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ABSTRACT 

Formulas f o r  t h e  e l e c t r o n  thermal  c o n d u c t i v i t y  

have been de r ived  i n  t h e  c o l l i s i o n a l  and c o l l i s i o n -  

less limits f o r  t h e  case of des t royed  magnetic 

s u r f  aces. 



The aim of this article is to consider electron heat 

transport due to parallel thermal conductivity.in a tokamak with 

1 
destroyed magnetic surfaces. There is evidence of runaway 

electron leakage2 from tokamaks which indicates that such magnetic 

4 
braiding3 may exist. Moreover, recent microinstability theories 

predict the formation of magnetic perturbations with dimensions 

r (ion gyro-radius) or slightly less. 
i 

First we review the most important geometric characteris- 

tics of the braided magnetic field. We use as an example a 

3 

magnetic conf iguration in cylindrical geometry, B = BZ;+Be (r) 6+68, 

but most concepts can be easily generalized to toroidal configura- 

tions. In order to model toroidal periodicity, we assume that 

the system is periodic in the z-direction with.period 2-rrR.. Then 

6:s can be written in the form 

-k 

6 s  = 1 bmn (r) exp i (me-n Z/R ) + c. c . 
m, n 

If there is only one harmonic in Eq.(l); then the field is 

helically symmetric and has exact magnetic surfaces. These 

surfaces have the shape of so-called magnetic islands near the 

rational cylindrical surface r , detined by the condition 
mn 

q (r) = rBZ/RBe = l/i (r) = m/n . The width of the separatrix of the 

island is given by the formula, 5 
d 

A mn . 
'=4/2g(lb m mnr '(r) I / B ~  (di/dr) J r  = 

mn 

In the case of many harmonics being present, mapping is used as 

a. practical way to determine if magnetic surfaces exist or not. 6 



Surfaces exist if the points. of intersection.of a field.line with 

planes z = 2nnR lie on a smooth closed curve. If the- mapping 

is not a smooth curve but rather a sequence of irregular points 

which can fill the whole area, then we may say that magnetic 

surfaces are destroyed. The transition.between these two cases 

.is quite sharp and is described by a stochasticity parameter, 
7 

I where m , n  and m1 ,n1 represent 

any two harmonics which have neighboring ratio.na1 surfaces. If 

s 2 l r  then magnetic surfaces are destroyed in the region between 

I and r,,,, . and the field linco rrander ecyorliudlly. s - 1  
11u1 

corresponds to overlapping of islands of different helicity.' The 

transition region is very complicated7 and we will be discussing 

mainly the case of well destroyed surfaces, s > > I ,  with dense 

rational surfaces. 

Consider a small' circle. nf radius 9 - ip! the plalle 
0 

z=const and map it by solving the equation dr/dz=Br/BZ , 

rdB/dz = Be/BZ . This magnetic mapping is area preserving, 

as a consequence of the equation div B = O  . 
There will be two different stages of evolution of our 

area. First, it will move as a whole and also it will deform 

its shape stretching in one direction and contracting in the 

other. This process can be described analytically for continuous 

mapping by the equation. 

e ( z )  = eo exp (Z/L~ . ( 3 )  

Here = nR/Rn (ns/2). Such behavior is called stochastic in- 

stability of trajectories. The width 6 of the area will ex- 

ponentially decrease in order to conserve the total area, i.e., 



6 (z) = %exp (-z/L;) . When fi (z) ? r/m, where m is a characteris- 

tic mode number, different parts of our stretched area start to 

move almost independently. The distance = L 2n(r/meo) 
c 

plays the role of a correlation length for the area. At this 

stage of the evolution the area looks very complicated, as de- 

picted in Fig. 1. It can be shown that the average squared 

raddal displacement of the area can be described by a diffusion 

formula . = 
2LDst ( 4 )  

L is the distance in the z direction, L >>  L 
c0 and Dst 

is 

given by the quasilinear formula: 
1 

-, 

.* 

All processes of mapping are strictly reversible, but because 

the width of the area becomes extraordinarily small, any small 
. . 

spreading because of motion perpendicular to the field lines 

can be of great importance as we 'will see later. The precise 

mathematics and all details can be found in a number of good 

re,view~ on the cubjcct. 7,8 

Let us turn now to the subject of this letter: electron 

e heat transport in a braided magnetic field. The coefficient of 

thermal conductivity x ,is proportional to the coefficient of 
- 

self diffusion D . Suppose that in some small region we mark 

instantaneously a number of electrons and then watch for the 

time evolution of their radial distribution. If the radial 

spreading of test electrons is a diffusion .proce'ss, then D = 

2 2 
<(Ar)> /2t , where <(Ar) > is the mean square of the radial 
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displacements of electrons during the time interval t . We 

will consider two limits: collisionless, when the mean free path 

X >>L and collisional, X < <  L . [We will make a number of 
C C 

simplifying assumptions and not attempt to give detailed numeri- 

cal coefficients.] 

Consider the collisionless case. We assume that guiding 

center trajectories coincide with the field lines. Instead of 

considering many discrete particles, we visualize just one 

which is spread over some initial area of the dimension 

r (electron gyro-radius) with equal probability. Then parallel 
e 

motion along the field lines produces a continuous mapping of the 

area. We may treat collisions as a discrete process which take 

place periodically with the time interval r . As a result of 

collisions, the parallel velocity of the particle will change its 

direction or remain the same with e q u l  probability. Also the 

whole area will instantaneously diffuse radially a distance 
re 

(or an electron "banana" width in the toroidal case). The latter 

process models the perpendicular jump of the guiding center at 

the time of collision. 

Let us start our experiment. Initially, we have a small 

circle of radius re . It moves a distance h along the tra- 

jectory,mapping into a complicated thin region of the kind 

drawn in Fig. l(c), with the width 6 reexp(-h/L ) . The 
C 

average squared displacement of its elements in a radial direction 

2 
is equal to < (Ar) =2DstX . The collision now increases the 

width of this area to 
re . We can cut now our area into a 

large number of small square pieces of the size re and proceed 

in exactly the same way as in the first step, see Fig. l(c). 



Because for the collisionless case r >> . & ( A ) ,  each of these 
e 

new elements will evolve on the second step almost 'independently 

from its previous history. Obviously, the spreading of our 

area in the radial direction is similar to a random walk with 

the diffusion coefficient given by 

D = < (ArI2 > / 2 ~  = 
Dst ' (6 

This formula does not depend on collision frequency in spite 

of the4importance of collisional spreading. 

It is instructive to compare this case with the similar 

evolution without any perpendicular motion. Suppose that the 

particle reverses its parallel velocity after the first collision. 

Then the second step area will map exactly back to the initial 
$. . 

.small circle. Obviously, the only way for it to expand in the 

radial direction is to diffuse collisionaily along.the field 

line. During a time t >>  T ., the, average squared distance 

moved by a particle in the z direction is L2 - - x,, t . This 
\ 

gives < ( ~ r )  > = ft(x,,t) 'I2 , which is (t/r)ll2 times smaller 

than the diffusion given by Eq. (6). 

Consider now the collisional case X << L . Any sub- 
C 

stantial spreading of the.area in the radial direction due to 
- 

the mapping will take place after the particle has collided many 

times to move a distance, L 5 LC . '~ecause of this, we will 
consider perpendicular motion as a continuous process with the . 
diffusion coefficient X, . The parallel motion andthe effect 

of collisions on it will be treated the same way as before. 

Consider a small element of evolving area which has a typical 

size 6 . There will be two competing processes: .due to 

stochastic instability, the width of this element will decrease 



exponentially: dS/dL= -6/Lc , where dL is the distance which 

the. particle moves during the time dt . For any dL ,>> A , the 
2 

particle is diffusing in the z direction so that dt (dL) /xII . 

During the same time dt this element will increase its width 

because of perpendicular diffusion d6 - (xldt) 'I2 = ~L(x,,/x~) 1/2 . 
The balance between these two processes.allow us to estimate 

1/2 
that 6 = LC (x,/x ,. . We assume here that 6 c <  r/m . If 

we cut the area into small pieces of size 6 then the correlation 

length. for them may be calculated by setting Lg=6 and 

11 (z)= r/min Eq. ( 3 ) ,  to fi..nd: 

2 with the corresponding time tg -. L c 6 / ~  . Thus, t6 is the 
II 

time during which a particle may be thought of as orbiting along 

a single field line before diffusing to a new f i e l d  line whose 

trajectory is no longer' correlated with the original one. This 

complicated continous evolution can be considered sinlyly as a 

2 
random walk with the step size < (Ar) > =' D L . This gives 

st c6 

us for the diffusion coefficient, 

= Dst~./Lcs (8) 

Diffusion is reduced by a factor of h /LC& from the collision- 

less case, Eq. (6). 

Now that we have calculated the relevant transport co- 

efficients in a braided magnetic field, a logical step in under- 

standing would be to assess the effects of the stochasticity on 

the nonlinear behaviour of the microinstabilities which are 

alleged to be its cause. This is obviously a formidable task. 



A more realistic approach might be to assess the effects of the 

thermal conductivity we have estimated, and related transport co- 

efficients such as electron viscosity, on. the linear theory of 

those modes--estimating saturation of stochasticity to occur at 

the marginal stability point. Out of such a detailed study 

might come an explanation of confinement scaling. 

In this p-aper, however, we restrict ourselves to a much 

I! . 
more limted objective,' merely examining some implications of the 

assumption that observed energy losses are due to magnetic braid- 

ing. We stress that we have not ruled out alternative explana- 

tions of anomalous losses. 

A possible difficulty our model to. present 

tokamaks comes from consideration of the confinement of energetic 

runaway electrons. While not very well known, their confinement 

time is measured to be about equal to or slightly longer than 

that for thermal electrons. From Eq. (6) , we would in£ er how- 

ever that their confinement time should be about 15 times smaller. 

One possible explanation for this anomaly is that the qyroradii 

of such particles is fairly large, comparable to ion gyroradii, 

so that their drift orbits are not affected by fine scale braiding. 

This would argue that the predominant scale for braiding is some- 

what smaller than an ion gyroradius, consistent with micro- 

instability theory and turbulent density fluctuation measurements. 

We may use Eq. (6) to infer the diffusion coefficient. 

-19 2 
Observed confinement times are crudely fit by ~ = 1 0  n a  

(c.g. s units) from which we infer, at a density n = 1014 , that 
4 2 

the experimental diffusion coefficient D = 1 0  cm /sec and hence, 



-5 2 
Dst 

= 10 cm . From Eq. (2) , we see that DStZ R I ~ ~ ~ ~ ~ / B ~  ' 

2 2 
R I B ~ ~ ~  /BZ . Here we have assumed, as is reasonable for 

microinstabilities, that all modes m , n  have roughly equal 

amplitudes for' mode number ' m < m 
max 

(where mmax is to be 

determined from the microinstability theory). We have also 

assumed a radial extent of.the mode comparable to its wavelength. 

Equating the experimental and theoretical values, we see 

2 2 
that IB,, I /Bz - is ad.equate to give the observed losses 

if the field is indeed stochastic. ..As we have c 7 i  scussed aarlicr, 

the condition for this is roughly that islands should overlap. 

The mean distance, between adjacent rational surfaces is approxi- 

2 
mately r/m max and using Eq. (2), we ob.tain the approximate 

5/ 2 condition for stochasticity ~ B ~ ~ I / B ~  > O.l/m,,, . Current 

microinstability theories and fluctuation measurements indicate 

> r/ri . that mmax - In typical tokamak experiments 

2 
r > 1 and the condition for stochasticity is well satisfied. 

We conclude then that if the perturbed magnetic fields 

are indeed caused by microinstabiljties on the scale of an ion 

gyroradius, then fields of an amplitude sufficient to explain 

by stochastic diffusion the .observed energy losses would also 

be sufficient to produce stochasticity--thus making the picture 

self-consistent in this respect. There remains of course the 

vpen question whether this transport can explain the saturation 

of the microinstabilities at the observed level. 

It i,s a pleasure to acknowledge discussions with 

T. H. Stix. Related considerations will be published by him 

in a forthcoming paper in Nuclear Fusion. 
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Fig. 1. The evolution of area .mapping. 


