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We present a detailed theory on electron energy filtering by the nonplanar potential introduced by dispersed

nanoparticles or impurities in bulk materials for enhancement of the thermoelectric power factor. When electrons

with energies below a certain cut-off energy are prevented from participating in conduction through the material,

the Seebeck coefficient and thus the thermoelectric power factor can be drastically enhanced. Instead of using

planar heterostructures which require elaborate epitaxial techniques, we study embedded nanoparticles or

impurities so that the conservation of lateral momentum limiting electron transport at heterointerfaces is no

longer a limiting factor. Based on the Boltzmann transport equations under the relaxation time approximation,

the optimal cut-off energy level that maximizes the power factor is calculated to be a few kBT above the Fermi

level, and is a function of the scattering parameter, Fermi level, and temperature. The maximized power factor

enhancement is quantified as a function of those parameters. The electronic thermal conductivity and Lorenz

number are also shown to be suppressed by the electron filtering to further enhance the thermoelectric figure of

merit. We find that the power factor of PbTe at 300 K could be enhanced by more than 120% when the cut-off

energy level is 0.2 eV or higher and the carrier density higher than 5 × 1019 cm−3. Finally we propose the use of

distributed resonant scatterings to partially realize the nonplanar electron filtering in bulk materials.

DOI: 10.1103/PhysRevB.87.075204 PACS number(s): 72.15.Jf, 72.10.Bg

I. INTRODUCTION

Thermoelectric energy conversion has been drawing great
attention as a viable solution to waste heat recovery and
microchip hotspot cooling.1,2 The efficiency of thermoelectric
devices depends directly on the dimensionless figure of merit
ZT = S2σT/(κl + κe), of the materials used, where S is the
Seebeck coefficient, σ is the electrical conductivity, T is the
absolute temperature, κl is the lattice thermal conductivity,
and κe is the electronic thermal conductivity. Significant
enhancements of the thermoelectric figure of merit have been
reported in recent years for nanostructured materials such as
superlattices and nanocomposites, and attributed mainly to the
lattice thermal conductivity reduction via additional interface
phonon scattering in these materials.3–6

Completely different approaches are required, however, for

enhancing the so-called thermoelectric power factor S2σ in

the numerator of ZT since this property is related to charge

carrier transport, and there is a trade-off relation between

the Seebeck coefficient and the electrical conductivity. Hicks

and Dresselhaus theoretically predicted drastic power factor

enhancement by the modified density of states in low-

dimensional materials such as quantum wells and wires in

1993.7 Since then, a rebirth of interest has been made in

thermoelectric material research, and a considerable number

of research activities have been conducted on various low-

dimensional and nanostructured materials for thermoelectric

energy conversion.8,9 Recently, Heremans et al. demonstrated

a large power factor enhancement in Tl-doped PbTe at high

temperatures, and attributed this enhancement to the distorted

density of states by the Tl resonant level inside the valence

band of PbTe.10 The concept of modulation doping has

been experimentally demonstrated in SiGe nanocomposites

to improve electrical conductivity over bulk values, thus

enhancing the power factor.11 Bahk et al. proposed that the

electrical conductivity and power factor can be enhanced

over a wide temperature range when embedded nanoparticles

of a few nanometers in diameter donate charge carriers

instead of the conventional impurity dopants, thereby replacing

the stronger impurity scattering with weaker nanoparticle

scattering.12 Also, it has been theoretically predicted that

energetically sharp resonant electron scattering by embedded

core-shell nanoparticles that form quasibound states inside

the band can significantly enhance the power factor at low

temperatures.13

The concept of electron energy filtering was originally

proposed using planar barriers in thermionic energy conversion

devices. In 1994, vacuum thermionic coolers that utilize a

potential barrier between electrode and vacuum were proposed

by Mahan.14 The requirement for efficient cooling at room

temperature was the work function of the electrode metal

to be about 0.3–0.4 eV, which was not feasible to achieve.

Shakouri and Bowers proposed in 1997 to use semiconductor

heterostructures for the selective emission of hot electrons

over a barrier layer to enhance the cooling performance.15

By controlling the conduction band offsets in heterostruc-

tures, high cooling power density at room temperature was

predicted in the nonlinear thermionic transport regime. Later,

Shakouri et al. proposed that tall barrier, highly degenerate

multilayers could achieve thermoelectric power factors an

order of magnitude higher than bulk values.16 They considered

thermionic electron transport perpendicular to the planar bar-

riers and the barrier layers which were thick enough to prevent

tunneling.

In the case of electron transport perpendicular to planar

barriers, the lateral momentum component is conserved during

transport over the barriers analogous to the light refraction in

multilayers. This is called lateral momentum conservation.17

The transverse momentum component needs to be larger than
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a certain value determined by conduction band offset for

the electron to go over the potential barrier. Vashaee and

Shakouri pointed out that the key requirement for a large

thermoelectric power factor enhancement in planar barrier

materials is that the lateral momentum conservation is relaxed,

such that the momentum criterion for the transport at the

interfaces is replaced by the energy criterion depicting that

most of the electrons having energies greater than the cut-off

energy are allowed to participate in transport over the barrier.17

The idea was that this lateral momentum nonconservation

allows a much larger number of hot electrons to participate

in the emission process, so that the suppression of electrical

conductivity by barriers is significantly alleviated while a

large enhancement of the Seebeck coefficient by hot electron

filtering is still achieved. However, Kim et al. recently found

that the enhancement in emission current due to the lateral

momentum nonconservation could be modest because the

smallest number of modes in the well and barrier layers limits

the emission current.18

Due to these complications in the planar carrier filtering

scheme, it is necessary to realize a nonplanar carrier energy

filtering without extended planar potential barriers, but instead

with embedded discrete nanoparticles or impurities. In the

latter case, the lateral momentum is not conserved since there

is no translational invariance, and thus the power factor can

be enhanced in bulk materials. In an ideal case of nonplanar

energy filtering, the modeling of carrier transport becomes

simply having a cut-off energy level in the bulk transport

calculations, below which all the charge carriers are filtered

out of the transport.

In this paper we present a general theory on electron

energy filtering, as similarly shown in Ref. 19, with a cut-off

energy in the Boltzmann transport theory under the relaxation

time approximation for bulk materials. We extend this theory

to find the optimal cut-off energy level and corresponding

maximum power factor enhancement as a function of the

scattering parameter, Fermi level, and temperature in Sec. III.

An approximate expression for the optimal cut-off energy level

is provided. Variations of the electronic thermal conductivity,

Lorenz number, and the Hall factor by the filtering effect are

also quantified as functions of the aforementioned parameters

in Sec. IV. Then the proposed theory is applied to a real

material PbTe with a nonparabolic band and realistic energy-

dependent scattering time taken into account in Sec. V. In

Sec. VI, after a brief investigation of various nonplanar poten-

tial scatterers, such as step-potential nanoparticles, resonant

core-shell nanoparticles, and resonant impurities, we propose

the use of distributed resonant scatterings in Lorentzian

shapes to partially realize the nonplanar electron energy

filtering in bulk materials. Finally, Sec. VII concludes the

paper.

II. ELECTRON TRANSPORT IN BULK MATERIALS WITH

A CUT-OFF ENERGY

In equilibrium, the distribution of electrons is given by the

Fermi-Dirac distribution

f0(E) =
1

1 + exp[(E − EF )/kBT ]
, (1)

where E is the electron energy, and EF is the Fermi level, kB

is the Boltzmann constant, and T is the absolute temperature.

In this paper we assume that all energies are referenced to

the conduction band minimum. In near equilibrium with a

small external field and a temperature gradient, the transport

properties can be derived from the Boltzmann transport

equation under the relaxation time approximation. They

are all integral functions of the differential conductivity

given by

σd (E) = e2τ (E)v2(E)ρDOS(E)

(

−
∂f0

∂E

)

, (2)

where e is the electron charge, τ (E) is the total electron

momentum relaxation time, v(E) is the electron velocity in

one direction, i.e., v2(E) = 2E/(3m∗) for a parabolic band,

m∗ is the effective mass, and ρDOS(E) is the density of

states. The Fermi window factor (−∂f0/∂E) is a bell-shaped

function centered at the Fermi level with a few kBT width,

and represents the distribution of electrons that contributes to

conduction.

If there is a cut-off energy level EC below which all

the electrons are completely blocked from participating in

conduction, the calculations of the transport properties are

reduced to the integrals over energy from EC to infinity such

that

σ =

∫ ∞

EC

σd (E)dE, (3)

S =
1

eT

∫ ∞

EC
σd (E)(E − EF )dE
∫ ∞

EC
σd (E)dE

. (4)

In this paper we ignore the sign of Seebeck coefficient as we

deal with one-type carrier transport.

For a parabolic band and τ (E) = τ0E
r , where τ0 is a

constant, and r is called the scattering parameter, (3) and (4)

can be simplified as

σ = C1F0(EC), (5)

S = C2

[

F1(EC)

F0(EC)
− EF

]

, (6)

and thus the power factor becomes

S2σ = C1C
2
2

[F1(EC) − EF F0(EC)]2

F0(EC)
, (7)

where C1 = 23/2e2(m∗)1/2τ0/(3π2h̄3) and C2 = 1/(eT ) are all

constants, and

Fs(EC) =

∫ ∞

EC

E
3
2
+r+s

(

−
∂f0

∂E

)

dE

=

(

3

2
+ r + s

) ∫ ∞

EC

E
1
2
+r+sf0(E)dE

+E
3
2
+r+s

C f0(EC), (8)

with s = 0, 1, or 2. Note that the first term in the second line

of (8) is an incomplete Fermi-Dirac integral of the order of

( 1
2

+ r + s).

The scattering parameter r manifests the dominant scat-

tering mechanism in a material. For example, r is − 0.5 for
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the acoustic phonon deformation potential scattering, r = 1.5

for the ionized impurity scattering, and r ≈ 0.5 for the polar

optical phonon scattering. In general, however, more than a

single scattering mechanism are combined together to make

the total scattering time. For most semiconductors, r typically

falls in between − 0.5 and 0.5.

Here we define

g(EC) =
F1(EC)

F0(EC)
, (9)

such that the Seebeck coefficient can be rewritten from (6) as

S = C2 [g(EC) − EF ] . (10)

The g(EC) is a monotonically increasing function with

EC , and is always larger than both EC and EF . More

details about the derivation and proof for this are given in

Appendix A. Therefore, according to (10), it is evident that

the Seebeck coefficient increases with increasing EC , which

is the consequence of the electron filtering. On the other

hand, Fs(EC) is a monotonically decreasing function with

EC (see Appendix A for the proof), which implies from

(5) that the electrical conductivity decreases with increasing

EC . However, the power factor can still be enhanced due to

much larger enhancement of the Seebeck coefficient than the

suppression of the electrical conductivity.

The electronic thermal conductivity with a cut-off energy

is given by

κe =
C1

e2T

{

F2(EC) −
[F1(EC)]2

F0(EC)

}

. (11)

The electronic thermal conductivity is related to the electrical

conductivity via the Lorenz number L, which is defined as

L =
κe

σT
. (12)

Thus, from (5) and (11), (12) becomes

L =
1

e2T 2

{

F2(EC)

F0(EC)
−

[

F1(EC)

F0(EC)

]2
}

. (13)

The Lorenz number is a function of EF , although it becomes

a constant to be L0 = (πkB)2/(3e2) ≈ 2.44 × 10−8 W � K−2

for metals or in the degenerate limit (EF ≫ 0) in the bulk

(EC = 0), as described by the Wiedemann-Franz law. L

deviates from L0, monotonically decreasing, as EF goes down,

or the carrier density decreases in semiconductors. Also the

Lorenz number monotonically decreases with increasing EC ,

and saturates as EC goes very high for a given EF . More details

about this are discussed in Sec. IV.

The Hall effect measurements can be used to obtain the

effective carrier density ne by measuring the Hall coefficient

RH in the case of one-type carrier transport from

RH = α
1

neq
, (14)

where α is the Hall factor, and q is − e for electrons, and +e

for holes. The Hall factor is given by20

α =
〈τ 2〉

〈τ 〉2
=

F r=2r
0 (EC)F r=0

0 (EC)

[F0(EC)]2
, (15)

where F r=2r
0 (EC) and F r=0

0 (EC) are F0(EC) defined by (8)

with s = 0, but with r replaced by 2r, and 0, respectively. The

Hall factor is close to unity for the materials with −0.5 � r �

0.5. The effective carrier density measured by the Hall effect

measurements does not include the carriers below the cut-off

energy because their overall displacement becomes zero by

the cut off. Thus,

ne =

∫ ∞

EC

ρDOS(E)f0(E)dE, (16)

which decreases with increasing EC .

In nonideal or practical cases of the energy filtering, the

modeling can be more complicated than just having a cut-off

energy in the transport calculations. For example, nonplanar

potentials created by embedded nanoparticles or impurities of

various kinds in a bulk material can be used to modify the

transport of charge carriers via energy-dependent scattering

times to realize the energy filtering. If these additional

energy-dependent scatterings by nanoparticles or impurities

are exclusively targeted at the carriers in a specific energy

region only, those carriers can be effectively prevented from

participating in conduction by the extensive scatterings while

others are not affected and allowed to transport, so the

energy filtering is realized. An accurate calculation of the

energy-dependent scattering time by any arbitrary spherically

symmetric potential is possible by the partial wave method.21

Assuming that all the scatterings are independent, the energy-

dependent scattering time by the nanoparticles τNP(E) is

combined with other existing scattering times such as the

phonon scattering τPH(E) and the ionized impurity scattering

τII(E) in energy space as

1

τ (E)
=

1

τPH(E)
+

1

τII(E)
+

1

τNP(E)
+ · · · . (17)

Then the total scattering time is plugged in (5), (6), and (11),

with EC = 0 as in bulk, to calculate the transport properties

of the bulk material embedded with the nanoparticles. We will

go into more details about the use of various nanoparticles and

impurities in Sec. VI.

III. OPTIMAL CUT-OFF ENERGY AND POWER FACTOR

The optimal cut-off energy EC,opt that maximizes the power

factor for a given Fermi level, scattering parameter, and

temperature can be found by differentiating (7) with respect to

EC and matching the derivative to zero, which reduces simply

to

g(EC,opt) = 2EC,opt − EF . (18)

The derivation of (18) is provided in Appendix B. Fig-

ure 1(a) shows the graphical method of finding the optimal

cut-off energy based on (18), in which the x coordinate of

the intersecting point between the two curves, y = g(EC) and

y = 2EC − EF , represents the optimal cut-off energy. As an

example, EC,opt is found to be 0.14 eV for EF = 0.1 eV and

r = 0.5 at 300 K from Fig. 1(a). Figure 1(b) shows the ratios

of the Seebeck coefficient, the electrical conductivity, and the

power factor to their bulk values as functions of the cut-off

energy under the same condition as in Fig. 1(a). As anticipated
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FIG. 1. (Color online) (a) g(EC) (solid curve) defined by (9) as

a function of cut-off energy EC for EF = 0.1 eV, r = 0.5, and T =

300 K. The x coordinate (0.14 eV) of the intersecting point (filled dot)

between y = g(EC) and y = 2EC − EF is the optimal cut-off energy

(EC,opt) that maximizes the power factor. (b) The ratios of the Seebeck

coefficient (S), electrical conductivity (σ ), and the power factor (PF)

to their bulk counterparts as a function of the cut-off energy under

the same conditions as in (a). The power factor is maximized at

EC,opt = 0.14 eV, which confirms the value obtained from (a).

in the previous section, the Seebeck coefficient increases with

the cut-off energy while the electrical conductivity decreases.

The power factor has a maximum, which is about 90% larger

than the bulk value, when the cut off is at 0.14 eV, which

confirms the optimal cut-off energy value obtained from the

graphical method shown in Fig. 1(a).

Figure 2 shows the difference between the optimal cut-off

energy and the Fermi level as a function of the Fermi level

for a varying scattering parameter (−3/2 � r � 3/2) at two

different temperatures, 300 and 600 K. The optimal cut-off

energy is always higher than the Fermi level, but the difference

becomes smaller and saturated as the Fermi level goes higher.

The trend is almost an exponential decay. For a larger scattering

parameter, the optimal cut-off energy is higher for a fixed Fermi

level and temperature. The variation of the optimal cut-off

energy with the change of the scattering parameter is more

significant at a lower Fermi level. At a very high Fermi level,

the variation is within 0.35kBT when the scattering parameter

is varied from −3/2 to +3/2. The optimal cut-off energy

increases almost linearly with temperature for a fixed Fermi

level and scattering parameter.

Although one can obtain these optimal cut-off energies

by numerically solving (18) under various conditions, an

FIG. 2. (Color online) Difference between the optimal cut-off

energy and the Fermi level (EC,opt − EF ) as a function of the Fermi

level (EF ) at 300 and 600 K. For each temperature, the scattering

parameter (r) is varied from −1.5 to 1.5 with a step of 0.25.

approximate expression for the optimal cut-off energy as a

function of Fermi level, scattering parameter, and temperature

can be found as

EC,opt = EF + [A exp(−βEF ) + B]kBT , (19)

where

A = {(−1.48 × 10−4)T + 0.39}(r + 1.5),

B = {(1.47 × 10−4)T + 6.66 × 10−3}r

+{(2.2 × 10−4)T + 1.15},

β = 1/{(2.0 × 10−4)T + 0.04}.

This expression is accurate within 5% error for Fermi levels

less than 0.4 eV over the temperature range from 200 to 800 K.

Within 10% error, it is good for Fermi levels less than 0.5 eV

from 100 to 800 K. In particular, (19) can overestimate the

optimal cut-off energy at very high Fermi level and very

high temperatures, or at very low Fermi level and very low

temperatures.

The optimal cut-off energy is saturated at about 1.14kBT ∼

1.30kBT above the Fermi level at 300 K, and about

1.14kBT ∼1.45kBT above the Fermi level at 600 K when

the Fermi level is very high (>0.4 eV). If the Fermi level is

low, close to the conduction band minimum, then the upper

bound of the optimal cut-off energy is about 2.33kBT above

the Fermi level for r = 3/2, and the lower bound remains the

same, 1.14kBT above the Fermi level, for r = − 3/2 at all

temperatures.

Figure 3 shows the effects of temperature and scattering

time on g(EC) and the Seebeck coefficient. Here, for conve-

nience, we define � and �′ as

� = g(0) − EF , (20)

�′ = g(EC,opt) − EF . (21)

Figure 3(a) shows � and �′ at T = 300 K as an example.

From (10), the Seebeck coefficient at the optimal cut-off energy

is Sopt =C2�’, and the bulk Seebeck coefficient is Sbulk =C2�.
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FIG. 3. (Color online) g(EC) (solid curves) defined by (9) as a

function of cut-off energy EC , (a) for varying temperature, T = 100,

300, and 600 K, with fixed EF = 0.1 eV, r = 0.5, and (b) for varying

scattering time r = −1.5, − 0.5, 0.5, and 1.5, with fixed EF = 0.1 eV,

and T = 300 K. In (a), � and �′ are defined.

Thus, the Seebeck enhancement factor is

Sopt

Sbulk

=
�′

�
. (22)

In degenerate limit, the bulk Seebeck coefficient can be

expressed by22

Sbulk =
π2

3

k2
BT

e

(r + 3/2)

EF

, (23)

which implies that the Seebeck coefficient is proportional to

temperature for a fixed Fermi level. Since Sbulk = C2� and

C2 = 1/eT , we find � is approximately proportional to T 2 in

degenerate limit. In practice, typically � is slightly slower than

T 2. From Fig. 3(a), �′ is almost proportional to T . Therefore,

the Seebeck enhancement factor is approximately proportional

to 1/T for a fixed Fermi level. This indicates that the effect

of the electron filtering on power factor becomes weaker at

higher temperatures, following ∼1/T .
A similar discussion is possible for the scattering parameter.

Since Sbulk is proportional to (r + 3/2) in degenerate limit
according to (23), � is also proportional to (r + 3/2) in
degenerate limit. On the other hand, �′ is only slightly changed
with r as shown in Fig. 3(b). As the Fermi level further
increases, this change becomes smaller and approaches zero.
Therefore, the Seebeck enhancement factor is proportional to
1/(r + 3/2) in degenerate limit. This indicates that a very
large Seebeck enhancement, and thus very large power factor

FIG. 4. (Color online) Enhancement of power factor (curves with

filled symbols) by optimal electron filtering with the optimal cut-

off energy shown in Fig. 2 as a function of Fermi level for r =

−0.5 (circles) and 0.5 (squares) at 300 K. The bulk power factors

(curves with open symbols) with no electron filtering are also shown

for comparison. All the power factor values are normalized to the

maximum bulk power factor for each r .

enhancement, is possible for r close to −3/2 when the Fermi
level is high or the doping density is high. However, this is due
to very small Sbulk. In fact, Sopt is higher for a larger r with a
fixed Fermi level, and becomes almost independent of r when
the Fermi level is very high, but Sbulk is significantly lowered
as r decreases and approaches −3/2.

Figure 4 shows the enhancement of power factor by the
optimal electron filtering as a function of Fermi level in
comparison with the bulk power factor for two scattering
parameters, r = −0.5 and 0.5. For the calculation of the
optimal power factors, the optimal cut-off energy obtained
for each Fermi level shown in Fig. 2 was applied, while no
cut off was assumed for the bulk power factor, i.e., EC = 0.
For each r , the power factor values were normalized to the
maximum bulk power factor in Fig. 4. For a lower r , the peak
of the bulk power factor occurs at a lower Fermi level because
the Seebeck coefficient drops more rapidly with Fermi level
for a lower r . The Seebeck coefficient decreases more slowly
with Fermi level for a higher r , so that the peak bulk power
factor lies at a relatively higher Fermi level. The optimal power
factor increases almost linearly with Fermi level for r = −0.5,
and achieves a factor of 3.5 enhancement over the maximum
bulk value at the Fermi level ∼0.2 eV, and more than a factor
of 4.5 enhancement at the Fermi level ∼0.3 eV. The optimal
power factor increases with Fermi level for r = 0.5 as well,
but at a slower rate than for r = −0.5 at the low Fermi level
region due to the smaller bulk values. However, as the Fermi
level goes further up, the increasing rate for r = 0.5 becomes
faster than that for r = −0.5, and achieves more than a factor
of 6.5 enhancement over the maximum bulk value at the Fermi
level ∼0.3 eV. In general, a material with a lower scattering
parameter can achieve a larger power factor enhancement in
the low Fermi level region by the optimal energy filtering
condition, but if the Fermi level is high enough, a larger
power factor enhancement is possible for a higher scattering
parameter material.
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FIG. 5. (Color online) Variation of the Lorenz number by energy

filtering as a function of cut-off energy for two different Fermi level

EF = 0.1 and 0.2 eV, and two different scattering parameter r = −0.5

and 0.5 at 300 K.

IV. LORENZ NUMBER, ELECTRONIC THERMAL

CONDUCTIVITY, FIGURE OF MERIT,

AND HALL FACTOR

Figure 5 shows the Lorenz number given by (12) as a

function of EC for two different scattering parameter r = −0.5

and 0.5, and two different Fermi levels EF = 0.1 and 0.2 eV,

at 300 K. Lorenz number rapidly decreases when EC falls

into the energy range near the Fermi level where most of

the electrons participating in conduction is distributed, i.e.,

in the Fermi window. When EC goes much higher than the

Fermi level, the variation of Lorenz number with EC becomes

small, and L saturates to a certain value that depends on the

scattering parameter. For example, Lorenz number converges

to 0.82 × 10−8 W � K−2 for r = −0.5, and to 0.90 × 10−8

W � K−2 for r = 0.5 at 300 K regardless of the Fermi

level when the cut-off energy level is very high. At higher

temperatures, the high cut-off energy limit of Lorenz number

slightly increases. For example, at 600 K, the Lorenz number

saturates to 0.88 × 10−8 W � K−2 for r = −0.5, and to

1.04 × 10−8 W � K−2 for r = 0.5.

At the optimal cut off, Lorenz number already becomes

significantly lower than the bulk value. As shown in Fig. 5,

L = 1.0 × 10−8 W � K−2 when the optimal cut-off energy

level EC,opt = 0.23 eV is used for EF = 0.2 eV and r = −0.5

at 300 K, which is about 57% lower than the bulk value 2.3 ×

10−8 W � K−2. At 600 K, this Lorenz number at optimal cut

off slightly increases to 1.06 × 10−8 W � K−2 with EC,opt =

0.27 eV, which is about 49% lower than the bulk value 2.09 ×

10−8 W � K−2.

Electronic thermal conductivity is lowered from its bulk

value by electron energy filtering since the carrier den-

sity contributing to the thermal conduction is reduced

by the filtering, just like the carrier density contributing to

the electrical conduction is reduced. At the same time, the

reduction of Lorenz number by filtering causes the electronic

thermal conductivity to further decrease. Figure 6 shows the

electrical conductivity and the electronic thermal conductivity

normalized to their bulk values as a function of EC for

FIG. 6. (Color online) Reduction of the electrical conductivity (σ )

and the electronic thermal conductivity (κe) from their bulk values

by energy filtering as a function of cut-off energy for two different

Fermi level EF = 0.1 and 0.2 eV, and r = −0.5 at 300 K.

r = −0.5 at 300 K. It is clearly seen that the electronic

thermal conductivity decreases more rapidly than the electrical

conductivity does as EC goes up. At the optimal cut off

(EC,opt = 0.23 eV) for EF = 0.2 eV, κe is reduced to merely

a 13% of the bulk value, while σ becomes a 30% of the bulk

value. The Lorenz number has been reduced to a 43% of

the bulk value in this case, which accounts for the difference

between the reduction factors of κe and σ such that (13%) =

(30%) × (43%).

Since the electronic thermal conductivity is suppressed

significantly by the optimal filtering to about a 10%–20% of

the bulk value, the lattice thermal conductivity can dominate

the total thermal conductivity in most cases when the optimal

cut off is applied. In this case, the total thermal conductivity in

the denominator of ZT becomes almost a constant, and thus

the optimal cut-off energy that maximizes the power factor

also becomes optimal for maximizing ZT . However, it is still

possible that the electronic thermal conductivity dominates

over the lattice one in those materials in which the lattice

thermal conductivity is enormously suppressed by effective

phonon scatterings by nanostructuring. In this case, since the

electronic thermal conductivity decreases more rapidly than

the electrical conductivity with increasing cut-off energy level,

ZT will keep increasing as the cut-off energy further increases.

Then, the upper limit of ZT will be determined when the

lattice thermal conductivity limits the decreasing rate of the

total thermal conductivity with EC to be slower than that of

the power factor.

Figure 7 shows the Hall factor as a function of cut-off

energy for varying scattering parameter and EF = 0.1 eV

at 300 K. Typically the Hall factor is very close to unity

for degenerate semiconductors having the scattering param-

eters between −0.5 and 0.5. For the materials having the

absolute value of scattering parameter larger than 0.5, the

Hall factor can deviate much from unity as shown in Fig. 7.

As EC increases, the Hall factor decreases from the bulk

values, and converges to unity regardless of the scattering

parameter.
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FIG. 7. (Color online) Hall factor as a function of cut-off energy

for varying scattering parameter with EF = 0.1 eV at 300 K.

V. POWER FACTOR ENHANCEMENT IN PbTe

So far we have assumed a parabolic band and a simple

energy dependency of the scattering time with a constant

scattering parameter for the calculations of optimal cut-off

energy, power factor, and other transport properties. In real

materials such as PbTe, however, the band structure can be

highly nonparabolic, and the scattering time is a complicated

function of energy since several different scattering mech-

anisms are involved in electron scattering, such as acoustic

and optical phonon scatterings, and impurity scattering, all of

which have different energy dependencies.

PbTe and PbTe-based alloys have long been known

as important thermoelectric materials for power generation

applications.22 Recently, nanostructured PbTe-based materials

have shown improved figures of merit.4,23–26 PbTe has the

conduction band minima at the L valleys in the Brillouin

zone, and the band structure is strongly nonparabolic and

anisotropic. We used a single-band model for the n-type PbTe

with 4 degeneracy of the L valleys based on the modified

Kane model accounting for the nonparabolic band and the

anisotropic effective masses.27,28 Temperature-dependent ef-

fective masses from Ref. 28 are used in our calculations.

Major scattering mechanisms for PbTe such as acoustic/optical

phonon deformation potential scattering, and polar opti-

cal phonon scattering have been included for the energy-

dependent scattering time. We have also included the screened

Coulomb impurity scattering and the short range vacancy

deformation potential scattering, which can be important at

very high doping densities.27 These band parameters and the

energy-dependent scattering time were plugged in (3) and (4)

to calculate the power factors with cut offs in n-type PbTe.

Figure 8 shows the Seebeck coefficient, electrical conduc-

tivity, electronic thermal conductivity, Lorenz number, and

the maximized power factor of n-type PbTe by the optimal

electron energy filtering as a function of carrier density at

300 K. The optimal cut-off energy level used at each carrier

density is plotted in Fig. 8(c) along with the bulk Fermi level.

The bulk properties of PbTe are also plotted together for

comparison. As shown in Fig. 8(a), the Seebeck coefficient is

greatly enhanced by the optimal filtering, while the reduction

FIG. 8. (Color online) (a) Seebeck coefficient and electrical

conductivity, (b) electronic thermal conductivity and Lorenz number,

(c) optimized power factor of n-type PbTe by the optimal filtering as

a function of carrier density at 300 K, in comparison with the bulk

counterparts. The optimal cut-off energy used and the Fermi level as

a function of carrier density are also shown on the right y axis in (c).

of the electrical conductivity is relatively small. The Seebeck

coefficient is maintained very high to be ∼200 μV/K even

at very high carrier densities by the optimal filtering. More-

over, the electronic thermal conductivity is also maintained

very low ∼0.5 W/m K at the high carrier densities due to

both the reduced electrical conductivity and Lorenz number

(∼0.8 W � K−2) by the energy filtering. This low electronic

thermal conductivity allows one to push the carrier density

to a very high level in this material to achieve a large ZT

enhancement by the energy filtering without worrying about

significant electronic thermal conductivity rising.

Bulk n-type PbTe has the maximum power factor of

35 μW/cm K2 at around 4 × 1018 cm−3 carrier density at

300 K. If the optimal cut-off energy is applied for electron

filtering at high carrier densities, the power factor can be
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enhanced significantly to achieve higher than 80 μW/cm K2 at

1 × 1020 cm−3 carrier density or higher. The optimized power

factor will keep increasing with carrier density as long as the

cut-off energy is optimized at each carrier density.
Since the cut-off energy cannot be easily altered once it is

fixed in a real material, one can use Fig. 8(c) to find the optimal
carrier density for a given cut-off energy and the resulting
maximum power factor in n-PbTe at 300 K. Since the region
where the power factor is largely enhanced is quite localized
in both cut-off energy and carrier density spaces, optimizing
carrier density for a given cut-off energy is equivalent to
optimizing cut-off energy for a given carrier density. They
are in one-to-one correspondence. For example, the resulting
optimal power factor for a 0.2 eV cut-off energy is found from
Fig. 8(c) to be 78 μW/cm K2 at 5 × 1019 cm−3 carrier density,
which is about a 120% enhancement of power factor over the
bulk maximum.

As predicted in the previous section, the optimal cut-off
energy for PbTe is found to be a few kBT above the Fermi level
as shown in Fig. 8(c). At low carrier density where the Fermi
level is close to the conduction band minimum, the difference
between the optimal cut-off energy and the Fermi level is about
40 meV in PbTe. At higher carrier densities, the difference
is reduced slightly to 32 meV. These values correspond to
the case of r = −0.5 at 300 K in Fig. 2, implying that the
acoustic/optical phonon deformation potential scattering is a
dominant scattering mechanism in PbTe at 300 K. However,
the power factor enhancement in PbTe shown in Fig. 8(c) is
lower than the prediction shown in Fig. 4 for r = −0.5. For
example, about a 210% enhancement was predicted for 0.17 eV
Fermi level (with 0.2 eV cut-off energy) in Fig. 4, while a 120%
enhancement from the maximum bulk power factor of 35 to
78 μW/cm K2 was obtained for the same cut-off energy level
in n-PbTe as shown in Fig. 8(c). This reduction in power factor
enhancement is due to the large nonparabolicity in the PbTe
band structure.

Figure 9 shows the similar variation of the transport
properties with carrier density and the power factor enhance-
ment results by the optimal filtering in n-PbTe at 600 K.
The Seebeck coefficient remains high ∼200 μV/K, and the
electronic thermal conductivity remains low ∼0.5 W/m K by
the optimal filtering at high carrier density region at 600 K.
These values did not change much from the values obtained
by the optimal filtering at 300 K in the high carrier density
limit, which implies that the condition of optimal filtering
reduces the dependency of these two properties on scattering
and temperature significantly at very high carrier densities.
However, the electrical conductivity by the optimal filtering
at 600 K is about 2.5 times lower than that at 300 K at the
carrier densities higher than 1 × 1020 cm−3 mainly due to
the reduced mobility by stronger phonon scatterings at higher
temperatures. As a result, the optimal power factor at 600 K
is about 2.5 times lower than that at 300 K at the high carrier
densities. Still, the optimal power factor keeps increasing with
carrier density. A power factor of 35.6 μW/cm K2 can be
achieved at 7 × 1019 cm−3 by the optimal filtering with a
0.2 eV cut-off energy, and a power factor of 43.2 μW/cm
K2 at 3 × 1020 cm−3 with a 0.4 eV cut-off energy in
PbTe at 600 K, which correspond to, respectively, 55% and
88% enhancements over the maximum bulk power factor of
23 μW/cm K2 at this temperature.

FIG. 9. (Color online) (a) Seebeck coefficient and electrical

conductivity, (b) electronic thermal conductivity and Lorenz number,

(c) optimized power factor of n-type PbTe by the optimal filtering as

a function of carrier density at 600 K, in comparison with their bulk

counterparts. The optimal cut-off energy used and the Fermi level as

a function of carrier density are also shown on the right y axis in (c).

Since the electronic thermal conductivity remains low

(∼0.5 W/m K) and the power factor keeps increasing with

increasing carrier density by the adjusted cut-off energy, it is

possible to achieve very high figure of merits at high carrier

densities by energy filtering. Assuming the lattice thermal

conductivity to be 1.0 W/m K at 600 K for PbTe, the total

thermal conductivity becomes 1.45 W/m K with the electronic

thermal conductivity of 0.45 W/m K, and the power factor

becomes 35.6 μW/cm K2 at carrier density 7 × 1019 cm−3

when a cut-off energy level of 0.2 eV is used. These altogether

make ZT ∼ 1.48 at 600 K. If a 0.4 eV cut-off energy level

is used at carrier density 3 × 1020 cm−3, then the resulting

total thermal conductivity of 1.55 W/m K and power factor of

43.2 μW/cm K2 give ZT ∼ 1.66 at 600 K. For comparison,

the bulk n-type PbTe has the maximum ZT ∼ 0.97 at
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carrier density 8 × 1018 cm−3 at 600 K. This optimal carrier

density for maximum ZT , 8 × 1018 cm−3, is lower than the

optimal carrier density for maximum power factor, which is

1.5 × 1019 cm−3, because the electronic thermal conductivity

increased quite significantly from 0.3 to 0.6 W/m K when the

carrier density increases from 8 × 1018 to 1.5 × 1019 cm−3.

VI. DISTRIBUTED RESONANT SCATTERINGS

One question we now have is, how can we realize the

electron energy filtering in real materials. One possible way

to suppress electron transport in a certain energy range is to

put an extensive amount of scatterings in that particular energy

range, so that electrons experience very slow mobility within

the energy region and thus are predominantly prevented from

contributing to conduction. Scatterings cannot completely

block the electron transport in reality because they cannot

be infinitely strong. But a sufficient selectivity in energy can

mimic the ideal filtering. Another important requirement for

electron filtering is a sharp cut off in energy selection. Since

most of the electrons that participate in conduction are near

the Fermi level, only a sharp edge near the Fermi level in

transport can effectively achieve strong energy selection and

thus significant Seebeck enhancement. The often-used Mott

formula given below by (24) also backs this requirement,2

S =
π2

3

k2
BT

e

d ln [σd (E)]

dE

∣

∣

∣

∣

E=EF

, (24)

which states that the Seebeck coefficient can be significantly

enhanced if the slope of the differential conductivity with

respect to energy at the Fermi level is very large. The slope

of the differential conductivity can be increased when there

is a sharp edge in the scattering time, the group velocity, or

the density of states. It is noted that (24) is derived from the

general formula given by (4) in some limited cases such as at

low temperatures where the Fermi window is very narrow in

energy.

It has been known that steplike potential offsets within small

nanoparticles embedded in bulk materials cannot achieve such

a scattering time with a sharp positive slope with respect to

energy.12 These step potential barriers or wells instead create

scattering times that have a slow negative slope with respect to

energy because the electron wavelengths are too large to see the

potential step in such a small spatial region, so the scattering

is Rayleigh-like. When nanoparticles are ionized, however, a

slowly varying screened Coulomb potential is formed around

the nanoparticles, so the electrons in the low energy region

are effectively scattered by the spatially wide potential profile.

Therefore, the scattering time by ionized nanoparticles can

have a positive slope in energy, but the slope is still not sharp

enough to be used for electron filtering. Instead, they can

replace the ionized impurity scattering to enhance the electrical

conductivity.12

One can find energetically sharp scattering times from

resonances. Recently it has been reported that core-shell

structured nanoparticles can have sharp resonant scattering

times at the quasibound energy states formed inside the core

region.13 The width and position of the resonant scattering

dip can be controlled by the well depth in the core region.

However, the dips in scattering time were not very deep due to

the existence of nonresonant scatterings by potential offsets at

the heterointerfaces.

A very deep and narrow resonant scattering time can be

obtained by resonant impurities. In the 1950s, Friedel found

that transition metal impurities can induce a sharp increase of

resistivity in a small energy region by their resonant electron

scattering.29 According to the paper, the Coulomb potential

due to the ionization of d orbitals in transition metal atoms is

strongly screened by the covalent electrons, which can shift

up the bound states into the conduction band, and make them

resonate with the free electron states in the band. Since the

phase shift of electrons by the resonant scattering changes

more rapidly from 0 to π with energy for the higher azimuthal

quantum number l, the broadening decreases as l increases.

This may provide another controllability of the resonance

width. Group III elements such as Tl, and group IV elements

such as Sn have also been found to create resonant levels in

the band structures of IV-VI semiconductors,30 and Bi2Te3,31

respectively. Since the impurities have infinitesimally small

sizes, there is no additional nonresonant scattering by potential

offsets in contrast to the core-shell nanoparticles, and thus

the scattering time can be approximated by the bell-shaped

Lorentzian function given by32

τres(E) = τ0,res

[

1 +

(

E − Eres

γ /2

)2
]

, (25)

where Eres is the resonant energy level of the impurity, γ is

the full width at half maximum (FWHM) of the resonance,

and τ0,res is the minimum scattering time reached at E =

Eres. The parameter τ0,res is inversely proportional to the

concentration of the resonant impurities. This sharp and deep

resonant impurity scattering is a good candidate for creating

a sharp cut-off edge near the Fermi level. Also, if different

kinds of resonant impurities with different resonant energy

levels are put together with appropriate depths and widths

and distributed in energy at appropriate positions in a bulk

material, a suppression of electron transport over a wide energy

range along with a sharp cut off is possible. A single sharp

resonant dip may not be effective in modifying the transport

at room temperature or higher, because its width in energy

is typically much narrower than that of the Fermi window at

high temperatures, so that the major portion of the distribution

of conducting electrons is not affected by the resonance. By

using multiple resonant dips distributed in energy that cover the

half width of the Fermi window, the most of the conducting

electrons distributed in the lower-energy half of the Fermi

window below the Fermi level could be filtered out to enhance

the power factor at high temperatures.

In Fig. 10 we show two examples of using distributed

resonant scatterings as a means to partially realize the electron

filtering. With five 5 meV wide resonances evenly spaced

between 0.1 and 0.2 eV as shown in Fig. 10(a), most of

the low-energy half of the Fermi window at 300 K can be

effectively covered to suppress electron transport in that energy

range. There are local peaks of scattering time between the

resonances where the scattering time is much higher than

the minimum, such that electron filtering is weak there. One

can make the resonances wider to suppress the local peaks in

scattering time, except for the far right resonance at the highest
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FIG. 10. (Color online) Proposed use of distributed resonant

scatterings as a means to realize the electron energy filtering by

suppressing electron transport in the left half of the Fermi window

at 300 K. (a) Five resonances with resonant centers evenly spaced

between 0.1 and 0.2 eV, widths of 5 meV, and minimum scattering

times at 6 × 10−16 s and (b) two resonances with resonant centers at

0.15 and 0.2 eV, widths of 15 and 5 meV, respectively, and minimum

scattering times at 6 × 10−16 s. The total scattering includes all other

relevant scattering times such as phonon scatterings in PbTe.

energy which defines the sharp cut off of energy filtering near

the Fermi level. However, if the resonances are too wide, the

high-energy shoulder of the sharp edge can be affected by

the long tails of the broad resonances, such that the electron

filtering effect is weakened.

In addition, using only two resonances, partial electron

filtering is possible as shown in Fig. 10(b). In this case, the

first resonance at the lower energy region can be wider (γ =

15 meV) than the second resonance at the higher energy region

(γ = 5 meV). The spacing between the two is selected to

be larger (50 meV) than that in the case of five resonances

(25 meV) to cover as much space as possible with a fewer

number of resonances. Depths of the resonant scatterings

are selected carefully to achieve the largest power factor

enhancements. Typically the depths of scattering dips need

to be sufficiently deep, about two orders of magnitude lower

than the background scattering time. They should not be too

deep, however, since the long tail of the scattering time can

lower the high-energy shoulder of the sharp edge at cut off,

such that the slope of the scattering time with respect to energy

becomes smaller near the cut-off energy.

Figure 11 shows the resulting Seebeck coefficient, electrical

conductivity, and power factor in n-type PbTe at 300 K by

the two cases of distributed resonant scatterings described in

FIG. 11. (Color online) (a) Seebeck coefficient, (b) electrical

conductivity, and (c) power factor of n-type PbTe at 300 K as a

function of carrier density for the two cases of distributed resonant

scatterings described in Fig. 10. For comparison, the properties by

an ideal electron filtering with a 0.2 eV cut off, and the bulk values

(curve with filled circles) are also presented.

Fig. 10 in comparison with the case of an ideal electron filtering

with a fixed cut off at 0.2 eV, and with the bulk values. Unlike

the ideal filtering case, the distributed resonant scattering cases

may have lower Seebeck coefficients than the bulk at low

carrier density region as shown in Fig. 11(a). When the Fermi

level is positioned below the lowest-energy resonance, the

high-energy electrons above the Fermi level will be scattered

strongly by the resonances. As a result, the average transport

energy is lowered than that of the bulk, and the Seebeck

coefficient is reduced. As the carrier density changes from

low to high, the Fermi level increases accordingly; more of the

low-energy electrons below the Fermi level fall into the energy

window affected by the resonances, experiencing significant
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mobility suppression, while more of the high-energy electrons

above the Fermi level get unaffected by the resonances staying

out of the resonance-affected energy region. As a result,

the average transport energy rises back up and the Seebeck

coefficient increases, which is the consequence of the energy

filtering. As the Fermi level goes further up beyond the optimal

cut-off energy, then the Seebeck coefficient decreases again

and finally converges to the bulk value.

The mobility suppression is largest when the Fermi level

falls in the middle of the resonant energy window, so that

the largest portion of conducting electrons experience the

resonant scatterings. This leads to a local dip in the electrical

conductivity curve for the two distributed resonant scattering

cases plotted in Fig. 11(b). At high carrier density region, the

electrical conductivity for the ideal filtering case is slightly

higher than those for the distributed resonant scattering cases,

since the right-hand side of the highest-energy resonance in

the latter cases extends beyond 0.2 eV, while electron energy

is cut off exactly at 0.2 eV for the ideal filtering case.

The maximum power factor of 52 μW/cm K2 can be

obtained for the five resonant scatterings, and 43 μW/cm K2

for the two resonant scatterings both at 7.6 × 1019 cm−3 carrier

density, which correspond to 50% and 25% enhancements,

respectively, over the maximum bulk value of 35 μW/cm K2

at 300 K. These enhancements are lower than the 120%

enhancement obtained by ideal electron filtering with a similar

cut-off energy at 0.2 eV. This is due to the incomplete

suppression of electron transport by the resonant scatterings,

in particular, at the local peaks of scattering time between

the resonances. These uncovered energy regions are wider

when a smaller number of resonant scatterings are used. As a

result, the power factor enhancement can be lower for a smaller

number of resonant scatterings. The Fermi window is wider at

higher temperature, proportional to T . Hence, a larger number

of wider resonant scatterings might be needed to sufficiently

cover the lower-energy half of the Fermi window at higher

temperatures.

One important note is, if the scattering spectrum is signifi-

cantly modified to form a band pass or stop, the density of states

and dispersion curves can be modified as well. For example,

Heremans et al.10 used a 2% atomic fraction of Tl impurities

in PbTe to enhance the power factor by the modification of

the density of states. In order to utilize the resonant scatterings

without a significant modification of the band structure, we

may need to use a lower amount of impurities than 2%. In the

future, the amount of impurities that must be used to achieve

sufficiently strong electron filtering should be determined

experimentally. When the density of states is modified, the

local effective mass at the energy region is also increased,

which in turn, may, simultaneously, reduce the mobility and

electrical conductivity. Thus special care might be necessary

to achieve a large power factor enhancement at high impurity

concentrations.

VII. CONCLUSIONS

We have investigated the electron energy filtering effect in

bulk materials where the lateral momentum conservation is no

longer an issue. For a parabolic band and a simple energy-

dependent electron momentum scattering time represented by

a single constant scattering parameter, we have quantified

the optimal cut-off energy and the maximum power factor

enhancement factor as functions of the Fermi level, scattering

parameter, and temperature. The variations of the electronic

thermal conductivity, Lorenz number, and Hall factor were

also investigated under the energy filtering. This theory can

also be applied to real materials with nonparabolic bands and

complicated energy-dependent scattering time such as PbTe.

It is found that the nonparabolicity can reduce the power

factor enhancement factor, but the optimal cut-off energy is

quite similar to that obtained for a parabolic band. We have

also proposed the use of distributed resonant scatterings of

Lorentzian shapes to partially realize the electron filtering

effect in real materials. A 50% power factor enhancement

is achieved by five narrow resonant scatterings properly

distributed in energy space in PbTe at 300 K. With a lower

number of resonant scatterings, the power factor enhancement

can be smaller.

APPENDIX A: CHARACTERISTICS OF FS(EC ) AND g(EC )

The FS(EC) and g(EC) functions are defined by (8) and (9),

respectively. In particular FS(0) with EC = 0 can be rewritten

using the complete Fermi-Dirac integral defined by

Fj (η) =
1

Ŵ(j + 1)

∫ ∞

0

xj

exp(x − η) + 1
dx, (A1)

where Ŵ is the gamma function, so that

Fs(0) =

(

3

2
+ r + s

)

(kBT )
3
2
+r+sŴ

×

(

3

2
+ r + s

)

F 1
2
+r+s

(

EF

kBT

)

. (A2)

From (8) and (9),

g(EC)−EC =

(

5
2
+r

) ∫ ∞

EC
E

3
2
+rf0(E)dE+E

5
2
+r

C f0(EC)

(

3
2

+ r
) ∫ ∞

EC
E

1
2
+rf0(E)dE+E

3
2
+r

C f0(EC)

−EC

=

∫ ∞

EC
E

1
2
+r

[(

5
2

+ r
)

E−
(

3
2

+ r
)

EC

]

f0(E)dE

(

3
2

+ r
) ∫ ∞

EC
E

1
2
+rf0(E)dE+E

3
2
+r

C f0(EC)

.

(A3)

Since all the integrands are positive, and ( 5
2

+ r)E −

( 3
2

+ r)EC > 0 for E � EC and r � −3/2, therefore,

g(EC) > EC for ∀EC � 0. (A4)

Differentiating (8),

F ′
s (EC) =

d

dEC

[(

3

2
+ r + s

)∫ ∞

EC

E
1
2
+r+sf0(E)dE

]

+
d

dEC

(

E
3
2
+r+s

C f0(EC)
)

= −

(

3

2
+ r + s

)

E
1
2
+r+s

C f0(EC)

+

(

3

2
+ r + s

)

E
1
2
+r+s

C f0(EC)+E
3
2
+r+s

C f ′
0(EC)

= E
3
2
+r+s

C f ′
0(EC).
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Thus,

F ′
s (EC) = E

3
2
+r+s

C f ′
0(EC). (A5)

Since f ′
0 < 0 and EC � 0, from (A5),

F ′
s � 0, (A6)

where the equality holds only when EC = 0.

Also, from (A5),

F ′
1(EC)

F ′
0(EC)

=
E

5
2
+r

C f ′
0(EC)

E
3
2
+r

C f ′
0(EC)

= EC . (A7)

The derivative of g(EC) is given from (A7) by

g′ =
F ′

1F0 − F1F
′
0

F 2
0

=
F ′

0

F0

(

F ′
1

F ′
0

−
F1

F0

)

=
F ′

0

F0

(EC − g). (A8)

From (A6), F ′
0 � 0 (equality when EC = 0), F0 > 0, and

(EC − g) < 0 from (A4). Therefore,

g′(EC) � 0, (A9)

where the equality holds only when EC = 0.

Now, check g(0): From (A2),

g(0) =

(

5
2

+ r
)

(kBT )Ŵ
(

5
2

+ r
)

F 3
2
+r

(

EF

kBT

)

(

3
2

+ r
)

Ŵ
(

3
2

+ r
)

F 1
2
+r

(

EF

kBT

) .

Since Ŵ(j + 1) = jŴ(j ),

g(0) =

(

5
2

+ r
)

(kBT )F 3
2
+r

(

EF

kBT

)

F 1
2
+r

(

EF

kBT

) . (A10)

It is known for the complete Fermi-Dirac Integral Fj (η) that

Fj (η) →
ηj+1

Ŵ(j + 2)
as η → ∞.

Thus, from (A10),

lim
EF →∞

[g(0) − EF ] = lim
EF →∞

(

5
2

+ r
)

(kBT )F 3
2
+r

(

EF

kBT

)

F 1
2
+r

(

EF

kBT

) − EF

=

(

5
2

+ r
)

(kBT )

(

EF
kB T

)
5
2

+r

Ŵ

(

7
2
+r

)

(

EF
kB T

)
3
2

+r

Ŵ

(

5
2
+r

)

− EF

= EF − EF = 0.

Therefore,

lim
EF →∞

[g(0) − EF ] = 0. (A11)

Since g(0) asymptotically approaches EF as EF increases

to infinity, and g(0)−EF decreases monotonically with

increasing EF ,

g(0) > EF for ∀EF . (A12)

Therefore, by (A9) and (A12),

g(EC) > EF for ∀EF and EC � 0. (A13)

APPENDIX B: OPTIMAL CUT-OFF ENERGY

The Seebeck coefficient with a cut-off energy EC is given by

(6), S(EC) = C2[g(EC) − EF ]. For convenience, we removed

a negative sign in (6), so that the Seebeck is positive for n-

type semiconductors. The bulk Seebeck coefficient is S(0) =

C2[g(0) − EF ] with EC = 0. By (A12), S(0) is always positive.

Since g(EC) increases monotonically with EC according to

(A9),

S(EC) = C2[g(EC) − EF ] � S(0) = C2[g(0) − EF ]. (B1)

Thus, the Seebeck coefficient is enhanced by a positive cut-off

energy EC , and keeps increasing with EC as g(EC) increases

with EC .

The electrical conductivity is given by (5), σ (EC) = C1 ·

F0(EC). According to (A6), F0 monotonically decreases with

increasing EC . Therefore, the electrical conductivity decreases

with increasing EC .

The power factor S2σ is given by (7) to be

S2σ = C1C2

[F1(EC) − EF F0(EC)]2

F0(EC)
.

The power factor is maximized when its derivative is equal to

zero, such that

dS2σ

dEC

=
C

e2T 2

d

dEC

(

F 2
1 − 2EF F1F0 + E2

F F 2
0

)

F0

=
C

e2T 2

2F1F
′
1F0 − 2EF F ′

1F
2
0 + E2

F F 2
0 F ′

0−F 2
1 F ′

0

F 2
0

= 0.

Thus we get

2F1F
′
1F0 − 2EF F ′

1F
2
0 + E2

F F 2
0 F ′

0 − F 2
1 F ′

0 = 0. (B2)

Here we apply (A7) F ′
1/F

′
0 = EC to (B2) to find

(

F1

F0

− EC

)2

= (EF − EC)2 . (B3)

The solution to (B3) is

F1

F0

= EF or
F1

F0

= 2EC − EF .

However, by (A13), the first solution cannot be accepted.

Therefore,

F1

F0

= g(EC) = 2EC − EF . (B4)

The optimal cut-off energy EC,opt that maximizes the power

factor is the one that satisfies (B4).
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