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Abstract. The advances in the techniques used for fabrication and lithography of semiconductors
have made it possible to study bi-layer systems made of two electronic layers separated by distances
of several hundred &ngstns. In this situation the electrons in layer 1 are distinguishable from
those in layer 2, and can communicate through the direct inter-layer Coulomb interaction. In
particular, if a current is applied to one of the layers, the electrons in the second will be dragged,
giving rise to a transresistangg,. In this article we review recent theoretical and experimental
developments in the understanding of this effect. At very low temperatures it turns out that phonons
dominate the transresistance. The direct Coulomb interaction and plasmon excitations are important
at temperature¥ > 0.17p, with Tr the Fermi temperature. If a magnetic field is applied, the
transresistance is increased, in a very interesting interplay betwgeand Landau quantization.

The non-dissipative drag is also reviewed.

1. Introduction

Electron—electron (e—e) interactions are responsible for a multitude of fascinating effects in
condensed matter. They play a leading role in phenomena ranging from high-temperature
superconductivity and the fractional quantum Hall effect, to Wigner crystallization, the Mott
transition, and Coulomb gaps in disordered systems. The effects of this interaction on transport
properties, however, are difficult to measure. A new technique has recently proven effective
in measuring the scattering rates due to the Coulomb interaction directly [1].

This technique is based on an earlier proposal by Pogrebifgis]. The prediction
was that for two conducting systems separated by an insulator (a semiconductor—insulator—
semiconductor layer structure in particular) there will be a drag of carriers in one film due to
the direct Coulomb interaction with the carriers in the other film. If layer 2 is an ‘open circuit’,
and a current starts flowing in layer 1, there will be momentum transfer to layer 2 that will start
sweeping carriers to one end of the sample, and inducing a charge imbalance across the film.
The charge will continue to accumulate until the force of the resulting electric field balances
the frictional force of the inter-layer scattering. In the stationary state there will be an induced,
or drag voltagé/, in layer 2.

Afundamental difference emergesin the configuration of the current-drag experiment from
that in which the in-plane resistance is measured. For a perfectly pure, translationally invariant
system, the Coulomb interaction cannot give rise to resistance since the total current commutes
with the HamiltonianH. This means that states with a finite current are stationary states of
H and will never decay, since the e—e interaction conserves not only the total momentum but
also the total current. (For electrons moving in a periodic lattice, momentum and velocity
are no longer proportional, and the current could in principle decay by e—e interaction.) If
the layers are coupled by the Coulomb interaction, the stationary states correspond to a linear

0953-8984/99/050031+22$19.50 © 1999 IOP Publishing Ltd R31



R32 A G Rojo

superposition of states in which the current is shared to different extents between layers: the
total current within a given layer is not conserved and can relax via inter-layer interaction.

This mechanism of current degradation was studied in the pioneering experiment of
Gramilaet al [1] for GaAs layers embedded in AlGaAs heterostructures. The separation
between the layers was in the range 200-500 A. The coupling of electrons and holes [11],
and the coupling between a two-dimensional and a three-dimensional structure were also
examined [2].

If we use the symbol for the current circulating in layer 1, the drag resistance (or
transresistance) is defined as

Vb

PD = 7

The naive expectation for the temperature dependengg @ that it should vanish as
T2 at low temperatures. This results from the exclusion principle which limits the scattering
to states withinkz T of the Fermi surface, and there is one factorfoper layer. The first
experiment seemed compatible with the e—e mechanism with some discrepancy since the
observed ratigpp/ T? was not a constant at low temperatures. This experiment motivated a
rather extensive theoretical effort to understand in more detail the mechanisms of cross-talking
between layers between which electrons are not allowed to tunnel. The theory inturn stimulated
new experiments, and in recent years we have seen Coulomb drag developing as afield in itself.
In the present article we briefly review the progress made in understanding different aspects of
the problem. Section 2 provides some background on the Coulomb interaction and screening
for double-layer systems. In section 3 we discuss the perturbative equatipp imsed in
most treatments. This equation can be derived in various ways. In the appendix we present the
memory function derivation and the detailed low-temperature dependence assuming Coulomb
scattering only.

The following sections discuss the crossover between three regimes. Phonon exchange,
discussed in section 4, dominates the drafj at 0.17F, with T the Fermi temperature. For
T ~ 0.1TF, single-particle Coulomb scattering is the dominant effect, and"for 0.27F,
plasmons (see section 6) are responsible for an enhancement of the drag current. The theoretical
studies of the effects of disorder and localization are reviewed in section 5. The enhancement
of pp due to an applied magnetic field perpendicular to the layers, and the interplay between
Landau quantization and inter-layer scattering are reviewed in section 7. Finally in section 8
we discuss the theory of non-dissipative drag and some experimental attempts to measure it.

2. Inter-layer Coulomb interaction

The leading actor in this play is the Coulomb interaction between electrons in different layers.
Thisinteraction is responsible for the scattering, and will be screened by the density fluctuations
within each layer. If one neglects the interaction between layers, the effective interaction
V (¢, w) within a given layer calculated in the random-phase approximation (RPA) is given
by [7]

Vig, o) = “& 1)
V(@) x(q, ®)
with V,(¢) = 2me?/q the bare interaction angd(g, ») the function characterizing the response
of the chargeSp (¢, w) to an external potentiab(q, w): Sp(g, w) = —x(q, w)p(g, w). For
two coupled layers we also have the bare inter-layer interaéfion) = 2re? exp(—qd)/q,
with d the distance between layers. In addition, the response functions could be different if the
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layers are not identical. The effective interaction can be written now as 2 datrix [6, 8, 9]

. . 1
V(‘I’w) =V, (Q)A—A (2)
? 1+x(q,»)Va(q)

with [Vs(@)lu = [Va(@]22 = Vs(@), [Vs(@z = [Vs(@)]a1 = Up(q), and R (g, »)];j =
8ijxi(g, w), with i = 1,2 labelling the layer. Note that; and x, could be different, so
equation (2) is valid for non-identical layers. The off-diagonal element @f, w) is the
screened inter-layer interaction
Ui(q)
[1+x1(q, @) Vo (@] [1 + x2(q, @) Vi (@)] — UZ(@) x1(q 0) x2(g )
=UY(q, w). ®3)

The zeros of the denominator in the above equation correspond to the collective modes of
charge oscillations. It is illustrative to write the screened interaction for identical layers in the
form (omitting the argument in the interactions for simplicity)

1 Vi +U Vi = U,

Uq. ) =3 [ T oY } (4)

2[1+x(q,0)(V,+Up) 1+x(q,») (Vs — Us)
which provides evidence for the symmetric and antisymmetric modes. The response function
x(q, w) has real and imaginary parts. The imaginary part corresponds to the continuum
of particle—hole excitations that exist for frequencies< vrg. The collective modes
corresponding to the poles &f®) (¢, w) will be non-decaying af’” = 0 if they fall out of
the particle—hole continuum, which guarantees that the poles are on the real axis. We can find

these stable modes by expanding the real pajt(gf w) for the free-electron gas for small
wave-vectors and > vgg:

2
x(q, w) ~ —%<1> 5)

w

[V(g, )12 =

with m the electron mass, andthe electron density [10]. In the smalllimit, V}, + U, ~
4me?/q, andV, — U, ~ 2me?d. If we substitute this in equation (4) we find that the two poles
are at frequencies..(¢) given by

4rn

wslg) = e\ =2 g
Znnd

w_(q)=e q.

These in-phase and out-of-phase modes are usually labelled ‘optical plasmon’ and
‘acoustic plasmon’ respectively, and are stablg’at 0. At finite temperaturesy (¢, o)
acquires a finite imaginary part outside of the particle-hole continuum, the poles move into
the complex plane, and the plasmons acquire a finite lifetime. In section 6 we will discuss the
role of plasmons in enhancing the drag resistance at temperatures of the order of the Fermi
energy.

3. Frictional drag

The cross-resistance is calculated in most of the recent theoretical treatments from the following
expression valid when the inter-layer interaction is treated perturbatively [11] (see figure 1):

Im x1(g, @) Im x2(q, w)
(S) 2
U (g ) / do sint? (Bhw/2) ’ ©

pD = nnlnzezA / 2r)
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Figure 1. A schematic representation of the memory function expression for the transresistance to
lowest order in the inter-layer interaction (equation (6)) (reproduced from reference [12]).

In appendix A we reproduce the derivation of this equation given by Zheng and MacDonald
who used the memory function formalism [12]. This derivation is general and contains equ-
ation (6) as the limit of lowest order in the inter-layer interaction. We will show here a more
restricted derivation using the scattering formalism, which has the advantage of providing us
with an interpretation of the origin of each of the terms in equation (6). The derivation is very
close to the one presented in the paper by Jauho and Smith [13, 14]. Alternative treatments
are the collective excitation approach [15], and the Green'’s function formalism starting from
the Kubo formula [16—18]. In the linearized Boltzmann (or scattering) treatment, the spectral
functionsy; (¢, ) are the susceptibilities of the non-interacting case.

We compute first the rate of change of the momentum of the electrons in layer 2 due to
the scattering from electrons in layer 1:

df _ [ da oo e [ Gk [ dke ~ 0o 0
=) @ "MV | Gz | Gy @ S S = S

— frrra@ = fi) for gL = fi)} 8(€ny + €k, — €nyrg — €ky—g)- (7

In the above equationy;, refers to the distribution of electron states in layer 1, gfid
to that of the electrons in layer 2. Since there is no current in layer 2, the corresponding
electron distribution is the unperturbed, free-fermion equilibrium distribution. The electron
distribution on layer 1, on the other hand, corresponds to a Fermi distribution displaced in
k-space by an amoumtvy /7, with v; being the drift velocity of the electrons in layer 1.
The above expression can be interpreted as a sum of processes according to Fermi’s golden
rule: the factorlU (¢)|? is the square of the matrix element of the transition that involves a
momentum transfetq, the various factors of correspond to the probabilities of transitions
from occupied to empty states, and the delta function ensures conservation of energy in the
scattering process. Note that if layer 1 were in equilibrium, the magnitude in curly brackets
would be zero due to the detailed balance condition

A= DRA= o) = f2A— D f A~ f2) ®)

which is an identity ife;, + €4 + € + €x» = 0. There is therefore a finite momentum transfer
to layer 2 due to the asymmetry of the electron distribution in layer 1.
We now linearize in the electron distribution of layer 1:

afod_ 1 _
Jo = 1o = J = ﬁhk ‘v = f — kB—Tf,S(l — fOhk-vi.  (9)

Substituting the linearized expressions fpm equation (7), and using the detailed balance
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condition, the rate of momentum transfer has the form
P~ v 1 dg  _ 2/dk1/dk2 0 0
—=——— | — g}V — fo1-
ar 2T / 2n)2 (hg)* 1V (q)| 202 ] @2 S (L= fryeq)
X fO(A— [ )8 (€ + €k, — €kyrg — €hp—g)- (10)

A couple of simple technical manipulations are needed to recast this expression in the
form of our basic equation. First we use

8(€k1 + €ky — €kitq — sz_q) = /E dw S(Fa) — €k + €k1+q)8(ﬁ(1) + €k, — Ekz—q) (11)
and
Foe) [1— foler +ho)] = [ fer) — £ +hw)] / [1 — exp(—Fo/ kpT)] . (12)

We then introduce the function’(q, w):

dk; i
/ (21)2 (f,if - f12+q)5(ha) — €y F €ryrg)

= ZIm i i itq __ =Im 0 , 13
b/ (21)? hw — €k, + €xyeq — I %:4q. @) (13)
and substitute in (10):
dp, v, 1 dq Im Xf(q, w) lm Xg(q, )

7.\ 2 2

& = 25,7 ) @rp MOV @ /d‘” sintt(hw/ ks T) (14)
where we have omitted the vectorial natureRsfandwv, since they are in the same direction.
In order to compute the resistance, we need to equate the rate of momentum transfer to the
total force per particle on the electrons in layer 2 due to the electric field geneFated,

dp,

dr
and we get the final expression using = E»/j; with j; = njevs.

The minus sign in equation (6) means that the induced drag voltage is opposite to the
resistive voltage drop in the current-carrying layer. This is so because the Coulomb-induced
scattering sweeps the carriers along the dragged layer in the same direction as those in the drive
layer. From the above equation we see that the drag resistance is a convolution of the density
fluctuations within each layer, which at low temperatures are restricted to low frequencies by
the factor sinf(Bhw/2) in the denominator. From the structure of the above equation we
see that measurements@f can provide information on the inter-layer scattering mechanism
as well as the in-plane fluctuations, the information on which is includegd(in w). The
low-temperature prediction of Coulomb scattering alone is [1]

m mg(3)(kpT)?
 ne2 16hEp(qred)2(kpd)?
wheregrr is the single-layer Thomas—Fermi screening wave-veéipiis the Fermi energy,
d is the inter-layer spacing, arg- is the Fermi wave-vector. Due to the finite separation
of the layers, the scattering is limited to small angles [3]. Large-angle scattering events
require large values of the momentum trangfeand these processes are suppressed by the
exponential dependenee?¢ in the Fourier transform of the inter-layer Coulomb interaction.
In two dimensions, the phase space for backscattering diverges and gives rise to logarithmic
corrections to the simpl&?-dependence [19]. These corrections are missing here due to the
suppression of backscattering. The screening is also enhanced at small wave-vectors, and

= +n2€E2 (15)

P12 (16)
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becomes more effective as the separation between layers increases (see equation (21)). The
combination of the suppression of backscattering and the enhanced screening gives rise to
the strongd—*-dependence imp. It should be emphasized also that th&-dependence is
modified when the electronic states in the layers are not free Fermi gases, and support longer-
lived density fluctuations. As detailed in the following sections, this is the case, e.g., in the
presence of disorder, and in the quantum Hall regime.

4. The role of phonons

The electron—electron scattering treatment predicts a transresigtariat vanishes at zero
temperature agp ~ T2. This dependence is roughly satisfied in the experiments, confirming
the dominance of the electron—electron interaction. However, as mentioned above, the
experiment also shows a noticeable deviationogf 72 from a constant as a function of
temperature, showing a maximum fbr~ 2 K. For these samples the Fermi temperature is
roughly 60 K. The overall temperature dependence and the position of the maximum are very
similar for different values of the layer separatiehnd the magnitude ¢fy,/ T2 varies very

little for the three barrier thicknessds= 500, 225, and 500 A after the Coulomb scattering
contribution is subtracted [3]. Also, for inter-layer separati@nrs 500 A, the observed), is

simply too big to be accounted for by the Coulomb interaction alone. This led GramailEs]

to propose an additional scattering mechanism. The obvious candidate: phonons. The phonon-
mediated coupling between electrons in doped semiconductor layers separated by an insulating
region of thickness-100 um was studied by Hubner and Shockley [20]. Real phonons were
found to be responsible for the inter-layer interaction. The possibility of drag due to phonons
was also proposed by Gurzhi and Kopeliovich [21]. The first qualitative hint of the mechanism
being phononic is the fact that the measured temperature dependeng&lGfresembles the
acoustic-phonon-limited mobility scattering raﬁ;l for two-dimensional electrons in GaAs.

At high temperatures;p‘hl is linear inT, but crosses over to &°- or 7 ’'-dependence in the
low-temperature Bloch—@neisen regime [22], where the thermal phonon wave-vectors are
less than Br. For the electron density of the samples in reference [3] the crossover occurs at
a few degrees Kelvin. Thus, the temperature dependen(mr]g#)m"2 andpp/ T? are broadly

similar. Furthermore, the dependenceogf/ 72 on the relative electron density between the
layers indicates that phonons could be playing a role. An electron in layer 1 decays through
a backscattering process by emitting a phonon of wave-veétog,2and the phonon will
transfer its momentum most efficiently to an electron in layerizif = kr . This implies
thatpp/ T2 should have a maximum when the electron densities are matched in the two layers,
which is experimentally observed [3]. Now, interactions of acoustic phonons with electrons
are relatively weak in GaAs—to account for the value of the observed transresistance. The
proposed mechanism will be the exchange of virtual phonons [16, 23], a process in which a
phonon is emitted by one layer and then absorbed by the second without conserving energy
from the electronic transitions. When the energy conservation constraint is relaxed, the phase
space for scattering increases. Also, since the layers are separated by distances much smaller
than the phonon mean free path, the phonons retain their phase coherence for the interaction
between the layers. These two effects imply an enhancement in the transresistance due to
virtual phonons. Tset al [24] presented diagrammatic calculations including exchange of
virtual phonons with a good agreement with the temperature dependence observed in the
experiment (see figure 2).

The distinction between ‘real’ and ‘virtual’ phonons is not so clear cut if one extends the
treatmentleading to equation (6) to include a phonon-mediated Coulomb interaction. The force
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Figure 2. The scattering rate due to the Coulomb scattering and virtual phorphe'? as a

function of temperature for different separations. Note #hatoc 151. The solid circles are

the experimental results of reference [1], and the solid curves are the theoretical results from
reference [24]. Inset: the contribution fg, o rgl due to exchange of virtual phonons as a
function of temperature. (Reproduced from reference [24].)

operator on a given layer will involve the phonon operators, and the force—force correlation
function will include an electron—phonon interactidf(Q) and the propagator of a phonon
from layer one to layer two. The result is that one can write equation (6) #ith(g, )
replaced by an interactioR; (g, w) of the form [26]

dg. . 2
D1(q, ) = / ?qﬁ |M(Q)[*e % |:w26_0—Qw2:| (17)
o

with wy = v,Q the frequency of the acoustic phonon (omitting the distinction between
longitudinal and transverse) of wave-vect@r= ,/q2 + Q2. The term in square brackets in
the above equation is the phonon Green’s function [25]. The phonon mean fregpath
not included. In the above expression, one can intefpsets the energy transferred between
layers andiw as the energy of the intermediate phonon. When the denominator in the square
brackets of equation (17) vanishes, energy is conserved in the intermediate state. As pointed
out by Bgnsageet al [26], this expression contains both the real and virtual phonons: real
phonons correspond to I#y,, whereas virtual phonons correspond toIRe. If we insert in
equation (17) the long-wavelength limit [2[# (Q)|? = F Q D?/2pv,, we obtain [26]
w2
) ~ - —? s 2

Di12(q, w) PN T exp(—qdv'1— ?/(vsq)?) (18)
indicating that the effective interaction divergegas- w/v;. EventhougiDi,(g, w) involves
a small prefactor, if we substitute in equation (6) the expression obtained for the coupling, the
divergence|D1a(g, w)|?> ~ |o — vsq|™t gives rise to a divergent,. Although this is a
spurious divergence that is removed by inclusion of a finite mean free path of the phonons or
dynamical screening of the interaction, the large contribution explains partly why a ‘weak’
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phonon-mediated interaction can compete with the Coulomb interaction as a mechanism for
drag. For a phonon mean free pdfi below a critical value which for GaAs can be of the
order of 02 mm, the predicted distance dependence of the dragfs /). The experimental
distance dependence is yet to be clarified, although the evidence is for a weak dependence of
the phonon contribution [28].

5. The effect of disorder and localization

The effect of disorder was first studied by Zheng and MacDonald [12], who included the fact
that the density response function at small frequencies and small wave-vectors is given by

n  Dg?
xi(q, w) = 41 D% — i
with D being the diffusion constant [29] given by = [?/2t, [ being the mean free path,
t© = [/vF the scattering time, anduddu the density of states. This formula for the density
response function is valid fay < 1/7 andw < 1/7. Following the derivation op, ~ T2
presented in appendix A, Zheng and MacDonald obtain that the low-temperature dependence
is modified topp, ~ T?logT. This temperature dependence can be seen to result from the
low-frequency and low-wave-vector behaviour of yitg, w) ~ w/q? for ¢ > (w/D)Y?.
(Note that in the ballistic regime I (¢, ) ~ w/q.) The contributions to the integral in
for g < (w/D)Y? can therefore be neglected. We can obtain the low-temperature behaviour
of pp as follows [12, 30]:

(19)

2 1/t @2 1/1 dg ~ o2 5
pp (kTFd)ZIB/(; do efhe + g-fho — 2 /(w/D)l/2 q (kTFd)ZT log T (20)

In the above expression we have considered the low-wave-vector contribution from
the Coulomb potential as a constabt’® (¢, w) ~ e?/[krr(kted)?]. Note the change in
distance dependence pf, from d=% to d~2. This is a consequence of having treated the
Coulomb scattering as a screened interaction. The logarithmic term originates in the spectra of
particle—hole excitations for a ballistic and for a diffusive system being different, and from the
dimensionality of the system. The spectrum of excitations and the dimensions (two in this case)
conspire to give the logarithmic term in the temperature dependence. At low temperatures one
can ignore the contribution of Imp to the screened potential given by equation (3), and replace
the inter-layer interaction by

nezq
k2. sinhgd
with ktg = 2me? dn/du the single-layer Thomas—Fermi screening wave-vector.

The case of strong disorder, where the localization leagththe states within each layer
is of the order of the distance between layers, was considered by Shimshoni [31]. For the
case of Anderson insulators, the density response function within each layer is taken from the
self-consistent theory of localization of Vollhardt anddiile [32]:

dn Dqg?

@ Dg? —[iw+ t(w? — w3)]
with wg a restoring frequency that incorporates the effects of localization. Within the scheme
of Vollhardt and Wlfle, wyg is related to the localization lengththroughé = vr/(v/2wp).

The parametetyy in the above expression is responsible for the quadratic vanishing of the
conductivityo (w) at low frequencies:

Reo (w) = €? |imo(a)/q2) Im x (g, w) ~ [D/(rzwé)]wz. (23)
q—

US(q, ») = (21)

x(q,w) = (22)
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Note that the logarithmic divergence at lgus now cut off by /&, and thel"'?>-dependence
is retained. In the strongly localized regime, when the localization length is of the order of
the inter-layer spacing, the distance dependengg,d$ modified. Screening is not effective
in this regime, so we can evaluaig using the unscreened interactitlp = 2re?e4¢/q. In
this regime, the lowy dependence Im (¢, ) will be given by
_ On wq? o dnl
Im x(q, w) = du Dle2+ g2~ du ™ £". (24)

Replacing the above expression in equation (6), we obtain [31]

5 h (ksT\® L(E\®
Pop & E?(W) (kTrd) (2> . (25)

If the localization lengtie > d, one has to include the effects of screening for wave-
vectorsg > 1/(£%kte), and the distance dependence changes (fod8)/(kted)?. When
& — oo we recover the diffusive result. Another case treated in reference [31] is that of the
so-called Efros—Shklovskii insulators, where Coulomb interactions are important and increase
the conductivity at finite frequency in such a way thdat — 0) ~ » as opposed ta?.
This has the consequence that the integratian iminfrared divergent and is cut off, at finite
T, by incoherent phonon processes. As a consequence the drag resistance diverges at zero
temperature in the following way:

7\ 3 T\ Y2
pDO(f(d9%_)(FO> exp|:<7> :|

with f(d, &) = 1/(Ed)?>for& < d andf(d, &) = 1/g*for & > d. AlsokzTy = €?/€k, with
¢ the dielectric constant.

6. Plasmon enhancement

The discussion of plasmon modes of section 2 focuses on the gndddpersion at zero
temperature. Since the drag resistance is given by an integral involviggrrthe integrand,
at low temperature there is no contribution from the plasmons, since they appear in a region
of the planeq, w) where Imy = 0. The function Imy ‘counts’ the number of particle—hole
excitations of momentumand frequencw: itis non-zero in regions of thg, ») plane where
particle—hole excitations are allowed. The plasmons are collective modes that are outside of
the particle—hole continuum. For a more detailed discussion of this point the reader is referred
to Pines and Nogres [33].

Flensberg and Hu [34,35] made the very interesting observation that at higher temperatures
(T ~ Tr), Imy # 0 in the region of the plasmon pole, and therefore there will be a
large contribution at intermediate values gpfand one should observe an enhancement of
the resistance [36]. Qualitatively one can understand this effect as a Schottky-like peak
that develops from a thermally populated dissipation channel that is not available at zero
temperature. In the plasmon-pole approximation [35] one approximates the dielectric constant
€(g, o) (which is the denominator in equation (3)) by

€(q, 0) = 2V, (@) | B1 (@) — w1 (@)] +ilm x(q, wi)] (26)

with 8. = [dRex (g, w)/dw]|,=».. For small values of the imaginary part gfone can
approximate the Lorentzian Byfunctions and obtain

U (q. w))? ~ il S(e — 27
| (q, w)| 2im (G o0 B @)] (0w — wi(q)) (27)
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which we can insert in equation (6) to obtain the plasmon contributions to the drag rate:

_ R*B /‘f dg 4 Im x[q. 0+(q)]
PP TnmaeA Jo @) ! 4B sinPlBRo (@)/2]
The parametey.. . defines the values af for which the plasmon ceases to exist. The
contribution to the drag from the above equation involves an integral ¢f far frequencies
and wave-vectors corresponding to the plasmon modes. From the above discussion, the
contribution of the plasmons to is zero atl” = 0. At small temperatures, I at w+(g)
is small because the carriers do not have sufficient energy to be excited far above the Fermi
surface. However, at intermediate temperatures (of the order of the Fermi temperature) there
are enough thermally excited particles to give a largg lat the plasmon poles and the drag will
be dominated by this contribution. The numerical calculations indicate a maximppaha
temperature of the order of&». For electron densities of the orderpoi 1.5 x 10t cm=2
for GaAs quantum wells]r ~ 50 K. ForT > 0.5Tx the plasmon modes are no longer well
defined since they can decay by emitting single-particle excitations. This implies that the
enhancement diminishes at high temperatures.
The plasmon enhancement theory was put to test in the experiments kst Hill37],
with very good qualitative agreement. The temperature required to excite a plasmon appears
to be lower than the value predicted by the theory, and the magnitude of the drag is larger than

(28)

1.37x10"em

L) i i

L PPPTYLLL L LTI T YO

Figure 3. The scaled transresistivity T =2 (o; = pp) versus the reduced temperature for different
densities (the densities in the two layers are the same). The dashed (solid) curves show the RPA
(Hubbard) calculations of Flensberg and Hu [35], and the circles show the experimental results of
reference [37]. (Reproduced from reference [37].)
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the prediction over most of the temperature range. This seems to imply that one should go
beyond the random-phase approximation. The Hubbard approximation [35] provides a better
fit to the data, but there is still room for improvement (see figure 3).

Improvements over RPA were consideredéyyierkowskiet al [38] in connection with
drag experiments on electron—hole systems by Sefaal [11]. The transresistance was
calculated using equation (6), modifying the effective inter-layer interaction using the local
field approach of Singwi, Tosi, Land andd®&nder (STLS) [39-41]. This approach includes
correlations neglected in RPA, and the net effect is an increase of the effective interaction.
These corrections use zero-temperature local field corrections. efTab[42] studied a
generalized RPA including exchange processes to infinite order in the Hartree—Fock potential,
and emphasized the fact that RPA is good only for very high densities. Thus, the RPA treatment
of the Coulomb scattering overestimates the screening and renders the coupling weaker. The
agreement with the experiments of reference [11] is good at low temperatuie®n @nd
Tanatar [43] treated the plasmons and the phonons on an equal footing using the Hubbard
approximation, and found an enhancement due to the coupled plasmon—phonon modes. We
still need better approximations beyond RPA in the higher-temperature regime to achieve a
better quantitative understanding of the plasmon enhancement effects.

7. Drag in the presence of magnetic fields

7.1. Hall drag

In the presence of a magnetic field applied perpendicular to the planes, there could in principle
exist a trans-Hall resistance—that is, a voltage inythdirection of layer 2 when a current is
applied in thec-direction of layer 1. This drag Hall resistance is zero if computed in the lowest
order in the inter-layer interaction. The reason for this is that in the lowest order the electron
distribution in layer 2 is the equilibrium one, and also that the momentum is being transferred
from layer 1 in the direction of the current. Since there is no net current in layer 2, there is
no Lorentz force and therefore no net Hall voltage. To see how this emerges formally, we can
repeat the steps that lead to equation (6). In that case we obtain

© 0 Im xai(g, w) Im x2(q, w)
S) 2
Vg, )] /m dov sintf (Bhw/2) (29)

xy

Pp = nnlnzezA / (2m)2 4x9y

where the functionsy;(q, w) have to be evaluated in the presence of a magnetic field
B(xz) = V x A(xz;). The reason for the equation retaining its form is the fact that the
force operator is still given by equation (A12) even in the presence of a magnetic field since
[A(z;), ps] = 0. In other words, the inter-layer force does not depend on the applied field.
Due to rotational invariancg; (q, ) = x1(lql, w), and the integral above vanishes by parity.
The resulpy;;” = 0 was also shown by Kamenev and Oreg [30] using a diagrammatic approach.
However, as emphasized by Hu [44] this is not a general result. In particular, Hu showed, using
an approach based on the Boltzmann equation, that if one includesagy-dependelitetime

7(€) one obtains a finitp; . No experiment has reported so far a finite Hall drag, at least in
the situation were one can guarantee that there is no tunnelling between layerst &l§4é]
measured frictional drag in the presence of a field for modulation-doped GaAs/AlGaAs double
quantum wells separated by a barrier of 100 A for which tunnelling is significant. They found
oscillatory behaviour as a function of magnetic field in both the longitudinal and transverse
drag resistivities. However, since for this inter-layer separation tunnelling is significant [46],
our analysis does not apply to this case.
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7.2. Magneto-Coulomb drag

The physics of electrons in two dimensions under quantum conditions of temperature and
magnetic field has been the subject of intensive research in recent years, and the reader is
referred to some of the very good reviews on the progress in the understanding of the integer
and fractional quantum Hall effects [47,48]. In this section we review the research on current
drag in the presence of magnetic fields.

In the presence of a magnetic field, the polarization funcjiéfn, ») assumes different
forms depending on the number of filled Landau levels and on the strength of the disorder.
For example, for non-interacting electrons, if the density and magnetic fields are such that
the outermost occupied Landau level is completely filled, the lowest energy for a particle—
hole excitation ishw,, with w. = eB/mc the cyclotron frequency. Therefore Ip will
consist of a series of delta functions separateaby= ¢B/mc. If the outermost occupied
Landau level is partially filled there will be excitations of zero frequency that correspond to
transitions between orbits in the same Landau level. The presence of disorder smears these
delta functions. One therefore expects that the transresistance will be sensitive to Landau-
level quantization for fields large enough that the cyclotron frequency is much larger than the
disorder-induced lifetime of the orbits. This problem was studied by Bansagéf49-51]
and Wuet al [52] and Qin [53], who treated the individual layers as non-interacting electrons
in the presence of disorder consisting of short-range impurities. In the presence of disorder
the one-particle density of statg&) is broadened, and Bgnsaggial chose to substitute the
comb of delta functions centredat= (n + %)ch for a Gaussian density of states as derived
by Gerhardts [54]:

2w € —em\?
g(e)—M%FOZeXp[&( ™ )} (30)

with £ = ,/h/eB the magnetic length, antly = (2/7)hw.(h/7), T being the transport
lifetime in the absence of magnetic field. The equations for the transresistance were solved
numerically, and revealed a very interesting ‘twin-peak’ structure as a function of filling
fraction: as the filling factor is changed from an odd value (where the highest Landau level

is half-filled in the spin-unpolarized situation) towards an even value, the transresistance goes
through a maximum before it is suppressed. The authors explain this non-monotonic effect as
being the result of the competition between the phase space for scattering and the strength of
the effective interaction. When the Landau levels are completely filled, the chemical potential

is in a gap, there is no dissipation, and the transresistance vanishes. This corresponds to the
plateau regions of the quantum Hall effect. Also, the screening is strongly depressed in the
region where the density of states is small. In the transition region there are excitations of
zero energy, and since the density of states increases as the centre of the band is approached
(half-filled Landau levels) one gets an increasg {ig, ) contributing to an increase inp.

On the other hand, an increaseyity, ) means an enhancement of screening, or equivalently

a decrease in the effective interaction. The prediction is thereforg gretiould roughly fulfil

the relation

op = g182|Wi2|? (31)

with g; the density of states at the Fermi energy for layend W, the effective inter-layer
interaction. The striking twin-peak structure was observed in the experiments performed by
Rubel et al [55] with good quantitative agreement found with the theory. The twin-peak
structure is observed up to a filling fraction= 15. There is a marked increase in the value

of the transresistance fropp = 8 mQ at zero field and” = 3.1 K to values of the order of
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1-2Q, as expected from the theory (see figure 4). The calculation does not include the effect
of localization, and one should keep in mind that ghef equation (31) refers to a density of
extendedstates. The enhancement®f in the critical region was studied by Shimshoni and
Sondhi [56]. They show that anomalously slow relaxation of density fluctuations at criticality
yields a power lawp ~ T2~", wherey is the anomalous diffusion exponent.

4 - 32x10' cm-2

I upper 2DEG
is 'drive'-layer
3 -

H

103

[oo]

Figure 4. The transresistancBr(op) as a function of magnetic fiel# for a coupled electron

gas with a separation barrier of 30 nm, shown for different temperatures (plotted with offsets for
clarity). The electron density is = 3.2 x 10t cm~2 in both layers. The longitudinal resistance

is also shown. (Reproduced from reference [55].)

The temperature dependenceppf also shows different behaviours with and without an
applied magnetic field. In the discussion of section 5 we found a low-temperature dependence
pp ~ T?In T in the diffusive regime. The range of temperatures for which this dependence
applies corresponds T < /7, with t a scattering time. This defines a diffusive temp-
erature that for high-mobility samples is of the order of 50 mK. Moreover, Zheng and
MacDonald [12] estimate—after including the different distance dependences in the ballistic
regime and the diffusive regime—a crossover temperature o°1&! At low temperatures
for B # 0 one expects the sani& In T behaviour since the motion is also diffusive, but the
temperature scale where the effect sets in can be higher and experimentally accessible. The
reason for this is that in the presence of a field one can think of diffusion as hopping between
adjacent orbits of radiuéz <« vrt. This implies that the diffusive form of the polarizability
of equation (19) is now valid foy < 1/£z. The numerical solutions given by Bgnsager
et al [49] indicate that, for a choice of parameters corresponding to identical layers with a
densityn = 3 x 10*® m~2 and an inter-layer distanee= 800 A, the diffusive behaviour sets
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inat7T = 0.4K.

Another very interesting aspect of the temperature dependence at finite magnetic fields
predicted by Bgnsaget al[49] and observed in the experiments carried out by RetbaI[55]
is the dynamic screening leading to a maximunpjsy 72, the maximum being &afr. The
theoretical reason for this is the same as that leading to plasmon enhancement discussed in
section 6.

Wu et al [52] also studied the interplay between Landau quantization and transresistivity
by solving equation (6) numerically in the presence of a magnetic field. They find pronounced
oscillations as a function of field but not the ‘twin-peak’ structure. Also, experiments carried
out by Hill et al[57] show oscillations i without the ‘twin-peak’ structure. The oscillations
are pronounced at low temperatufes 4 K. For high temperatures the Landau quantization
effects are washed out apg has a dependence

Pp X T B?

which has not been addressed theoretically yet.

7.3. The case of = 1/2

The case of Landau levels of filling fraction= 1/2 (half-filled) or other even denominators is
special [47]. The quantized Hall effect does not occur in this case, and the low-energy physics
is that of a Fermi liquid, behaving in many ways as electrons in zero magnetic field [58]. The
theoretical approach that has proved most useful for understanding this state is the fermion
Chern—Simons theory [59], which is based in turn on the composite-fermion theory developed
by Jain [60].

For the fractional Hall effect, Orgad and Levit [61] and Duan [62] studied the Coulomb
drag for edge excitations using a Chern—Simons theory. The case of inter-layer friction was
considered fon = 1/2 by Sakhi [63], Ussishkin and Stern [9], and Kim and Millis [64].
The dominant low-temperature behaviour fas is found to be~7%3. This temperature
dependence results from the slow diffusion of the density modes at filling fractbni the
composite-fermion picture, at = 1/2 the density response at small frequencies and small
wave-vectors is of the form [58]

qS

g3/ xo — 8nihwkp
with xo = dn/du the electronic compressibility. The form of this is similar to that for the
diffusive regime atB = 0 of equation (19) with an effective diffusion constant that vanishes
linearly with ¢g. This means that the long-wavelength density fluctuations relax very slowly,
leading to an increase in the transresistance. To obtain the low-temperature dependence we
proceed in the same way as for the diffusive case, except that now, forgrmall ~ 1/4°,

with the divergence now being cut off at~ 2(xohkr)Y3w® = kr(w/wo)/3. The low-
temperature behaviour is given by

e? o w? 1 e? 43
pp (kTFd)Z'B ./o o+ e 2 fkp(w/wo)m TP hard)? (33)

The case of = 1/2 poses some fundamental questions that are unresolved at the time of
writing this review. In the recent experiments carried out by Létal [28] for modulation-
doped GaAs/AlGa,_,As double quantum wells separated by 200 A, the drag resisiance
has a qualitatively similar behaviour to the longitudinal resistance of a single isolated layer
pxx When the magnetic field is varied: whesg, is at its maximum due to the quantum Hall
effect (for example at = 1 and 23), so ispp. As pointed out in reference [28], this is not

(32)

x(q, w) =
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Figure 5. The measured temperature dependenceofat v = 1/2 (solid curve). The

broken curves are calculations from references [9, 63p®fassuming two different values of
the composite-fermion mass (dotted; = 12m,;; dashedm* = 4m;; wherem, is the GaAs band

mass). (Reproduced from reference [28].)

surprising since both resistances are controlled by the density of states available for scattering.
There is, however, a notable difference between their respective temperature dependences.
Whereasp,, increases by only 6% as the temperature is lowered ffom 4 K to 0.2 K,
the drag resistance decreases by a factor of 40 over this temperature range. The numerical
value of the drag resistance Bt= 11 T (the field corresponding to = 1/2) and at 4 K is
about 2000 times larger than, at zero field. In addition, the temperature dependengg,of
differs qualitatively ab = 1/2 from the corresponding resistance at zero field: the experiment
does not show evidence of a ‘phonon peakpisy T2, suggesting that phonons are relatively
unimportant as a scattering mechanism inithe 1/2 case.

The most intriguing part of this story is the evidence of a finite valugpf~ 5 Q
when extrapolated to zero temperature (see figure 5). This is clearly in conflict with the
above discussion leading to the temperature dependence of equation (33) which predicts a
vanishing resistance at zero temperature. Since the scattering giving figeiddnelastic,
and the common view is that all inelastic processes cease to be effective at zero temperature,
this experiment encourages us to reanalyse the mechanisms of inter-layer dissipation at zero
temperature. This interesting experiment places current drag in the same arena as some recent
efforts to understand the issues of dephasing [65, 66] and resistance at zero temperature [67]
due to ‘inelastic’ mechanisms. Some very recent papers address thel/2 case from
differentangles: Ussishkin and Stern [68] attribute the anomaly to pairing fluctuations whereas
Yang [69] suggests that the low-temperature behaviour of the drag resistance is due to the
inter-layer distance being close to the critical value at which the two layers form a collective
incompressible state.

8. Non-dissipative drag

The possibility of a drag effect at zero temperature was considered by Rojo and Mahan [70],
who considered two coupled mesoscopic [71] rings that can individually sustain persistent
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currents. The mechanism giving rise to drag in a non-dissipative system is also based on the
inter-ring or inter-layer Coulomb interaction, the difference from the dissipative case being the
coupling between real or virtual interactions. One geometry in which this effect comes to life
is that of two collinear rings of perimetdr, with a Bohm—Aharonow; flux threadingonly

oneof the rings (which we will call ring one). This is of course a difficult geometry to attain
experimentally, but has the advantage of making the analysis more transparent. Two coplanar
rings also show the same effect [70]. If the rings are uncoupled in the sense that the Coulomb
interaction is zero between electrons in different rings, and the electrons are non-interacting
within the rings, then a persistent currelgt= —c dE/d®; = evg/L will circulate in ring

one [72]. If the Coulomb interaction between rings is turned on, the Coulomb interaction
induces coherent charge fluctuations between the rings, and the net effect is that ring two
acquires a finite persistent current. The magnitude of the persistent drag clyrean be
computed by treating the modification of the ground-state energy in second-order perturbation
theoryAEéz), and evaluating

dAE?
do,

JD = —¢€ (34)

P,=0

with &, an auxiliary flux threading ring two that we remove after computing the above
derivative. In other words, the persistent drag current is equivalent to an induced diamagnetic
current that is finite even when the flux is zero in that system. (Note that a diamagnetic current
is in general given by the differential change in energy with respect to a change in magnetic
field.) The correction to the energy resembles the van der Waals interaction, and its relevance to
systems that can individually break time-reversal symmetry was studied in references [73,74].

The second-order correction is given by
o0 (o] S , S —q, /
7 0 0

o+

with S; (g, ) the dynamical structure factor of ringsee equation (A14)). For a mesoscopic
ring with an applied Bohm—Aharonov flux, one has to retain the discreteness of the spectrum:

S; _ R 4 36
i(q.0)=S8"|q, 0 o1 (36)

with S (¢, ) the structure factor at zero flug; = @, /¢o, andgo = he/e the flux quantum.
Note that, for a mesoscopic system, due to the presence of th&fllg, ©) # 5 (—¢, o).
For the inter-ring interaction we take the unscreened Coulomb interaction (screening is not
effective in one dimension), 96, = Ko(g¢d), with d the distance between rings akig(x) the
modified zeroth-order Bessel function. In the limit where the inter-particle distance is much
smaller than the distance between ringsd > 1), we obtain

7 7 1 1

P P krao)? (kpd)?

with ag being the Bohr radius. For dimensions corresponding to those of the experiments
measuring persistent currents [73}, ~ 10~4J,. The drag current is itself mesoscopic, and
therefore vanishes in the limit of infinite length. For a ring with a single channel carrying the
current, an extension of the argument presented by Vignale [76] for a bound on the value of the
persistent currents give’s, < Jy in general. The non-dissipative drag for two concentric rings
was studied by Shahbazyan and Ulloa [77] using a Luttinger-liquid formulation for mesoscopic
systems [78]. They found that the inter-ring interaction modifies the period of the Aharonov—
Bohm oscillations. Related work on the effect of the interactions on the flux dependence was
reported by Canalket al [79].

(37)
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One basic difference between the dissipative drag in semiconductor systems and the non-
dissipative drag in mesoscopic systems appears if one opens ring two so that no current can
circulate, and computes the induced charge modulation, which will play the role of a drag
voltage. The induced ‘voltage’ is zero in this case. This can be seen by starting with a set-up
that in the absence of flux in system one is ‘parity even’. By this we mean that the charge
distribution in wire two is symmetric around the centre. Let us call the time-reversal and
parity operators” andP, respectively. We want to compute the induced dipole moment in
ring two, x, = (¥o|%2|Wo). The coordinate operator satisfieg x,(PT)~* = —x, while the
wave-function is invariant undep7, which implies thatt = 0. The charge distribution in
ring one remains uniform, and there is no induced voltage.

Natural candidates for use in the study of non-dissipative drag, other than mesoscopic
systems, are the superconductors, which can sustain macroscopic persistent currents. The
extension to this case was carried out by Duan and Yip [80]. For wires the corrections to the
zero-point energy of the charge fluctuations (plasmon modes) were computed for when two
superconducting wires individually carry a supercurrent. In analogy with the discussion of
section 2, the dispersion of the coupled modes is given by the determinantal equation

’ (60 - qvl)z - quz —-X -0 (38)

-X (w — qu1)? — 5%¢?

with s the plasmon velocity of a single wiré: = 4rnoeq?Ko(gd)/m comes from the inter-
wire interaction, and » are the superconducting velocities of the two wires. For the case of
wires, the two coupled modes of frequencies(q) are linear ing. The zero-point energy

1 _
Eo=) 5 [hor@) +Ho_(9)]
q

depends now on the relative superfluid velocities. The superfluid velociy Vsl —
2¢A/c)/2m with W the order parameter. The supercurrent in wire tWg,is computed

in an analogous way to equation (34) by taking the derivative of the free energy with respect
to the vector potential in wire 2, and

e
I = —(p22v2 + p21v1)
m

With p12 = hin3e*/16mm?s5d? representing the drag term. If one starts with a situation in which
there is no current in either wire and slowly increases the current in wire one, the prediction
is that a current will start to flow in wire two of magnitude,1v1/m. Superconductivity is
essential to this effect, in order that the wire can be trapped in a metastable state. Extensions
of the above arguments to superfluid Bose systems were presented by Shevchenko and
Terent’'ev [81] and Tanatar and Das [82]. The case of the transresistance of an excitonic
condensate with electrons in one layer and holes in the other layer was studied by Vignale and
MacDonald [83], who found a discontinuous jumpgdp at the condensation temperature.

Two groups attempted to measure the non-dissipative drag. Giordano and Monnier [84]
measured the drag between a superconductor (Al) and a normal metal (Sb), and found a non-
reciprocal drag effect that was finite only in the transition region—that is, at temperatures close
to the critical temperature of the Al layer. Similar results were reported by Hetal{85] with
the superconducting system being Al&nd Au used as the normal metal. An interpretation
of the non-reciprocity effect in terms of inductive coupling of the spontaneously generated
vortices in the superconductor and the normal metal was proposed in reference [86]. It seems
clear that these experiments do not provide evidence of supercurrent drag.
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9. Summary

We have reviewed the recent theoretical and experimental effort in the growing field of current
drag. For electronic systems separated sufficiently that there is no tunnelling between them,
we found that through studies of the transresistamg®ne can extract information not only
about the direct Coulomb interaction between electrons in different systems, but also about
the collective modes of the coupled systems, and about phonons (virtual and real) that can
propagate through the barrier separating the systems in question. The magneficHasd

a non-trivial effect on the drag resistance. The valug gfis larger at finite fields than its

value at zero field, and shows a large enhancement in the transition region between quantum
Hall plateaus. This effect is understood qualitatively in terms of an interplay between changes
in the phase space available for scattering and variations in the effective interactioB.with
Some theoretical predictions, like those in connection with the non-dissipative drag, and the
ones for strongly disordered systems, are still awaiting experimental verification. The recent
experiment on the = 1/2 case poses a fundamental question connected with the general
theory of transport: is it possible to have an intrinsic resistance at zero temperature due to
the electron—electron interaction? The magnitude of the challenge seems to equal that of the
progress made so far in the field.
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Appendix

In this section we follow the derivation of Zheng and MacDonald [12] of the inter-planar
resistance using the memory function formalism. The formalism of Mori [87] uses the projector
technique to write the response function in terms of a memory function. A simple case is a
classical particle subject to stochastic forces, for which one is interested in the velocity—velocity
correlation functionp (z) = (v(¢)v(0)). The Laplace transform is

_ (v2(0))
@(s) = m (A1)
with K (s) the Laplace transform of the memory function
K1) = (F()F(0)). (A2)

kaT
Here F (t) is the force acting on the particle, andv?(0)) = kzT. The friction coefficient is
then given by a force—force correlation function.
For the quantum mechanical case, the calculation of an inter-layer resistance is then
performed by identifying the relevant memory function. The starting point is Kubo’s formula
for the conductivity:

01 (@) = § /0 dr € (J, 105 (1)) (A3)

whereg = 1/kgT, A is the area of each of the two-dimensional systems considesae j
are the layer indices, anflis the zero-wave-vector component of the total-current operator.
The inner product appearing in (A3) is

A B N N
Ji1di0) = %/ d Tr [poexp(,\H)J, exp(—AH)Ji(t)] (A4)
0
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with J; (r) = ei/MH1 Je=(/MH — @l J. and/ is the Liouville superoperator defined through
its action on an operata® as£O = (1/h)[H, O]. The next step is to use Mori’s projector
method to write the inverse matrb;fjl(w) in terms of a memory function, and hence obtain
the transresistance. Zheng and MacDonald define a superop@r#tat projects onto the
current:
_ dal | 12){e|
(JilJ1)  (J2|J2)
with (J;|J;) = 8;;(A/B) xi, andy; = n;e?/m.
With this definition we have (for Irm > 0)

=1-9 (A5)

oij(w) = /dre““’J|e—'“|J> ’3<J,-|w+£|1,-> (AB)
_B
—A(lew_QL_PLIJﬁ (A7)
_Bo g B 1 5
—Z(Jz| QL|J]>+A<Jl|w—£PLa)—QL|Jj> (A8)
IXI sz(a)),B 1
_3lj;+; = AXk(ka L£|J_,-) (A9)

where we have useBlJ; = iPLJ; = 0, which results, in the present case, from the fact that
[Ji, J;]1 = 0, meaning that the expressions derived are also valid in the presence of a magnetic
field that breaks time-reversal invariance. We are interested in the real part,afhich gives

the resistance. From the above equations, we have

g 1 ) )
= ———Re({J J: Al10
p12(w) A Yo ( l|a)— QL| 2) (A10)
1 o A
_F / dr € (Fy|e™' 9| Fy) (A11)
A ninoe? J

where the force operator i = —m /eJ,-. The contribution to the force due to the inter-layer
interaction potential/, is
Fi=-F= %E qUqpP o). (A12)
The first approximation is to replace'€" by e'~. The leading order i/, corresponds
to the correlation function in (A11) evaluated in the uncoupled case. Using a representation
in terms of exact eigenstates, one finds (for the static limit)

0 dg /‘” Im x1(g, @) IM x2(g, ®)
= U Al3
2= A | @) ¢ sint(Bhw/2) (A13)
with x; (¢, w) the density—density response function [7] of laier
Im xi (g, ) = —(1 ef‘wﬁ>—2e PEn|(nlpi(g)Im) 1?8l — (Ey — En) /] (A14)
= (1-€)S(q, ») (A15)

andZ; the partition function of the isolated layer.

Here we show thapy, vanishes ag’. For simplicity we treat the layers as identical.
The approximation used in the literature [3, 88] is to replade, ») by its non-interacting,
zero-temperature value [10]:

Im x (g, ®) = ’"hz [@(kF—pc VA2 =32 — O (ks — |xa) k2—x+} (A16)
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with x; = mw/hq +q/2. Atlow temperatures, the factoy $intf(8hw/2) in (6) ensures that
the values of» are small. Then we can separate the density response functions as

2m?0 (2kr — q)
g/ (2kp)? — q2

Im x (g, w) = o= F(g)w. (A17)

The integral ovet is

[Im x(q, CU)] 24772 2
T)"“—F(q)*. A18
’3/ © Sint(Bhw,2) = ke 1) g F @) (A18)
The remaining integral is
1= / dg ¢°*UL(q)F(q)>. (A19)
Here, one can replace the bare inter-layer interaction with
2mwe? e

Up(g) > UP = (A20)

q €x€(q)
wheree(q) is the effective dielectric function for the two parallel conducting planes daisd
the distance between planes. In the random-phase approximation,

€(q) = 1—2Uy(q)x(q,0) + UZ(q)x*(g, 0)(1 — & %%). (A21)

In the long-wavelength limit{/,(¢) x (¢, 0) = —qte/q, With gt = 2/a§ the screening
wave-vector in two dimensions. The last termeiig) dominates whenevegr > 1. In this
limit, the integrall can be approximated as

detm? oo e—2qd
I~ — Sdg ——— A22
€2 k2 gt /o T ey (A22)
3 3
";—C() (A23)
2e2 h®k2qted4
Collecting the integrals, we obtain
m 7¢(3)(kgT)?
oy £3)(ksT) (A24)

ne? 16hE r(qred)2(kpd)?
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