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Electron energy loss in composite systems
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The interaction of scanning transmission electron microscopy electrons with composite systems is investi-
gated by following a mean-field theory of the effective response function. Expressions for the inverse longi-
tudinal dielectric function of isolated spheres and cylinders are derived. Experimental valence loss spectra from
SiO2 polymorphs are analyzed and the insensitivity of the plasmon peak to the density of the material is
explained.@S0163-1829~97!02715-X#
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I. INTRODUCTION

Theoretical descriptions of the interaction of high-ener
electron beams with surfaces and with small particles h
been of basic importance in the development of scann
transmission electron microscopy. In the case of electr
moving on a definite trajectory energy-loss spectra have b
calculated for planar interfaces,1 spheres,2 cylinders,3–5 and
more complex geometries.6–8 On the other hand, electron
loss spectra for a broad beam geometry can be analyzed
the concept of an effective medium, from the effective
verse longitudinal dielectric response. Effective-mediu
theories have been used for many years to analyze op
spectra and have also been proved to be useful to inte
electron-energy-loss experiments.

The q50 limit of the average dielectric function for
system of spherical particles was first derived
Maxwell-Garnett,9 within a mean-field approximation valid
for small values of the volume occupied by the spheres.
Maxwell-Garnett dielectric function is successful in the o
tical range; however, in electron-energy-loss spectrosc
the electrons may excite modes with wavelengths sma
than the particle size and an appropriate dielectric func
should retain information about the structure of the medi
through a dependence on momentum transfer.

A momentum-dependent effective longitudinal dielect
function can be derived by equating the energy-loss pr
ability of electrons passing through a composite system w
the bulk-energy-loss probability. Fujimoto and Komaki10 in-
cluded all multipoles to derive, within the hydrodynamic a
proximation for a free-electron gas, the energy loss o
broad beam of fast electrons incident on an isolated sph
This result for the energy loss was later generalized to ob
an expression that is valid for any local dielectric functi
inside the sphere.11,12 Finally, these results have been r
cently extended and an expression for the effective long
dinal dielectric function of a random system of identic
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spherical particles has been derived, within a mean-field
proximation, by Barrera and Fuchs.13 Maxwell-Garnett’s
theory9 and previous theories for isolated spheres11,12 repre-
sent the long-wavelength limit and the dilute limit, respe
tively, of the theory of Barrera and Fuchs. General expr
sions for the momentum-dependent effective inve
longitudinal dielectric function of a system of cylindrica
particles, of interest in the investigation of valence loss sp
tra from zeolites14 and tubular fullerenes,15 are not available.

In this paper we present an alternative approach for
evaluation of the effective longitudinal response function
single isolated particles in an infinite medium. First of all, w
reproduce former results for isolated spheres. Then we de
a general expression for the effective inverse longitudi
response function of isolated cylinders. Finally, we apply o
theory to explain the experimental valence loss spectra
tained by McComb and Howie14 from SiO2 polymorphs, by
modeling different silica polymorphs as less dense versi
of the most dense material, stishovite.

II. THEORY

Suppose that a test charge density

rext~r ,t !5r0e
i ~q•r2vt ! ~2.1!

is introduced into an inhomogeneous medium of dielec
function e(q,q8,v). It induces a charger ind(r ,t) in the sys-
tem whose density Fourier components have the form16

r ind~q8,v!5r0K~q8,q,v!, ~2.2!

where K(q8,q,v) represents the density-density respon
function of the medium

K~q,q8,v!5@e~q,q8,v!#212dq,q8. ~2.3!

On the other hand, the probability per unit time for a sw
electron to transfer momentumq and energy\v to an inho-
9550 © 1997 The American Physical Society
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55 9551ELECTRON ENERGY LOSS IN COMPOSITE SYSTEMS
mogeneous electronic system is, within the first Born
proximation, proportional to the dynamic structure factor17

S~q,v!52
4p2e2

\q2
Ime21~q,q,v!. ~2.4!

Thus, in order to interpret electron-energy-loss experime
we are interested in the evaluation of the momentum dep
dent effective inverse longitudinal dielectric function

eeff
21~q,v!5e21~q,q,v!, ~2.5!

which can be derived after projecting the induced char
densityr ind(r ,t) onto theqth Fourier component

eeff
21~q,v!511

r ind~q,v!

r0
. ~2.6!

If one assumes that the inhomogeneous medium has tra
tional invariance at the macroscopic scale, an ensemble
erage of the effective inverse dielectric function of Eq.~2.6!
can be made and Eq.~9! of Ref. 13 is obtained.

Instead, we consider a homogeneous isolated particle
local dielectric functionev inside a box with local dielectric
function e0, f being the relative part of the volume of th
box occupied by the particle. The test charge density of
~2.1! induces in the bulk of the particle and the host a cha
with a single density Fourier component

rb
ind~q,v!5r0~ev

2121! ~2.7!

and

rb
ind~q,v!5r0~e0

2121!, ~2.8!

respectively, and it also induces a surface charge den
which appears from the difference between the normal c
ponents of the electric fields created in and outside the
face

ss
ind~r ,t !5

1

4p
@“fs

ind~r ,t !•n̂ur5r22“fs
ind~r ,t !•n̂ur5r1#,

~2.9!

wheren̂ represents a unit vector in the direction perpendi
lar to the surface andfs

ind(r ,t) is the scalar potential create
by the induced surface charge.fs

ind(r ,t) is determined by the
continuity of the total scalar potential and the normal co
ponent of the displacement vector

fs
tot~r ,t !ur5r25fs

tot~r ,t !ur5r1 ~2.10!

and

e0“fs
tot~r ,t !•n̂ur5r15ev“fs

tot~r ,t !•n̂ur5r2, ~2.11!

wheref tot represents the total potential

f tot~r ,t !5fext~r ,t !1fb
ind~r ,t !1fs

ind~r ,t !, ~2.12!
-

s,
n-

d
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v-

ith
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e

ty,
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r-

-
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with fext(r ,t) being the scalar potential created by the t
charge andfb

ind(r ,t) and fs
ind(r ,t) being scalar potentials

created by the charge induced in the bulk and the surfa
respectively.

A. Spheres

The introduction of Eqs.~2.7!–~2.9! into Eq. ~2.6! gives,
for a spherical particle of radiusa centered in a box of vol-
umeV→`,

eeff
21~q,v!5~12 f !e0

211 f ev
21

1
1

4pr0V
E dre2 i ~q•r2vt !d~r2a!

3F ]fs
ind~r ,t !

]r
U
r5a2

2
]fs

ind~r ,t !

]r
U
r5a1

G .
~2.13!

Now, we introduce the well-known expansions, in terms
spherical harmonics, of a plane wave and also the Coulo
potential due to a point charge and find, after applying E
~2.10! and ~2.11!:

fs
ind~r ,t !5

~4p!2r0
q

e2 ivt

3(
l50

`

(
m52 l

m5 l

i lYlm* ~ q̂!Ylm~ r̂ !Gl
s~q,v! f ~r !,

~2.14!

where

Gl
s~q,v!5

ev2e0
evl1e0~ l11!

al12

3F2e0
21 j l8~qa!1~eq,v

212e0
21! j l11~qa!

l11

2l11G
~2.15!

and

f ~r !5H a2~2l11!r l if r<a

r2~ l11! otherwise.
~2.16!

Ylm is the spherical harmonic function andj l the spherical
Bessel function of the first kind.

Then, the introduction of Eq.~2.14! into Eq. ~2.13! gives
the following result for the effective inverse longitudinal d
electric function of a homogeneous sphere of dielectric fu
tion ev immersed in a medium of dielectric functione0:
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eeff
21~q,v!5e0

211 f ~ev
212e0

21!H 113(
l50

`

~2l11!

3F2
e0~ l11!

evl1e0~ l11!

j l~qa!

qa
j l11~qa!

1
evl

evl1e0~ l11!

j l~qa!

qa
j l21~qa!G J ,

~2.17!

and taking advantage of the identity18

(
l50

`

~2l11! j l~x! j l8~x!50, ~2.18!

Eq. ~2.17! can also be expressed as

eeff
21~q,v!5~12 f !e0

211 f H ev
2113(

l51

`

l ~2l11!F j l~qa!

qa G2

3F2~ l11!/ l e0
212ev

211
~2l11!2/ l

evl1e0~ l11!G J .
~2.19!

Equation ~2.19! exactly coincides with the dilute limi
( f→0) of the effective inverse dielectric function of Barre
and Fuchs13 and the electron-energy-loss probability deriv
from this equation reproduces the results of Refs. 11 and

If one assumes that the radius of the sphere is small,
qa!1, an expansion of Eq.~2.17! with respect toqa gives,
up to second order,

eeff
21~q,v!5e0

211 f ~ev
212e0

21!$11 f l501 f l511 f l52%,
~2.20!

where f l50, f l51, and f l52 represent monopole, dipole, an
quadrupole contributions, respectively,

f l505211
4

15
~qa!21O„~qa!4…, ~2.21!

f l5152
1

5
~qa!213F12

1

5
~qa!2G ev

ev12e0
1O„~qa!4…,

~2.22!

and

f l525
2

3
~qa!2

ev

2ev13e0
1O„~qa!4…, ~2.23!
2.
.,

and the introduction of Eqs.~2.21!–~2.23! into Eq. ~2.20!
gives

eeff
21~q,v!5e0

211e0
21f H 23

ev2e0
ev12e0

1F2
1

15

ev2e0
ev

1
3

5

ev2e0
ev12e0

2
2

3

ev2e0
2ev13e0

G
3~qa!21O„~qa!4…J . ~2.24!

The first two terms of the right-hand side of Eq.~2.24! re-
produce the well-known dilute limit of the Maxwell-Garne
dielectric function and the third term retains informatio
about the structure of the medium through a dependenc
theqa parameter.

B. Cylinders

For a homogeneous infinite cylinder of radiusa and di-
electric functionev centered in a box of dielectric functio
e0 and volumeV→`, the introduction of Eqs.~2.7!–~2.9!
into Eq. ~2.6! gives

eeff
21~q,v!5~12 f !e0

211 f ev
21

1
1

4pr0V
E dre2 i ~q•r2vt !d~r2a!

3F ]fs
ind~r ,t !

]r
U

r5a2

2
]fs

ind~r ,t !

]r
U

r5a1
G ,

~2.25!

wherer represents the component ofr in a plane perpen-
dicular to the axis of the cylinder. Then, after the introdu
tion of cylindrical Bessel functions and by requiring that t
total scalar potential and the normal component of the d
placement vector be continuous we find~see the Appendix!
the expression for the scalar potential created by the indu
charge at the surface of the cylinder

fs
ind~r ,t !5

4pr0
Q21qz

2e
i ~qzz2vt !

3 (
m50

`

mmi
mcos~mf!Gm

s ~q,v! f ~r!,

~2.26!

where
Gs~q,v!5~ev2e0!
ev

21QJm8 ~Qa!1~ev
21qz2e0

21!I m8 ~qza! f m
~1!

2evqzIm8 ~qza!1e0qzIm~qza!Km
21~qza!Km8 ~qza!

~2.27!
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and

f ~r!5H I m~qzr! if r<a

Im~qza!Km
21~qza!Km~qzr! otherwise.

~2.28!

Q andqz represent components of the total momentumq in
a plane perpendicular and in a direction parallel to the axi
the cylinder, respectively,Jm represents the cylindrica
Bessel function of the first kind,I m and Km are modified
Bessel functions,f m

(1) is given by Eq.~A10!, and mm are
Newmann numbers. Then we take advantage of the ident

qzKm8 ~qza! f m
~2!5QJm8 ~Qa!2qzIm8 ~qza! f m

~1! , ~2.29!

with f m
(1) and f m

(2) of Eqs.~A10! and ~A11!, and18

Km
21~x!5x@ I m21~x!1I m~x!Km

21~x!Km21~x!#, ~2.30!

and the introduction of Eq.~2.26! into Eq. ~2.25! gives

eeff
21~q,v!5e0

211 f ~ev
212e0

21!H 11
2

~Qa!21~qza!2

3 (
m50

`

@evam~qza!2e0#
21

mmJm~Qa!

Km8 ~qza!I m~qza!

3@evI m8 ~qza! f m
~1!1e0Km8 ~qza! f m

~2!#J , ~2.31!

where

am~qza!5
I m8 ~qza!Km~qza!

I m~qza!Km8 ~qza!
. ~2.32!

The termsam(qza), which contain the surface plasmo
modes, are in agreement with previous results for the ene
loss probabilities of electrons moving on defini
trajectories,3–6 and the energy-loss probability derived fro
Eq. ~2.31! coincides with the integration over impact param
eters of the energy loss of well-focused beams moving i
parallel direction to the axis of the cylinder.19 In particular, if
the momentum transfer is located in a plane perpendicula
the axis of the cylinder (qza50), Eq. ~2.31! gives

eeff
21~q,v!5e0

211 f ~ev
212e0

21!H 12
2

Qa
J0~Qa!J1~Qa!

1
4

Qa

1

ev1e0
(
m51

`

Jm~Qa!

3@evJm21~Qa!2e0Jm11~Qa!#J . ~2.33!

III. ELECTRON ENERGY LOSS IN ZEOLITES

McComb and Howie14 carried out valence-loss spectro
copy with four SiO2 polymorphs of different density an
determined, after a Kramers-Kronig analysis of the data,
real and imaginary parts of the dielectric function for ea
sample. The four SiO2 polymorphs used were stishovite, c
f

es

y-

a

to

e

esite,a quartz, and silicalite. Stishovite is a high-dens
form of silica, with specific gravity of 4.28, and the othe
silica under study, coesite,a quartz, and silicalite, are less
dense polymorphs of specific gravity of 2.93, 2.66, and 1.
respectively.20 Their structure is built from SiO4 tetrahedra
with every silicon having four oxygens and every oxyg
having two silicons as nearest neighbors.

McComb and Howie also determined, from the expe
mental spectra, the bulk-energy-loss functions Im@2ev

21# for
each silica polymorph investigated and found that the spe
from coesite,a quartz, and silicalite are all similar, showin
an insensitivity of the plasmon peak to the density of t
material, while the spectrum of the stishovite differs cons
erably. In Ref. 14 they regarded coesite,a quartz, and sili-
calite as less-dense versions of stishovite formed by mix
in some spherical spaces of vacuum in stishovite or stis
vite in vacuum, but they were not able to interpret the e
periments in terms of Maxwell-Garnett and other availa
versions of effective-medium theory. They also tried to
gard coesite as the starting material to modela quartz and
silicalite, but they were not able to reproduce the insensi
ity of the position of the loss peak for these three materia

On the other hand, it appears from the structure of th
materials20 that the modeling of zeolites by mixing spher
in an otherwise infinite medium is not appropriate. Inste
mixing in infinite cylinders in vacuum should model th
structure of the zeolites under study more adequately and
have evaluated, therefore, from Eq.~2.31! the loss function
Im@2eeff

21(q,v)# of the zeolites under study.
The experiment shows a prominent peak in the loss fu

tion of stishovite, the most dense of the four materials,
E531.2 eV,14 which can be identified with a bulk plasmo
loss of plasmon frequency

vp
25

4pne2

me
1V2, ~3.1!

n and\V being the valence electron density and the ba
gap energy, respectively. However, the peak in the loss fu
tion of the three other materials appears to be insensitiv
the density of the material and could be identified inste
with a surface plasmon loss. Therefore, we have ta
stishovite as the reference material of dielectric functionev

and we have evaluated from Eq.~2.31! the loss function
Im@2eeff

21(q,v)# of coesite,a quartz, and silicalite, with fill-
ing fractions of 0.68, 0.62, and 0.42, respectively.

If one assumes that the radius of the cylinders is sm
qa<1, the main features of the energy-loss function are c
trolled by the component of the momentumq in a plane
perpendicular to the axis of the cylinder.19 Consequently, we
have takenqza50 and different values ofQa. The largest
wave vector for which the bulk plasmon is a well-defin
excitation is approximately equal tovp /vF , vF being the
Fermi velocity; however, experimental valence-loss spec
were acquired by using an effective collection angle
8.3 mrad, so that for a typical incident electron energy
100 keV the largest transferred wave vector would be 5
Å 21 and this means that for cylinders with a radius of up
5 Å the adimensional parameterQa would take values of up
to approximately 3.0.
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The energy-loss functions Im@2eeff
21(q,v)# calculated

from Eq. ~2.31! for coesite,a quartz, and silicalite on the
basis of the experimental data for the dielectric function
stishovite are shown in Fig. 1, with three values ofQa:
0.0, 1.0, and 3.0. The bulk-energy-loss function of stishov
is also represented, showing a prominent peak for an elec

FIG. 1. Energy-loss functions Im@2eeff
21(q,v)# for infinite cyl-

inders of stishovite in vacuum with volume fractionsf50.68~solid
line!, 0.62 ~dashed line!, and 0.42~dash-dotted line! to model co-
esite, a quartz, and silicalite, respectively, and three values
Qa: ~a! 0.0, ~b! 1.0, and~c! 3.0. Dotted lines represent the exper
mental loss function for stishovite.
f

e
on

energy loss of 31.2 eV, which is identified with a bulk pla
mon loss, as discussed above. Surface modes, describe
the termsam(qza) of Eq. ~2.32!, are all very close to the
planar mode19 and, in particular, forqza50 they are all
equal to the planar mode@see Eq.~2.33!#. Consequently, the
peak near 24 eV in the loss function for coesite,a quartz,
and silicalite is associated with surface modes. The heigh
these surface modes decreases as the parameterQa increases
as a consequence of the fact that the relative strength of
bulk mode increases withQa, but it changes very little for
values ofQa between 0 and 1. On the other hand, the effe
of changing the volume fractionf to model different mate-
rials appears also in a variation of the surface mode heig
the ratio between surface mode heights being equal to
ratio between the corresponding volume fractions.

The experimental loss functions are shown in Fig. 2.14 It
is obvious from Figs. 1 and 2 that peak positions are w
described by our theory and also the insensitivity of the pl
mon peak to the density of the material is explained. Ho
ever, there are two discrepancies between our theory and
experiment. First, the ratio between the experimental surf
mode heights is smaller than the ratio between volume fr
tions, which our theory predicts. Second, experimental s
face modes exhibit a slight shift in position from 23.2 eV f
the less-dense material, silicalite, to 24.0 eV for coes
This is consistent with the expectations that for a collecti
of cylinders the plasmon peak should be sensitive to
filling fraction, appearing at larger energies as the fillin
fraction is increased and in the limit off51 all losses being
due to the bulk plasmon as the experimental data for stis
vite indicates. This dependence onf cannot be explained
within our theory, but within the range of densities for th
three least-dense materials under study the position of
surface mode peak is expected to change very little,
shown by the experiment.

In the case of swift electrons moving with velocityv
along the axis of the cylinders the probability per unit pa
length, per unit energy, for the electrons to transfer ene
\v to the medium is19

f

FIG. 2. Experimental loss functions for coesite~solid line!, a
quartz ~dashed line!, silicalite ~dash-dotted line!, and stishovite
~dotted line!, as taken from Ref. 14.
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Pv5
2e2

\2v2
F~v!, ~3.2!

where

FIG. 3. Energy-loss functionF(v) as obtained from Eq.~3.2!
with v5055c and qca53.0, for infinite cylinders of stishovite in
vacuum with a volume fraction of~a! 0.68,~b! 0.62, and~c! 0.42 to
model coesite,a quartz, and silicalite, respectively. The points i
dicated by an asterisk represent the corresponding experimenta
functions, as taken from Ref. 14.
F~v!5
1

pE0
Qc
dQ

Q

Q21qz
2Im@2eeff

21~q,v!#, ~3.3!

eeff
21(q,v) being given by Eq.~2.31!. Qc represents the com
ponent of the largest transferred wave vectorqc in a plane
perpendicular to the axis of the cylinder and

qz5
v

v
. ~3.4!

In Fig. 3 the experimental curves for the energy-loss fu
tions for the materials under study are shown, together w
our calculated results for the energy-loss functionF(v) of
electrons traveling at 0.55c, as obtained from Eq.~3.3! with
qca53.0. It is clear that both peak positions and shapes
approximately well described by our theory. This agreem
is also obvious~see Ref. 14! in Fig. 4, where the real and
imaginary parts of our calculated effective dielectric fun
tions are represented forQa50.1.

oss

FIG. 4. Real and imaginary parts of the effective dielectric fun
tion of Eq. ~2.31! with Qa50.1 and a volume fraction of 0.68
0.62, and 0.42 to model coesite~solid line!, a quartz~dashed line!,
and silicalite~dash-dotted line!, respectively; the dotted lines repre
sent the measured real and imaginary parts of the dielectric func
of stishovite~Ref. 14!. The real parts are represented in~a! and the
corresponding imaginary parts in~b!.
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IV. CONCLUSION

In conclusion, we have presented an alternative appro
for the evaluation of the effective longitudinal response fu
tion of single isolated spheres and cylinders in an infin
medium. We have derived a general expression for the ef
tive inverse dielectric function of isolated cylinders and w
have applied our theory to explain valence-loss spectra f
silica polymorphs of different density. We have explain
the insensitivity of the plasmon peak with the density of t
material by associating this peak with the existence of s
face modes. Our theory for isolated cylinders predicts,
course, surface mode positions that are independent o
volume fractionf and we interpret the slight shift in positio
as the volume fraction increases as a consequence o
interaction between the cylinders, which has been negle
in our theory. The numerical approach to this problem
cently developed21 on the basis of photonic band-structu
calculations22 has been proved to be useful in the study
this interaction.23Work in this direction is now in progress.24

A more detailed presentation of the derivation of the eff
tive inverse longitudinal dielectric function of an isolate
cylinder in an infinite medium will be presented elsewhe
in the frame of the self-energy formalism.19
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APPENDIX: DERIVATION OF EQ. „2.26…

In order to study the response of an infinite cylinder
introduce the expansion of a plane wave25

eiQ•r5 (
m50

`

mmi
mJm~Qr!cosmf, ~A1!

whereQ andr represent vectors located in a plane perp
dicular to the axis of the cylinder,f being the angle betwee
them, Jm represents the cylindrical Bessel function of t
first kind, andmm are Neumann numbers

mm5H 1 for m50

2 for m>1.
~A2!

We also expand the Coulomb potential due to a positive
point charge atr 8 as26

ur2r 8u215
2

pE0
`

dqzcos@qz~z2z8!#

3 (
m50

`

mmIm~qzr,!Km~qzr.!cos@m~f2f8!#,

~A3!
ch
-
e
c-

m

r-
f
he

the
ed
-

f

-

,

.
-
e

s
-

-

it

wherer,/r. represent the smaller/larger ofr and r8, the
components ofr and r 8 in a plane perpendicular to the ax
of the cylinder.z andz8 represent the components ofr and
r 8 in the direction of the axis of the cylinder,f2f8 is the
angle betweenr andr8, andI m andKm are modified Besse
functions.

Now we replace, for simplicity, the dielectric function o
the hoste0 by 1 and consider the scalar potential created
the test charge density of Eq.~2.1!,

fext~r ,t !5E dr
rext~r ,t !

ur2r 8u
, ~A4!

and the potential created by the bulk charge density indu
inside the cylinder,

fb
ind~r ,t !5E

r,a
dr

rb
ind~r ,t !

ur2r 8u
, ~A5!

where

rb
ind~r ,t !5r0~ev

2121!ei ~q•r2vt !. ~A6!

Then the introduction of Eqs.~2.1! and ~A6! into Eqs.~A4!
and ~A5! gives

fext~r ,t !5
4pr0
Q21qz

2e
i ~qzz2vt ! (

m50

`

mmi
mJm~Qr!cosmf

~A7!

and

fb
ind~r ,t !5

4pr0
Q21qz

2 ~ev
2121!ei ~qzz2vt !

3 (
m50

`

mmi
mGm

b ~q!cosmf, ~A8!

where

Gm
b ~q!5H Jm~Qr!2I m~qzr! f m

~1! if r<a

Km~qzr! f m
~2! otherwise,

~A9!

with

f m
~1!5qzaJm~Qa!Km21~qza!1QaJm21~Qa!Km~qza!

~A10!

and

f m
~2!5qzaJm~Qa!I m21~qza!2QaJm21~Qa!I m~qza!.

~A11!

Finally, we introduce Eqs.~A7! and~A8! into Eq.~2.12! and,
after applying Eqs.~2.10! and~2.11!, we find Eq.~2.26! with

Gm
s ~q,v!

5~ev21!
ev

21QJm8 ~Qa!1~ev
2121!qzIm8 ~qza! f m

~1!

2evqzIm8 ~qza!1qzIm~qza!Km
21~qza!Km8 ~qza!

,

~A12!

and if the cylinder is immersed in a medium of dielectr
function e0, Eq. ~A12! is easily found to be replaced by Eq
~2.27!.
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