OCTOBER 1977 PPPL-1386

ELECTRON HEAT TRANSPORT IN A
TOKAMAK WITH DESTROYED
MAGNETIC SURFACES

-‘:.1’
$ \?..EI"-;—_\.‘.\Vw s B
A\
A. B. RECHESTER

AND
M. N. ROSENBLUTH

PLASMA PHYSICS
LABORATORY

A0

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

This work was supported by U. S. Energy Research and Development
Administration Contract EY-76-C-02-3073. Reproduction, transla-
tion, publication, use and disposal, in whole or in part, by or
for the United States Govermment is permitted.

2 =gt mAATIIERTT T8 TINCTVITTFETS

BeTRIRT]



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



NOTICE

This report was prepared as an account
of work sponsored by the United States Gov-
ernment. Neither the United States nor the
United States Energy Research and Development
Administration, nor any of their employees,
nor any of their contractors, subcontractors,
or their employees, makes any warranty, express
or implied, or assumes any legal liability or
responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents
that its use would not infringe privately
owned rights.

Printed in the United States of America.

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $ * ; Microfiche $3.00

NTIS

*Pages Selling Price
1-50 $ 4.00
51-150 5.45
151-325 7.60
326-500 10.60

501-1000 13.60



ELECTRON HE
R AT TRANSPO
. RT IN A TO
_ KAMAK

WI
TH DESTROYED MAGNETIC SURFACES
L by

' A .
Princeton UniVersitg. Rechester
14

. Plasma P i
Princeton, New JerSe;YSég§4gab0ratory
and e

NOTICE
This report was prepared as an account of work
sponsored by the Unlted States Government. Neither } |
the United States mnof the United States Energy
F f and Development A inistration, nor any of
their employees, not any of their contragtors, |
subcantrantoss, oOf their employees, makes any [’

M. N. Ro

Instie . senbluth

Prigétzte for Advanced stud
eton, New Jersey 08545

warranty, express of implied, ur assumes 80y legal
liability or responsibility for the sccuracy, completeness
| or usefulness of any information, apparatus, product or
process disclosed, orf represents that its use would not
infringe privately owned rights.

PPPL-1386

October 1977

. DISTRIBUTION OF THIS TR IKITNT 1)




C00-3237-94
. 9/77

ELECTRON HEAT TRANSPORT IN A TOKAMAK WITH DESTROYED

MAGNETIC SURFACES *

. | ‘ A. B. Rechester
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540

-t and

. M. N. Rosenbluth ‘
Institute for Advanced Study, Princeton, New Jersey 08540

ABSTRACT

Formulas for the electron thermal COnductiVity
have been derived in the collisional and collision-
less limits for the case of .destroyed magnetic

surfaces.
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The aim of this article is to consider electron heét
transport due to parallel thermal conductivifyiin a tokamak with
destroyed magnetic surfaceé{ There is evidence of runaway
electron leakage2 from tokamaks which indicates that such magnetic
‘braidingB may exist; Moreover, recent microinstability theories4
predict the formation of magnetic perturbations with dimensions
r. (ion gyro~-radius) or slightly less.

First we review the most important geometric characteris-
tics of the braided magnétic.field. We use as an exaﬁple a
magnetic configuration in cylindrical géometry,v§==Bz;+Be(r)§+6§,
but most concepts can be easily generalized to toroidal configura-
tions. In order to model toroidal periodicity, we assume that
the system is periodic in the z-direction with period 2nR. Then

5§ can be written in the form

5B = ) ,’)Smn(r) exéi(me—n z/R)+>fc. c. . (1)
m,n '

If there‘is only one harmonic in Eq. (1l); then the field is
helically symmetric and has ekact magnetic surfaces. These
surfaces haye‘the shape of so-called magnetic islands near the
rational cylindrical surface Tn * detined by the c¢ondition
q(r)==rBz/RB6==l/T(r)==m/n . The width of the separatrix of the

island is given by the formula,5

'_ R (r) -
Amnf‘l‘/zm !Ibmnr |/B, (a1/dr) |, - r (2)

In the case of many harmonics being present, mapping is used as

a. practical way to determine if magnetic surfaces exist or not.
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Surfaces exist if the points of intersécfion of a field line with
planes z¥=2ﬂnR' lie on a smooth closed curve. If the mapping
is not a smooth curve but rather a sequence of irregular points'
whiéh can fill the whole area, then we may say that magnetic
surfaces are destroyed. | The transition between £hese two cases
'is quite sharp and is described by a stochasticity parameter,

. . ] ]
s==1/2(Amn-+Am-n-)/irmn-rrm-n-] , where m, n and m ,n represent
any two harmonics which have neighboring rational surfaces. If

s > 1, then magnetic surfaces are destroyed in the region between

r and r ,» and the field linco wander eryudically. _SEﬁl

nut m'n
correspondé to overlapping of islands of different helicity.9 The
transition region is very complicaited7 and we will be discussing
mainly the case of well destroyed surfaces, s >>1, with dense
rational surfaces.

Consider a small circle nf radius QO in the pléue
z = const and map it by,solving the equation 'dr/dz==Br/’Bz P
rd6/dz ==Be/Bz . This magnetic mapping is area preserving,
as a consequence of the equation div B=0 .

There will be two different stages of evolution of our
area. First, it will move as a whole and alsoc it will deform
its shape stretching in one direction and contracting in the
other. This process can be described analytically for continuous
mapping by the equation. |

L(z) = go exp(z/Lc ) . (3)

Here7 Lc==nR/2n(ns/2). Such behavior is called stochastic in-

stability of trajectories. The width 6 of the area will ex-

ponentially decrease in order to conserve the total area, i.e.,
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6(z)==Lbéxp(-z/Lé).‘ When‘ 2(z) 2 r/m, where m is a characteris-
tic mode number, different parts of our stretched area start to
move almost independently. The distance Lc0==Lc2n(r/m£0)

plays the role of a correlation length for the area. At this
stage of the evolution the afea looks very complicated, as de-
pictéd in Fig. 1. It can be shown that the average squared
radial displacement of the area can be described by a diffusion

formula

<(ar)? » = 2LD_, _ (4)°

L is the distance in the z direction, L >> Leo and Doy is

given bylﬁhe guasilinear formula‘:‘l

D, (r) = 7R 7 |b

: 2 ,.2 m L .
mon mnr(r)l /B z 6[5757--nJ . (51

All processes of mapping are striétly reversible, but because
the width of the area becomes extraordinarily small, any smal;
spreading bedéﬁse of motion perpendicular to the field lines
can be of great importance as we will see later. The precise
mathematics and all details can be found in a numberlof good

reviewe on the cubjcct;7’8

Let us turn now to the subiject of this létter: electron
heat transport in a braided magnetic field. The coefficient of
thermal conductivity X , is proportional to the coefficient of
self diffusion D . Suppose that in some small region we mark
instantaneously a number of electrons énd then watcﬁ for the
time evolutioh of their radiai distribution. If the radial
'spreading of test electrqns is a diffusion.ﬁroceSs, theh D =

<(Ar)>2/2t ;, where <(Ar)2>, is the mean sgquare of the radial



displacements of electrons during the time interval t . We
will consider two limits: collisionless, when the mean free path
A >>Lc and collisional, A << Lc . [We will make a number of
simplifying assumptions and not attempt to give detailed numeri-
cai coefficients.]

Considér the collisionless case. We assume that guiding
center trajectories coincide with the field lines. Instead of
considering many discrete particles, we visualize just one
"particle" which is spread over some initial area of the dimension
ry (electron gyro-radius) with equal probability. Then parallel
motion along the field lines produces a continuous mapping of the
area. We may treat collisions as a discrete process which take
place periodically with the time interval T . As a result of
collisions, the parallel velocity of the particle will change its
direction or remain the same with equal probability. Also the
whole area will instantaneously diffuse radially a distance r
(or an electron "banana" width in the toroidal case).. The latter
process models the perpendicular jump of the guiding center at

the time of collision.

Let us start our experiment. Initially, we have a small
circle of radius re-. It moves a distance A along the tra-
jectory,mapping into a complicated thin region of the kind
drawn in Fig. 1l(c), with the width ¢ = reexp(-A/Lc) . The
average squared displacement of its elements in a radial direction

is equal to <« (Ar)2> =2D .2 . ‘The collision now increases the

st
width of this area to ry - We can cut now our area into a
large number of small square pieces of the size r. and proceed

in exactly the same way as in the first step, see Fig. 1l({(c).

L]
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Because fbr the collisionless case Ty >> §(X), each of these
new elements will evolve on the second step almdét‘independentlyl
from its previous history. Obviously, the spreading ofvour

area ih the radial direction is similar to a randém walk with

the diffusion coefficient given by

D= <@n?>/2t=p_ v . (6)

This formula does not depend on collision frequency in spite
of the ‘importance of collisiopal spreading.

It is instructive to compare this case with the similar
evolution without any perpendicular motion. Sﬁppose that the

.particlé reverses its parallel velocity after the first collision.

T
“

Then the second step area will map exactly back to the initial
small circle. Obviously,.the only way for it to expahd in the
radial direction is to diffuse collisionally along the field
line. During a time t >>1 , the average squared distance

hoved by a particle in the 2z direction is L2 =X, t . This

gives < (Ar)2 > =D§t(X"t)l/2 , which is. (’t:/'r)l/2

times smaller:
than the diffusion given by Eg. (6).

Consider now the collisional case A << Lc . 'Any sub-
stantial spreading of the area in the radial direction due té
thé mapping wi;l taéé place after.the particlg has collided many
times to move a distance L 2 L. . Because of this, we will
consider perpendicular motion as a c@ntinuous process with the
diffusion coefficient x, . The parallel motioﬁ and the effect
of collisions on it will be treated the same way as before.
Consider a small element of evolving aréa which has a typical

size ¢ . There will be two competing processes:  due to

stochastic instability, the width of this element will decrease



exponentially: dS/dL==e6/Lc , where dL is the distance which
the_particle moves during thé time dt . For any dL>> X , the

particle is diffusing in the z direction so that dt==(dL)2/x" .

During the same time dt this element will ihcrease its width

becauSe of perpendicular diffusion ds$ =(det)1/2==dL(X"/XL)l/2.

The balance between these two processes allow us to estimate

that &= Lc(x_,_/x,,)l/2 . We assume here that 6 << r/m . 1If |

we cut the area into small pieces of size § then the correlation b
length. for them may be calculated by sgtting 20==6 and

L (z)= nﬁnin Eq. (3), to find:

= S vy sy
Log =htn mL X"/X; ] A (7)
with the corresponding time td"chs/X . Thus, ts is the

time during which a particle may be thought of as orbiting along
a single field line before diffusing to a new field line whose
trajectory is no longer correlated with the original one. This
complicated continous evalution can be conazidered simply as a

random walk with the step size <(Ar)2> ='DStLc This gives

5 °
us for the diffusion coefficient,

D = DstX"/Lcd : (8)

Diffusion is reducedvby a factor of A/Lc(S from the collision- a
less case, Eq. (6), |

Now that we have calculéted the relevant transport ca- -
efficients in a braided magnetic field, a logical step in under-
standing would be to assess the effects of the stochasticity on
the nonlinearlbehaviourvof the microinstabilities which are

alleged to be its cause.4 This is obviously a formidable task.
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A more realistic approaéh mightAbe £o assess the effects of the
thermal conductivity we have estimated, and related transport co-
efficients such as electron viscosity, on the linear theory of
those modes--estimating saturation of stochasticity to occur at -
the marginal stability point. Out of such a detailed sfudy

might come an explanation of confinement scaling.

In this papef, however, we restrict ourselves to a much
more limted objective, merely examining some implications of the
assumption that observed energy losses are due to magnetic braid-
ing. We stress that we have not ruled out alternative explana-
tions of anomalous losses.

A possible difficulty in applying our model to present
tokamaks comes from consideration of the confinement of energetich
runaway electrons. While not very well known, their confinément
time is measured to be about equal to or sliéhtly longer - than |
that for thermal electrons. From Eg. (6), we would infer how-
ever that their confinement time should be about 15 times smaller.
One possible explanation for this anomaly is that the gyroradii
of such particles is fairly large, comparable to ion gyroraaii,
so that their drift orbits are not affected by fine scale braiding.
This would argue thaf the pfedominant scale for braiding is some-

what smaller than an ion gyroradius, consistent with micro-

~instability theory and turbulent density fluctuation measurements.

We may use Eg. (6) to infer the diffusion coefficient.

Observed confinement times are crudely fit by T==10_19na2

(c.g. s units) from which we infer, at a density n==lO14 , that

the experimental diffusion coefficient D=r104cm2/sec and hencs,



Dstzzlo-scm . From Eq. (2), we see that D_

m /B2 x

|2
max’ "z

£ RIby
R IBstlz/Bi . Here we have assumed, as is reasonable for
microinstabilities, that all modes m, n have roughly equal

amplitudes for mode number m < m

(wh is
nax (where Woax to be

determined from the microinstability theory). We have also
assumed a radial extent of the mode comparable to its wavelength.
Eyuating the experimental and theoretical values, we see o

2,.2 -8
that |[B_ |“/B; ~ 10

is adequate to give the observed losses
if the field is indeed stochastic. .As we have disaussed earlicr,
the condition for this is roughly that islands should overlap.

The mean distance between adjacent rational surfaces is approxi-

mately r/mzrnax and using Egq. (2), we obtain the approximate
L | e 1 ,5/2
condition for stochasticity |Bst|/Bz > 0.l/mmax . Current

microinstability theories and fluctuation measurements indicate

that m > r/ri . In typical tokamak experiments

ax -
r/ri > 102 and the condition for stochasticity is well satisfied.
We conclude then that if the perturbed magnetic fields
are indeed caused by microinstabilities on the scale of an ion
gyroradius, then fields of an amplitude sufficient to explain
by stochastic diffusion the observed energy losses would also .
be sufficieﬁt to produce stochastiéity-~thus making the picture
self-consistent in this respect. There remainé of course.the s
vpen quegtioﬁ whether this transport can explain the saturation
of the microinstabilities at the observed level.
It is a pleasure tovacknowledge discussions with

T. H. Stix. Related considerations will be published by him

in a forthcoming paper in Nuclear Fusion.
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Fig. 1. The evolution of area mapping.
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