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Electron-electron and electron-hole interactions in small semiconductor 
crystallites: The size dependence of the lowest excited electronic state 

L. E. Brus 
Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 26 October 1983; accepted 25 January 1984) 

We model, in an elementary way, the excited electronic states of semiconductor crystallites 

sufficiently small ( - 50 A. diam) that the electronic properties differ from those of bulk materials. 

In this limit the excited states and ionization processes assume a molecular-like character. 

However, diffraction of bonding electrons by the periodic lattice potential remains of paramount 

importance in the crystallite electronic structure. Schrodinger's equation is solved at the same 

level of approximation as used in the analysis of bulk crystalline electron-hole states (Wannier 

excitons). Kinetic energy is treated by the effective mass approximation, and the potential energy 

is due to high frequency dielectric solvation by atomic core electrons. An approximate formula is 

given for the lowest excited electronic state energy. This expression is dependent upon bulk 

electronic properties, and contains no adjustable parameters. The optical/number for absorption 

and emission is also considered. The same model is applied to the problem oftwo conduction band 

electrons in a small crystallite, in order to understand how the redox potential of excess electrons 

depends upon crystallite size. 

I. INTRODUCTION 

The band gap of a semiconductor is, by definition, the 

energy necessary to create an electron (e-) and hole (h +), at 

rest with respect to the lattice and far enough apart so that 

their Coulomb attraction is negligible. If one carrier ap­

proaches the other, they may form a bound state (Wannier 

exciton) approximately described by a hydrogenic Hamil­

tonian 

at an energy slightly below the band gap. 1.2 Here mh (m.) is 

the effective mass of the hole {electron} and € is the semicon­

ductor dielectric constant. The effective masses of the two 

charges are often only a small fraction of an electron mass. 

Small masses naturally imply that localization energies for 

the hole and electron are large. The dielectric constant in 

inorganic semiconductors is typically in the range 5-12, im­

plying that the Coulomb attraction is almost entirely 

screened. This combination of small masses and weak attrac­

tion causes the exciton wave function to extend over a large 

region. For example, the lowest IS exciton of CdS has a 

diameter of ~60 A in the center of mass coordinate system. 

In terms of a hydrogen atom analogy, the band gap is 

the ionization limit of the hydrogenic electron-hole bound 

states. Photon absorption at higher energies creates "free" 

electrons and holes with excess kinetic energies inside the 

semiconductor. 
In this paper we consider crystallites sufficiently small 

that this bulk energy level scheme is not valid. We suggest 
that the size of the IS exciton provides a natural, intrinsic 

measure of linear dimension at which crystallite size effects 

will create a qualitatively different situation. As the crystal­

lite approaches this size, the electron and hole interactions 

with the crystallite surfaces will dominate the dynamics. In 

this "molecular" limit, the energy level scheme will depend 

upon the size and shape of the crystallite as well as upon the 

nature of the material. There will be a series of excited, dis­

crete bound states approaching an ionization limit corre­

sponding to a positively charged crystallite and a free elec­

tron in vacuum. The crystal is essentially not large enough 

for the intrinsic band gap to form, i.e., to sustain noninteract­

ing, Bloch-type plane wave electron and hole eigenstates at 

the band edges. 

We describe now elementary model calculations which 

attempt to identify the principal electronic phenomena 

which should occur in these crystallites. We use experimen­

tal data from bulk crystalline materials to predict the major 

changes occurring as crystallite diameter decreases to 40-50 

A. Our calculation is similar to a perturbation calculation 

without adjustable parameters. We neglect possible compli­

cations of the problem, such as size dependent structural 

lattice rearrangements, which may be important in some 

specific cases. Our model treats the fate of "bulk" states in 

the limit of small size, and we do not consider possible sur­

face states. We work at the same level of approximation as 

involved in the analysis of the bulk bound excited states via 

the Wannier Hamiltonian [Eq. (1)]. 

In an earlier paper labeled I, we considered the problem 

of the ionization limit itself as a function of crystallite size.3 

We modeled the elementary quantum mechanics of a crys­

tallite containing one mobile charge. That paper discusses 

the major assumptions of the model: (a) the use of the effec­

tive mass in the kinetic energy, and (b) the use of an interac­

tion potential based upon high frequency dielectric solva­

tion. 

This work is motivated by recent experimental interest 

in the transformation between molecular and bulk proper­
ties in small aggregates. Small semiconductor crystallites ap­

proaching the sizes considered here are used as catalysts and 
photosensitizers.4-7 In the case of CdS crystallites, moderate 

changes in electronic absorption and resonance Raman exci­

tation spectra have been reported and interpreted in terms of 

the quantum size effects we model here.8 

Related phenomena, generally of smaller magnitude, 

J. Ch9m, Phys. 80 (9), 1 May 1984 0021-9606/84/094403-07$02.10 © 1984 American Institut9 of Physics 4403 

Downloaded 08 Nov 2011 to 158.75.4.15. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



4404 L. E. Brus: Interactions in small semiconductor crystallites 

have been observed and understood since 1974 in thin semi­

conductor layers made by molecular beam epitaxy tech­

niques.9 We treat kinetic energy via the same effective mass 

approximation used in layer exciton theory. to We treat elec­

trostatic effects exactly, as there are large dielectric discon­

tinuities in our problem. In the layer exciton theory, an effec­

tive dielectric constant approximation is used as the 

discontinuities are smaller. 

II. THE POTENTIAL ENERGY 

The fact that the Coulomb interaction is screened in Eq. 

(1) has interesting consequences in small crystallites. Signifi­

cant screening necessarily implies a significant dielectric sol­

vation energy. We model small crystallites where the elec­

tron and hole kinetic energies are several tenths of an 

electron volt. At these frequencies ( - 5 X 1013 Hz), dielectric 

solvation principally results from polarization of atomic 

core electrons. We assume that this polarization, in response 

to a mobile charge, will not saturate, in contrast to, e.g., the 

static orientational polarization of water molecules near ion­

ic solutes. It appears physically valid to construct a potential 

energy for Schrodinger's equation from a consideration of 

the classical electrostatics involved. The potential will in­

volve polarization charge at the crystallite surfaces. 

A sphere of radius R and dielectric coefficient Ez is sur­

rounded by a medium of coefficient E I' Two charges of mag­

nitude e exist at positionsSI and S2 inside the sphere. Follow­

ing the procedure employed in I, the work V (SI ,S2) 

classically necessary to assemble this charge distribution is 
_ _ eZ _ 

V(SI,S2) = += + P(SI) 
EzlSI -S21 

+ P(S2) + PM (SI,S2)' (2) 

As in I,P is defined 

<X> [ S ]2n e
2 

P(S)= Lan - -, 
n~O R 2R 

(3) 

where 

an = (E - l)(n + 1)1[E2(En + n + 1)] and E = EzIE I • 

(4) 

(5) 

where (J is the angle between SI and S2' and Pn is a Legendre 

polynomial. If the two charges have opposite signs, the -

sign holds; the + sign holds if the charges have equal signs. 

Note that in the limit of a localized state in a large 

sphere, i.e.,R>SI andSz, we have V-ezIE2 ISI - S21. This is 
the screened Wannier result ofEq. (1). As described in I, we 

have dropped R-independent terms from V that mathemat­

ically represent the infinite polarization energies that classi­

cally exist near point charges. If Ez > E I then P (S) is a positive 

term increasing in magnitUde as R decreases. It represents 
loss of dielectric solvation energy as the volume of high di­

electric constant Ez material becomes small. P (S) describes a 
relatively weak radial F electric field pulling the charge to 

S = 0, the point of highest dielectric stabilization. 

PM(SI,S2) is a mutual polarization term that can be 

thought of as the interaction of one charge with the surface 

polarization charge created by the other charge. PM depends 

upon the absolute position ofSI and Sz as well as the relative 

separation lSI - S21. 
If we limit ourselves to S wave functions for e - and h +, 

simplifications occur in the three polarization energy terms. 

The Hamiltonian matrix elements of all PM terms for n> 1 

will be zero. The n = 0 term of PM is (E - l)e2/EzR and is 

independent of the S wave function. If the two charges have 

opposite signs as appropriate for an electron and hole, then 

this n = 0 term will cancel the two n = 0 terms of P (SI) and 

P(Sz). The potential energy Eq. (2) reduces to 

where the subscript "0" indicates that the sphere has a net 

charge of zero. Vo is the potential energy appropriate in mod­

elling crystallite excited electronic states. If the two charges 

have the same sign, then the appropriate potential V2 is 

e2 2(E - l)e2 

Vz = + + 
E2 1S1 - Szl EzR 

<X> (s~n + s~n) e2 
+ L a n ----

n~ I R 2n+ I 2 
(7) 

This is the potential for a small crystallite with two electrons 

in the conduction band, or two holes in the valence band. 

III. THE LOWEST EXCITED STATE 

Schrodinger's equation for the crystallite excited states, 

within the confines of our elementary model, can be written 

-=-V; + --V~ + VO(S.,Sh) <P(S.,Sh) [ 
fil -fil --]--

2m. 2mh 

=E<P(S"Sh)' (8) 

For the moment we take Vo to be infinite outside the sphere. 

The equation (8) Hamiltonian becomes the bulk Wannier 

Hamiltonian [Eq. (1)] in the limit of large R. The energy E 

calculated from Eq. (8) is relative to the bulk gap, as are the 

Wannier energies in Eq. (1). This formulation is appropriate 

to direct gap materials, in which the valence and conduction 

band minima are above each other in K space. 

At large R, the wave function <P will be intermediate 

between the hydrogenic form, and a form influenced by car­

rier confinement within the sphere. E will be on the order 

magnitude of the bulk Wannier binding energy, typically 
10- 2 eV. 

At smaller values of R, <P will become dominated by 

carrier confinement, and E will increase. We seek an ap­

proximate solution to <P in this limited size range. A natural 

basis is given by the S wave functions for a particle in a 

sphere: 

'fIn(r) = .s. sin(mTrIR) (9) 
r 

with 

(10) 
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where m is the appropriate effective mass. 

We shall find that the simple uncorrelated solution 

<Po = I/II(Se)I/II(Sht (11) 

is a fair approximation for some materials in this range of R. 
In order to explore the relative magnitude of various terms in 

Eq. (8), and to attempt to understand systematic trends, we 

first explore <Po solutions. We then consider more complex 

solutions as necessary. 

With the wave function <Po the energy of the lowest 

excited state becomes 

fiZrr [ 1 1] 1.8e
2 

e
2 

OQ (S)2n 
E= - - + - - -- + - r an - , 

2R2 me mh EzR R n=1 R 
(12) 

where the bar in the third term means average over a 1/11 

function. This third term is a function of both E2 and E I' 

Recall that E is a shift with respect to the bulk band gap. 

The first term is the quantum energy of localization, 

increasing as R - 2 for both electron and hole. In a formal 

sense, the second term is the Coulomb attraction, and the 

third term is the solvation energy loss. Both terms increase as 

R -I. The solvation energy term has an interesting classical 

origin. The time average charge distribution corres~nding 

to cPo is zero throughout the crystal; there is no static P either 

inside or outside. However, the instantaneous stored energy 

density in a dielectric is proportional to - P.F; i.e., varies as 

F2. As the charges move, the time average value of p 2 is not 

zero. 

In Table II we have calculated the magnitude of these 

three terms for (arbitrarily chosen) 60 A diameter spheres of 

ZnO, CdS, GaAs, and InSb in vacuum. As seen in Table I, 

these materials exemplify the range of physical constants 

observed from large gap materials (ZnO) to small gap materi­

als (InSb). E2 increases and me decreases typically as the gap 

decreases. 

In Table II the positive polarization term is smaller 

than the negative Coulomb term. (In a solvent with £1> I, 

the polarization term would be smaller yet.) The net negative 

electrostatic contribution is smaller than the positive local­

ization kinetic energy for these materials. The kinetic ener­

gies oflocalization are significant and increase rapidly, as the 

band gap and me decrease, going across the table for R = 30 

A. 
The wave function cPo is valid for cases where the kinet­

ic energy is much larger than the electrostatic energy. At 

R = 30 A this is a good approximation for small band gap 

materials, and a poor one for the larger gap materials ZnO 

TABLE 1. Electronic parameters for the indicated crystalline direct gap 
semiconductors, E is the dielectric coefficient at optical frequencies. The 
effective masses are in units of the free electron mass. Eg is the band gap. 

Eg(OK) m: m: E 

(eV) 

InSb 0.24 0.015 0.39 15.6 
GaAs 1.52 0.07 0.68 10.9 
CdS 2.58 0.19 0.8 5.7 
ZnO 3.44 0.24 0.45 3.7 

TABLE II. Energy terms in eV from Eq. (12) for R = 30 A spheres of the 

indicated materials. In InSb, the effective mass approximation for kinetic 

energy fails, and we indicate an approximate lower limit for the kinetic ener­

gy. 

ZnO CdS GaAs InSb 

Kinetic 0.27 0.27 "",0.65 >1 
Coulomb -0.24 -0.15 -0.08 -0.06 

Polarization 0.06 0.05 0.Q3 0.02 

Total Shift 0.09 0.17 "",0.60 >1 

and CdS. As the kinetic and electrostatic energies scale dif­

ferently with R, in each material the approximation is valid 

for sufficiently small R. 

In order to correctly describe the larger diameter sizes 

of each material, it is necessary to use a more general wave 

function. Physically, the Coulomb term will introduce cor­

relation into the wave function, in that the electron and hole 

will attempt to reside near each other in order to maximize 

the Coulomb attraction. Also, the polarization term 

"pushes" both e- and h + towards the sphere center, which 

is the point of maximum dielectric stabilization. These ef­

fects occur at the cost of increased kinetic energy of localiza­

tion. 

We perform a simple variational calculation incorpor­

ating radial but not angular correlation between electron 

and hole. Consider the function 

<PI = I/II(S.)1JI1(Sh) + P. 1/12(Se)l/It(Sh) + Ph I/Il(Se)1/I2(Sh)' 
(13) 

where 1/12 is the 2S particle in a sphere Wave function. cPt has 

two adjustable parameters Pe and Ph' Adding 2S character 

allows the electron or hole to move either inward or outward 

depending upon the sign of Pe or Ph' We obtainP.l3h and E 

by minimization of E (after normalization) in Eq. (8) with the 

polarization term removed from Vo. The polarization energy 

is subsequently obtained by first order perturbation theory. 

Numerical results for CdS crystallites as a function of R 

appear in Table III. The small positive values ofPe andPh at 

larger R indicate that both electron and hole move slightly 

towards the sphere center to increase their overlap. The hole 

moves more as it is less costly in kinetic energy (the hole has 

the heavier mass). At 80--100 A the electrostatic and kinetic 

energies nearly cancel. For smaller diameters the kinetic en-

TABLE Ill. Energy terms in eV from Eq. (12) using the variational wave 

function Eq. (13). The best fit parameters P. and Ph aTe indicated fOT each 
CdS crystallite diameter. 

Diameter (A) 

Parameter 100 80 60 50 40 

P. 0.1 0.1 0.1 0 0 
Ph 0.3 0.2 0.2 0.2 0.1 
Kinetic 0.10 0.15 0.27 0.38 0.59 
Coulomb - 0.10 -0.13 -0.17 -0.19 -0.23 

Polarization 0.02 0.03 0.04 0.05 0.07 
Total shift 0.02 0.05 0.14 0.24 0.43 
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FIG. 1. Energy of the lowest excited electronic state as a function of crystal­

lite diameter, as calculated via wave function (13). Short horizontal solid 

lines are the bulk band gap energies of the indicated materials. Dot-dashed 

line for InSb incorporates surface carrier charge density as described in the 
test. 

ergy dominates, and the lowest excited state shifts blue of the 

bulk band gap. 

Excited state energies as a function of R for ZnO, CdS, 

GaAs, and InSb appear in Fig. 1. The two larger gap materi­

als have moderate Coulomb terms and relatively (compared 

with GaAs and InSb) large effective masses. This combina­

tion keeps the excited state energy near the bulk bandgap for 

diameters larger than - 60 A. The small gap materials GaAs 

and InSb must reach remarkably large crystallite sizes, how­

ever, before the excited state approaches the bulk bandgap. 

This occurs because me is extremely small, and the Coulomb 

attraction is strongly shielded. 

At small R our model will fail in a number of ways. The 

effective mass approximation is no longer valid when the 

electron (i.e., lighter particle) kinetic energy becomes sub­
stantial. Inspection of band structure calculations ll

,I2 for 

these materials indicates that beyond -0.5 eV, the kinetic 

energy increases with K substantially less steep than K 2; 
2m*. In Fig. 2 we have indicated these regions with a dashed 

curve. One could incorporate a more complex (anisotropic if 

necessary) representation of E (K). 

At high kinetic energy there is a second potential error 

in that the basis functions [Eq. (9)] go to zero at the crystallite 

surface. We demonstrated in Sec. C of I that, for smaller 
diameter crystallites in materials with small effective 
masses, the calculated surface carrier charge density is sub­

stantial if one assumes the Ben Daniel and Duke 13 boundary 

condition at a finite potential energy step. The present calcu­

lation overestimates the kinetic energy if the surface charge 

density is important. This should occur principally in 

smaller gap materials. 

In InSb the electron effective mass is extremely small. 
The Coulomb interaction is almost entirely screened, and 

the equation (12) energy Eis essentially electron localization 

energy. In this case the Ben Daniel and Duke boundary con-

W 
:I: 
Z 

V> 
> 

-2 

-1 

o 

> +1 

+2 

+3 

,~t-.-. iOd,r 
[cdsf -+e-+[cds] 

~ CONDUCTION 

- BAND 

[CdS]* -e-+ [Cdst 

[CdS]*_h+ + [Cdsr - VALENCE 

BAND 

-- + [CdS] _h++ [CdS]n 

20 40 60 80 100 120 

DIAMETER (Al 

FIG. 2. Calculated size dependence of the indicated redox processes. 

dition gives a size dependent localization energy indicated by 

the dot-dashed curve in Fig. 1. We suggest this curve be 

taken as a semiquantitative estimate. The validity of the Ben 

Daniel and Duke boundary condition in this physical situa­

tion needs to be more carefully investigated. It may be neces­

sary to go beyond the effective mass approximation. These 

ambiguities should be less important in the larger gap mate­

rials. 

IV. OSCILLATOR STRENGTHS AND THE ABSORPTION 
SPECTRUM 

In bulk materials, if one assumes that the valence to 

conduction band optical matrix element is independent of K, 

then the oscillator strength density is uniform throughout K 
space. The absorption coefficient is proportional to the den­

sity of states in K space and increases rapidly with energy 

above the band gap. Almost all of the oscillator strength 

exists above the gap in transitions creating free electrons and 

holes. 

The absorption strength of the bound electron-hole ex­
citon can be considered to derive from a Fourier transform of 

the exciton wave function into a distribution of plane wave K 

states, for both electron and hole. 14 
In heuristic terms, the 

more compact the exciton wave function, the higher the val­

ues of necessary IK I and the greater the exciton oscillator 

strength. The oscillator strength scales as the volume of K 

space necessary to form the exciton. 
Even though the exciton oscillator strength is small rel­

ative to the above gap region, it can be large in comparison to 

free molecules. For example, the IS exciton in CdS, when 

weakly bound at a lattice defect, has a radiative lifetime of 

J. Chem. Phys., Vol. 80, No.9, 1 May 1984 
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~1 ns. IS Henry and Nassau have theoretically considered 

the oscillator strengths of arbitrary (nonhydrogenic) elec­

tron-hole bound wave functions ¢J (7. ;"h) in bulk CdS. 15 Fol­

lowing the earlier work of Rashba and Gurgenishvili,16 they 

derived an expression for the f number in terms of lex, the 

intrinsic hydrogenic IS f number for crystalline bulk CdS: 

(14) 

Here (/> ex is the hydrogenic IS wave function and n M is the 

volume of one CdS diatomic unit. lex = 0.00256 from the 

work of Thomas and Hopfield. 17 Wex / W is the ratio of emis­

sion frequencies of bulk CdS to the small crystallite. 

This expression is applicable to the lowest excited state 

of small crystallites, for those sizes where the effective mass 

approximation and the K independence of the transition di­

pole remain valid. As a general property, the integral in Eq. 

(14) is unity if both the electron and hole are in the same 

spatial wave function. As we have seen, this physically hap­

pens in small crystallites when carrier confinement domi­

nates the electrostatic terms. Equation (14) predicts that f 
has only a weak size dependence through w. 

This result physically represents a cancellation of two 

different effects. The absolute interbandfnumber density in 

K space is proportional to the number of CdS molecules, and 

thus to the crystallite volume. At any size this f number is 

distributed over all the excited electron-hole quantum states. 

The fraction taken by the lowest bound state varies strongly 

with size. If the crystallite diameter is halved, then the diam­

eter of the lowest wave function is halved and the absolute 

values of IK I needed to synthesize the bound wave function 

is doubled in both electron and hole space. If IK I doubles, 

then the volume K space devoted to the lowest exciton in­

creases by a factor of 8. This cancels the factor of 8 decrease 

in absolute oscillator strength in the factor of 2 smaller crys­
tallite. 

The net result is that relative intensity shifts into the 

lowest bound state as crystallite size decreases. The exciton 

becomes more prominent in the absorption spectrum. In 

those regions where the electron and hole wavelengths are 

smaller than the crystallite dimension, the spectrum remains 

relatively unchanged. The absolute f number calculated 

from Eq. (14) isf ........ 0.3 if we take W = Wex ' This is the same 

order of magnitude as the f number of IS hydrogenic exci­

tons (d~60 A) bound at lattice defects in bulk CdS. 

V. COMPARISON WITH EXPERIMENT 

In the related problem of an exciton trapped in a thin 

semiconductor layer, extensive spectroscopic work has been 

performed with small band gap materials. In this situation, 

the wave function is compressed in one dimension, yet re­

mains extended in the other two. Quantitive agreement is 

generally obtained with simple models based upon the effec­
tive mass approximation. 10 

However, almost no experimental work has been re­

ported on well characterized crystallites of the sizes we con­

sider here. We report a ~0.25 e V shift in the absorption edge 

of in situ colloid CdS crystallites (zinc-blend structure) of 

average diameter ~45 A.8 This shift is in approximate 

agreement with Fig. 1. More recently larger shifts have been 

observed in colloidal crystallites of smaller diameters; these 

experiments will be described in a forthcoming publication. 

Shifts in the lowest excited state can also be observed via the 

resonance Raman excitation spectra of LO crystallite pho­

nons.8 

VI. ELECTRON AFFINITIES AND REDOX POTENTIALS 

Consider the following charge transfer or "ionization" 

processes involving crystalline CdS: 

[CdS]n=-e- + [CdS]n-' (15) 

[CdS]; -e- + [CdS]", (16) 

[CdS]~-e- + [CdS]n+' (17) 

[ CdS] n+ -h + + [CdS]", (18) 

[CdS]~-h + + [CdS]n-' (19) 

Here [CdS] n represents a crystallite of n CdS diatomic 

units, • represents the lowest excited state (effective band gap 

state), and + or - represents an excess hole or electron. In 

large crystals when individual h + and e- are in thermal 

equilibrium with the lattice, one has the simple situation that 

the energies of e- and h + are those of the conduction and 

valence band edge, respectively. In addition, the binding en­

ergies of Wannier excitons are negligible, and interelectron 

repulsion is negligible as the e - are far apart. In this limit the 

energy required for the first three processes is the same-it is 

simply ,1E between the conduction band edge and the e­

reference state in vacuum (conventionally called the electron 

affinity E.A.). In a similar fashion, the energy for the last two 

processes is the same-Eg + E.A., the difference from the 

valence band edge. 

In small crystallites, all five processes require differing 

amounts of energy. This occurs because (a) there is a size 

dependent interaction for two e-, or for a h + and e-, con­

fined inside a crystallite, and (b) there are size dependent 

energies of localization and polarization for a single h + or 

e -. The size dependence of [CdS] n+ and [CdS] n- was con­

sidered in I. Section III considers [CdS] ~ . We now consider 

[CdS"] =. 

A. Two conduction band electrons 

Using the electrostatic potential V2 Schrodinger's equa­

tion becomes 

[ -If (Vi + V~) + V2] (/> (SI's2) = E(/> (SI,'S2)' (20) 
2m, 

whereas before 

V
2 
= e

2 + 2(E - l)e
2 

E21S1 - S21 E2R 

co a (S2n + S2n)e2 

+" "I 2 (21) 
"~I 2R 2n+ I 

The Coulomb term is now repUlsive, and the two electrons 

will try to minimize their overlap. There are two polarization 

terms. The second one, the smaller of the two, is identical to 

the polarization term in Vo. The first term is independent of 

the wave function, and is the classical "charging" energy of a 
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TABLE IV. Energy terms in e V for the two e - problem [Eqs. (20) and (21)]. 

{3 is the best fit parameter in Eq. (22) for CdS crystallites of the indicated 
diameter. 

Diameter(A) 

Parameter 120 100 80 60 40 

{3 -0.1 - 0.1 -0.1 0 0 
Kinetic 0.11 0.16 0.24 0.42 0.61 

Coulomb 0.Q7 0.08 0.11 0.15 0.18 
Charging 0.20 0.24 0.30 0.40 0.59 

Polarization 0.03 0.03 0.04 0.05 0.06 
Total shift 0.41 0.51 0.69 1.02 1.45 

dielectric sphere. 

There is an interesting comparison between [CdS]; 

and [CdS] n- for the charging term 2(€ - I )e2
/ €2 above. In I, 

we have seen that the equivalent term for [CdS] n= is one­

fourth (not one-half) this term in [CdS] n= • This occurs, heur­

istically, because the stored polarization energy scales as F 2, 

so that a doubling of average field leads to a factor of 4 in­

crease in polarization energy. 

We take correlated wave function 

<P (SI,S2) = IPI(SdlPl (S2) + f3 [1P2(SdlPl (S2) 

+ IPI{SI)1P2(S2)], (22) 

which is symmetric in space coordinates. The two spins must 

couple into a singlet state, so that the overal wave function 

will be antisymmetric, and will satisfy the Pauli Principle for 

indistinguishable electrons. As a numerical example we con­

sider CdS crystallites in water. Table IV shows an energy 

breakdown of the variational solution for Eq. (20). As before 

the reference energy is (twice) the conduction band edge in 

the bulk crystal. The dominant term for diameters greater 

than 40 A is the classical charging term. Large shIfts are 

predicted, in comparison with [CdS] n- and [CdS J ~. Note 

also that all terms here are positive, i.e., act to destabilize the 

small charged sphere case with respect to the large sphere 

case. The principal limitation of this calculation is the possi­

bility of carrier charge density on the crystallite surface. This 

effect will lower the kinetic energy contribution. The small 

negative values of f3 in Table III indicate the two electrons 

have moved nearer the surface in order to minimize their 

overlap. 
The formulation described here could be alternatively 

used to describe two holes in the conduction band. 

B. Redox potentials 

In order to demonstrate the different size dependencies 

of reactions (ISH 19), we have performed numerical calcula­

tions for CdS crystallites in water. We subtract the calculat­

ed shifts for the initial and final states of each process. The 

results are plotted in Fig. 2. 

Reactions (15) and (16) are cathodically shifted, as a 

function of decreasing diameter, from the valence band. Re­

action (15) has the larger s~ift due to the large charging term 
in Eq. (21). Reaction (18) shows almost no shift, as the e- is 

stabilized in the excited state by attraction to the hole. Note 

that Henglein 18 has argued, from the point of view of surface 

capacitance, that negative charge buildup on small crystal­

lites will give a large shift in electron redox potential. 

The conduction band reaction (18) shows an anodic 

shift, as discussed in I, due to the localization energy of the 

hole in the crystallite. The excited state conduction band 

process [reaction (19)] shows a cathodic shift as the attrac­

tion for the e- is greater than the localization energy. 

VII. DISCUSSION AND SUMMARY 

Our elementary calculations model an intermediate 

size regime for small crystallites. The excited states and ioni­

zation potentials are a strong function of size; bulk proper­

ties have not been reached even though the crystallite con­

tains thousands of individual "molecular" units. 

Nevertheless, the bulk band structure, through the effective 

masses, is of critical importance in determining the deviation 

from bulk properties. The model implies that size dependent 

standing wave diffraction of valence electrons, occurring as 

an electron moves through the interior and senses the peri­

odic lattice potential and the crystallite boundaries, is the 

dominant physical effect for these materials. 

These materials have strong chemical bonds between 

individual molecular units, in contrast to dielectric crystals 

of organics or rare gas atoms, for example. Strong bonding 

implies large widths for the valence and conduction bands, 

and a strong tendency to delocalize electrons involved in the 

bonding, as embodied numerically in the small effective 

masses. In an Ar crystal, by way of contrast, excited elec­

tronic states would localize on individual Ar atoms (Frenkel 

excitons). The lattice would distort around the excited state, 

tending to trap the excited state, and leading to a slow "hop­

ping" rate for the excitation. 

In the excited state problem, electrostatic effects are less 

important. The F field originates on one charge and termin­

ates on the other within the crystallite. The field mainly re­

sides inside the crystallite, with the result that the Coulomb 

attraction is shielded by €2 with small polarization terms. In 

the two e- problem (Sec. VI), the field originates on the two 

e- and terminates at infinity on two positive charges. The 

field is strong outside the crystallite, and size dependent po­

larization terms are more significant. 
The model predicts that small gap materials must reach 

a large crystallite size before optical absorption occurs at the 

bulk band gap. Large gap materials achieve the bulk band 

gap at intermediate sizes (-60 A diam) through an approxi­

mate cancellation of quantum localization and electrostatic 
effects. At the smaller diameters where the simple result [Eq. 

(12)] predicts large blue shifts, it will be necessary to go be­

yond the effective mass approximation and to consider 

charge density at the crystallite surface in order to obtain 

accurate results. 

It is interesting to note that metallic crystallites appear 

to behave like bulk metals in the same size range we consider 
here. ) 9.20 Kreibig concluded that normal metallic properties 

are present in a silver cluster of 400 atoms (22 A diam). 19 He 

suggested that clusters would have to be substantially 

smaller to show quantum effects. 
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