential at sites polluted with chlorinated ethenes. however, one 

should realize that not all "Dehalococcoides" species are able to reduce chlorinated 

ethenes. 

The genus Sulfurospirillum 

Schumacher et al. (1992) established the genus Sulfurospirillum by describing 

"spirillum" 5175 as Sulfurospirillum deleyianum, an elemental sulphur-reducing 

bacterium. With the designation of strain SES-3 (Oremland et al., 1994; Laverman et 

al., 1995) to the genus Sulfurospirillum as S. barnesii strain SES-3 and the isolation of 

S. arsenophilum (Stolz et al., 1999) the genus became known for its metal reducing 

capacities (Table 5). We described S. halorespirans PCE-M2, the first halorespiring 

member within this genus (Luijten et al., 2003; Chapter 1), and we also included 

Dehalospirillum multivorans into the genus Sulfurospirillum as S. multivorans. The 

range of different electron acceptors that can be used by Sulfurospirillum species is 

broad (Schumacher et al, 1992; Oremland et al, 1994; Laverman et al, 1995; Stolz 

et al, 1999; Luijten et al, 2003; Luijten et al, 2004; Chapter 1 and 2). Table 5 shows 

that Sulfurospirillum species can convert chlorinated ethenes and other compounds 

such as nitrate, AQDS, oxidized metals, arsenate and selenate. This broad range of 

electron acceptors makes the bacteria from this genus interesting for bioremediation 

purposes and also gives them the chance to survive in many different habitats. 
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Review 

Influence of alternative electron acceptors on halorespiration 

Dehalobacter restrictus PER-K23 depends completely on PCE or TCE as terminal 

electron acceptor. Other tetrachloroethene respiring bacteria are able to use a broader 

range of terminal electron acceptors (Table 3-5). This versatility results in a 

competition for available reducing equivalents between different terminal electron 

accepting processes. This may lead to an inhibition of the dechlorinating activity by 

halorespiring bacteria. 

Nitrate is a common terminal electron acceptor for halorespiring bacteria, and it is 

preferred above PCE by Sulfurospirillum halorespirans PCE-M2 (Chapter 3). After 

reduction of nitrate and the intermediate nitrite, PCE reduction is resumed by strain 

PCE-M2. In contrast, S. multivorans has been found to reduce nitrate to nitrite in the 

presence of PCE, but upon the depletion of nitrate, PCE reduction did not resume 

(Chapter 3). Nitrate does not inhibit PCE reduction by Desulfitobacterium strain 

PCE1, a strain that cannot use nitrate (Gerritse et al., 1996). PCE reduction by D. 

frappieri strain TCE1 was not inhibited by nitrate. Simultaneous reduction of PCE 

and nitrate, fumarate and sulphite was observed in chemostat studies when the 

electron donor (lactate) was present in excess, while under electron donor limitation 

the dechlorination was blocked completely (Gerritse et al., 1999). 

Sulphate, which is often present at sites polluted with chlorinated ethenes, has not 

been found to be used as terminal electron acceptor by most known halorespiring 

bacteria. Sulphate also does not influence PCE reduction by Sulfurospirillum and 

Desulfitobacterium species (Neumann et al., 1994; Loftier et al., 1996; Chapter 3). 

Sulphite, which can be used as electron acceptor by Desulfitobacterium species, but 

not by e.g. Sulfurospirillum species, does inhibit tetrachloroethene dechlorination in 

many halorespiring bacteria, such as Desulfuromonas, Desulfitobacterium and 

Sulfurospirillum species (Loffler et al., 1996; Gerritse et al., 1999; Sung et al., 2003; 

Chapter 3). The known tetrachloroethene reductive dehalogenases are cobalamine 

containing enzymes (Miller et al., 1998; Magnuson et al., 1998; Van de Pas, 2000; 

Smidt, 2001). Sulphite reacts chemically with cobalamine, and can thus affect the 

PCE reductive dehalogenases and inhibit reductive dechlorination (Miller et al., 

1997). Dechlorination by Desulfitobacterium frappieri TCE1 was completely 
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inhibited until all sulphite was reduced indicating that it concerns a reversible 

chemical inhibition (Gerritse et al, 1999). 

Importance of hydrogen as electron donor for reductive 

dechlorination 

In the early nineties several researchers hypothesized that molecular hydrogen (H2) 

may be the actual electron donor for the reductive dehalogenation of chlorinated 

ethenes in mixed cultures (Gibson and Sewell, 1992; DiStefano et al, 1992). They 

suggested that organic electron donors such as short-chain organic acids and alcohols 

were fermented, and that the H2 produced served as electron donor for reductive 

dehalogenation. This hypothesis was supported by the isolation of Dehalobacter 

restrictus PER-K23, the first bacterium isolated able to reduce tetrachloroethene 

metabolically (Holliger et al., 1993; Holliger et al., 1998). This bacterium uses only 

H2 as electron donor, just like the isolated "Dehalococcoides" species. Despite the 

fact that other halorespiring bacteria can use a broad range of electron donors (Table 

3-5), it seems that H2 plays a key-role in the process of reductive dechlorination. 

Assuming that H2 is an important electron donor for dechlorination, it is expected that 

tetrachloroethene reducing bacteria have to compete for the available H2 with other 

hydrogenotrophic bacteria such as methanogens and sulphate reducers. Roughly a 10-

fold higher half-velocity constant (KS(H2)), which is the concentration at which the 

rate is half of the maximum rate, was found for methanogenesis (960 ± 180 nM) 

compared to the dechlorination of PCE (100 ± 50 nM) (Smatlak et al, 1996). 

Similarly, an approximately 10 times lower KS(H2) for the reduction of PCE to 

ethenes was reported by Ballapragada et al. (1997). Due to this lower Ks for 

hydrogen, dechlorinating bacteria may outcompete methanogens at low H2 

concentrations. A low H2 partial pressure would therefore be favorable for 

dechlorination. Consequently, butyrate and propionate may be better electron donors 

than lactate and ethanol since the fermentation of the latter two results in 2-3 times 

higher H2 partial pressure and thus in more methane production than with butyrate and 

propionate (Fennell et al, 1997). In long-term experiments, however, reductive 
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dechlorination can be sustained equally good regardless of the electron donor fed 

(Fennell et al, 1997; Carr and Hughes, 1998). 

A high H2 affinity has been found for dechlorinating bacteria, which coincides with 

relatively low threshold H2 concentrations at which reductive dechlorination can 

proceed. Mixed culture studies show that reductive dechlorination can proceed at H2 

concentrations below 20 nM (Smatlak et al, 1996; Fennell et al., 1997; Yang and 

McCarty, 1998; Lu et al., 2001). These steady state ̂ -concentrations are the result of 

both H2-producing and H2-consuming processes. It was shown that the reached steady 

state is controlled by the physiological characteristics of the ̂ -consuming bacteria 

(Cord-Ruwisch et al, 1988; Lovley and Goodwin, 1988; Loffler et al, 1999). 

Different terminal electron accepting processes have different affinities for H2 and 

different ^-threshold concentrations. These threshold concentrations depend on the 

redox potential of the terminal electron acceptor (Cord-Ruwisch et al., 1988). Loffler 

et al. (1999) found ^-threshold values below 0.3 nM H2 in pure cultures of 

Desulfitobacterium species. Comparable low ^-threshold concentrations were 

measured in long term batch studies for Sulfurospirillum halorespirans PCE-M2, S. 

multivorans and Dehalobacter restrictus (Luijten et al., 2004a, Chapter 4). The 

measured ̂ -threshold values suggest that the dechlorinating bacteria can outcompete 

methanogens and (homo)acetogens at H2 concentrations below approximately 5 nM 

(Table 6) (Smatlak et al, 1996; Yang and McCarty, 1998; Loffler et al, 1999; Luijten 

et al, 2004a; Chapter 4). 

Table 6: ̂ -threshold concentrations for different reducing processes. 
Process H2-threshold [nM] References 

Acetogenesis 
Methanogenesis 
Sulphate reduction 
Ammonification 
Nitrate reduction 
Manganese reduction 
Iron reduction 
Halorespiration 
PCE & TCE reduction" 
Cis-1,2-DCE reduction" 
VC reduction 

>350 
5-100 
1-10 

0.015-0.06 
<0.05 
<0.05 

0.1-0.8 
<0.3 

0.6-0.9 
0.1-2.5 

2.24 

1,2 
1,2,3,4,5,6 

1,2,3,4,6, Chapter 4 
1,2, Chapter 4 

1,6 
6 

1,3,4,6 
1, Chapter 4 
4, Chapter 4 

4,5, Chapter 4 
4,5, Chapter 4 

References: 1 = Loffler et al, 1999; 2 = Cord-Ruwisch et al, 1988; 
3 = Chapelle et al, 1996; 4 = Lu et al, 2001; 5 = Yang and McCarty, 1998; 
6 = Lovley and Goodwin, 1988. 

= Pure culture studies; = mixed culture/field studies. 
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The total number of halorespiring bacterial species able to (partially) reduce 

chlorinated ethenes is about 15, distributed over 6 genera. Some of these bacteria are 

restricted in their electron acceptor usage, such as Dehalobacter restrictus, which can 

dechlorinate only tetrachloroethene (PCE). However, our work and that of others 

shows that most halorespiring bacteria are able to use a broad range of electron 

acceptors, as is the case for Sulfurospirillum species as described in this thesis 

(chapter 1). This gives these bacteria the opportunity to survive in diverse 

environments, also in those where chlorinated ethenes are absent. Due to the 

introduction/appearance of chlorinated ethenes in the environment, dehalogenating 

enzymes can get induced resulting in the degradation of the chlorinated pollutant. This 

process is actually recognized and referred to as natural attenuation. However, the 

tetrachloroethene-reducing activity is not always induced when alternative electron 

acceptors are present, and the dechlorinating activity can even be inhibited by e.g. the 

presence of nitrate. This would mean that the ability of halorespiring bacteria to use a 

broad range of electron acceptors is not always advantageous. Competition between 

the chlorinated compounds and alternative electron acceptors, or even the loss of the 

dechlorinating capacity, could occur when exposed to other electron acceptors. To 

understand this better, more detailed studies are required on the regulation 

mechanisms for the use of alternative electron acceptors by halorespiring bacteria, and 

the evolutionary aspects of the dehalogenating enzymes. 

The application of in-situ degradation of chlorinated ethenes is growing in 

importance. The Dutch Ministry of Spatial Planning, Housing and the Environment 

formulates in her latest policy-making document (beleidsbrief bodem BWL/2003 096 250) 

that more emphasis should be placed on the application of in-situ bioremediation 

techniques. Many Dutch aquifers are anoxic, which offers the possibility to apply 

reductive dechlorination of chlorinated ethenes. However, a number of drawbacks are 

encountered in the field making in-situ bioremediation not yet an established and 

accepted technology. At some polluted sites, halorespiring bacteria may be absent, 

whereas at other sites natural attenuation is observed, indicating to the presence of 

active, indigenous bacteria capable of reducing chlorinated ethenes. In the latter case 

sometimes only partial dechlorination is observed, resulting in the accumulation of 

cw-l,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC), which is even more 

toxic than the higher chlorinated ethenes. This indicates that bacteria able to convert 
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these lower chlorinated ethenes are absent, or that the proper conditions are not met to 

reduce these lower chlorinated intermediates. The specific conditions for bacteria to 

dechlorinate lower chlorinated ethenes are yet unknown, but seem to be different from 

the conditions needed to degrade tetrachloroethene (PCE) and trichloroethene (TCE). 

Recently, the first halorespiring bacteria able to reduce cis-1,2-DCE and VC have 

been isolated (e.g. Dehalococcoides ethenogenes) and they appear to have stringent 

growth requirements. Furthermore, the type of electron donor for reductive 

dechlorination is another important aspect. Halorespiring bacteria are able to use 

relatively low H2 concentrations very efficiently. They are more efficient than 

methanogenic archaea and acetogenic bacteria at low H2 concentrations. However, 

they are found to be outcompeted at higher H2 concentrations by methanogens and 

acetogens. That makes the type of organic electron donor added during an in-situ 

bioremediation project an important tool to enhance the efficiency of reductive 

dechlorination. Substrates that are fermented slowly will result in a relatively low H2 

concentration over a longer time. This allows an efficient utilization of the available 

electron donor by halorespiring bacteria. 

To make in-situ bioremediation of chlorinated ethenes a reliable technique, insight is 

required in the competition between electron acceptors present (including the 

chlorinated ethenes) and the (organic) substrates required. Additionally, emphasis on 

the reduction of lower chlorinated ethenes is desired. More knowledge on these final 

reduction steps will increase the efficiency of in-situ anaerobic reductive 

dechlorination projects and provide the knowledge to completely transform 

chlorinated ethenes to harmless products. When this information is available in-situ 

bioremediation projects may become accepted for a broad application. 

New developments, that have not been addressed in this thesis, such as anaerobic, 

oxidative degradation of lower chlorinated ethenes may also become important for 

completely degrading chlorinated pollutants under anoxic conditions. In the field, 

higher chlorinated ethenes can be degraded in-situ via an anaerobic, reductive process 

to lower chlorinated ethenes. Further downstream, the lower chlorinated ethenes 

produced may be oxidized under e.g. iron-reducing conditions. 
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Chlorinated ethenes are widespread soil and groundwater pollutants. Over the last 2 

decades a lot of effort has been made to understand the degradation mechanisms for 

these pollutants. In the early eighties reduction of tetrachloroethene (PCE) was 

observed in anaerobic soil samples, which was shown to be mediated by 

microorganisms. The first microorganism able to couple the anaerobic reduction of 

PCE to growth in a process called halorespiration (alternative terms are 

chlororespiration, chloridogenesis or dehalorespiration) was isolated in 1993. Since 

then, about 15 bacteria able to reduce PCE metabolically have been isolated. This 

thesis describes research on different aspects influencing the reductive dechlorination 

of chlorinated ethenes by anaerobic halorespiring bacteria. 

A new halorespiring bacterium is described in chapter 1. This bacterium, 

Sulfurospirillum halorespirans PCE-M2, was isolated from a polluted soil near 

Rotterdam harbor. Strain PCE-M2 is a metabolically versatile bacterium able to use a 

variety of electron acceptors and electron donors. This new strain is closely related to 

Dehalospirillum multivorans, but more detailed studies indicated that strain PCE-M2 

belongs to the genus Sulfurospirillum. It also appeared that Dehalospirillum 

multivorans had to be included in this genus. Consequently, it was reclassified to 

Sulfurospirillum multivorans. 

Members of the genus Sulfurospirillum were originally known for their sulphur, 

selenate and arsenate respiring properties. Therefore, we screened a number of 

halorespiring and related bacteria for their metal reducing properties (Chapter 2). It 

was shown that the reduction of metals such as ferric iron, manganese, selenate and 

arsenate is a common property amongst halorespiring bacteria. We also investigated 

the quinone reducing and oxidizing abilities. All tested bacteria are able to reduce 

AQDS, a quinone-bearing humic acid analogue. Some of the tested bacteria 

(Desulfitobacterium hafniense DP7, Sulfurospirillum barnesii, S. deleyianum and S. 

arsenophilum) are also able to oxidize AH2QDS coupled to nitrate reduction. 

The influence of some alternative electron acceptors on the reductive dechlorination is 

discussed in chapter 3. Sulfurospirillum halorespirans preferably reduces nitrate (to 

ammonium) and then PCE. In contrast, Sulfurospirillum multivorans reduces nitrate 

only to nitrite, and PCE reduction is blocked irreversibly in the presence of nitrate. In 
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Desulfitobacterium frappieri TCE1, PCE and nitrate are reduced simultaneously in 

excess of electron donor. Under electron donor limitation PCE reduction was 

inhibited (Gerritse et al, Appl. Environ. Microbiol. 1999, 65, 5212-5221). The influence of 

nitrate on the reduction of chlorinated ethenes by halorespiring bacteria differs 

between species and may also depend on the availability of electron donor. Sulphate, 

which is not used as electron acceptor by chlorinated ethenes respiring bacteria is 

often found at polluted sites. We have tested the influence of sulphate on 

halorespiring bacteria (Chapter 3). It appeared that sulphate does not influence these 

microorganisms. Sulphite however, a possible electron acceptor for 

Desulfitobacterium species, inhibits the reduction of PCE. This inhibition may be the 

result of a chemical interaction between sulphite and cobalamine containing 

dehalogenases. We also studied the adaptation of Sulfurospirillum halorespirans 

PCE-M2 to different alternative electron acceptors (Chapter 3). Both nitrate and 

arsenate are reduced by cells pre-grown on PCE, nitrate, arsenate and selenate. This 

indicates that the enzymes responsible for the reduction of nitrate and arsenate are 

constitutively present in S. halorespirans. In contrast, PCE and selenate are only 

reduced by cells pre-grown on PCE or selenate respectively. 

Halorespiring bacteria have a high affinity for hydrogen (H2). H2 may even be the 

most important electron donor for these organisms in natural environments. We have 

studied ̂ -threshold concentrations in pure cultures of halorespiring bacteria (Chapter 

4). H2-threshold values between 0.05 and 0.08 nM under PCE-reducing and nitrate-

reducing conditions were measured. Furthermore, we measured H2 concentrations at a 

field site polluted with chlorinated ethenes. PCE and trichloroethene (TCE) reduction 

can occur at H2 concentrations below 1 nM. However, for the reduction of lower 

chlorinated ethenes a higher H2 concentration seems to be required. 

Accumulation of cw-l,2-dichloroethene (civ-1,2-DCE) and vinyl chloride (VC) under 

anaerobic conditions is often observed. The enrichment of two cultures (DCE-1 and 

DCE-2) able to reduce VC at relative high rates is described in chapter 5. CM-1,2-

DCE is reduced at approximately 20-30 fold lower rates than VC. Our results suggest 

that these two enrichment cultures are able to gain energy from the reduction of lower 

chlorinated ethenes. When we performed these studies, no microorganisms had been 

isolated able to grow by the reduction of VC. However, recently He et al. (Nature. 2003, 
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424, 62-65) isolated Dehalococcoides strain BAV1, which is able to couple the 

reduction of DCE and VC to ethene to growth. 

Finally, the results obtained are combined with available literature data to obtain a 

state-of-the-art on chlorinated ethenes respiring microorganisms, the influence of 

alternative electron acceptors on these microorganisms and the role of H2 and H2-

threshold values in halorespiration. 
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In dit onderzoek is gekeken naar de afbraak van gechloreerde verbindingen (ethenen) 

door anaerobe (zuurstofloze) bacterien. Gechloreerde ethenen worden onder andere 

gebruikt in chemische wasserijen en in fabrieken. Daar vroeger minder zorgvuldig 

met afval werd omgegaan komen gechloreerde ethenen nu veel als verontreinigingen 

in grond en grondwater voor. De afgelopen 20 jaar is veel energie gestopt in het 

inzichtelijk maken van de afbraakmogelijkheden van deze verontreinigingen. Al in het 

begin van de tachtiger jaren werd de afbraak van tetrachlooretheen (PCE ofwel PER) 

waargenomen in zuurstofloze grondmonsters. Deze afbraak werd veroorzaakt door 

bacterien. Het afbraakproces in deze bacterien wordt ook wel halorespiratie genoemd. 

In dit proces gebruiken bacterien gechloreerde verbindingen om adem te halen net 

zoals wij mensen zuurstof gebruiken. Pas in 1993 werd de eerste bacterie geisoleerd 

die deze verontreinigingen kan afbreken en er via halorespiratie energie uit kan halen 

om te groeien. Inmiddels zijn zo'n 15 bacterien bekend die dit kunnen. In dit 

proefschrift hebben we gekeken naar factoren die de groei van deze bacterien 

bei'nvloeden, met als achterliggend doel om deze bacterien beter te kunnen gebruiken 

om verontreinigde bodems efficient schoon te maken. 

In het eerste hoofdstuk van dit proefschrift wordt een nieuwe bacterie beschreven die 

tetrachlooretheen kan afbreken. Deze bacterie, Sulfurospirillum halorespirans PCE-

M2 genaamd, komt uit een verontreinigde bodem bij de Rotterdamse haven. PCE-M2 

is in staat om op meerdere substraten (voedingsstoffen) te groeien. Uit ons onderzoek 

bleek dat PCE-M2 verwant is aan bacterien van het geslacht Sulfurospirillum, en ook 

veel leek op een andere bacterie, namelijk Dehalospirillum multivorans. Uit ons 

onderzoek bleek dat deze laatste bacterie een verkeerde (familie) naam heeft en ook 

een Sulfurospirillum is. Daarom hebben we hem een nieuwe naam gegeven, namelijk 

Sulfurospirillum multivorans. 

Het oorspronkelijke kenmerk van Sulfurospirillum is dat ze op verschillende 

verbindingen kunnen groeien, zoals zwavel en verschillende metalen (selenaat en 

arsenaat). PCE-M2 bleek naast gechloreerde ethenen ook op dergelijke verbindingen 

te kunnen groeien (hoofdstuk 2). Ook hebben we andere bacterien die gechloreerde 

ethenen kunnen afbreken getest of ze op deze verbindingen kunnen groeien. Meerdere 

bacterien blijken naast gechloreerde verontreinigingen ook zwavel en verschillende 

metalen te kunnen gebruiken als substraat. Daarnaast is getest of deze bacterien 
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quinonen kunnen gebruiken. Quinonen zijn onderdeel van humus zuren die veel in de 

grond voorkomen. Het bleek dat alle door ons geteste bacterien inderdaad quinonen 

kunnen gebruiken. 

In hoofdstuk 3 hebben wordt beschreven hoe sommige van de verbindingen uit 

hoofdstuk 2 de afbraak van gechloreerde ethenen bei'nvloeden. We hebben gevonden 

dat PCE-M2 nitraat (zit o.a. in kunstmest) liever gebruikt dan de gechloreerde ethenen 

en dat de verontreiniging pas wordt afgebroken nadat alle nitraat weg is. 

Sulfurospirillum multivorans heeft eveneens een voorkeur voor nitraat, maar breekt 

gechloreerde ethenen niet meer af nadat nitraat weg is. Het blijkt (en dat wordt ook 

door andere onderzoekers gevonden) dat verschillende tetrachlooretheen afbrekende 

bacterien verschillend reageren op de aanwezigheid van nitraat. 

Sulfaat komt eveneens vaak in de bodem voor. Het blijkt dat nagenoeg geen enkele 

bacterie die gechloreerde ethenen kan afbreken ook in staat is om sulfaat als substraat 

te gebruiken. Verder is gebleken dat de aanwezigheid van sulfaat de halorespirerende 

bacterien niet stoort in het afbreken van de verontreiniging. 

Sulfiet, een verbinding die veel op sulfaat lijkt, kan wel door sommige dechlorerende 

bacterien (o.a. Desulfitobacterium soorten) gebruikt worden als substraat. Er is 

gevonden dat de aanwezigheid van sulfiet de afbraak van gechloreerde ethenen 

onmiddellijk stillegt. Sulfiet reageert chemisch met de enzymen die verantwoordelijk 

zijn voor de afbraak van gechloreerde ethenen. Hierdoor kunnen de gechloreerde 

ethenen niet meer afgebroken worden. 

Tenslotte hebben we gekeken of bacterien nog altijd gechloreerde ethenen kunnen 

afbreken wanneer ze op een andere substraat zijn doorgekweekt. Het blijkt dat PCE-

M2 gechloreerde ethenen niet meer kan afbreken na groei op nitraat, selenaat of 

arsenaat. 

Halorespirerende bacterien hebben een hoge affiniteit voor waterstof. Dat betekent dat 

ze al bij zeer lage waterstof concentraties kunnen groeien. In hoofdstuk 4 hebben we 

bepaald welke waterstof concentratie (0.05-0.08 nM) halorespirerende bacterien 

kunnen bereiken in het laboratorium onder gecontroleerde omstandigheden. We 

hebben ook onderzocht bij welke hoeveelheden waterstof de bacterien de 

verontreinigingen nog afbreken in een verontreinigde bodem. Daar blijkt de 

concentratie zo'n 20 keer hoger te zijn. Het verschil met die lage waarde uit de 
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laboratorium proeven wordt onder andere veroorzaakt doordat in een bodem ook 

andere bacterien aanwezig zijn die continu waterstof produceren. Halorespirerende 

bacterien hebben waterstof nodig om verontreinigingen af te breken. Het blijkt dat de 

lage concentraties waterstof waaraan halorespirerende bacterien genoeg hebben niet 

genoeg is voor andere bacterien in de bodem. Hierdoor zijn halorespirerende bacterien 

in het voordeel wanneer er maar weinig waterstof is. Hiervan wordt gebruik gemaakt 

wanneer men een verontreinigde bodem wil schoonmaken met bacterien. 

Wanneer bacterien gechloreerde ethenen afbreken onder zuurstofioze 

omstandigheden, dan doen ze dat stapsgewijs. Het blijkt dat het niet altijd lukt om 

PCE volledig af te breken, vaak worden tussenproducten zoals dichlooretheen (DCE) 

en vinyl chloride (VC; hiervan wordt PVC gemaakt) niet verder afgebroken. Als 

gevolg hiervan hopen deze stoffen op in de bodem. Dat is een probleem omdat VC 

giftiger is dan PCE. Er is gekeken naar de afbraak van deze tussenproducten 

(hoofdstuk 5). We hebben 2 verschillende ophopingscultures verkregen die deze 

tussenproducten relatief snel kunnen afbreken onder zuurstofioze omstandigheden. 

Het is ons echter niet gelukt om te achterhalen welke bacterie verantwoordelijk was 

voor de relatief snelle afbraak. Op het moment dat we deze proeven deden was er nog 

geen bacterie gei'soleerd die dit kon. Inmiddels zijn enkele bacterien gei'soleerd die op 

deze tussenproducten kunnen groeien. 

Tenslotte hebben we in hoofdstuk 6 een overzicht gemaakt van wat er tot nu toe 

bekend is over de afbraak van gechloreerde ethenen door bacterien onder zuurstofioze 

omstandigheden. We hebben hier onze resultaten gecombineerd met de resultaten van 

andere onderzoekers. 
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