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Abstract. The advances in the techniques used for fabrication and lithography of semiconductors
have made it possible to study bi-layer systems made of two electronic layers separated by distances
of several hundred ångströms. In this situation the electrons in layer 1 are distinguishable from
those in layer 2, and can communicate through the direct inter-layer Coulomb interaction. In
particular, if a current is applied to one of the layers, the electrons in the second will be dragged,
giving rise to a transresistanceρD . In this article we review recent theoretical and experimental
developments in the understanding of this effect. At very low temperatures it turns out that phonons
dominate the transresistance. The direct Coulomb interaction and plasmon excitations are important
at temperaturesT > 0.1TF , with TF the Fermi temperature. If a magnetic field is applied, the
transresistance is increased, in a very interesting interplay betweenρD and Landau quantization.
The non-dissipative drag is also reviewed.

1. Introduction

Electron–electron (e–e) interactions are responsible for a multitude of fascinating effects in
condensed matter. They play a leading role in phenomena ranging from high-temperature
superconductivity and the fractional quantum Hall effect, to Wigner crystallization, the Mott
transition, and Coulomb gaps in disordered systems. The effects of this interaction on transport
properties, however, are difficult to measure. A new technique has recently proven effective
in measuring the scattering rates due to the Coulomb interaction directly [1].

This technique is based on an earlier proposal by Pogrebinskiı̆ [4, 5]. The prediction
was that for two conducting systems separated by an insulator (a semiconductor–insulator–
semiconductor layer structure in particular) there will be a drag of carriers in one film due to
the direct Coulomb interaction with the carriers in the other film. If layer 2 is an ‘open circuit’,
and a current starts flowing in layer 1, there will be momentum transfer to layer 2 that will start
sweeping carriers to one end of the sample, and inducing a charge imbalance across the film.
The charge will continue to accumulate until the force of the resulting electric field balances
the frictional force of the inter-layer scattering. In the stationary state there will be an induced,
or drag voltageVD in layer 2.

A fundamental difference emerges in the configuration of the current-drag experiment from
that in which the in-plane resistance is measured. For a perfectly pure, translationally invariant
system, the Coulomb interaction cannot give rise to resistance since the total current commutes
with the HamiltonianH . This means that states with a finite current are stationary states of
H and will never decay, since the e–e interaction conserves not only the total momentum but
also the total current. (For electrons moving in a periodic lattice, momentum and velocity
are no longer proportional, and the current could in principle decay by e–e interaction.) If
the layers are coupled by the Coulomb interaction, the stationary states correspond to a linear
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superposition of states in which the current is shared to different extents between layers: the
total current within a given layer is not conserved and can relax via inter-layer interaction.

This mechanism of current degradation was studied in the pioneering experiment of
Gramila et al [1] for GaAs layers embedded in AlGaAs heterostructures. The separation
between the layers was in the range 200–500 Å. The coupling of electrons and holes [11],
and the coupling between a two-dimensional and a three-dimensional structure were also
examined [2].

If we use the symbolI for the current circulating in layer 1, the drag resistance (or
transresistance) is defined as

ρD = VD

I
.

The naive expectation for the temperature dependence ofρD is that it should vanish as
T 2 at low temperatures. This results from the exclusion principle which limits the scattering
to states withinkBT of the Fermi surface, and there is one factor ofT per layer. The first
experiment seemed compatible with the e–e mechanism with some discrepancy since the
observed ratioρD/T 2 was not a constant at low temperatures. This experiment motivated a
rather extensive theoretical effort to understand in more detail the mechanisms of cross-talking
between layers between which electrons are not allowed to tunnel. The theory in turn stimulated
new experiments, and in recent years we have seen Coulomb drag developing as a field in itself.
In the present article we briefly review the progress made in understanding different aspects of
the problem. Section 2 provides some background on the Coulomb interaction and screening
for double-layer systems. In section 3 we discuss the perturbative equation forρD used in
most treatments. This equation can be derived in various ways. In the appendix we present the
memory function derivation and the detailed low-temperature dependence assuming Coulomb
scattering only.

The following sections discuss the crossover between three regimes. Phonon exchange,
discussed in section 4, dominates the drag atT < 0.1TF , with TF the Fermi temperature. For
T ≈ 0.1TF , single-particle Coulomb scattering is the dominant effect, and forT > 0.2TF ,
plasmons (see section 6) are responsible for an enhancement of the drag current. The theoretical
studies of the effects of disorder and localization are reviewed in section 5. The enhancement
of ρD due to an applied magnetic field perpendicular to the layers, and the interplay between
Landau quantization and inter-layer scattering are reviewed in section 7. Finally in section 8
we discuss the theory of non-dissipative drag and some experimental attempts to measure it.

2. Inter-layer Coulomb interaction

The leading actor in this play is the Coulomb interaction between electrons in different layers.
This interaction is responsible for the scattering, and will be screened by the density fluctuations
within each layer. If one neglects the interaction between layers, the effective interaction
V (q, ω) within a given layer calculated in the random-phase approximation (RPA) is given
by [7]

V (q, ω) = Vb(q)

1 +Vb(q)χ(q, ω)
(1)

withVb(q) = 2πe2/q the bare interaction andχ(q, ω) the function characterizing the response
of the chargeδρ(q, ω) to an external potentialϕ(q, ω): δρ(q, ω) = −χ(q, ω)ϕ(q, ω). For
two coupled layers we also have the bare inter-layer interactionUb(q) = 2πe2 exp(−qd)/q,
with d the distance between layers. In addition, the response functions could be different if the
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layers are not identical. The effective interaction can be written now as a 2× 2 matrix [6,8,9]

V̂ (q, ω) = V̂B(q) 1

1 + χ̂(q, ω)V̂B(q)
(2)

with [V̂B(q)]11 = [V̂B(q)]22 = Vb(q), [V̂B(q)]12 = [V̂B(q)]21 = Ub(q), and [χ̂(q, ω)]ij =
δijχi(q, ω), with i = 1, 2 labelling the layer. Note thatχ1 andχ2 could be different, so
equation (2) is valid for non-identical layers. The off-diagonal element ofV̂ (q, ω) is the
screened inter-layer interaction

[V̂ (q, ω)]12 = Ub(q)

[1 +χ1(q, ω)Vb(q)] [1 +χ2(q, ω)Vb(q)] − U2
b (q)χ1(q, ω)χ2(q, ω)

≡ U(S)(q, ω). (3)

The zeros of the denominator in the above equation correspond to the collective modes of
charge oscillations. It is illustrative to write the screened interaction for identical layers in the
form (omitting the argumentq in the interactions for simplicity)

U(S)(q, ω) = 1

2

[
Vb +Ub

1 +χ(q, ω)(Vb +Ub)
− Vb − Ub

1 +χ(q, ω)(Vb − Ub)
]

(4)

which provides evidence for the symmetric and antisymmetric modes. The response function
χ(q, ω) has real and imaginary parts. The imaginary part corresponds to the continuum
of particle–hole excitations that exist for frequenciesω < vFq. The collective modes
corresponding to the poles ofU(S)(q, ω) will be non-decaying atT = 0 if they fall out of
the particle–hole continuum, which guarantees that the poles are on the real axis. We can find
these stable modes by expanding the real part ofχ(q, ω) for the free-electron gas for small
wave-vectors andω � vF q:

χ(q, ω) ' − n
m

(
q

ω

)2

(5)

with m the electron mass, andn the electron density [10]. In the small-q limit, Vb + Ub ≈
4πe2/q, andVb−Ub ≈ 2πe2d. If we substitute this in equation (4) we find that the two poles
are at frequenciesω±(q) given by

ω+(q) = e
√

4πn

m

√
q

ω−(q) = e
√

2πnd

m
q.

These in-phase and out-of-phase modes are usually labelled ‘optical plasmon’ and
‘acoustic plasmon’ respectively, and are stable atT = 0. At finite temperatures,χ(q, ω)
acquires a finite imaginary part outside of the particle–hole continuum, the poles move into
the complex plane, and the plasmons acquire a finite lifetime. In section 6 we will discuss the
role of plasmons in enhancing the drag resistance at temperatures of the order of the Fermi
energy.

3. Frictional drag

The cross-resistance is calculated in most of the recent theoretical treatments from the following
expression, valid when the inter-layer interaction is treated perturbatively [11] (see figure 1):

ρD = − h̄2β

πn1n2e2A

∫
dq

(2π)
q3|U(S)(q, ω)|2

∫ ∞
−∞

dω
Im χ1(q, ω) Im χ2(q, ω)

sinh2(βh̄ω/2)
. (6)
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Figure 1. A schematic representation of the memory function expression for the transresistance to
lowest order in the inter-layer interaction (equation (6)) (reproduced from reference [12]).

In appendix A we reproduce the derivation of this equation given by Zheng and MacDonald
who used the memory function formalism [12]. This derivation is general and contains equ-
ation (6) as the limit of lowest order in the inter-layer interaction. We will show here a more
restricted derivation using the scattering formalism, which has the advantage of providing us
with an interpretation of the origin of each of the terms in equation (6). The derivation is very
close to the one presented in the paper by Jauho and Smith [13, 14]. Alternative treatments
are the collective excitation approach [15], and the Green’s function formalism starting from
the Kubo formula [16–18]. In the linearized Boltzmann (or scattering) treatment, the spectral
functionsχi(q, ω) are the susceptibilities of the non-interacting case.

We compute first the rate of change of the momentum of the electrons in layer 2 due to
the scattering from electrons in layer 1:

dP2

dt
=
∫

dq

(2π)2
h̄q|U(q)|2

∫
dk1

(2π)2

∫
dk2

(2π)2
{
fk1(1− fk1+q)f

0
k2
(1− f 0

k2−q)

− fk1+q(1− fk1)f
0
k2−q(1− f 0

k2
)
}
δ(εk1 + εk2 − εk1+q − εk2−q). (7)

In the above equation,fk refers to the distribution of electron states in layer 1, andf 0
k

to that of the electrons in layer 2. Since there is no current in layer 2, the corresponding
electron distribution is the unperturbed, free-fermion equilibrium distribution. The electron
distribution on layer 1, on the other hand, corresponds to a Fermi distribution displaced in
k-space by an amountmv1/h̄, with v1 being the drift velocity of the electrons in layer 1.
The above expression can be interpreted as a sum of processes according to Fermi’s golden
rule: the factor|U(q)|2 is the square of the matrix element of the transition that involves a
momentum transfer ¯hq, the various factors off correspond to the probabilities of transitions
from occupied to empty states, and the delta function ensures conservation of energy in the
scattering process. Note that if layer 1 were in equilibrium, the magnitude in curly brackets
would be zero due to the detailed balance condition

f 0
k (1− f 0

k′)f
0
k′′(1− f 0

k′′′) = f 0
k′(1− f 0

k )f
0
k′′′(1− f 0

k′′) (8)

which is an identity ifεk + εk′ + εk′′ + εk′′′ = 0. There is therefore a finite momentum transfer
to layer 2 due to the asymmetry of the electron distribution in layer 1.

We now linearize in the electron distribution of layer 1:

fk = f 0
k−mv1/h̄

= f 0
k −

∂f 0
k

∂εk
h̄k · v1 ≡ f 0

k −
1

kBT
f 0
k (1− f 0

k )h̄k · v1. (9)

Substituting the linearized expressions forf1 in equation (7), and using the detailed balance
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condition, the rate of momentum transfer has the form

dP2

dt
= v

2

1

kBT

∫
dq

(2π)2
(h̄q)2|V (q)|2

∫
dk1

(2π)2

∫
dk2

(2π)2
f 0
k1
(1− f 0

k1+q)

× f 0
k2
(1− f 0

k2−q)δ(εk1 + εk2 − εk1+q − εk2−q). (10)

A couple of simple technical manipulations are needed to recast this expression in the
form of our basic equation. First we use

δ(εk1 + εk2 − εk1+q − εk2−q) =
∫
h̄ dω δ(h̄ω − εk1 + εk1+q)δ(h̄ω + εk2 − εk2−q) (11)

and

f 0(εk)
[
1− f 0(εk + h̄ω)

] = [f 0(εk)− f 0(εk + h̄ω)
]
/
[
1− exp(−h̄ω/kBT )

]
. (12)

We then introduce the functionχ0
i (q, ω):∫

dki
(2π)2

(f 0
ki
− f 0

ki+q)δ(h̄ω − εk1 + εk1+q)

= 1

π
Im
∫

dki
(2π)2

f 0
ki
− f 0

ki+q

h̄ω − εk1 + εk1+q − iη
≡ Im χ0

i (q, ω) (13)

and substitute in (10):

dP2

dt
= v1

2

1

kBT

∫
dq

(2π)2
(h̄q)2|V (q)|2

∫
dω

Im χ0
1 (q, ω) Im χ0

2 (q, ω)

sinh2(h̄ω/kBT )
(14)

where we have omitted the vectorial nature ofP2 andv2 since they are in the same direction.
In order to compute the resistance, we need to equate the rate of momentum transfer to the
total force per particle on the electrons in layer 2 due to the electric field generated,E2:

dP2

dt
= +n2eE2 (15)

and we get the final expression usingρD = E2/j1 with j1 = n1ev1.
The minus sign in equation (6) means that the induced drag voltage is opposite to the

resistive voltage drop in the current-carrying layer. This is so because the Coulomb-induced
scattering sweeps the carriers along the dragged layer in the same direction as those in the drive
layer. From the above equation we see that the drag resistance is a convolution of the density
fluctuations within each layer, which at low temperatures are restricted to low frequencies by
the factor sinh2(βh̄ω/2) in the denominator. From the structure of the above equation we
see that measurements ofρD can provide information on the inter-layer scattering mechanism
as well as the in-plane fluctuations, the information on which is included inχ(q, ω). The
low-temperature prediction of Coulomb scattering alone is [1]

ρ12 = m

ne2

πζ(3)(kBT )2

16h̄EF (qTFd)2(kF d)2
(16)

whereqTF is the single-layer Thomas–Fermi screening wave-vector,EF is the Fermi energy,
d is the inter-layer spacing, andkF is the Fermi wave-vector. Due to the finite separation
of the layers, the scattering is limited to small angles [3]. Large-angle scattering events
require large values of the momentum transferq, and these processes are suppressed by the
exponential dependence∼e−qd in the Fourier transform of the inter-layer Coulomb interaction.
In two dimensions, the phase space for backscattering diverges and gives rise to logarithmic
corrections to the simpleT 2-dependence [19]. These corrections are missing here due to the
suppression of backscattering. The screening is also enhanced at small wave-vectors, and
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becomes more effective as the separation between layers increases (see equation (21)). The
combination of the suppression of backscattering and the enhanced screening gives rise to
the strongd−4-dependence inρD. It should be emphasized also that theT 2-dependence is
modified when the electronic states in the layers are not free Fermi gases, and support longer-
lived density fluctuations. As detailed in the following sections, this is the case, e.g., in the
presence of disorder, and in the quantum Hall regime.

4. The role of phonons

The electron–electron scattering treatment predicts a transresistanceρD that vanishes at zero
temperature asρD ∼ T 2. This dependence is roughly satisfied in the experiments, confirming
the dominance of the electron–electron interaction. However, as mentioned above, the
experiment also shows a noticeable deviation ofρD/T

2 from a constant as a function of
temperature, showing a maximum forT ∼ 2 K. For these samples the Fermi temperature is
roughly 60 K. The overall temperature dependence and the position of the maximum are very
similar for different values of the layer separationsd, and the magnitude ofρD/T 2 varies very
little for the three barrier thicknessesd = 500, 225, and 500 Å after the Coulomb scattering
contribution is subtracted [3]. Also, for inter-layer separationsd = 500 Å, the observedρD is
simply too big to be accounted for by the Coulomb interaction alone. This led Gramilaet al [3]
to propose an additional scattering mechanism. The obvious candidate: phonons. The phonon-
mediated coupling between electrons in doped semiconductor layers separated by an insulating
region of thickness∼100µm was studied by Hubner and Shockley [20]. Real phonons were
found to be responsible for the inter-layer interaction. The possibility of drag due to phonons
was also proposed by Gurzhi and Kopeliovich [21]. The first qualitative hint of the mechanism
being phononic is the fact that the measured temperature dependence ofρD/T

2 resembles the
acoustic-phonon-limited mobility scattering rateτ−1

ph for two-dimensional electrons in GaAs.

At high temperatures,τ−1
ph is linear inT , but crosses over to aT 5- or T 7-dependence in the

low-temperature Bloch–Grüneisen regime [22], where the thermal phonon wave-vectors are
less than 2kF . For the electron density of the samples in reference [3] the crossover occurs at
a few degrees Kelvin. Thus, the temperature dependences ofτ−1

ph /T
2 andρD/T 2 are broadly

similar. Furthermore, the dependence ofρD/T
2 on the relative electron density between the

layers indicates that phonons could be playing a role. An electron in layer 1 decays through
a backscattering process by emitting a phonon of wave-vector 2kF,1, and the phonon will
transfer its momentum most efficiently to an electron in layer 2 ifkF,1 = kF,2. This implies
thatρD/T 2 should have a maximum when the electron densities are matched in the two layers,
which is experimentally observed [3]. Now, interactions of acoustic phonons with electrons
are relatively weak in GaAs—to account for the value of the observed transresistance. The
proposed mechanism will be the exchange of virtual phonons [16, 23], a process in which a
phonon is emitted by one layer and then absorbed by the second without conserving energy
from the electronic transitions. When the energy conservation constraint is relaxed, the phase
space for scattering increases. Also, since the layers are separated by distances much smaller
than the phonon mean free path, the phonons retain their phase coherence for the interaction
between the layers. These two effects imply an enhancement in the transresistance due to
virtual phonons. Tsoet al [24] presented diagrammatic calculations including exchange of
virtual phonons with a good agreement with the temperature dependence observed in the
experiment (see figure 2).

The distinction between ‘real’ and ‘virtual’ phonons is not so clear cut if one extends the
treatment leading to equation (6) to include a phonon-mediated Coulomb interaction. The force
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Figure 2. The scattering rate due to the Coulomb scattering and virtual phononsτ−1
D /T 2 as a

function of temperature for different separations. Note thatρD ∝ τ−1
D . The solid circles are

the experimental results of reference [1], and the solid curves are the theoretical results from
reference [24]. Inset: the contribution toρD ∝ τ−1

D due to exchange of virtual phonons as a
function of temperature. (Reproduced from reference [24].)

operator on a given layer will involve the phonon operators, and the force–force correlation
function will include an electron–phonon interactionM(Q) and the propagator of a phonon
from layer one to layer two. The result is that one can write equation (6) withU(S)(q, ω)

replaced by an interactionD12(q, ω) of the form [26]

D12(q, ω) =
∫

dqz
2πh̄
|M(Q)|2eiQzd

[
2ωQ

ω2 − ω2
Q

]
(17)

with ωQ = vsQ the frequency of the acoustic phonon (omitting the distinction between
longitudinal and transverse) of wave-vectorQ = √q2 +Q2

z . The term in square brackets in
the above equation is the phonon Green’s function [25]. The phonon mean free path`ph is
not included. In the above expression, one can interpret ¯hω as the energy transferred between
layers and ¯hωQ as the energy of the intermediate phonon. When the denominator in the square
brackets of equation (17) vanishes, energy is conserved in the intermediate state. As pointed
out by Bønsageret al [26], this expression contains both the real and virtual phonons: real
phonons correspond to ImD12, whereas virtual phonons correspond to ReD12. If we insert in
equation (17) the long-wavelength limit [27]|M(Q)|2 = h̄QD2/2ρvs , we obtain [26]

D12(q, ω) ≈ ω2

q
√

1− ω2/(vsq)2
exp

(−qd√1− ω2/(vsq)2
)

(18)

indicating that the effective interaction diverges asq → ω/vs . Even thoughD12(q, ω) involves
a small prefactor, if we substitute in equation (6) the expression obtained for the coupling, the
divergence|D12(q, ω)|2 ∼ |ω − vsq|−1 gives rise to a divergentρD. Although this is a
spurious divergence that is removed by inclusion of a finite mean free path of the phonons or
dynamical screening of the interaction, the large contribution explains partly why a ‘weak’
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phonon-mediated interaction can compete with the Coulomb interaction as a mechanism for
drag. For a phonon mean free path`ph below a critical value which for GaAs can be of the
order of 0.2 mm, the predicted distance dependence of the drag is ln(`ph/d). The experimental
distance dependence is yet to be clarified, although the evidence is for a weak dependence of
the phonon contribution [28].

5. The effect of disorder and localization

The effect of disorder was first studied by Zheng and MacDonald [12], who included the fact
that the density response function at small frequencies and small wave-vectors is given by

χi(q, ω) = dn

dµ

Dq2

Dq2 − iω
(19)

with D being the diffusion constant [29] given byD = l2/2τ , l being the mean free path,
τ = l/vF the scattering time, and dn/dµ the density of states. This formula for the density
response function is valid forq < 1/l andω < 1/τ . Following the derivation ofρD ∼ T 2

presented in appendix A, Zheng and MacDonald obtain that the low-temperature dependence
is modified toρD ∼ T 2 logT . This temperature dependence can be seen to result from the
low-frequency and low-wave-vector behaviour of Imχi(q, ω) ∼ ω/q2 for q > (ω/D)1/2.
(Note that in the ballistic regime Imχi(q, ω) ∼ ω/q.) The contributions to the integral inq
for q < (ω/D)1/2 can therefore be neglected. We can obtain the low-temperature behaviour
of ρD as follows [12,30]:

ρD ∼ e2

(kTFd)2
β

∫ 1/τ

0
dω

ω2

eβh̄ω + e−βh̄ω − 2

∫ 1/l

(ω/D)1/2

dq

q
≈ e2

(kTFd)2
T 2 logT . (20)

In the above expression we have considered the low-wave-vector contribution from
the Coulomb potential as a constant,U(S)(q, ω) ∼ e2/[kTF(kTFd)

2]. Note the change in
distance dependence ofρD from d−4 to d−2. This is a consequence of having treated the
Coulomb scattering as a screened interaction. The logarithmic term originates in the spectra of
particle–hole excitations for a ballistic and for a diffusive system being different, and from the
dimensionality of the system. The spectrum of excitations and the dimensions (two in this case)
conspire to give the logarithmic term in the temperature dependence. At low temperatures one
can ignore the contribution of Imχ to the screened potential given by equation (3), and replace
the inter-layer interaction by

U(S)(q, ω) = πe2q

k2
TF sinhqd

(21)

with kTF ≡ 2πe2 dn/dµ the single-layer Thomas–Fermi screening wave-vector.
The case of strong disorder, where the localization lengthξ of the states within each layer

is of the order of the distance between layers, was considered by Shimshoni [31]. For the
case of Anderson insulators, the density response function within each layer is taken from the
self-consistent theory of localization of Vollhardt and Wölfle [32]:

χ(q, ω) = dn

dµ

Dq2

Dq2 − [iω + τ(ω2 − ω2
0)]

(22)

with ω0 a restoring frequency that incorporates the effects of localization. Within the scheme
of Vollhardt and Ẅolfle, ω0 is related to the localization lengthξ throughξ = vF /(

√
2ω0).

The parameterω0 in the above expression is responsible for the quadratic vanishing of the
conductivityσ(ω) at low frequencies:

Reσ(ω) = e2 lim
q→0

(ω/q2) Im χ(q, ω) ∼ [D/(τ 2ω4
0)]ω

2. (23)
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Note that the logarithmic divergence at lowq is now cut off by 1/ξ , and theT 2-dependence
is retained. In the strongly localized regime, when the localization length is of the order of
the inter-layer spacing, the distance dependence ofρD is modified. Screening is not effective
in this regime, so we can evaluateρD using the unscreened interactionUq = 2πe2e−qd/q. In
this regime, the low-q dependence Imχ(q, ω) will be given by

Im χ(q, ω) ≈ dn

dµ

ωq2

D[1/ξ2 + q2]2
≈ dn

dµ

1

D
ωq2ξ4. (24)

Replacing the above expression in equation (6), we obtain [31]

ρD ≈ 5

32π

h

e2

(
kBT

h̄Dn

)2

(kTFd)
2

(
ξ

d

)8

. (25)

If the localization lengthξ � d, one has to include the effects of screening for wave-
vectorsq > 1/(ξ2kTF), and the distance dependence changes to ln(kTFξ)/(kTFd)

2. When
ξ → ∞ we recover the diffusive result. Another case treated in reference [31] is that of the
so-called Efros–Shklovskii insulators, where Coulomb interactions are important and increase
the conductivity at finite frequency in such a way thatσ(ω → 0) ∼ ω as opposed toω2.
This has the consequence that the integration inω is infrared divergent and is cut off, at finite
T , by incoherent phonon processes. As a consequence the drag resistance diverges at zero
temperature in the following way:

ρD ∝ f (d, ξ)
(
T

T0

)3

exp

[(
T0

T

)1/2
]

with f (d, ξ) = 1/(ξd)2 for ξ � d andf (d, ξ) = 1/ξ4 for ξ � d. Also kBT0 = e2/εξ , with
ε the dielectric constant.

6. Plasmon enhancement

The discussion of plasmon modes of section 2 focuses on the small-q dispersion at zero
temperature. Since the drag resistance is given by an integral involving Imχ in the integrand,
at low temperature there is no contribution from the plasmons, since they appear in a region
of the plane(q, ω) where Imχ = 0. The function Imχ ‘counts’ the number of particle–hole
excitations of momentumq and frequencyω: it is non-zero in regions of the(q, ω) plane where
particle–hole excitations are allowed. The plasmons are collective modes that are outside of
the particle–hole continuum. For a more detailed discussion of this point the reader is referred
to Pines and Nozières [33].

Flensberg and Hu [34,35] made the very interesting observation that at higher temperatures
(T ∼ TF ), Imχ 6= 0 in the region of the plasmon pole, and therefore there will be a
large contribution at intermediate values ofq and one should observe an enhancement of
the resistance [36]. Qualitatively one can understand this effect as a Schottky-like peak
that develops from a thermally populated dissipation channel that is not available at zero
temperature. In the plasmon-pole approximation [35] one approximates the dielectric constant
ε(q, ω) (which is the denominator in equation (3)) by

ε(q, ω) = 2Vb(q)e
−qd |β±(q)[ω − ω±(q)] + i Im χ(q, ω±)| (26)

with β± = [d Reχ(q, ω)/dω]|ω=ω± . For small values of the imaginary part ofχ one can
approximate the Lorentzian byδ-functions and obtain

|U(S)(q, ω)|2 ≈ π

4 Imχ(q, ω±)|β±(q)|δ(ω − ω±(q)) (27)
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which we can insert in equation (6) to obtain the plasmon contributions to the drag rate:

ρD = h̄2β

πn1n2e2A

∫ qc,±

0

dq

(2π)
q3 Im χ [q, ω±(q)]

4|β±(q)| sinh2[βh̄ω±(q)/2]
. (28)

The parameterq±,c defines the values ofq for which the plasmon ceases to exist. The
contribution to the drag from the above equation involves an integral of Imχ for frequencies
and wave-vectors corresponding to the plasmon modes. From the above discussion, the
contribution of the plasmons toρD is zero atT = 0. At small temperatures, Imχ atω±(q)
is small because the carriers do not have sufficient energy to be excited far above the Fermi
surface. However, at intermediate temperatures (of the order of the Fermi temperature) there
are enough thermally excited particles to give a large Imχ at the plasmon poles and the drag will
be dominated by this contribution. The numerical calculations indicate a maximum inρD at a
temperature of the order of 0.5TF . For electron densities of the order ofn = 1.5× 1011 cm−2

for GaAs quantum wells,TF ∼ 50 K. ForT > 0.5TF the plasmon modes are no longer well
defined since they can decay by emitting single-particle excitations. This implies that the
enhancement diminishes at high temperatures.

The plasmon enhancement theory was put to test in the experiments by Hillet al [37],
with very good qualitative agreement. The temperature required to excite a plasmon appears
to be lower than the value predicted by the theory, and the magnitude of the drag is larger than

Figure 3. The scaled transresistivityρtT −2 (ρt ≡ ρD) versus the reduced temperature for different
densities (the densities in the two layers are the same). The dashed (solid) curves show the RPA
(Hubbard) calculations of Flensberg and Hu [35], and the circles show the experimental results of
reference [37]. (Reproduced from reference [37].)
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the prediction over most of the temperature range. This seems to imply that one should go
beyond the random-phase approximation. The Hubbard approximation [35] provides a better
fit to the data, but there is still room for improvement (see figure 3).

Improvements over RPA were considered byŚwierkowskiet al [38] in connection with
drag experiments on electron–hole systems by Sivanet al [11]. The transresistance was
calculated using equation (6), modifying the effective inter-layer interaction using the local
field approach of Singwi, Tosi, Land and Sjölander (STLS) [39–41]. This approach includes
correlations neglected in RPA, and the net effect is an increase of the effective interaction.
These corrections use zero-temperature local field corrections. Tsoet al [42] studied a
generalized RPA including exchange processes to infinite order in the Hartree–Fock potential,
and emphasized the fact that RPA is good only for very high densities. Thus, the RPA treatment
of the Coulomb scattering overestimates the screening and renders the coupling weaker. The
agreement with the experiments of reference [11] is good at low temperatures. Güven and
Tanatar [43] treated the plasmons and the phonons on an equal footing using the Hubbard
approximation, and found an enhancement due to the coupled plasmon–phonon modes. We
still need better approximations beyond RPA in the higher-temperature regime to achieve a
better quantitative understanding of the plasmon enhancement effects.

7. Drag in the presence of magnetic fields

7.1. Hall drag

In the presence of a magnetic field applied perpendicular to the planes, there could in principle
exist a trans-Hall resistance—that is, a voltage in they-direction of layer 2 when a current is
applied in thex-direction of layer 1. This drag Hall resistance is zero if computed in the lowest
order in the inter-layer interaction. The reason for this is that in the lowest order the electron
distribution in layer 2 is the equilibrium one, and also that the momentum is being transferred
from layer 1 in the direction of the current. Since there is no net current in layer 2, there is
no Lorentz force and therefore no net Hall voltage. To see how this emerges formally, we can
repeat the steps that lead to equation (6). In that case we obtain

ρ
xy

D =
h̄2β

πn1n2e2A

∫
dq

(2π)2
qxqy |U(S)(q, ω)|2

∫ ∞
−∞

dω
Im χ1(q, ω) Im χ2(q, ω)

sinh2(βh̄ω/2)
(29)

where the functionsχ1(q, ω) have to be evaluated in the presence of a magnetic field
B(x) = ∇ × A(xi ). The reason for the equation retaining its form is the fact that the
force operator is still given by equation (A12) even in the presence of a magnetic field since
[A(xi ), ρq] = 0. In other words, the inter-layer force does not depend on the applied field.
Due to rotational invarianceχ1(q, ω) = χ1(|q|, ω), and the integral above vanishes by parity.
The resultρxyD = 0 was also shown by Kamenev and Oreg [30] using a diagrammatic approach.
However, as emphasized by Hu [44] this is not a general result. In particular, Hu showed, using
an approach based on the Boltzmann equation, that if one includes anenergy-dependentlifetime
τ(ε) one obtains a finiteρxyD . No experiment has reported so far a finite Hall drag, at least in
the situation were one can guarantee that there is no tunnelling between layers. Patelet al [45]
measured frictional drag in the presence of a field for modulation-doped GaAs/AlGaAs double
quantum wells separated by a barrier of 100 Å for which tunnelling is significant. They found
oscillatory behaviour as a function of magnetic field in both the longitudinal and transverse
drag resistivities. However, since for this inter-layer separation tunnelling is significant [46],
our analysis does not apply to this case.
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7.2. Magneto-Coulomb drag

The physics of electrons in two dimensions under quantum conditions of temperature and
magnetic field has been the subject of intensive research in recent years, and the reader is
referred to some of the very good reviews on the progress in the understanding of the integer
and fractional quantum Hall effects [47,48]. In this section we review the research on current
drag in the presence of magnetic fields.

In the presence of a magnetic field, the polarization functionχ(q, ω) assumes different
forms depending on the number of filled Landau levels and on the strength of the disorder.
For example, for non-interacting electrons, if the density and magnetic fields are such that
the outermost occupied Landau level is completely filled, the lowest energy for a particle–
hole excitation is ¯hωc, with ωc = eB/mc the cyclotron frequency. Therefore Imχ will
consist of a series of delta functions separated byωc = eB/mc. If the outermost occupied
Landau level is partially filled there will be excitations of zero frequency that correspond to
transitions between orbits in the same Landau level. The presence of disorder smears these
delta functions. One therefore expects that the transresistance will be sensitive to Landau-
level quantization for fields large enough that the cyclotron frequency is much larger than the
disorder-induced lifetime of the orbits. This problem was studied by Bønsageret al [49–51]
and Wuet al [52] and Qin [53], who treated the individual layers as non-interacting electrons
in the presence of disorder consisting of short-range impurities. In the presence of disorder
the one-particle density of statesg(ε) is broadened, and Bønsageret al chose to substitute the
comb of delta functions centred atεn = (n + 1

2)h̄ωc for a Gaussian density of states as derived
by Gerhardts [54]:

g(ε) =
√

2/π

2π`2
B00

∑
m

exp

[
−2

(
ε − εm
00

)2
]

(30)

with `B =
√
h̄/eB the magnetic length, and00 = (2/π)h̄ωc(h̄/τ ), τ being the transport

lifetime in the absence of magnetic field. The equations for the transresistance were solved
numerically, and revealed a very interesting ‘twin-peak’ structure as a function of filling
fraction: as the filling factor is changed from an odd value (where the highest Landau level
is half-filled in the spin-unpolarized situation) towards an even value, the transresistance goes
through a maximum before it is suppressed. The authors explain this non-monotonic effect as
being the result of the competition between the phase space for scattering and the strength of
the effective interaction. When the Landau levels are completely filled, the chemical potential
is in a gap, there is no dissipation, and the transresistance vanishes. This corresponds to the
plateau regions of the quantum Hall effect. Also, the screening is strongly depressed in the
region where the density of states is small. In the transition region there are excitations of
zero energy, and since the density of states increases as the centre of the band is approached
(half-filled Landau levels) one gets an increase inχ(q, ω) contributing to an increase inρD.
On the other hand, an increase inχ(q, ω)means an enhancement of screening, or equivalently
a decrease in the effective interaction. The prediction is therefore thatρD should roughly fulfil
the relation

ρD = g1g2|W12|2 (31)

with gi the density of states at the Fermi energy for layeri, andW12 the effective inter-layer
interaction. The striking twin-peak structure was observed in the experiments performed by
Rubel et al [55] with good quantitative agreement found with the theory. The twin-peak
structure is observed up to a filling fractionν = 15. There is a marked increase in the value
of the transresistance fromρD = 8 m� at zero field andT = 3.1 K to values of the order of
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1–2�, as expected from the theory (see figure 4). The calculation does not include the effect
of localization, and one should keep in mind that thegi of equation (31) refers to a density of
extendedstates. The enhancement ofρD in the critical region was studied by Shimshoni and
Sondhi [56]. They show that anomalously slow relaxation of density fluctuations at criticality
yields a power lawρD ∼ T 2−η, whereη is the anomalous diffusion exponent.

Figure 4. The transresistanceRT (ρD) as a function of magnetic fieldB for a coupled electron
gas with a separation barrier of 30 nm, shown for different temperatures (plotted with offsets for
clarity). The electron density isn = 3.2× 1011 cm−2 in both layers. The longitudinal resistance
is also shown. (Reproduced from reference [55].)

The temperature dependence ofρD also shows different behaviours with and without an
applied magnetic field. In the discussion of section 5 we found a low-temperature dependence
ρD ∼ T 2 ln T in the diffusive regime. The range of temperatures for which this dependence
applies corresponds tokBT . h̄/τ , with τ a scattering time. This defines a diffusive temp-
erature that for high-mobility samples is of the order of 50 mK. Moreover, Zheng and
MacDonald [12] estimate—after including the different distance dependences in the ballistic
regime and the diffusive regime—a crossover temperature of 10−100 K! At low temperatures
for B 6= 0 one expects the sameT 2 ln T behaviour since the motion is also diffusive, but the
temperature scale where the effect sets in can be higher and experimentally accessible. The
reason for this is that in the presence of a field one can think of diffusion as hopping between
adjacent orbits of radius̀B � vF τ . This implies that the diffusive form of the polarizability
of equation (19) is now valid forq . 1/`B . The numerical solutions given by Bønsager
et al [49] indicate that, for a choice of parameters corresponding to identical layers with a
densityn = 3× 1015 m−2 and an inter-layer distanced = 800 Å, the diffusive behaviour sets
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in atT = 0.4 K.
Another very interesting aspect of the temperature dependence at finite magnetic fields

predicted by Bønsageret al [49] and observed in the experiments carried out by Rubelet al [55]
is the dynamic screening leading to a maximum inρD/T 2, the maximum being atTF . The
theoretical reason for this is the same as that leading to plasmon enhancement discussed in
section 6.

Wu et al [52] also studied the interplay between Landau quantization and transresistivity
by solving equation (6) numerically in the presence of a magnetic field. They find pronounced
oscillations as a function of field but not the ‘twin-peak’ structure. Also, experiments carried
out by Hill et al [57] show oscillations inρD without the ‘twin-peak’ structure. The oscillations
are pronounced at low temperaturesT . 4 K. For high temperatures the Landau quantization
effects are washed out andρD has a dependence

ρD ∝ T B2

which has not been addressed theoretically yet.

7.3. The case ofν = 1/2

The case of Landau levels of filling fractionν = 1/2 (half-filled) or other even denominators is
special [47]. The quantized Hall effect does not occur in this case, and the low-energy physics
is that of a Fermi liquid, behaving in many ways as electrons in zero magnetic field [58]. The
theoretical approach that has proved most useful for understanding this state is the fermion
Chern–Simons theory [59], which is based in turn on the composite-fermion theory developed
by Jain [60].

For the fractional Hall effect, Orgad and Levit [61] and Duan [62] studied the Coulomb
drag for edge excitations using a Chern–Simons theory. The case of inter-layer friction was
considered forν = 1/2 by Sakhi [63], Ussishkin and Stern [9], and Kim and Millis [64].
The dominant low-temperature behaviour forρD is found to be∼T 4/3. This temperature
dependence results from the slow diffusion of the density modes at filling fraction 1/2. In the
composite-fermion picture, atν = 1/2 the density response at small frequencies and small
wave-vectors is of the form [58]

χ(q, ω) ≈ q3

q3/χ0 − 8π i h̄ωkF
(32)

with χ0 = dn/dµ the electronic compressibility. The form of this is similar to that for the
diffusive regime atB = 0 of equation (19) with an effective diffusion constant that vanishes
linearly with q. This means that the long-wavelength density fluctuations relax very slowly,
leading to an increase in the transresistance. To obtain the low-temperature dependence we
proceed in the same way as for the diffusive case, except that now, for smallq, Imχ ∼ 1/q3,
with the divergence now being cut off atq ≈ 2(χ0h̄kF )

1/3ω1/3 ≡ kF (ω/ω0)
1/3. The low-

temperature behaviour is given by

ρD ∼ e2

(kTFd)2
β

∫ ∞
0

dω
ω2

eβh̄ω + e−βh̄ω − 2

∫
kF (ω/ω0)1/3

dq
1

q3
≈ e2

(kTFd)2
T 4/3. (33)

The case ofν = 1/2 poses some fundamental questions that are unresolved at the time of
writing this review. In the recent experiments carried out by Lillyet al [28] for modulation-
doped GaAs/AlxGa1−xAs double quantum wells separated by 200 Å, the drag resistanceρD
has a qualitatively similar behaviour to the longitudinal resistance of a single isolated layer
ρxx when the magnetic field is varied: whereρxx is at its maximum due to the quantum Hall
effect (for example atν = 1 and 2/3), so isρD. As pointed out in reference [28], this is not
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Figure 5. The measured temperature dependence ofρD at ν = 1/2 (solid curve). The
broken curves are calculations from references [9, 63] ofρD assuming two different values of
the composite-fermion mass (dotted,m∗ = 12mb; dashed,m∗ = 4mb; wheremb is the GaAs band
mass). (Reproduced from reference [28].)

surprising since both resistances are controlled by the density of states available for scattering.
There is, however, a notable difference between their respective temperature dependences.
Whereasρxx increases by only 6% as the temperature is lowered fromT = 4 K to 0.2 K,
the drag resistance decreases by a factor of 40 over this temperature range. The numerical
value of the drag resistance atB = 11 T (the field corresponding toν = 1/2) and at 4 K is
about 2000 times larger thanρD at zero field. In addition, the temperature dependence ofρD
differs qualitatively atν = 1/2 from the corresponding resistance at zero field: the experiment
does not show evidence of a ‘phonon peak’ inρD/T 2, suggesting that phonons are relatively
unimportant as a scattering mechanism in theν = 1/2 case.

The most intriguing part of this story is the evidence of a finite value ofρD ≈ 5 �
when extrapolated to zero temperature (see figure 5). This is clearly in conflict with the
above discussion leading to the temperature dependence of equation (33) which predicts a
vanishing resistance at zero temperature. Since the scattering giving rise toρD is inelastic,
and the common view is that all inelastic processes cease to be effective at zero temperature,
this experiment encourages us to reanalyse the mechanisms of inter-layer dissipation at zero
temperature. This interesting experiment places current drag in the same arena as some recent
efforts to understand the issues of dephasing [65, 66] and resistance at zero temperature [67]
due to ‘inelastic’ mechanisms. Some very recent papers address theν = 1/2 case from
different angles: Ussishkin and Stern [68] attribute the anomaly to pairing fluctuations whereas
Yang [69] suggests that the low-temperature behaviour of the drag resistance is due to the
inter-layer distance being close to the critical value at which the two layers form a collective
incompressible state.

8. Non-dissipative drag

The possibility of a drag effect at zero temperature was considered by Rojo and Mahan [70],
who considered two coupled mesoscopic [71] rings that can individually sustain persistent
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currents. The mechanism giving rise to drag in a non-dissipative system is also based on the
inter-ring or inter-layer Coulomb interaction, the difference from the dissipative case being the
coupling between real or virtual interactions. One geometry in which this effect comes to life
is that of two collinear rings of perimeterL, with a Bohm–Aharonov81 flux threadingonly
oneof the rings (which we will call ring one). This is of course a difficult geometry to attain
experimentally, but has the advantage of making the analysis more transparent. Two coplanar
rings also show the same effect [70]. If the rings are uncoupled in the sense that the Coulomb
interaction is zero between electrons in different rings, and the electrons are non-interacting
within the rings, then a persistent currentJ0 = −c dE/d81 = evF /L will circulate in ring
one [72]. If the Coulomb interaction between rings is turned on, the Coulomb interaction
induces coherent charge fluctuations between the rings, and the net effect is that ring two
acquires a finite persistent current. The magnitude of the persistent drag currentJD can be
computed by treating the modification of the ground-state energy in second-order perturbation
theory1E(2)0 , and evaluating

JD = −e d1E(2)0

d82

∣∣∣∣∣
82=0

(34)

with 82 an auxiliary flux threading ring two that we remove after computing the above
derivative. In other words, the persistent drag current is equivalent to an induced diamagnetic
current that is finite even when the flux is zero in that system. (Note that a diamagnetic current
is in general given by the differential change in energy with respect to a change in magnetic
field.) The correction to the energy resembles the van der Waals interaction, and its relevance to
systems that can individually break time-reversal symmetry was studied in references [73,74].
The second-order correction is given by

1E
(2)
0 = −

∑
q

|Uq |2
∫ ∞

0
dω
∫ ∞

0
dω′

S1(q, ω)S2(−q, ω′)
ω + ω′

(35)

with Si(q, ω) the dynamical structure factor of ringi (see equation (A14)). For a mesoscopic
ring with an applied Bohm–Aharonov flux, one has to retain the discreteness of the spectrum:

Si(q, ω) = S(0)i
(
q, ω − h̄2

2m
q
φi

2πL

)
(36)

with S(0)i (q, ω) the structure factor at zero flux,φi = 8i/φ0, andφ0 = hc/e the flux quantum.
Note that, for a mesoscopic system, due to the presence of the flux,S

(0)
i (q, ω) 6= S(0)i (−q, ω).

For the inter-ring interaction we take the unscreened Coulomb interaction (screening is not
effective in one dimension), soUq = K0(qd), with d the distance between rings andK0(x) the
modified zeroth-order Bessel function. In the limit where the inter-particle distance is much
smaller than the distance between rings (kF d � 1), we obtain

JD = J0
1

(kF a0)2

1

(kF d)2
(37)

with a0 being the Bohr radius. For dimensions corresponding to those of the experiments
measuring persistent currents [75],JD ' 10−4J0. The drag current is itself mesoscopic, and
therefore vanishes in the limit of infinite length. For a ring with a single channel carrying the
current, an extension of the argument presented by Vignale [76] for a bound on the value of the
persistent currents givesJD < J0 in general. The non-dissipative drag for two concentric rings
was studied by Shahbazyan and Ulloa [77] using a Luttinger-liquid formulation for mesoscopic
systems [78]. They found that the inter-ring interaction modifies the period of the Aharonov–
Bohm oscillations. Related work on the effect of the interactions on the flux dependence was
reported by Canaliet al [79].
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One basic difference between the dissipative drag in semiconductor systems and the non-
dissipative drag in mesoscopic systems appears if one opens ring two so that no current can
circulate, and computes the induced charge modulation, which will play the role of a drag
voltage. The induced ‘voltage’ is zero in this case. This can be seen by starting with a set-up
that in the absence of flux in system one is ‘parity even’. By this we mean that the charge
distribution in wire two is symmetric around the centre. Let us call the time-reversal and
parity operatorsT andP, respectively. We want to compute the induced dipole moment in
ring two,x2 = 〈90|x̂2|90〉. The coordinate operator satisfiesPT x̂2(PT )−1 = −x̂2 while the
wave-function is invariant underPT , which implies thatx = 0. The charge distribution in
ring one remains uniform, and there is no induced voltage.

Natural candidates for use in the study of non-dissipative drag, other than mesoscopic
systems, are the superconductors, which can sustain macroscopic persistent currents. The
extension to this case was carried out by Duan and Yip [80]. For wires the corrections to the
zero-point energy of the charge fluctuations (plasmon modes) were computed for when two
superconducting wires individually carry a supercurrent. In analogy with the discussion of
section 2, the dispersion of the coupled modes is given by the determinantal equation∣∣∣∣ (ω − qv1)

2 − s2q2 −X
−X (ω − qv1)

2 − s2q2

∣∣∣∣ = 0 (38)

with s the plasmon velocity of a single wire;X = 4πn0e
2q2K0(qd)/m comes from the inter-

wire interaction, andv1,2 are the superconducting velocities of the two wires. For the case of
wires, the two coupled modes of frequenciesω±(q) are linear inq. The zero-point energy

E0 =
∑
q

1

2

[
h̄ω+(q) + h̄ω−(q)

]
depends now on the relative superfluid velocities. The superfluid velocity is ¯h(∇9 −
2eA/c)/2m with 9 the order parameter. The supercurrent in wire two,I2, is computed
in an analogous way to equation (34) by taking the derivative of the free energy with respect
to the vector potential in wire 2, and

I2 = e

m
(ρ22v2 + ρ21v1)

withρ12 = h̄n2
0e

4/16πm2s5d2 representing the drag term. If one starts with a situation in which
there is no current in either wire and slowly increases the current in wire one, the prediction
is that a current will start to flow in wire two of magnitudeeρ21v1/m. Superconductivity is
essential to this effect, in order that the wire can be trapped in a metastable state. Extensions
of the above arguments to superfluid Bose systems were presented by Shevchenko and
Terent’ev [81] and Tanatar and Das [82]. The case of the transresistance of an excitonic
condensate with electrons in one layer and holes in the other layer was studied by Vignale and
MacDonald [83], who found a discontinuous jump inρD at the condensation temperature.

Two groups attempted to measure the non-dissipative drag. Giordano and Monnier [84]
measured the drag between a superconductor (Al) and a normal metal (Sb), and found a non-
reciprocal drag effect that was finite only in the transition region—that is, at temperatures close
to the critical temperature of the Al layer. Similar results were reported by Huanget al[85] with
the superconducting system being AlOx and Au used as the normal metal. An interpretation
of the non-reciprocity effect in terms of inductive coupling of the spontaneously generated
vortices in the superconductor and the normal metal was proposed in reference [86]. It seems
clear that these experiments do not provide evidence of supercurrent drag.
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9. Summary

We have reviewed the recent theoretical and experimental effort in the growing field of current
drag. For electronic systems separated sufficiently that there is no tunnelling between them,
we found that through studies of the transresistanceρD one can extract information not only
about the direct Coulomb interaction between electrons in different systems, but also about
the collective modes of the coupled systems, and about phonons (virtual and real) that can
propagate through the barrier separating the systems in question. The magnetic fieldB has
a non-trivial effect on the drag resistance. The value ofρD is larger at finite fields than its
value at zero field, and shows a large enhancement in the transition region between quantum
Hall plateaus. This effect is understood qualitatively in terms of an interplay between changes
in the phase space available for scattering and variations in the effective interaction withB.
Some theoretical predictions, like those in connection with the non-dissipative drag, and the
ones for strongly disordered systems, are still awaiting experimental verification. The recent
experiment on theν = 1/2 case poses a fundamental question connected with the general
theory of transport: is it possible to have an intrinsic resistance at zero temperature due to
the electron–electron interaction? The magnitude of the challenge seems to equal that of the
progress made so far in the field.
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Appendix

In this section we follow the derivation of Zheng and MacDonald [12] of the inter-planar
resistance using the memory function formalism. The formalism of Mori [87] uses the projector
technique to write the response function in terms of a memory function. A simple case is a
classical particle subject to stochastic forces, for which one is interested in the velocity–velocity
correlation functionφ(t) = 〈v(t)v(0)〉. The Laplace transform is

φ(s) = 〈v
2(0)〉

s +K(s)
(A1)

with K(s) the Laplace transform of the memory function

K(t) = 1

mkBT
〈F(t)F (0)〉. (A2)

HereF(t) is the force acting on the particle, andm〈v2(0)〉 = kBT . The friction coefficient is
then given by a force–force correlation function.

For the quantum mechanical case, the calculation of an inter-layer resistance is then
performed by identifying the relevant memory function. The starting point is Kubo’s formula
for the conductivity:

σij (ω) = β

A

∫ ∞
0

dt eiωt 〈Jj |Ji(t)〉 (A3)

whereβ = 1/kBT , A is the area of each of the two-dimensional systems considered,i andj
are the layer indices, andJ is the zero-wave-vector component of the total-current operator.
The inner product appearing in (A3) is

〈Ĵj |Ĵi (t)〉 = 1

β

∫ β

0
dλ Tr

[
ρ0 exp(λH)Ĵj exp(−λH)Ĵi(t)

]
(A4)
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with Ĵi (t) = e(i/h̄)H t Ĵie−(i/h̄)H t = eiLt Ĵi , andL is the Liouville superoperator defined through
its action on an operator̂O asLÔ = (1/h̄)[H, Ô]. The next step is to use Mori’s projector
method to write the inverse matrixσ−1

i,j (ω) in terms of a memory function, and hence obtain
the transresistance. Zheng and MacDonald define a superoperatorP that projects onto the
current:

P = |J1〉〈J1|
〈J1|J1〉 +

|J2〉〈J2|
〈J2|J2〉 ≡ 1−Q (A5)

with 〈Ji |Jj 〉 = δij (A/β)χi , andχi = nie2/m.
With this definition we have (for Imω > 0)

σij (ω) = β

A

∫ ∞
0

dt eiωt 〈Ji |e−iLt |Jj 〉 = β

A
〈Ji | i

ω − L |Jj 〉 (A6)

= β

A
〈Ji | i

ω −QL− PL |Jj 〉 (A7)

= β

A
〈Ji | i

ω −QL |Jj 〉 +
β

A
〈Ji | i

ω − LPL
1

ω −QL |Jj 〉 (A8)

= δij iχi
ω

+
2∑
k=1

σik(ω)

ω

β

A

1

χk
〈Jk|L i

ω −QLL|Jj 〉 (A9)

where we have usedP J̇i = iPLJi = 0, which results, in the present case, from the fact that
[Ji, Jj ] = 0, meaning that the expressions derived are also valid in the presence of a magnetic
field that breaks time-reversal invariance. We are interested in the real part ofσ−1, which gives
the resistance. From the above equations, we have

ρ12(ω) = β

A

1

χ1χ2
Re〈J̇1| i

ω −QL |J̇2〉 (A10)

= β

A

1

n1n2e2

∫ ∞
0

dt eiωt 〈F1|e−iQLt |F2〉 (A11)

where the force operator isFi = −m/eJ̇i . The contribution to the force due to the inter-layer
interaction potentialUq is

F1 = −F2 = 1

A

i

h̄

∑
qUqρ

(1)
q ρ

(2)
−q. (A12)

The first approximation is to replace e−iQL by e−iL. The leading order inUq corresponds
to the correlation function in (A11) evaluated in the uncoupled case. Using a representation
in terms of exact eigenstates, one finds (for the static limit)

ρ12 = h̄2β

πn1n2e2A

∫
dq

(2π)2
q2Uq

∫ ∞
−∞

dω
Im χ1(q, ω) Im χ2(q, ω)

sinh2(βh̄ω/2)
(A13)

with χi(q, ω) the density–density response function [7] of layeri:

Im χi(q, ω) = π

A
(1− eh̄ωβ)

1

Zi

∑
m,n

e−βEm |〈n|ρi(q)|m〉|2δ[ω − (Em − En)/h̄] (A14)

≡ (1− eh̄ωβ)S(q, ω) (A15)

andZi the partition function of the isolated layer.
Here we show thatρ12 vanishes asT 2. For simplicity we treat the layers as identical.

The approximation used in the literature [3, 88] is to replaceχi(q, ω) by its non-interacting,
zero-temperature value [10]:

Im χ(q, ω) = m

πqh̄2

[
2(kF − |x−|)

√
k2
F − x2− −2(kF − |x+|)

√
k2
F − x2

+

]
(A16)
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with x± = mω/h̄q±q/2. At low temperatures, the factor 1/ sinh2(βh̄ω/2) in (6) ensures that
the values ofω are small. Then we can separate the density response functions as

Im χ(q, ω) = 2m22(2kF − q)
πh̄3q

√
(2kF )2 − q2

ω ≡ F(q)ω. (A17)

The integral overω is

β

∫ ∞
−∞

dω
[Im χ(q, ω)]2

sinh2(βh̄ω/2)
= (kBT )2 4π2

3h̄3 F(q)
2. (A18)

The remaining integral is

I =
∫

dq q3U2
b (q)F (q)

2. (A19)

Here, one can replace the bare inter-layer interaction with

Ub(q)→ U(SC)
q = 2πe2

q

e−qd

ε∞ε(q)
(A20)

whereε(q) is the effective dielectric function for the two parallel conducting planes, andd is
the distance between planes. In the random-phase approximation,

ε(q) = 1− 2Ub(q)χ(q, 0) +U2
b (q)χ

2(q, 0)(1− e−2qd). (A21)

In the long-wavelength limit,Ub(q)χ(q, 0) = −qTF/q, with qTF = 2/a∗0 the screening
wave-vector in two dimensions. The last term inε(q) dominates wheneverqTF � 1. In this
limit, the integralI can be approximated as

I ' 4e4m4

ε2∞h̄
8k2
F q

4
TF

∫ ∞
0
q3 dq

e−2qd

(1− e−2qd)2
(A22)

= 3m4ζ(3)

2ε2∞h̄
8k2
F q

4
TFd

4
. (A23)

Collecting the integrals, we obtain

ρ12 = m

ne2

πζ(3)(kBT )2

16h̄EF (qTFd)2(kF d)2
(A24)
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