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MOLECULAR PHYSICS, 1990, VOL. 71, No. 1, 1-16 

Electron-gas theory of the chemical shift 

By CHRISTOPHER J. GRAYCE and ROBERT A. HARRIS 

Department of Chemistry,-University of California at Berkeley, Berkeley, California, 
94720, U.S.A. 

(Received 9 February 1990; accepted 18 March 1990) 

We construct a gauge-invariant approximation of the energy density of an 
interacting electron gas in the presence of a non-uniform magnetic field. The 
interaction is approximated by a slowly varying local potential. The magnetic 
field is a superposition of a constant field B and that due to a magnetic dipole 
It, thus making the energy density suitable for direct calculation of chemical- 
shift tensors of, for example, interacting closed-shell systems. Unlike a similar 
theory for the magnetic susceptibility, the field-dependent exchange energy does 
not diverge. 

1. Introduction 
We present the basic requirement for an electron-gas calculation of the chemical- 

shift tensor: a gauge-invariant approximation to the ground-state energy density of 
an interacting electron gas in the presence of a constant magnetic field and a 
magnetic dipole. The energy density is a functional of the local electron density and 
the magnetic field strengths. Unlike the case of an electron gas in a uniform mag- 
netic field, the direct electron-exchange contribution to the energy density does not 
diverge. 

Probably the most important venue for the use of this energy density is that of 
systems of closed-shell components interacting in an intermediate range where elec- 
tron exchange and overlap are important, but strong bonding interactions are not. 
For these systems an electron-gas approach to calculating that portion of the 
responses due to the interaction has been introduced by Kim and Gordon [1] in 
their successful calculation of the forces between the components. They wrote the 
interaction energy of the system as a functional of the density by approximating at 
each point in space the energy density by that of a uniform interacting electron gas 
of the same density. They then approximated the density of the interacting system 
by the sum of the densities of the non-interacting components, which they obtained 
from Hartree-Fock calculations. Heller et al. [2] have pointed out that the 
Hohenberg-Kohn theorem 1-3] implies that the interaction energy thus calculated 
differs from the actual interaction energy to second order in the non-additivity of the 
densities. For  interacting closed-shell systems the non-additivity is generally small 
[1]. 

That a similar theory would work when a magnetic field is present is assured by 
the Rajagopal-Calloway [4] extension of the Hohenberg-Kohn theorem, which 
proves that the ground-state energy of the inhomogeneous interacting electron gas 
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2 C.J. Grayce and R. A. Harris 

is a unique functional of the density and current. The key ingredient is the ground- 
state energy density of an interacting electron-gas in a magnetic field. It would have 
to be gauge-invariant, since even the simplest interacting closed-shell system--pairs 
of closed-shell atoms--has both a para- and diamagnetic response. The natural 
approach would be to write the energy density as a functional of the density and 
current, then assume additive densities and currents of the components. These quan- 
tities are presumably considerably easier to calculate than the corresponding quan- 
tities for the full system. If the components are closed-shell atoms, for example, only 
the diamagnetic contribution need be found. Harris and Cina ['5] tried this path 
several years ago. They constructed a gauge-invariant kinetic-energy density that 
was a functional of the density and current. It turned out, however, that this energy 
density was not useful for actual computation because it was multivalued in places. 
(Vignale and Rasolt [6] have recently calculated an exchange-correlation energy 
density of an interacting electron gas as a functional of the density and current.) 

The energy density of the interacting electron gas in a magnetic field can also be 
written as a functional of the density and explicitly of the magnetic field. Cina and 
Harris [7] did this for the slowly varying (locally constant) magnetic field, and, 
assuming additivity of the densities of the components, made the first electron-gas 
calculation of the diamagnetic susceptibility of the triplet hydrogen state. They had 
to leave out the lowest-order direct-exchange contribution, however, because it 
diverged. It is a long-known fact that this divergence occurs for an electron gas in a 
uniform magnetic field [8]. This is a result of the long range of the Coulomb force 
and can be resolved by screening the exchange. It is not obvious, however, that 
without screening the lowest-order exchange contribution to the energy need 
diverge for a non-uniform, spatially limited field. (By 'spatially limited' we mean that 
the lowest-order term in the square of the field does not have amplitude over all 
space.) 

An important example of a non-uniform, spatially limited magnetic field is that 
in a nuclear magnetic resonance experiement: a superposition of a constant mag- 
netic field and that due to a magnetic dipole. With the energy-density functional of 
an interacting electron gas in such a field, one could calculate the interaction contri- 
bution to the chemical-shift tensors of interacting closed-shell systems. This is the 
functional we have calculated and present here. It is gauge-invariant and computa- 
tionally useful--i.e, mathematically well behaved. It also contains a finite exchange 
contribution, proving that in at least one case a finite exchange contribution to the 
energy can be obtained without screening. 

In the next section we present the details of our calculation, but in brief we 
proceed as follows. First we calculate by time-dependent perturbation theory the 
propagator for an electron in the non-uniform magnetic field and a constant exter- 
nal potential. A time contour integral converts this to the density matrix of an 
inhomogeneous electron gas in the same magnetic field and a slowly varying local 
potential. From this density matrix we obtain the kinetic- and exchange-energy 
densities as functionals of the local potential. From the density matrix we also 
determine the relationship between the local potential and the density, which we 
then use to eliminate in favour of the density the local potential in the kinetic- and 
exchange-energy densities. Together with the usual potential-energy density, these 
two then give the complete energy-density functional. Because of the method of 
construction, which works directly with the fields, the energy density is manifestly 
gauge-invariant. 
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Following the section with our calculations, we remark on the finiteness of the 
exchange contribution and on how the energy-density functional may be used to 
calculate a chemical-shift tensor. 

2. Calculation of  the energy-density functional 

We construct the energy-density functional at the level of the Thomas-Fermi- 
Dirac approximation. We begin with the Hartree-Fock approximation of the 
ground-state energy of a multi-electron closed-shell system: 

f 1 I e ]2 f E =  dar2 lim ~m p + - A ( r )  p ( r ' l r ) - e  darV~xt(r)p(r) 
r ,.-.~ r C 

+ �89 dar d3r' ~- - - r  �89 d3r d3r'2 I r -  r'---~' (1) 

where e is the absolute magnitude of the electron charge, p(r) is the ground-state 
electron density, V=xt(r) and A(r) are the external scalar and vector potentials, and 
p(rlr') is the single-particle density matrix for electrons of the same spin. Were it 
constructed from the Hartree-Fock spin orbitals, this density matrix would be given 
by 

N 

p(rl r') = ~ ~b*(r)q~,(r'), (2) 
i = 1  

where the ~b i are the Hartree-Fock spin orbitals of energy Ei. We write the energy as 
an integral overall space of kinetic, potential- and exchange-energy densities: 

E = f dar t [r,  p, B, p(r)] + v[r, It, B, p(r)] + x[r, It, B, p(r)], (3) 

where we then have, from (1), the following definitions: 

1 I e 12 t[r, It, B, p(r)] - 2 lim ~m p + - A(r) p(r'l r), (4 a) 
r , - o r  C 

v[r, It, B, p(r)-I - - eV=xt(r)p(r ) + �89 2 f p(r)p(r') d3r , 
i t - -  rZi' (4b) 

x[r, It, B, p(r)] = - le2 f d3r ' 2 I p(rll r - r'lr')I 2 . (4 c) 

This is a theory for closed-shell systems, so spin enters the picture only in the 
leading factor of 2, for double occupancy of each orbital, in the kinetic- and 
exchange-energy densities. 

We want to get each of these quantities as a functional of the fields It and B and 
of the electron density p(r). The potential-energy density is already in that form, so 
we need not consider it further. For the kinetic- and exchange-energy density we 
need the density matrix. It turns out that density matrix can be obtained from the 
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single-electron propagator through the following time contour integral 19] : 

f oo-- i~  dt 
p(r] r') = lim 2~it (rle-itJe/~ i r,)e-iUF (5) 

t~-~O d - -  oo -- i~ 

where ~ is the Hart ree-Fock Hamiltonian, and ev is the Fermi energy, which for 
neutral systems we may set equal to zero. 

We now set about calculating the propagator. First we make a local approx- 
imation to the non-local Har t ree-Fock potential, so the single-electron Hamiltonian 
may be written as 

1Eel ~ ~ O + -c A(r) + V(r), (6) 

where 

f + ~(r). (7) 
p(r) 

V(r) = Voxt(r) - e dSr I r - r'l 

V~ is a local approximation to the exchange potential. It will turn out that we need 
never consider its exact form or its relation to the Kohn-Sham exchange potential 
1-10]. We next assume that V(r) varies slowly enough in space that we may ignore 
the fact that in general it does not commute with the kinetic-energy operator 
J -= (2m)- l ip  + (e /c)A(r)]2 .  The propagator may then be written as 

( r  I e-i*~e/~ I r ' )  = e-i'vt'>/~(rle-i'~//~ I r'). (8) 

We evaluate V arbitrarily at the endpoint r instead of at the midpoint �89 + r') 
because we are ignoring variations of V over short distances, and we use the 
propagator only for r very near to r'. It is important to emphasize that A(r) is not  
treated as slowly varying even through V(r) is. This is to some extent inconsistent, 
since a non-slowly-varying vector potential might be expected to produce a non- 
slowly-varying density p(r) and hence local potential V(r). We have not fully 
explored the consequences, if any, of this inconsistency. We shall assume here that 
they are unimportant. 

Finally, we restrict ourselves to a chemical-shift calculation; that is, our mag- 
netic field consists of a constant magnetic field B and that due to a magnetic dipole 
IX. The elements of the chemical-shift tensor are obtained from the energy as 

dZE 

aij  - d ~ - f f B j  s,, a-~o" (9) 

That is, the tensor is the coefficient of the I IX[LB I term in an expansion of the energy 
in powers of the magnetic field strength. Therefore we need keep terms in our 
calculation of the energy density only up to bilinear order in [ IX I and [ m I. This will 
be an important point later. Choosing the Coulomb gauge and fixing the magnetic 
dipole at the origin, the vector potential is given by 

A(r) = �89 x r + IX • (10) 
/,3 

The kinetic-energy operator can then be written as 

p2 e e IX x r e 2 (B x r) 
3 - " ~ 2 - - m m + ~ - m c P ' ( B x r ) + - - P ' - - - r ' T - - + - - ( I X x r ) ' - - + m c  2mc2 ra . . . ,  (11) 
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where, as promised above, we have dropped terms of order I It [ 2 or I B [ 2 or higher. 
We denote the first two terms of J as ~--o, and the third and fourth terms as 3-u 
and 9"-~B respectively. Ordinary time-dependent perturbation theory then gives 

e -itg-/~ = e- i t~~ (12) 

where 

i .I t -- ~-i,'~o/n ql~(t) = 1 -- ~ dt' e~":~ + ~ B ) e  + . . .  (13) 

The reason that we do not  choose the free (no magnetic field) kinetic-energy oper- 
ator p2/2m as our zeroth-order Hamiltonian is that, in order to include all terms 
bilinear in I ltl and I B 1, we should have to do second-order perturbation theory on 
it. We cannot perform all of the required integrals. Luckily, this turns out to be 
unnecessary. 

Because the two terms of 9-0 commute, we may approximate the exponential: 

e-i"~'~ = e x p  ( i t '  P 2 ) h  ~ exp ( it' e ~  B . I ) h  2mc 

( i t ' ~ ) (  it' e B . I + . . .  ) (14) 
exp h 1 h 2mc 

(note that I is ordinary angular momentum). Once again, we have dropped terms of 
higher order than we need. If we define the ket 

I r t ) - - -exp ~m l r) (15) 

and the corresponding bra then the kinetic term in the propagator to the appropri- 
ate order in [ It[ and [ B [ can be written as 

it e 
(r le- i ' r /~l  r ') = (rt l  t '0) - -  ( r t l B  �9 II r'0) 

h 2mc 

if/ Itxr +-~ dt' mc-e ( r ( t -  t ' ) lP " - 7 - I r ' ( - t ' ) )  

i e 2 [ p x r  
+ ~ 2m2c 2 (t -- t ' ) (r t l(B �9 I)p" ~ [ r '(- t')) 

p x r  1 + t'(rtlP �9 - ~  B �9 I I r ' ( - t ' ) )  

e 2 I t •  
2mc2 ( r t l (B x r). - - ~  [ r ' ( - t ' ) ) .  (16) 

Note that with our definitions, (r t  [ r'0) is the ordinary free-particle propagator:  

( r t l r ' 0 ) = ( r l e x p (  it p2 h 2--mm/Ir') \ 
(17) 
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We may now simplify (16) by the use of two relations. The first is simply the 
position representation of the operator It �9 I : 

i t .  I ~  - i h ] / t  I dq~. (18) 

where (p, would be the azimuthal angular coordinate if It were to lie along the z 
axis. The second relation is the following, which can easily be verified by direct 
calculation: 

m (rt  I r't'). (rtl  B �9 II r't') = B �9 (r x r') t - t----; (19) 

With these considerations, (16) simplifies to 

I i e  1 (rle- it~-/nlr')  -- 1 - 2 h c  B �9 (r • r') (r t lr '0)  

ifo f e . ,  +-~ dt' d3~ ~3 x (-ihV')(rtl~t')(~t'lr'O) 
m c  

e 2 [ (  ~ _ _ 0 _ ) B . ( , •  ( ~ ) B . f f •  
2mc 2 I I t I d(p~ F3 + I It I ~,3 

(B x F)r:(it x F)] + _ <rtl~t')<~t'l r'0). (20) 

We may now substitute this back into (8) and use the resulting form of the 
propagator in (5) to obtain the density matrix. The time contour integral over the 
free-particle propagator delivers the well known zeroth-order density matrix [11] 

f c d t  1 as jl(~l r - r'l) e-'W/n(rtl r'0) = ~ ~-r-----rq ' (21) 

where j l  is the spherical Bessel function of order 1, and we define the parameter ~ by 

~ = I~-  I V(r)[ l 1/z. (22) 

The t' integral in (20), over the product of free-particle propagators, has been per- 
formed by Feynman and Hibbs [12]: 

dt' (rtl~t')(~t'l r'0) = - ~ ~ \--~-mm] \1--~--~-~ I + 

Jim 1 + e x p  ~ - ~ ( I r - ~ l + l ~ - r  2 . 

The time integral over this result gives 

fc dt e-iW/~ fi'dt' (rtl,t')(~t'lr'O) _ 
2nit 

(23) 

i mo~2jl(o~lr-el+c~le-r'l) (24) 
4re 3 h I r -~ l  I~-r ' l  
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The density matrix that we obtain by doing these time integrals in (5) is 

[ i e ] 1 0 t3 jx(c t l r - r ' l )  
p(r l r ' )=  1 - ~ c B . ( r x r '  ) ~ ~ l r - r ' l  

+ d J k [ - - e ( O )  ~ 2mc -------I (drkdr'k~a~o,/ lt, ih + B, lItl\&o---7 ~ + 

1 m___~2fd3~.~Ja(~ ] 
x~4~3 ~3 ir-~-I I~-  r'l 

_ _  f PjPm jX(~I r - -  ~l + ~ l r - -  r ' l )  (25) e 2 1 m ~ 2 d a r  ~3 , 
+ 2mc 2 Bi/llgijk~'klm h E 4x 3 Ir - rl Ir - r'l 

where d Jk is the Levi-Civita symbol for the completely antisymmetric tensor. The 
final integral over ~ can be done in closed form by changing to prolate spheroidal 
coordinates and making use of an expansion of 1/I r - r l in these coordinates. The 
algebra is complicated, however. The explicit calculations are sketched in Appendix 
A. The resulting density matrix is given there by (62). 

We now calculate the kinetic- and exchange-energy densities. The kinetic-energy 
density (4 a) is found by applying the kinetic-energy operator given by (11) to the 
density matrix: 

t [ r ,  It, B ,  V ( r ) ]  = 2 l i m  F-  h2 V 2 " 

e 
,'-., L 2m - lh ~mc B ' r x V  

ih e 1 e 2 (It x r) �9 (B x 
mc ~ p" (r x V) + 2mc------ ~ ra- j , . r l  r'). (26) 

Carrying out the indicated differentiations gives 

h 2 Gt 5 e 2 1 
_ - -  _ _  tx 4 

tit, It, B, V(r)l 2m 5~ 2 + 2mc 2 2~ 2 

where 

x [  (It x r)" (r x B) ] 
r2- Te x (2ctr) + It ' B Te 2 (2ctr) , (27) 

Te 1 (x )  = _2 (1 -jo(x)) 
X 

8 ( c o s x -  1 1 cos x )  (28) 
Te2(x) = - �89 + 6 j a (x  ) + ~jl(x) + ~ x 3 + 2 x 

and si(x) is the sine-integral function. The functions Te I and Te 2 are finite for all 
positive x. 

The exchange-energy density (4 c) is given by 

f ['~ r')l 2 
x[r, It, B, V(r)] = -�89 2 dar'2 ir--- rTi " (29) 
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Unfortunately we have been unable to perform this entire integral in closed form. 
However, it turns out that it can be written in the following form: 

e 2 
x[r ,  It, B,  l/(r)-I - 4 ~  3 

{ (ey 3r(, • (, • 1} x ~ ' + \ ~ J  L r2 Xet(ctr) + I t "  BXe2(~r)  ' 

(30) 
where Xe 1 and Xe 2, given in Appendix B in (66) and (67), while not elementary 
functions or combinations thereof, may be tabulated for their single parameter. 
Figure 1 shows Xe ~ and Xe 2 for a range of the parameter. 

The kinetic- and exchange-energy densities given in (27) and (30) are functionals 
of the local potential V(t). We need them as functionals of the electron density p(t), 
so we must substitute into them for the local potential its expression in terms of the 
electron density (and magnetic fields), F[p(t), r, It, B]. Remember, however, that we 
are calculating the energy density only to first order in I It l and I B I. Therefore, for 
parts of (27) and (30) where It and B already appear explicitly, we can for V(r) 
substitute V[fl(r), r, It, B] only to zeroth order in I It l and I B I. This is just the usual 
Thomas-Fermi result 

h 2 
I VLo(r), r ] l =  ~m [3%2p(r)12/3' (31) 

or, in terms of our parameter ct, 

= [3=2p(0] . 3  (32) 

For substitution into parts of (27) and (30) where It and B do not appear 
explicitly, we must obtain VLo(t), r, It, B] to first order in I It l and I B I. The diagonal 
elements of the density matrix (62) give one-half the density as a functional of the 
local potential. 

5.0- 

c -  

._(2 
E 
O 

O 

Figure 1. 

4.0- 

3.0- 

2 , 0  - 

1.0- 

0.0 
0.0 

"~'~ Xe 2 

, ~ 

I I I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

c(r 

The functions Xe 1 and Xe 2 appearing in (38), as given by (66) and (67). 



Electron-gas theory of the chemical shift 9 

( e )  2 1 I(Itxr)'(rx B) Dl(2~tr)+ 2it BD2(2ar)l 1 0~ 3 0~ 2 �89 + 

where 

Dl(x) = -~ (1 - cos x) - 2_x J~ ] 

D2(x) x~3 (1 cos x) 2 . . . .  COS X - - j l ( x )  - -  si(x). 
x 

(33) 

(34) 

e2 f g e t  , It, B ,  p ( r ) ]  - 47~3 ( 3 ~ 2 p )  4/3 

(e)2[!itxr)'(rx B) D1(2a)+23It. BD2(2a) 1 
+ 2(3n2p) hc r 2 

+3n2p( ) [ h  e 2 ! I txr) ' ( txB)r2  Xel (a )+ i t .  B Xe2(a)]}. (38) 

When combined with the potential-energy density (4 b) due to the mean-field and 
external potentials, (37) and (38) give the total energy density of the inhomogeneous 
electron gas. Integrating the energy density gives the energy, and one can simply 

(37) 

The functions D 1 and D 2 a r e  finite for all positive x. We do not have to contemplate 
inverting (33) to obtain V[p(r), t, It, B] exactly, because we need the latter only to 
first order in I P l and I B I. We can do that in the following manner. In each term on 
the right-hand side of (33) where It and B already appear explicitly, we substitute for 
a the zeroth-order (Thomas-Fermi) result (32). The resulting equation then contains 
just one V(r) on the right-hand side, and so can be easily inverted to give V[p(r), r, 
It, B] to first order in I It l and [ B I. After a final expansion in terms of the magnetic 
field strengths, we obtain for ~ to first order in I It I and I B I the following: 

{ l ( e )  2 1 [!It x r)" (r x B)Dl(2a)+ azit. B D2(2a)I } 
~(3~2p) 1/3 1 - ~  hc (3n2p) 1/a r 2 

(35) 

where 

a = [3~2p(r)] 1/3r (36) 

We now use (35) to write the kinetic- and exchange-energy densities in their final 
forms as functionals of the electron density: 

h 2 1 { 
t[r, It, B, p(r)] - 2m 5r~ 2 (3~2p)5/3 

(e)2[(itxr)'(rXB)D~(2a)+Z3it. BD2(2a) ] + ~2(3n2p)4/3 ~c r 2 

+5,3~2.~4/3fe ~2F(it x r). ( rx  B)Te2(2a ) + i t "  BTe2(2a)-]~ 
2, L r2 j; 
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read off from that the chemical-shift tensor, which will be the coefficient of the term 
bilinear in I P l and I B I. 

3. Remarks 

We wish to emphasize that, in distinct contrast with the situation for a constant 
magnetic field, the exchange energy density given by (38) will give a finite exchange 
contribution to total energy for any (reasonable) bound system. Since the functions 
D 1, D 2, Xe 1 and Xe 2 are everywhere finite, for large r the right-hand side of (38) goes 
to zero as fast as p(r) itself does. To sketch this, we show in figure 2 the exchange 
energy density as a function of r for the simple case of p(r) = r r - le-z , .  

The energy density that we have constructed can, as we mentioned, be used 
directly in the calculation of chemical-shift tensors of interacting closed-shell 
systems. To do that, one would first calculate the density of the isolated components 
of the system in the presence of the fields. If the components are simply closed-shell 
a toms-- the  situation we have in mind--this is enormously easier than calculating 
the full magnetic response of the system, because the atoms have only a diamagnetic 
response. The density in the energy-density functional we have constructed can then 
be approximated by the sum of the densities of the isolated components. The error 
in the energy resulting from assuming additivity turns out to be second order in the 
non-additivity, as mentioned in section 1. To isolate the interaction part of the 
energy, one would subtract off from the energy density the energy density of the 
isolated components. Integrating the energy density would then give the interaction 
energy of the system, and the coefficient of the term of first order in Ipl and I B I is 
the part of the chemical-shift tensor due to the interaction. We are presently carry- 

B 

E 
O 

t -  

-E3  

> - ,  

t-'- 

O 
U P  
t -  
O 

. . C  
0 
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@ 

Figure 2. 
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The exchange-energy density given by (38) as a function of r for the simple case of 
1 2 r  p(r) = ~- e- . The dashed line is that part of the exchange energy density multiplying 

p �9 B, the dotted line is that multiplying (p x r) �9 (r x B)/r z, and the solid line is that 
with no magnetic fields in it. 
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ing out a calculation of the chemical-shift tensor for the worst candidate among 
interacting-closed shell systems for an electron-gas calculation, the triplet state of 
H 2 [13]. A somewhat more complicated calculation done for interacting 129Xe 
atoms could be compared with the experimental observations of Jameson et al. [14]. 
(Cynthia Jameson [15] has determined one-third of the trace of the chemical-shift 
tensor for 129Xe at low densities, where pair interactions dominate, as a function of 
pair separation. Calculating this function would be a good use of the electron-gas 
theory of the chemical shift.) 

We wish to make two further comments. First, for this theory--unlike a theory 
in which both V(r) and A(r) vary slowly--it should be possible to correct the 
deficient treatment of the variation of V(r) by making a gradient expansion in V(r). 
Secondly, one could produce an exchange potential for a slowly varying local poten- 
tial by varying with respect to p(r) the integral of the exchange-energy density given 
by (38). This might be a starting point for a somewhat more general theory, such as 
a consistent Thomas-Fermi-Dirac theory with these magnetic fields. 

A p p e n d i x  A 

The density matrix 
Here we sketch the final calculation of the density matrix from (25). First, we 

need to calculate the two space integrals in (25). They are 

K l = f d 3 p ~  jl(~lr-~l+~l~-r'l)lr-,ll~-r'' ' (39) 

['da P Pj~., jl(ct[ r - ~1 + ~le - r ' l) K2 (40) 
J 

First we change to centre- and-relative coordinates: 

R - l ( r  + r'), 

r o = �89 - r'), 

x - ~ - R => d 3 x  = daP.  

(41) 

The two integrals now become 

f xj+Rj j,(c<l x - rol + c<lx + rol )  
K1 = d3x Ix + RI a Ix - rol Ix + rol 

a f 1 j l (c t lx  - rol + c<lx + rol) 
- aRj d 3 X l x + R ~  I x - r o l l x + r o l  ' 

d3 x (xj + RjXx~ + R~) j l(al x - r o [ + ct ] x + r o l) 
K2 

3 I x  + RI  3 I x  - rol Ix  + rol 

a ~ x~ j ~ ( c t l x - r o l + c t l x + r o l )  
=R~K~--~-~ d3Xlx + R I I x - r o l  I X + r o l  
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We now change to prolate spheroidal coordinates  with the z axis along r o and foci 
at  _+ro: 

1 

1 
~-Fro 
q~ -= the 

( I x -  ro[ + Ix + rol), 

(Ix - % 1 -  Ix + rol), 

usual azimuthal  angular  coordinate.  

(42) 

N o t e  that  

x + l  
Q ~ 1 8 9  x - - 1  " (50) 

We also define 

u  f l = 2 a r  o. (43) 

U p o n  completing these changes, we find that  the two integrals become 

0 d2 ro - -  ja(fl2), (44) 
K 1  = - OR----j Ix  -- Y] 

K 2 = R m K 1 - d2 r~ [ x - Y--------[ jl(fl2). (45) 

We need the factor x ,  in K 2 in terms of the prolate  spheroidal coordinates:  

m = x ~ x x = r 0 cos ~b(1 -/z2)1/2(22 - 1) 1/2, 

m = y ~ xr -- r 0 sin ~b(1 - -  ~ / 2 ) 1 / 2 ( ) ~ 2  _ 1)1/2, (46) 

m = z - *  Xz = ro ),lt. 

Finally, for the factor 1/I x - Y I we use the following expansion [16] : 

1 1 ~ (2l+ 1 ) ~  emimI(e--m)[]2 
I x - Y I - r o , = o  ,.=o q +  m)!J cos [m(~b - q~y)] 

x P~'(IZr)PF(Iz)P~'(A<)QT'(2>) , (47) 

where e m is the ' N e u m a n n  symbol ' ,  defined as era= o = 1, em~ o = 2; 2<(>) is the 
lesser (greater) of 2 and 2y; and (2y , /z r ,  ~br) are the prolate  spheroidal coordinates  
of  the head of Y. P~ and QF are the associated Legendre functions of the first and 
second kinds respectively. 

Using the recurrence and or thogonal i ty  propert ies of the Legendre functions and 
substi tuting (46) and (47) back into (44) and (45) produces 

K1 = -- OR--~. 4n d2j,(fl2)Q~ (48) 

K 2  = R m K  _ 2 ~ _ ~ j  dJ,jl(fl),) 2 b m z y z ) 2  QO(2>)_ 

r,:_> ]} + ((~my Yy + (~mx Y x X  )~2 - -  1 )  L,~> - 1 Qo~ . ( 4 9 )  
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The integrals are now elementary. We find 

8 [ s inf l  si(fiRr) 
K 1 = - - 4 ~  Q~ fl2 fl2 

1] 
- -  + 2-~  Ei2 , (51) 

where we have used the abbreviat ion Ei for the exponential integral function, 

Ei 2 = cos fl [si (fir r - fl) + si (fir r + fl)] + sin fl [ci (fir r - fl) - ci (fir r -4- l/)], 

(52) 

and si (x) and ci (x) are the usual sine- and cosine-integral functions: 

f oo s i n t  f |  c o s t  s i ( x ) = - -  d r - - ,  c i ( x ) = -  dt 
t t 

The other integral is 

8 
K z = g m K 1 + 2x  -~ i . (26 .~zR .Gz  + (3.,yRy + 6,~xRx)Gxr], 

where we define 

(53) 

(54) 

COS 2 
Gz - p3 + Qo~ + [cos  0 ~ )  - cos  g ]  - - -  

si (fl) 1 1 
+ --fl-F + ~-~ Ell + 2--~ El2, 

2 cos fl 22 r 
G~, = #3 Q~ + ~3(1 _ ~ )  [cos  (fiR~) - cos  ~3 

Jo(fl) 
pR~ 

(55) 

2 si (fiRr) 1 
fl2 f13 Eil, 

(56) 

Ei 1 = cos fl [ci (fir r - fl) - ci (fir r + fl)] - sin fl [si (fir r - fl) + si (fiRr + fl)]. 

(57) 

We now carry out  the derivatives with respect t o  Rj and convert  where conve- 
nient back to the original coordinate  system. The final results are 

K1 - a(rr' + r . r') + [Jo(?) --Jo(fl)], (58) 

where 

f l = 2 ~ t r o = ~ t l r - r ' l ,  y - f l R r  = ar + ~r'. (59) 

For  g 2 it is now more  convenient to write B i lh 13ijkeklmK2, which is what  we shall 
need anyway for use in (25): 

2h i2  p -  . B F x l  + [it x (r - r')]lr -" r'[Bl2 x (r - r')] Fx 2 Bi fll eUkeklm g 2 

- + -(r'gt x r + r l t x  r ')Fx3 
r r ~ ] 
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where we have used the abbreviations 
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F x  t _- Gxy , 

Fx 2 - 2Gz -- Gxy, (61) 

L 
Gxy and Gz are given in (56) and (55) respectively, and we intend the final forms offl, 

and flkr, as given in (59) above. 
We may now calculate the density matrix. We substitute (58) and (60) for the 

appropriate space integrals in (25) and carry out the indicated differentiations in 
front of each. The final result is 

[ i e I 1 t3jl(fl) p(rlr')= 1 - ~ B . ( r x r ' )  ~ fl 

. e  1 ~2 [ ~ ] 
- 1 hc It " (r x r') ~2 rr'(rr' + r. r') Jl(Y) -- Jl(fl) 

( e ) Z  1 { ~ [ 'Eit (r • r')lE" (' • ")~ 
+ hc 4n ----2 rr' + r �9 r' 0trr' 

+ 

+ 2it  �9 B F x  I + I r - -  r ' ]  2 F x 2  

+ c(z(B x r B x r"~ } 
- - +  "(r' it  x r+ rpx  r ' )Fx  3 . 

r r ~ J 

x 62 

\ rr' + r �9 r' 

(.(It xr').(BXr)r,_ + (It x r ) ' (Bxr ' ) )  [ j ~  J~ 1 

[px(r--r ' ) ] .  [B x(r-r ' ) ]  

(62) 

Appendix B 

The functions Xe 1 and X e  2 

We have been unable to perform the integral in (29) in closed form using the 
density matrix give by (62). The best we can do is to write the exchange-energy 
density as in (30). To do this, we first change to centre-and-relative coordinates in 
order to treat r and r' on an equivalent footing: 

R --- �89 + r'), t = r - r'. (63 )  

Equation (29) then becomes 

x[R, It, B, V(r)] = - � 8 9  e2 t'lda~2 Ip(R + �89 - .l~l~_,,2 
J 

(64) 
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The leading term in the square of the density matrix can of course be integrated, 
and gives the zeroth-order Dirac form of the exchange-energy density, 

_ e 2 f d 3  1 [  1 ~3 jl(~r)~ 2 1 
- = - - e  2 (65) 
r 3 

and we use (35) for ~ in this to get the first two terms of (38). For the remainder of 
the square of the density matrix, we now carry out the (easy) azimuthal integration 
and push the remaining integrals into the definitions of the functions Xe 1 and Xe 2. 
Very fortunately, it turns out that we can scale ~ entirely out of those integrals, so 
that Xe I and Xe 2 depend only on the single scaled parameter ~R instead of on both 

and R. 
The actual definitions of XC and Xe 2 are as follows: 

Xel(R) - ff ;ldXjl(T'){(1-3x2X'~x2-~'2 ~x3) 

1 [ ~ x  3 {4~2x2R 2 - ~212R2 - 1~2(1 - 3x2)]} 
+ IR - �89 JR + �89 

+ ~2 _2 [R2~2( 1~---------~ - x2)[ -j*(~)+27j1(zF')r 27(J~ -- J ~  _ ~2 j 

--~[jo(~--jo(P)][2R2+�88 (66) 

- [ Xe 2 (R) - dF dxjl(~ ) 4Fx'  + (1 - x 2) 2(~X 2 - -  ~2 ~XX 3) 
1 

~p2 ( J~  }. (67) +lR-�89189 �89 ~ ~2 
The variable x is the cosine of the angle between i and R. The tilde above the 
various quantities indicates that ~ has been set equal to one. Also, in terms of the 
new coordinates, we note that 

 =IR+�89189 

= ?. (68) 

and Xe 2 are shown in figure 1 for a likely range of the The two functions Xe a 
parameter ~R. 
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