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Abstract. The local spin-density approximation is used to 
calculate ground- and isomeric-state geometries ofjellium 
clusters with 2 to 22 electrons. The positive background 
charge of the model is completely deformable, both in 
shape and in density. The model has no input parameters. 
The resulting shapes of the clusters exhibit breaking of 
axial and inversion symmetries; in general the shapes are 
far from ellipsoidal. Those clusters which lack inversion 
symmetry are extremely soft against odd-multipole defor- 
mations. Some clusters can be interpreted as molecules 
built from magic clusters. The deformation produces 
a gap at the Fermi level. This results in a regular odd-even 
staggering of the total energy per electron and of the 
HOMO level. The strongly deformed 14-electron cluster 
is semimagic. Stable isomers are predicted. The splitting of 
the plasmon resonance due to deformation is estimated on 
a classical argument. 

PACS: 36.40. +d; 73.20.Mf; 73.20.Dx; 21.60.Cs 

1 Introduction 

Following the observation of electronic magic numbers by 
Knight et al. [1] many properties of alkali-metal clusters 
have been explained with the simple jellium model, where 
the interacting valence electrons move in the Coulomb 
potential of a homogeneous background charge [2]. The 
magic numbers can be explained with a spherical jellium 
model [3-5]. However, for understanding the odd-even 
staggering of the binding energy per electron [2, 6-8] and 
the splitting of the plasmon resonance [9, 10], one has to 
use a spheroidal [11] or triaxial [12] model. The jellium 
model can be further improved by taking into account 
higher multipole deformations [t 3] and allowing a finite 
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thickness for the surface of the background charge 
[t4, 15]. Furthermore, several models have been sugges- 
ted for including the effect of discrete ions [16-20] in the 
jellium model. 

In the present paper we study the properties of a jel- 
lium model where the background density is completely 
deformable. This leads to the result that the background 
density is everywhere equal to the valence-electron den- 
sity, so that there will be no net charge density or corres- 
ponding Coulomb energy. The effective potential which 
holds the cluster together is the exchange-correlation po- 
tential. We calculate the cluster geometries by using the 
local-spin-density approximation (LSDA) in a plane-wave 
basis. No symmetry restrictions are imposed on the elec- 
tron density. 

The study of such a simple model is motivated by the 
following considerations: 

(1) There are no free parameters in the model. The 
bulk limit of the model is a homogeneous electron 
gas with a density which minimizes the total energy 
per electron (r~ = 4.18a0). In the present model, there 
will be no artificial effects due to a tendency of the electron 
gas towards this density. In the conventional jellium 
model, the tendency towards equilibrium density leads 
to negative surface energies in the case of high-density 
metals. 
(2) The total energy of a jellium cluster can be lowered by 
allowing more and more freedom to relax the background 
charge, both its shape and its density profile. The present 
model constitutes the ultimate limit of this relaxation 
process: varying the background charge can no longer 
reduce the total energy. 
(3) The model represents the shapes and densities favored 
by the valence electrons. In real metal clusters, the shapes 
will be determined by the interplay between the electrons 
and the discrete ions. Our model determines the optimal 
shapes from the electrons' point of view. 
(4) Since we include the spin dependence of the exchange- 
correlation energy, we can study the effect of exchange 
splitting on the odd-even staggering. 
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(5) The local-density description of an electron-hole 
plasma in semiconductors [211 is closely related to our 
model. More specifically, our model can describe excitonic 
electron-hole clusters. The same effective mass is then 
assumed for particles and holes, and no electron-hole 
correlation is taken into account. 
(6) Since our model describes fermions bound by a den- 
sity-dependent potential, it is applicable to other fermion 
clusters, namely, nuclei and clusters of 3He. 

Since the bulk density in our model is close to that of 
sodium or potassium, we can compare our results with 
experiments on these metals. Nevertheless, our aim is to 
obtain a further understanding of the basic trends and to 
make only qualitative comparisons with experimental re- 
sults. There exist a great many detailed electronic-struc- 
ture calculations which use realistic pseudopotentials and 
a configuration-interaction (CI) or local-density-approxi- 
mation (LDA) description of the electronic Hamiltonian 
[22-25]. These methods, however, are applicable only to 
the smallest clusters; for them, they are superior to ours in 
making quantitative comparisons between theory and ex- 
periment. 

The plan of the paper is as follows. In Sect. 2 we 
describe the ultimate jellium model. We describe in some 
detail the numerical computations and the methods used 
in analyzing the electron densities. The results for clusters 
with 2 to 22 electrons are given in Sect. 3: ground-state 
properties in Subsects. 3.1 to 3.4, isomers in Subsect. 3.5, 
and plasmon excitations in Subsect. 3.6. Conclusions are 
given in Sect. 4. 

2 Theory 

2.1 7[he background 

The jellium model consists of interacting electrons and 
a positive background charge. In an infinite system both 
the electron density and the background density are ho- 
mogeneous and equal in magnitude. Conventionally, the 
jellium surface is defined as a sharp surface (step function) 
of the positive background charge. Then the electron 
density "spills out" slightly from the background, which 
results in a dipole layer at the surface. 

Since the pioneering work of Lang and Kohn [26], the 
jellium model has been used to describe metal surfaces 
[26, 27], vacancies and voids in metals [28, 29] and metal 
clusters [2-5, 11]. The model describes surprisingly well 
(nearly quantitatively) the energetics of these systems in 
the case of low-density alkali metals, but fails in the case of 
high-density metals, such as aluminium, where it gives 
negative surface energies. The plain jellium model de- 
scribes best sodium and potassium, where the electron 
density is closest to the minimum total energy value of 
a homogeneous electron gas. 

For an accurate description of other metals, the struc- 
ture of the ionic backgroud has to be taken into account. 
In most metals the average electrostatic potential in the 
pseudopotential lattice is nonzero [29]. The resulting cor- 
rection can be adequately calculated in first-order per- 
turbation theory. Several different methods for including 

ionic corrections in the jellium model have been proposed 
in the literature [17, 26, 27]. These corrections usually rely 
on the high symmetry of the system, as in the cases of 
spherical clusters, voids, and plane surfaces. The inclusion 
of the ionic corrections becomes much more cumbersome 
if the symmetry (geometrical shape) of the electron density 
is allowed to change during the search for the energy 
minimum. 

The applications of the jellium model to nonspherical 
clusters have not included the ionic corrections. The de- 
formations have been implemented by changing the shape 
of the homogeneous background charge. In their careful 
study of spheroidal jellium clusters, Ekardt and Penzar 
[111 found a qualitative explanation for the odd-even 
staggering and the splitting of the plasmon resonance. 
With more general deformations, however, the sharp edge 
of the background causes numerical problems. Hi- 
rschmann et al. [15] circumvented this problem by replac- 
ing the sharp edge by a diffuse one (Fermi function). If the 
density of the positive background is allowed to change 
freely, one ends up with a model where the positive back- 
ground density is everywhere the same as the electron 
density. In our present approach we have such a com- 
pletely relaxable jellium background. 

2.2 The ultimate jellium model 

In our model the density of the positive background 
charge is a function of the position. It is free to relax to any 
form which minimizes the total energy. The background 
charge has an infinite mass (compared to the valence 
electrons) and an internal Coulomb energy. To begin with, 
we show that the number density of the background, 
nbg(r), is everywhere the same as the total electron density 
n(r). In the spin-dependent density-functional formalism 
the total energy can be written as a functional of the 
spin-up and spin-down electron densities, n T and n,, and 
the background density or, alternatively, as a functional of 
the total electron density n = n, + n;, the spin polariza- 
tion ~ = ( n ~ - n y n ,  and the total charge density 
p = e(n~ - r0: 

EEn,~,p] = T [ n , ~ ]  + Exo[n,~] + E c [ p ] ,  (i) 

where T, Exo, and Ec are the kinetic energy, the exchange- 
correlation energy, and the Coulomb energy of the total 
charge density, respectively. Minimizing the energy func- 
tional with respect to p and using the constraint that the 
total charge be fixed (Lagrange multiplier 2), we have 

~ ( E c E P l -  2S d3rp(r)) = 0, (2) 

whence 

1 ~'d3r, p(r') _2 .  (3) 
4rCeo J I r - r'l 

This equation can be satisfied only if p(r)= 0 and 
2 = 0. The charge neutrality is what one would expect 
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intuitively. Thus there is no Coulomb energy and the 
background density equals the electron density, nbg = n. 
Equation (3) also gives the result that ionized clusters 
cannot be described on our model; the extra positive 
charge would escape into the vacuum. 

The remaining part of the density functional (I) is 
minimized using the Kohn-Sham method [30] with the 
local-spin-density approximation for the exchange-cor- 
relation energy (for a review see [31]). The density for 
electrons with spin o- is written as a sum of occupied 
single-electron states ~ ' ,  

n~(r) = ~ [07(r)l 2, 
i = l  

where N~ is the number of electrons with spin a. Minimiz- 
ing the energy functional with respect to ~]  leads to the 
usual Kohn-Sham equations 

h 2 

2m 
- - -  V20f ( r )  + vS~(n(r), ~(r)) 0 f ( r )  = eT0]( r ) ,  

where Vx~ is the local exchange-correlation potential. We 
use the Perdew-Zunger parametrization [32] of the 
Ceperley-Alder [33] correlation energy. Equations (5) and 
(4) have to be solved self-consistently, and N T and 
N+ (N = N T + N+) have to be chosen so that the total 
energy is minimized. In practice, it turns out that for even 
N we have N~ = N 1 and for odd N we have N~ = N l + 1. 
Note that, due to the complete charge neutrality, the 
Coulomb potential or energy does not show up in the 
computations. 

The linear Schr6dinger equations (5) were solved in 
each iteration by using the plane-wave basis 

27~ 
~b k = L - 3 / 2 e  ik'r, k = ~ ,  (nl,nz,n3), 

where n~ = K, K - 1 . . . .  , - K, the integer K determining 
the number of plane waves. In coordinate space we use 
4K + 1 points per axis with spacing L/ (4K + 1). 

The iteration is started by making initial guesses for 
the effective potential (VZ~) at the lattice points; we used 
the same initial potential for both spins. Then the fast 
Fourier transform (FFT) is used to expand the potentials 
in the plane-wave basis, and the Hamiltonian matrices are 
computed. After diagonalization of the Hamiltonian, the 
densities of the spin-up and spin-down electrons are deter- 
mined from the single-electron eigenfunctions, and the 
F F T  is again used for getting the densities at the lattice 
points. New effective potentials are obtained from the 
densities (this is where the spin-up and spin-down elec- 
trons interact), and the whole procedure is repeated until 
convergence is obtained. No symmetry restrictions are 
used. 

The following steps were taken to make the computa- 
tion efficient. During each iteration the center of mass and 
the principal axes of inertia were determined. The cluster 
was then moved to the origin and rotated so that the 
principal axes corresponding to the two smallest moments 
of inertia were in the (1, 1, 1) and (1, -- 1, 0) directions, 

respectively. This method minimizes the electron density 
at the boundary of the computation box and thus minim- 
izes the size of the box needed. 

The size of the box and the number of plane waves 
were chosen so that the accuracy of the total energy per 
electron was better than or about 0.5 meV. In the final 
calculations for N = 2-8 we had L = 35a0 and K = 5 
(11 x 11 x 11 = 1331 plane waves); for N = 9-20, we had 
L = 4 0 a 0  and K = 5 ;  and for N = 2 1 - 2 2 ,  we had 
L = 48ao and K = 6. These small numbers of ptane waves 
are sufficient because the effective potential and the elec- 
tron density are very smooth functions in the present 
model. The accuracy of the computations was checked by 

(4) performing separate calculations in the spherical cases, 
where the system reduces to a mathematically one-dimen- 
sional problem. 

For  each cluster the iteration was started from four 
different initial potentials. These were selected to represent 
the basic geometries the clusters were expected to have; 
sphere, prolate and oblate spheroid, and a pear shape 

(5) (octupole deformation). In each case, random perturba- 
tions without any symmetry were added to the initial 
potential for ensuring that the system had the possibility 
of reaching other symmetries than the initial guess. 

From each initial potential the equations were iterated 
to full convergence. When the solution has inversion sym- 
metry, this takes about 50 iterations. Solutions with bro- 
ken inversion symmetry were more difficult to find (see 
Subsect. 3.3). At most two different converged solutions 
were obtained for any of the small clusters studied (up to 
N = 22). We call them "ground state" and "isomer" ac- 
cording to their total energy. In many cases only one 
solution was found, irrespective of the initial guess for the 
effective potential. 

We found the plane-wave basis very well suited to the 
present model where the electron density, the potential, 

(6) and the wave functions vary slowly. The equations can 
also be solved directly by using a cubic grid in coordinate 
space. This method has been used for the smallest clusters 
by Manninen [34]. However, for getting the same accu- 
racy, one needs many more lattice points than one needs 
plane waves, if only the nearest neighbors are used to 
estimate the Laplace operator V 2. Chelikowsky et al. [35] 
have recently suggested that the real-space technique can 
be improved through a better description of V 2. It is likely 
that this technique could be used successfully in the ulti- 
mate jellium model. 

2.3 Deformation parameters and moments o f  inertia 

The electron densities are analyzed and displayed in the 
principal axes of inertia. We choose the z axis to be that of 
the greatest symmetry of the cluster. This is done in the 
following way. The three moments of inertia are 

Ii = M S d3 r( r2 - x2) n(r), (7) 

where M is the atomic mass. We now normalize the Ii so 
that their sum is 3, i.e., we replace them by ~i  = 3Ii/Z~ Ij. 
Then clusters with two moments of inertia greater than 
I (prolate types) are placed to have the smallest moment 
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atong the z axis and the largest one along the x axis. Those 
with two moments smaller than 1 (oblate types), are 
placed to have the largest moment along the z axis and the 
smallest along the x axis. 

In the cases where inversion symmetry is broken, these 
rules cannot completely define the orientation of the clus- 
ter. The remaining freedom is not important for determin- 
ing the deformation parameters, and the orientation is 
chosen to make the figures the most informative. 

We note here that the total energies, single-particle 
energies, and moments of inertia are obtained from the 
original electron densities calculated by the primary com- 
puter code (using 4K + 1 points per axis). The final elec- 
tron density was stored with only 2K + 1 points per axis. 
This smaller accuracy was used in computing the multi- 
pole moments, plasmon energies, and contour plots of the 
energy. However, the results are correct within the accu- 
racy given in the tables. 

The shape of the cluster was analyzed in terms of 
a multipole expansion. We define the number multipole 
moments Qz,~ as [36] 

Qg,, = ~ d 3 r rtYlm(O, ~) n(r), (8) 

where Y~m is a spherical harmonic. The somewhat unusual 
normalization appearing here has the convenient feature 
that Qoo = N, the number of electrons. Multipole mo- 
ments Qz,~ with different l have diffeent dimensions and 
therefore cannot be compared. It is then more informative 
to use dimensionless shape parameters arm defined as 

x/4rff2l + 1) 
a,= ==- 3r~Ni/3+ 1 (Q,,, - a,0N), (9) 

where we use the electron-gas bulk value r~, = 4.18ao. 
We arrived at the scaling formula (9) as follows. The 

surface of a homogeneous body can be described by the 
expansion 

R(O,~)= RoIl + ~ a~,,Y~*(O,(o) 1 (10) 

This equation is used in nuclear physics for the description 
of the surface of a deformed nucleus [37, 383. In the 
present context, we identify R0 = r,N ~/3 and keep t h e  

4 3 - -  . density constant at n = (ucr~) * When one calculates the 
multipole moment Q~,, from (8) for this homogeneous dis- 
tribution, the result agrees with (9) to first order in the 
coefficients a~,,. Equation (9), on the other hand, defines an 
exact scaling of the Qzm of (8) irrespective of the contents of 
(10). 

In spite of its approximate nature in relation to (8) and 
(9), (10) does give an indication of the shape of the cluster. 
Furthermore, various general properties of the a~  can be 
deduced from (10) with full validity. Thus the reality of 
R(O, c~) implies that a~, _,, = ( - 1)~ a~,,, so we only need to 
give the moments with m > 0. From (9) we have aoo = 0. 
The center of mass is kept fixed at the origin, whence 
a~m = 0. Furthermore, we choose to orient the duster  so 
that its quadrupole shape lies in a set of principal axes. 

Then the a2,, are real with a2 ± 1 = 0 and a22 = a 2 -  2. It is 
important to note that the orientation of the principal 
axes is independent of the deformations l v a 2. 

Specific symmetries of the cluster impose further con- 
ditions on the az,, coefficients. For spherical symmetry all 
coefficients are zero. For  axial symmetry all coefficients 
with m ~ 0 are zero, and for inversion symmetry all coeffi- 
cients with odd l are zero. 

We have calculated the a~m coefficients up to l =  6. 
Even the higher multipoles seem to be important in many 
cases. Unfortunately they cannot be calculated accurately 
because of the dominating r ~ factor in (8), and the fact that 
the electron densities do not exactly reach zero at the 
boundaries of the computation box. 

With the shape parameters a20 and a22 at our disposal, 
we can also determine the deformation parameters fi and 
7 common in nuclear physics [37, 383: 

1 
a20 = fl COS 7, a22 = ~ fl sin y. (11) 

For  given values of a20 and a22 we can find a unique pair 
fi and 7 when we impose the constraints fl_> 0 and 
0 < 7 < 27z. Here fi gives the magnitude of the quadrupole 
deformation and 3; gives its detailed shape and orientation. 
In fact, the interval 0 ° < 7 -%< 60° already contains all pos- 
sible quadrupole shapes; the remaining values of 7 only 
repeat them in different orientations. Therefore we also 
tabulate 7eff E [0,7z/3], which can be obtained from ? by 
a simple reflection technique. The values 7elf = 0 °, 30 °, 
and 60 ° mean axial prolate, maximal triaxiality, and axial 
oblate, respectively. 

The moments of inertia are obviously related to the 
quadrupole moments Q2m of (8). The exact relations are 

M IR , d3 rr2n(r) + Q2o - x~  Q221, lx= T 

I r = ~-M I 2 y  d3 r r  2 n(r) -}- Q20 q- x ~  Q221 

M I d 3 n(r) - 2Q20], (12) Iz=~- 2 5 rr 2 

where we have used Q2,-2 = Q22. The Q2,, can be exactly 
replaced by the az= according to (9). We note that defor- 
mations other than I = 2 only contribute to the scalar 
integral term, which is the same for Ix, ly, and I~. Accord- 
ingly the dynamical deformation is entirely due to l = 2. 

In the rough approximation of a uniform density and 
a small deformation, as discussed in connection with (10), 

3 N R02, and we have for the the integral in (12) becomes 
moments of inertia 

N M R ~ ( l + ~ l ~ a 2 0 - - N ~ a e 2  ), 

N M R g ( l + ~ - - ~ a 2 0 + ~ a 2 2 ) ,  

2 

2 
I y ~  

2 
N M R ~ ( 1 -  ~ a z o ) .  (13) 
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The leading term in these expressions is the elementary 
result for a sphere. We have not used them quantitatively, 
since in many cases they would be very bad approxima- 
tions. Nevertheless, they serve to visualize the dynamics of 
deformation. The factors in parentheses are seen to be 
approximations for the normalized moments of inertia J~ 
introduced after (7). 

2.4 Plasmon excitation 

In metal clusters the photoabsorption cross section is 
dominated by the plasmon excitation. In jellium clusters 
the classical Mie plasmon peak is split into several peaks 
due to Landau damping [39] and to deformation away 
from spherical shape [9, 10]. Here we only study the effect 
of deformation. In a nonspherical cluster the plasmon 
peak splits into two or three peaks depending upon the 
symmetry. 

We estimate the plasmon energies in the ultimate 
jellium model by means of a simple classical approxima- 
tion. (This gives the same resuIt as the sum-rule approach 
presented in [2].) The Coulomb energy of the electrons, of 
density n(r), in the ionic background potential Vbg(r ) is 

Ec = -- e S d3 r Vbg(r) n(r). (14) 

Let i = 1, 2, 3 label the inertial principal axes of the cluster. 
If we now displace the electron cloud as a whole by ~iAxi, 
the energy change is, to order (Axl) 2, 

AEc = -- e ~ d 3 r Vbg(r ) [n(r -- eiAxi) - -  n(r)] 

- (Axi) 2 d 3 t" Vbg(r) ~ /z  n(r) (15) 

Note that the first-order term vanishes because of equilib- 
2 2 rium and 8 n/8x~ is predominantly negative. We equate 

2 2 dec  to the harmonic potential energy ~ N mwi (Axe) for 
vibrations in the x~ direction. The corresponding plasmon 
energy is then 

[ ehafNm ~82 7'/2_ hw~ = - d3 r  Vbg(r ) n(r)] (16) 

This result is generaly valid insofar as it is a good approxi- 
mation to consider the electron cloud as oscillating rigidly 
against the positive ionic background. Only the inertial 
ellipsoid affects the frequencies [40]. In our particular 
case, the equilibrium Coulomb energy Ec is zero and the 
background density is the same as the electron density. 

In the case of a conventional spherical jetlium cluster, 
(16) leads to the so-called spillout formula [2]. The spill- 
out formula overestimates the plasmon energy as com- 
pared to time-dependent LDA [41], radom-phase ap- 
proximation (RPA) [39], or CI [42] calculations, which 
take dynamical screening into account. 

3 Results 

3. t Ground-state geometries" 

The ground-state electron densities of the clusters with 
2 to 22 electrons are shown in Figs. 1, 2, and 3. For  each 
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Fig. 1. Ground-state densities for clusters with 2 to 8 electrons. The 
coordinate system is shown at the top of the figure. The three- 
dimensional plots are constant-density surfaces with density 
n = 0.00125% 3 (38% of bulk density). The three-dimensional fig- 
ures do not have an absolute length scale. The two-dimensional 
contour plots show the electron densities in the yz, xz, and xy planes. 
The five contour lines range from n = 0.0006ao 3 (18% of bulk 
density) to n = 0.0032ao a (98 % of bulk density) with equal spacing. 
The contour for the second-lowest density is the one used for making 
the three-dimensional plots. The side of each square is 31ao, which 
puts the contour plots on an absolute scale 

cluster we show a three-dimensional plot of a constant- 
density surface with density n = 0.00125ao 3 (38% of bulk 
density) and contour plots of the electron density in the yz, 
xz, and xy planes. The contour corresponding to the 
second-lowest density is the one used for making the 
three-dimensional plots. 

The clusters with 2, 8, 19, and 20 electrons are spheri- 
cal, whereas all the others are deformed. The clusters with 
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Fig. 2. Ground-state electron densities for clusters with 9 to 15 
electrons. For details see Fig. 1 
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Fig. 3. Ground-state electron densities for clusters with 16 to 22 
electrons. The side of the square surrounding the 21- and 22-electron 
clusters is 35ao. Other details are as given in Fig. 1 

3, 4, 6, 7, 9, 14, 21, and 22 electrons have axial and 
inversion symmetry. The 10-electron cluster has only axial 
symmetry, and the 5-, 11-, 13-, and 15-electron clusters 
have only inversion symmetry. The clusters with 12, 16, 
17, and 18 electrons have neither inversion nor axial 
symmetry. 

The geometries of the smallest clusters can be easily 
understood in terms of the symmetries of the s, Px, Py, P~, 

etc. single-particle wave functions of a spherical system 
[34]. In the spherical case all the p levels are degenerate, 
but in a deformable system the Jahn-Teller effect splits 
them unless the 1 shell is full. Although l ceases to be 
a good quantum number as deformation sets in, we can 
refer to the wave function as Px type etc. according to its 
unperturbed symmetry. 

In our simple view, the two-electron cluster is spherical 
due to the two s electrons. The clusters with three and four 
electrons have one or two p~-type electrons and conse- 
quently the electron density is axially symmetric and pro- 
late. Reserving z to be the symmetry axis also for oblate 

shape, we can now relabel the p levels so that the third and 
fourth electrons fill the Px levels and the fifth electron goes 
into py, which results in a triaxiat five-electron cluster. 
Then in the six-electron cluster both px and py are full. 
This cluster has oblate axial symmetry, as can be seen 
from Fig. 1. The seventh electron now occupies the p~ level 
and the cluster stays axially symmetric. The eighth 
electron completes the p shell and the cluster is again 
spherical. 

The geometries of the clusters with 9 to 20 electrons 
can be understood in terms of filling the d- and 2s-type 
levels. However, due to the strong deformations in the 
middle of the shell, the situation is now more complex. 
A simple explanation is available near the magic numbers. 
The nine-electron cluster has one d electron and is axially 
symmetric and protate. The 19- and 20-electron clusters 
have a full d shell plus one and two 2s electrons, respec- 
tively. Both of them are spherically symmetric. The 
ground state of the 18-electron cluster is nonspherical due 
to a mixing of the d and 2s levels. However, the 18-electron 
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cluster has a spherical isomer (with a full d shell) which is 
practically degenerate with the g round  state (see Sub- 
sect. 3.5). 

Special a t tent ion should be paid to the 14-electron 

cluster. Al though it is s trongly deformed, its large binding 
energy qualifies it as semimagic. It  has axial and inversion 
symmetry.  

Finally, the shapes of  the 21- and 22-electron clusters 
can be qualitatively unders tood  as resulting from one and 
two J : type  electrons, respectively, outside the 20-electron 
magic  core. 

Figure 4 shows the normalized principal moments  of 
inertia J~ of the cluster g round  states (black dots). Fo r  the 
spherical clusters with N = 2, 8, 19, and 20, all moments  
are equal to 1. For  prolate and oblate shapes, respectively, 
two of  the moments  are > 1 and < 1. Fo r  clusters with- 
out  axial symmetry,  generally all three moments  of  inertia 
are different. An exception is the 18-electron cluster, which 

has D3 symmetry.  
Qualitatively, cluster shape as a function of the num- 

ber of electrons has a clear pattern: at the beginning of  
a shell the shape is prolate and at the end it is oblate. The 
same result has been obtained with the ellipsoidal jellium 
models [11, 12], and also with more  general jellium-type 
models [13, 15] and the simple Hiickel model  [43, 44]. 
This pattern, however, is expected to change after N = 40 
so that  the shape is oblate at the beginning of  a shell and 
prolate at the end [13, 15]. 

We have analyzed the cluster shapes in terms of  
a multipole expansion as explained in Subsect. 2.3. Table 1 
gives the deformat ion parameters/3,  7', and ?,~ff calculated 
from (9) and (11). All shape parameters  al,, are calculated 
from (9). They are given in Tables 2-5,  organized in order  
of  decreasing symmetry.  The spherical clusters are not  
shown in the tables since for them all the azm are zero. 
Likewise the tables omit  other  ai,~ that  are systematically 
zero. 

The coefficients for clusters with both axial and inver- 
sion symmetry  are given in Table 2. The impor tance  of  
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Fig. 4. Moments of inertia for the ground states (black dots) and 
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Table 1. Calculated energies and quadrupole deformation para- 
meters for ground states and isomeric states 

N E/N (eV) /3 7 (°) %ff (°) 

2 - 1.7946 0.000 0.0 0.0 
3 - 1.7207 0.936 0.0 0.0 
4 - 1.8190 1.460 0.0 0.0 
5 - 13926 0.729 335.6 24.4 
6 - 1.8528 0.554 180.0 60.0 
7 - 1.8623 0.223 180.0 60.0 
8 - 1.9182 0.000 0.0 0.0 
9 - 1.8899 0.342 0.0 0.0 

10 - 1.9082 0.707 0.0 0.0 
11 1.8963 0.627 351.9 8.1 
12 - 1.9117 0.662 345.2 14.8 
13 - 1.9115 0.643 353.3 6.7 
14 - 1.9304 0.665 0.0 0.0 
15 - 1.9209 0.486 345.6 14.4 
16 - 1.9336 0.412 156.1 36.1 
17 - 1.9344 0.309 165.9 45.9 
18 - 1.9490 0.249 180.0 60.0 
19 - 1.9547 0.000 0.0 0.0 
20 - 1.9688 0.000 0.0 0.0 
21 - 1.9571 0.140 0.0 0.0 
22 - 1.9618 0.289 0.0 0.0 
13" - 1.9050 0.516 156.6 36.6 
14" - 1.9234 0.498 180.0 60.0 
15" - 1.9200 0.431 1685 48.5 
16' - 1.9336 0.411 155.1 35.1 
18" - 1.9486 0.000 0.0 0.0 
19" - 1.9389 0.355 156.1 36.1 
20* - t.9455 0.508 337.7 22.3 
21" - 1.9419 0.539 337.1 22.9 
22* - 1.9488 0.600 337.7 22.3 

1 = 4 and 6 is evident. Our  calculations show that  even 
higher multipole moments  are significant. Unfortunately,  
we can determine the coefficients accurately only up to 
/ = 6 .  

Table 3 shows the shape coefficients for the one clus- 
ter, N = 10, which is axially symmetric  but  lacks inversion 
symmetry.  Table 4 gives the results for clusters with inver- 
sion symmetry  but  no axial symmetry,  and Table 5 gives 
the results for clusters which lack both  inversion and axial 
symmetry.  

In  all cases the coefficients with even I are real and 
their odd-m components  are zero. This implies that  the 
even-/ deformations are always symmetrically oriented 
with respect to the principal axes. Also the odd- /coeff i -  
cients, in Tables 3 and 5, show a systematic behavior: their 
even-m components  are real and odd-m components  
complex. 

3.2 Cluster molecules 

Some of  the cluster shapes in Figs. 1-3 can be interpreted 
as "molecules" built up from magic clusters. This is illus- 
trated in Fig. 5. The four-electron cluster consists of  two 
dimers, with a separation energy of  only 97 meV. The 
t0-electron cluster consists of an eight-electron sphere 
with a dimer attached to it, with a separation energy of  
147 meV. 

The 12-electron cluster is interpreted as two dimers 
at tached to an eight-electron cluster. The energy needed 
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Table 2. Shape coefficients for clusters 
with both axial and inversion symmetry N 3 4 6 7 9 14 21 22 14" 

a20 0.94 1.46 - 0.55 - 0.22 0.34 0.67 0.14 0.29 - 0.50 
a4o 0.62 1.16 0.21 0.04 0.36 --0.01 0.18 0.41 0.32 
a6o 0.39 0.84 -0.08 -0.01 0.25 -0 .20 0.16 0.44 -0.19 

Table 3. Shape coefficients for the cluster with axial symmetry but 
without inversion symmetry 

N 10 

a20 0.71 
a3o 0.45 
a4o 0.90 
aso 0.71 
a6o 1.03 

to separate these three building blocks is 416 meV. Since 
the two dimers on the surface of  the eight-electron cluster 
come close to forming a four-electron cluster, we can 
estimate the separation energy as follows. First, we separ- 
ate the four-electron cluster on the surface of the eight- 
electron cluster into two dimers. This requires 97 meV 
when we assume that  the eight-electron cluster does not  
change the dimer binding energy. Then we separate the 
two dimers f rom the eight-electron cluster. This requires 
2 x 147 meV. The resulting total separation energy is 
391 meV, in reasonable agreement  with the exact value of 
416 meV. 

The 16-electron cluster can be interpreted as a com- 
posite of  the strongly deformed, yet very stable, 14-elec- 
t ron cluster and a dimer. The separation energy is 
322 meV, which is so large that  the molecular  interpreta- 
tion must  be taken cautiously. 

The tendency to these molecular  structures is due to 
the very s trong binding of  the dimer in the ultimate jellium 
model. 

3.3 Softness of the ground state 

All clusters lacking inversion symmetry  are extremely soft 
against odd- /deformat ions .  These are the clusters with 10, 
12, 16, 17, and 18 electrons, shown in Figs. 2 and 3. 

Consider  the case of  the 10-electron cluster. Its pear- 
shaped g round  state is obtained easily only when the 

initial potential  has the same symmetry.  Our  three other 
initial potentials (sphere, oblate and prolate spheroids) 
produce  a more  complicated convergence to the ground 
state. Within about  30 iterations each of  these initial 
potentials produces the same "intermediate" state. It is 
prolate, with axial and inversion symmetry,  and closely 
:resembles the g round  state of the 9-electron cluster. With- 
in the next 300 iterations the intermediate state transforms 
slowly to the pear-shaped g round  state. The energy sur- 
face between these two geometries is nearly constant:  the 
energy is cont inuously lowered by a total of only 
0.5 meV/electron. The intermediate state can be viewed as 
a saddle point  on  the energy surface. 

Related softness of  the pear shape has been observed 
in nuclear physics [38, 45]. In the absence of  the infinitely 
heavy ionic background  we could interpret our  10-elec- 
t ron cluster as an octupole vibrator,  where the pear shape 
oscillates back and forth th rough  the intermediate state. 
In nuclear physics there is well-established experimental 
evidence of octupole vibrators,  but  only weak evidence of 
static octupole deformation in the g round  state [451. 

A similar intermediate state with inversion symmetry  
was observed also in all other  clusters where the ground 
state lacks inversion symmetry.  In a few tens of iterations 
the density converges to the symmetric intermediate state. 
Then it takes hundreds  of iterations to break the inversion 
symmetry,  and the energy is lowered in this process very 
little, usually even less than in the case of  the 10-electron 
cluster. I t  should be noted that, due to r andom perturba- 
tions, the intermediate state is obtained regardless of  the 
symmetries of the initial potential.  

In  some clusters, the energy min imum in phase space is 
evidently so flat that  one can speak of a "ground-state  
area". This includes all shapes with nearly the same energy 
and no barrier between them. The ground-sta te  area in- 
cludes not  only the intermediate state and the g round  
state, but  also all shapes in between. 

A good  example is the 16-electron cluster. Its g round  
state can be viewed as a 14-electron cluster with a dimer 
at tached to it. In the intermediate state the density of  the 

TabLe 4. Shape coefficients for clusters 
with inversion symmetry but without 
axial symmetry 

N 5 11 13 15 13' 15" 21" 22* 

azo 0.66 0.62 0.64 0.47 -- 0.47 -- 0.42 0.50 0.56 
a22 - -  0.21 0.06 -- 0.05 -- 0.09 0.15 0.06 -- 0.15 - 0.16 
a4o 0.29 0.41 0.06 - 0.04 0.31 0.19 0.45 0.40 
a42 -- 0.11 0.17 - 0.14 0.01 - 0.10 0.05 -~ 0.04 - 0.12 
a44 0.06 0.01 0.01 0.05 -- 0.08 0.01 -- 0.01 - 0.01 
a6o 0.11 0.24 --0.13 -0 .1 t  --0.18 -0.08 0.38 0.18 
a62 - 0.06 0.16 -- 0.12 0.04 0.06 -- 0.04 -- 0.09 -- 0.22 
a64 0.03 0.03 0.02 0.03 0.03 0.01 -- 0.01 0.00 
a66 - -  0.02 0.00 0.00 -- 0.02 0.04 0.00 0.02 0.01 



Table 5. Shape coefficients for clusters with no inversion symmetry and no axial symmetry 

N 12 16 17 18 16" 19" 20* 
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a2o 0.64 -- 0.38 - 0.30 -- 0.25 - 0.37 
azz -- 0.12 0.12 0.05 0.00 0.12 
a30 0.05 0.00 0.00 0.00 0.00 
a31 0.00 -- 0.03i -- 0.01 - 0.01i 0.00 - 0.02 
a32 - 0.09 0.00 0.00 0.00 0.00 
a33 0.00 0.02 -- 0.16i - 0.07 - 0.05i -- 0.01 -- 0.11i -- 0.15 
a4o 0.15 0.09 0.01 - 0.05 0.09 
a4z -- 0.33 0.11 0.05 0.00 0.10 
a44 0.02 0.03 0.00 0.00 0.01 
aso -- 0.07 0.00 0.00 0.00 0.00 
a51 0.00 0.04i 0.01 + 0.01i 0.00 0.04 
asz - 0.14 0.00 0.00 0.00 0.00 
as3 0.00 0.0l + 0.06i 0.01 + 0.01i 0.00 0.06 
a54 0.03 0.00 0.00 0.00 0.00 
a55 0.00 0,01 + 0.05i 0.01 + O.Oli 0.00 0.04 
a6o - -  0,08 - 0.03 0.03 0.05 - 0.03 
a6z - 0.29 - 0,09 - 0,03 0,00 - 0.09 
a6,, 0,09 0.02 0.01 0.00 0.05 
a66 0.00 - -  0.05 0.01 -- 0.02 0.05 

-- 0.33 0.47 
0.10 - -  0.14 
0.00 0.00 

0.01i 
0.00 0.00 

- -  0 . 0 2 i  - 0.14i 

+ 0.01i 

+ 0.01i 

+ 0.01i 

0.04 0.51 
-- 0.08 0.02 

0.12 -- 0.02 
0.00 0.00 

0 . 0 0  

0.00 

- -  0.01i 
0.00 

0.01i 0.00 
0.00 

-- 0.04i 
0.01 0.54 
0.06 0.00 

-- 0.07 - 0.02 
0.09 0.02 

- 0 . 1 8 i  

- -  0 . 0 3 i  

- -  0 . 1 0 i  

- 0 . 0 1 i  

@ @ 

2 + 2 = 4  2 + 8 = 1 0  

2 + 2 + 8 = 1 2  2 + 1 4 = 1 6  

Fig. 5. Molecular interpretation of some ground-state cluster geo- 
metries 

d imer  is uni formly  d i s t r ibu ted  in the xy plane  of  the 
axial ly  symmet r ic  14-electron cluster.  The  in te rmedia te  
s ta te  con t inuous ly  t ransforms  to the g round  s tate  in a b o u t  
400 i terat ions.  The  to ta l  energy change  in this process  is 
only  0.3 meV/elec t ron.  

In  one c o m p u t a t i o n  ex tending  to  600 i terat ions,  we 
reached yet ano the r  well-defined shape.  I t  is deno ted  by 
16" and  shown in Fig.  8. The shape  16" was ob ta ined  after 
150 i terat ions.  D u r i n g  the fol lowing 450 i te ra t ions  the 
shape  s ta r ted  s lowly to t rans form to the g round  state. In  
the process,  one of the b u m p s  on  the side of  the 14- 
e lec t ron core  increases and the o the r  decreases.  

The  slow convergence  towards  the g r o u n d  state is 
u n d e r s t a n d a b l e  since all  shapes  occurr ing  in the g round -  
state area,  viz., 16", 16, and  all shapes  in between,  lie 
wi th in  0.4 eV/elec t ron of each other.  Since our  abso lu te  
energy accuracy  is a b o u t  1 meV/elec t ron ,  we canno t  be 

sure which of  these shapes  represents  the ac tua l  g round  
state of the 16-electron cluster. W e  descr ibe  the proper t ies  
of 16" in connec t ion  with the isomers,  Subsect.  3.5. Never-  
theless, 16" is no t  a genuine i somer  since it can t rans form 
to the g round  state wi thout  any  ac t iva t ion  energy. Rather ,  
it  is evident ly  akin  to  the in te rmedia te  sadd le -po in t  s ta te  

in the N = 10 cluster. 
The  g round-s t a t e  shape of the 18-electron cluster  is 

t r iangular ,  but  ex t remely  soft aga ins t  t r i angu la r  de forma-  
tions. The  energy gain from axial  to t r i angu la r  symmet ry  
is only  0.2 meV/elec t ron.  Also the N = 6 cluster  was found  

to be soft aga ins t  t r i angu la r  deformat ions .  
We conclude  tha t  clusters wi thout  invers ion symmet ry  

are soft aga ins t  de fo rma t ion  so tha t  the energy difference 
between the symmet r ic  and  asymmet r i c  so lu t ion  is ex- 
t remely  small. I t  is in teres t ing to note  that  in these cases 

also the  m o m e n t s  of iner t ia  and  some o ther  shape  p a r a -  
meters  are very s imilar  in symmet r i c  and  asymmet r i c  
clusters. This is seen clearly by c o m p a r i n g  the results for 
the t6  and  16" clusters. Also the  s ingle-par t ic le  energy 
eigenvalues are similar.  The  only clear  difference is ob-  
served in the o d d - / s h a p e  parameters .  

3.4 Magic numbers" and odd-even staggering 

The magic  numbers  co r r e spond ing  to closed electronic 
shells are clear ly seen in the to ta l  energies of  the spher ical  
je l l ium mode l  [1, 2]. When  the shape  is a l lowed to deform, 

the energy of the clusters with par t i a l ly  filled shells de-  
creases and  consequent ly  the effect of  the magic  numbers  
is diminished.  

F igure  6 shows the to ta l  energy per  e lec t ron  for the 
g round  states in the u l t imate  je l l ium mode l  (the numer ica l  
values are l isted in Table  1). The energy shows a clear 
odd-even  staggering.  I t  is due  to  the  (approx imate )  spin 
degeneracy  of the s ingle-par t ic le  levels and  the Jahn-Tel le r  
effect: the de fo rma t ion  can lift any  degeneracy  except  the 
spin degeneracy  [8]. To  visualize the  effect of  the  mag ic  



294 

~4  

I 

(1) 

c co 

0 
(_ 
-P 

0 
cO 

COo3 

g7 
C 
co 
C 
COo 

f N  
I 

5 10 15 20 

numbep o [  e t e c t r ' o n s  

Fig. 6. The total energy per electron for the ground  state. Even 
clusters are connected with a dashed line to clarify the effect of the 
magic numbers  8 and 20, and the semimagic number  14 

I:D 

d 

C3 

@ c a  
> i 
@ 

CD 

ED 
(_ 
COo 
C " 

COt 
CD 

LD 
I 

. . . . . . . .  < .................. 

. . . . . .  ::::: iiiii !!!!! 

- - - -_ -  --~____ 

{ i i i i 1 1 , F , 1 ~ * i i I i 

5 10 I5 20 

number" o{" e tec tpoms 

Fig. 7. Single-particle energy levels for the ground states. The lowest 
empty levels are shown as dashed lines. Spin-up and spin-down levels 
are given in different columns. For even clusters they are degenerate 
(Ion9 lines), whereas in odd clusters they form two separate levels 
(short lines) 

numbers, we have connected the energies of the even 
clusters with a dashed line. There is a clear cusp at N = 8 
and 20. Surprisingly, the strongly deformed cluster with 14 
electrons also shows an enhanced stability. 

Figure 7 shows the single-electron energy levels for the 
ground states. Spin-up and spin-down levels are shown in 
different columns. Above the occupied states, three empty 
levels are displayed by dotted lines. In even clusters the 
spin-up and spin-down levels are degenerate. Each odd 
cluster has an unpaired electron that splits the spin-up 
and spin-down levels. The splitting is seen to be maximal 
at the highest occupied molecular orbital (HOMO). Com- 
pared with the spin-independent formalism (LDA), the 

splitting reduces the odd-even staggering by about 30%, 
in agreement with the simple estimate of Manninen et al. 
[8]. 

The effect of deformation is clearly seen in the energy 
levels of Fig. 7. Deformation opens up a large gap at the 
Fermi level. The gap is almost as large for the nonmagic 
clusters as it is tor the magic ones. This can be most easily 
seen by looking at the even clusters. In the odd clusters, 
deformation lowers the HOMO level in the middle of the 
gap, and the spin splitting pushes it further down. 

In all clusters the is-type level is clearly separated from 
the other levels, but the lp-type shell is deafly separated 
from other levels only at the closing of the ld2s major 
shell, around N = 20. 

3.5 Isomers and softness of the ground state 

For clusters with 13, 14, 15, 18, 19, 20, 2t, and 22 electrons 
we found one stable isomer for each. These are marked 
with an asterisk (*). An isomer represents a local minimum 
in the total energy, and it cannot transform to the ground 
state without going over an energy barrier. (As discussed 
in Subsect. 3.3, 16" is not a true isomer.) The shapes of the 
isomers are shown in Fig. 8. The moments of inertia are 
shown in Fig. 4 (open circles) together with those for the 
ground states (black dots). The total energies per electron 
and the quadrupole deformation parameters/;  and 7 are 
given in Table 1. Grouped according to the symmetries, 
Tables 2, 4, and 5 give the shape parameters azm of the 
isomers. 

The prolate clusters with 13, 14, and 15 electrons have 
also oblate isomers. The energies of these isomers tie 
within 7 meV/electron above the ground state (Table 1). 
We cannot determine the energy barrier between the 
isomer and the ground state. However, the path of conver- 
gence towards the isomeric state implies that it is much 
higher than the energy difference between the isomer and 
the ground state. The isomers 13", 14", and 15" (as well as 
the ground states 13, 14, and 15) are clearly related to each 
other. 

The 18-electron cluster has a spherical isomer 18". Its 
ld shell is full and 2s shell empty. The electron density in 
the center of the cluster is only about 20% of the bulk 
density. The low central density appears as a hole in the 
contour plots of Fig. 8. 

The electron densities of the spherical clusters 18* and 
20 are plotted in Fig. 9. They are compared with the 
electron densities from the conventional jellium model 
with a homogeneous background charge (t5 = 4.18ao). In 
the conventional model, the central density of 18" is 
smaller than the average density. In the ultimate jellium 
model the central density becomes even smaller because 
there is no Coulomb energy opposing such nonuniform- 
ity. In the case of the 20-electron cluster, where the 2s state 
is full, the situation is the opposite: the ultimate model 
gives a much larger density in the center than the conven- 
tional model. 

The radius of the electron distribution is different in 
the two models. We define the radius as the distance where 
the density is 0.00163ao s, i.e., one-half of the bulk value. 
Figure 9 shows that the ultimate model gives a slightly 
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smaller radius for the electron density than does the con- 
ventional model. The reason for this is the surface tension. 
In the ultimate model, it can compress the cluster, whereas 
in the conventional model the density, and thus also the 
radius, are determined by the rigid background. 

The isomers 19", 20*, 21", and 22* have shapes related 
to that of the ground state of the 18-electron cluster. The 
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cal ground state of the 20-electron cluster 

interior electron density in these clusters is very close to 
the density of the highest contour line in the figures. This 
makes the contour picture very sensitive to small vari- 
ations of the density. The energies of these isomers are 
clearly higher than the ground-state energies, the differ- 
ence being 10-20 meV/atom. The 21" and 22* are oblate 
whereas the N = 21 and 22 ground states are prolate. It is 
expected [13, 15] that with increasing cluster size the 
energy difference between the prolate and oblate shapes 
becomes smaller and the ground state becomes oblate 
before reaching the next magic number of 40. 

3.6 Splitting o f  the plasmon resonance 

We have estimated the effect of deformation on the split- 
ting of the plasmon resonance using the classical ap- 
proach explained in Sect. 2.4. Figure 10 shows the cal- 
culated plasmon energies for the ground states and the 
isomers. In the case of a spherical cluster there is only one 
plasmon energy. Prolate clusters have two high-energy 
plasmon modes and one low-energy mode, whereas oblate 
shapes have one high-energy mode and two low-energy 
modes. In clusters with no axial symmetry, all three ener- 
gies are generally different. However, in the N = 18 cluster 
the lower energy is degenerate due to the D3 symmetry. 

The splitting of the plasmon resonance is in qualitative 
agreement with experiment. The results of Borggreen et al. 
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Fig. 10. Plasmon energies for the ground states (black dots) and the 
isomers (open circles), calculated in a classical approximation 

[10] show that a shape transition occurs from prolate to 
oblate near N = 15, from oblate to spherical at N = 20, 
and back to prolate thereafter. 

In Fig. 10 the average plasmon energy for a cluster is 
around 3 eV. It increases slowly with cluster size, ap- 
proaching the asymptotic limit of 3.18 eV calculated for 
an infinite sphere. It is interesting to note that in the 
ultimate jellium model the plasmon energies for small 
clusters are closer to the asymptotic limit than in the 
conventional jellium model [42]. The reason lies in the 
higher density and smaller size of the clusters in the 
ultimate jeltium model. In small clusters the pressure 
caused by the surface tension compresses the cluster as 
seen in Fig. 9. 

marion creates a gap at the Fermi level. The gap is almost 
as large in even nonmagic clusters as in magic clusters. 
The approximate spin degeneracy of the single-particle 
levels causes a regular odd-even staggering of the total 
energy per electron and in the H O M O  level. The spin 
splitting reduces the odd-even staggering by about 30% as 
compared with a spin-independent formalism. The odd- 
even staggering and the shell oscillation of the separation 
energy E ( N )  - E ( N  - 1) are in fair agreement with the 
measured monomer dissociation energies of Na clusters 
[46]. 

The splitting of the plasmon resonance due to defor- 
mations was estimated using a simple classical descrip- 
tion, equivalent to the sum-rule approach. The results are 
in qualitative agreement with experimental results [10] 
for sodium, whose bulk density is closest to that predicted 
by the ultimate jellium model. 

The ultimate jellium model does not describe any 
specific metal. Rather, it is a model of the electron gas that 
yields the optimal cluster shapes from the electrons' point 
of view. The reason that it can describe some general 
features of alkali clusters lies in the fact that in those 
metals the bulk density is close to that of the ultimate 
jellium model. 

The ultimate jellium model can be extended to de- 
scribe other fermion systems in the local-density approxi- 
mation. Such systems are nuclear matter, 3He, and elec- 
tron-hole plasma in semiconductors [34]. The only differ- 
ences from the present model would be a different local 
effective potential and a different particle mass. 

Recently, Sung et al. [47] have used a pseudopotential 
method to determine the geometries of small lithium clus- 
ters. Their result for the 14-electron cluster is in good 
agreement with the prolate shape found in the present 
work. Furthermore, application of quantum molecular 
dynamics to Nal4 indicates that even in the liquid state 
the electronic structure induces a prolate deformation 
[482. 

4 Discussion and conclusions 

We have calculated the ground-state and isomeric-state 
geometries of clusters with 2 to 22 electrons in a jellium 
model where the positive background density is com- 
pletely deformable. The model has no input parameters. 
The cluster geometries were calculated in the local-spin- 
density approximation with a plane-wave basis. No sym- 
metry restrictions were imposed on the electron density. 

The geometries obtained are in qualitative agreement 
with those found by Frauendorf and Pashkevich [13] 
using the Strutinsky method, and with those calculated by 
Hirschmann et al. [15] using a jellium model where the 
background edge is smoothed out with a Fermi function. 

The cluster geometries show large deformations from 
spherical shape. Breaking of axial and inversion symmetry 
is usual, and in general the shapes are not ellipsoidal. 
Some of the clusters seem to be weakly bound "molecules" 
of magic clusters. All clusters violating inversion sym- 
metry were found to be extremely soft against odd-multi- 
pole deformations. 

The variation of the total energy per particle is largely 
determined by the single-electron eigenvalues. The defor- 
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