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Electron-impact excitation of the (5s25p) 2P1/2 → (5s26s) 2S1/2 transition in indium:
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K. R. Hamilton , O. Zatsarinny , and K. Bartschat
Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA
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We present angle-integrated and angle-differential cross sections for electron-impact excitation of the
(5s25p) 2P1/2 → (5s26s) 2S1/2 transition in atomic indium. Experimental data for six incident electron energies
between 10 and 100 eV are compared with predictions from semirelativistic and fully relativistic B-spline
R-matrix calculations, as well as a fully relativistic convergent close-coupling model. Agreement between
our measured and calculated data is, with a few exceptions, found to be typically very good. Additionally,
the agreement between the present theoretical predictions is generally excellent, with the remaining small
deviations being associated with the slightly different, although still very accurate, descriptions of the target
structure. Agreement between the present results and an earlier relativistic distorted-wave computation [T. Das,
R. Srivastava, and A. D. Stauffer, Phys. Lett. A 375, 568 (2011)] was, however, found to be marginal, particularly
at 10 and 20 eV.
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I. INTRODUCTION

The soft, gray metallic element indium (Z = 49) belongs
to the group-III elements of the Periodic Table. It is the first in
a series of the 5p elements in the Periodic Table (which ends
with xenon), with the atoms of that series being characterized
by their relatively small values of the dipole polarizability

*Corresponding author: michael.brunger@flinders.edu.au

(α ∼ 65 a3
0 for indium) [1]. Indium (In) is currently used to

make transparent electrodes in liquid-crystal displays (LCDs)
[2], and its spectral lines, for both its neutral and ionized (In+)
forms, are expected to be very important in modeling plasmas
in which indium is a constituent. The latter is relevant, as
indium is a possible candidate to replace mercury in low-
pressure discharge lamps in lighting solutions [2,3]. Indeed,
Ögün et al. [3] conducted some collisional-radiative modeling
of an indium iodide-argon plasma to investigate that possi-
ble application. However, the excitation cross sections they
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employed in that study, from the method of Gryziński [4,5],
are not expected to be accurate. Hence, one of the rationales
behind the present study is to make a start to provide a set of
accurate cross-section data, over a wide energy range [6], for
use in gas-discharge and low-temperature plasma modeling
[7].

Another important application of indium is that it is par-
ticularly suitable as a tracer for two-line atomic fluorescence
(TLAF) thermometry measurements [8–10]. This method
works by using two diode lasers with wavelengths of 410 and
451 nm, to excite the 6s 2S1/2 resonance state of indium atoms
seeded into a flame. Owing to the typically greater oscillator
strengths of atoms compared to molecules, strong fluores-
cence signals can be obtained at low excitation energies. A
particular advantage of indium atoms is that its spin-orbit
coupling in the 5p ground state leads to an energy spacing
that is about equal to kT in typical combustion environments
(2000–4000 K) [8].

There is currently a paucity of electron-indium scattering
data, both theoretical and experimental, available in the lit-
erature. From a theoretical perspective, we know of some
very low-energy spin asymmetries, for elastic scattering and
excitation of the metastable 5p3/2 state, from the relativistic
convergent close-coupling (RCCC) [11] and Breit-Pauli R-
matrix [12] methods. Note that the current RCCC and B-spline
R-matrix (BSR) and relativistic B-spline R-matrix (DBSR)
calculations significantly extend those earlier investigations.
An atomic optical model formulation, for elastic e-In dif-
ferential cross sections (DCSs) and integral cross sections
(ICSs), for electron energies between 10 and 100 eV, was
reported in Rabasović et al. [13]. Finally, again for energies
in the 10–100 eV range, a relativistic distorted-wave (RDW)
computation for the 5p → 6s transition, at the DCS level, is
available [14]. In terms of experimental measurements, there
is a comprehensive set of elastic DCSs and ICSs in Rabasović
et al. [13], while some preliminary 5p → 6s DCSs, at very
forward-scattered electron angles, can be found in Rabasović
et al. [15]. The present measurements significantly extend and
supersede those earlier data [15].

Another rationale behind this work is to try and pro-
vide benchmark data for the 5p → 6s transition in indium,
against which results from other methods might be tested.
This is of timely importance, as atomic optical-potential ap-
proaches, which are computationally cheaper than the present
close-coupling approaches, have been gaining in popularity
(see, e.g., [16–18]) in recent years.

The structure of the remainder of this paper is as follows.
In Sec. II, we provide computational details of our BSR,
DBSR, and RCCC calculations. This section also includes
relevant details of their target-structure computations. There-
after, in Sec. III, a description of our experimental method-
ology, including the uncertainties in making our measure-
ments, is provided. The approaches we adopted to extrap-
olate our DCS data to 0◦ and 180◦, in order to generate
the corresponding ICS at that energy, are also given in this
section. In Sec. IV, the present theoretical and experimental
DCSs and ICSs are described and discussed, and compared
to the earlier RDW results [14] where appropriate. Finally,
some conclusions from the present investigation are given in
Sec. V.

II. COMPUTATIONAL DETAILS

A. BSR and DBSR models

The target-structure calculations and the scattering cal-
culations in the present work were carried out in a similar
manner to previous works. Hence, we only summarize the
specific aspects for the present calculation below. A com-
prehensive overview of the B-spline R-matrix method was
given by Zatsarinny and Bartschat [19]. Below we refer to the
semirelativistic models as BSR-N and to the fully relativistic
models as DBSR-N , where N indicates the number of states
in the close-coupling expansion.

A first general version of the BSR computer code was
published by Zatsarinny [20] and is constantly being updated.
A stable version with many upgrades is publicly available
from github [21], and substantial efforts are underway to make
it generally accessible via the AMP-Gateway [22]. The DBSR
calculations are based on the work described in [23], and we
are currently working to make that code available as well.

As always, the first ingredient for a collision calculation
is the description of the target structure. In the present case,
we used the MCHF [24], GRASP2 [25], and DBSR_HF [26]
atomic structure codes to generate bound orbitals for the In+

positive ion, either just for the ground state with dominant
configuration (5s2) 2S or also for the first two excited states
with dominant configurations (5s5p)3,1Po, respectively. We
then ran the (D)BSR code in the bound-state mode [27], which
generates multiconfiguration expansions of the states for neu-
tral In. Depending on the number of In+ states, we label these
models “(d)bsr_cc_01” and “(d)bsr_cc_03,” respectively. All
of the production collision calculations were carried out with
the structure obtained with the (d)bsr_cc_03 ansatz.

While the above procedure can generate a large number of
both physical and pseudostates (the individual classifications
depend on whether or not the orbitals fit into the R-matrix
box), an even more accurate target description can be obtained
by adding a few optimized configurations as “perturbers” to
the multiconfiguration expansions. Specifically, we added the
(5s5p2) 4P, 2D, 2P, 2S terms in all models and, furthermore,
the 5p3 states in the “cc_03” model, in order to ensure that the
important p2 configuration was included properly. Although
elastic scattering will be considered as part of a separate
paper in the future, the latter is particularly important for
that collision problem since the 5s25p2 configurations lead to
negative-ion bound states for the 3P configuration, while the
1D and 1S configurations lead to resonance features at very
low electron energies.

Table I lists the energy levels of the lowest 22 bound states
of In, as obtained in the various (D)BSR structure models
and compared with the recommended NIST levels [28]. As
expected, the (d)bsr_cc_03 expansions provide a much better
target description since they already contain the significant
effect of the p2 configuration. We ultimately adjusted the
diagonal elements of the Hamiltonian matrix to reproduce
the experimental excitation thresholds. This is a standard
procedure that is fully described in Zatsarinny [20], to whom
the interested reader is referred for more details. For a com-
parison with the experimental data presented in this paper, this
adjustment is of essentially no consequence. However, it can
affect the near-threshold predictions (within fractions of an
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TABLE I. Binding energies (in eV) for the In target states included in the (D)BSR close-coupling expansions. Here, “Conf.” refers to the
dominant configuration.

Conf. State NIST [28] bsr_cc_01 Diff. bsr_cc_03 Diff. dbsr_cc_01 Diff. dbsr_cc_03 Diff.

5s25p 2Po
1/2 −5.786 −5.187 0.599 −5.739 0.047 −4.981 0.806 −5.576 0.210

5s25p 2Po
3/2 −5.512 −4.895 0.617 −5.437 0.075 −4.736 0.749 −5.335 0.177

5s26s 2S1/2 −2.765 −2.546 0.219 −2.677 0.087 −2.552 0.212 −2.680 0.084
5s26p 2Po

1/2 −1.842 −1.744 0.098 −1.820 0.022 −1.724 0.118 −1.805 0.037
5s26p 2Po

3/2 −1.805 −1.705 0.099 −1.783 0.022 −1.692 0.112 −1.771 0.033
5s25d 2D3/2 −1.708 −1.545 0.163 −1.701 0.007 −1.539 0.169 −1.692 0.017
5s25d 2D5/2 −1.705 −1.544 0.162 −1.701 0.004 −1.537 0.169 −1.687 0.019
5s5p2 4P5/2 −1.450 −1.520 −0.070 −1.607 −0.157
5s5p2 4P3/2 −1.320 −1.409 −0.089 −1.490 −0.169
5s27s 2S1/2 −1.286 −1.222 0.064 −1.256 0.030 −1.224 0.062 −1.259 0.026
5s5p2 4P3/2 −1.143 −1.249 −0.106 −1.315 −0.174
5s27p 2Po

1/2 −0.968 −0.932 0.036 −0.959 0.009 −0.925 0.043 −0.954 0.014
5s27p 2Po

3/2 −0.954 −0.918 0.036 −0.945 0.009 −0.913 0.041 −0.942 0.013
5s26d 2D3/2 −0.945 −0.867 0.078 −0.941 0.004 −0.863 0.081 −0.938 0.007
5s26d 2D5/2 −0.939 −0.866 0.073 −0.939 −0.001 −0.862 0.077 −0.932 0.006
5s24 f 2F o

5/2 −0.863 −0.851 0.012 −0.863 0.001 −0.851 0.013 −0.862 0.002
5s24 f 2F o

3/2 −0.863 −0.851 0.012 −0.863 0.001 −0.851 0.013 −0.862 0.002
5s28s 2S1/2 −0.748 −0.720 0.028 −0.734 0.014 −0.721 0.027 −0.736 0.012
5s28p 2Po

1/2 −0.600 −0.583 0.017 −0.595 0.005 −0.580 0.021 −0.594 0.007
5s27d 2D3/2 −0.599 −0.553 0.046 −0.596 0.004 −0.551 0.048 −0.594 0.005
5s27d 2D3/2 −0.596 −0.553 0.044 −0.595 0.002 −0.551 0.046 −0.591 0.005
5s28p 2Po

3/2 −0.594 −0.576 0.018 −0.589 0.005 −0.574 0.020 −0.588 0.006

eV), and hence those results need to be taken with appropriate
care.

The quality of our target description can be further as-
sessed by comparing the results for the oscillator strengths,
which are very important to obtain reliable absolute values for
the excitation cross sections, especially for optically allowed
transitions at high incident electron energies. Table II shows
the comparison of oscillator strengths between our calculated
results and the recommended values from the NIST database
[28].

Finally, even though this is more important for elastic scat-
tering, we mention here that the polarizability of the ground
state is obtained as 64.5 a3

0, where a0 = 0.529 × 10−10 m is
the Bohr radius, provided the entire spectrum of discrete
and pseudostates is accounted for. This agrees well with
the experimental value of Ma et al. [29] within their stated
uncertainty (56.1 ± 18.2 a3

0) and also with the high-precision
calculations of Safronova et al. [30]. In the (D)BSR collision
models, for which we show results later, the portion of the
ground-state polarizability accounted for is 26.1 a3

0 (BSR-22),
56.0 a3

0 (BSR-100), 61.2 a3
0 (BSR-224), 29.0 a3

0 (DBSR-22),
56.0 a3

0 (DBSR-104), and 61.3 a3
0 (DBSR-214), respectively.

While missing some of the polarizability would likely be a se-
rious defect of the models when considering elastic scattering,

experience shows that it is not so critical for the calculation of
excitation processes, for which the oscillator strength of the
transition is most important.

The scattering calculations were carried out with fully
parallelized versions of the BSR complex [20] and the cor-
responding DBSR package under development. In order to
check the convergence of the results with the number of states
included in the close-coupling expansion, we set up several
scattering models. Specifically, we show results obtained
in the BSR-22, BSR-100, BSR-222, DBSR-22, DBSR-104,
and DBSR-214 models. In addition to the 22 states listed
in Table I, the larger models included more discrete and
pseudostates to account for coupling to the discrete Rydberg
spectrum as well as the ionization continuum. We chose an
R-matrix radius of 80 a0 with 152 B-splines of order 8 for
each orbital in the BSR calculation. In DBSR, we used 186
B-splines of the order of 8 and 9 for the small and large
components of the spinors. Splines of different orders are
needed here for reasons of numerical stability [31]. Also, for
our DBSR calculations, a finite nuclear size was modeled with
a Fermi-type model for the nucleus. This required additional
splines with a narrow distance between the knots at the very
small radii. These models resulted in generalized eigenvalue
problems with matrix dimensions up to 175 000.

TABLE II. Oscillator strengths for the (5s25p) 2Po
1/2 → (5s26s) 2S1/2 and (5s25p) 2Po

1/2 → (5s25d ) 2D3/2 transitions in In obtained in the
(D)BSR models. “L” and “V” indicate the results obtained with the length and velocity form of the electric dipole operator, respectively.

Lower state Upper state NIST [28] bsr_cc_03 (L) bsr_cc_03 (V) dbsr_cc_03 (L) dbsr_cc_03 (V)

(5s25p) 2Po
1/2 (5s26s) 2S1/2 0.14 0.120 0.118 0.135 0.129

(5s25p) 2Po
1/2 (5s25d ) 2D3/2 0.36 0.320 0.326 0.349 0.341
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We calculated partial waves for total electronic angular
momenta up to Jt = 24 numerically, and then used a top-up
procedure to estimate the contribution to the transition matrix
elements from even higher Jt . The calculation for the external
region was performed with a parallelized version of the STGF

program [32].

B. RCCC model

The RCCC method was detailed in a number of publica-
tions [33,34] with application to e-In scattering presented in
[11]. Hence, only a brief overview is presented here. The In
atom is modeled as a quasi-one-electron atom with an active
p electron above a frozen [Kr]4d105s2 Dirac-Fock core. The
core orbitals were obtained from the GRASP package [25]. The
Dirac Hamiltonian for the active electron is diagonalized in
a Dirac L-spinor basis [35] to model the spectrum of the In
atom. Target symmetries up to jπ = 7/2− were included in
the calculations. There are 26 negative-energy states (relative
to the In+ ionic ground state) and a large number of positive-
energy states that model the coupling to the ionization chan-
nels. The total number of target states is 75, with the energy
of the highest positive-energy state at about 10 eV.

We included one- and two-electron polarization potentials
[36,37] to more accurately account for the effect of closed
shells within the quasi-one-electron model of In, and thereby
improve the accuracy of the target description and scattering
calculations. The static dipole polarizability of the In+ ion,
αd = 24.01 a3

0, was taken from [38]. The fall-off radius of
the one-electron polarization potential was optimized for each
target symmetry to obtain good agreement with NIST energies
[28] for the low-lying states of In. Similar to Table I for the
(D)BSR models, the lowest 22 states in the RCCC model are
presented in Table III. Note that states originating from 5s5p2

configurations are absent in the RCCC model. The target
states up to the (5s28s) 2S1/2 state are well described within
the RCCC model. The number and accuracy of higher-energy
bound pseudostates can be easily improved by increasing
the size of the underlying L-spinor basis, but proved to
be unnecessary for the present study. The major difference
between the number of states in the (D)BSR and RCCC
models comes from the different way the square-integrable
discretization is achieved with the B-splines and L-spinors,
respectively.

The two-electron polarization potential does not enter the
target structure calculations for the quasi-one-electron model
of In, but it enters scattering calculations and effectively leads
to a modified form for the oscillator strength. The fall-off
radius parameter of this potential was chosen to achieve good
agreement with the NIST value [28] for the (5s25p) 2Po

1/2 →
(5s26s) 2S1/2 transition oscillator strength. The RCCC value
is equal to 0.129, which is similar to the DBSR models
(cf. Table II). For this choice of the polarization potential pa-
rameters, the oscillator strength value for the (5s25p) 2Po

1/2 →
(5s25d ) 2D3/2 transition is 0.451, which is substantially higher
than in the DBSR and NIST values. The static dipole polariz-
ability of the In atom in the RCCC(75) model is 40.3 a3

0, which
is significantly lower than the experimental value of 68.69 a3

0
[29]. These are indications of the remaining imperfections
of the present model. As mentioned above, however, this is

TABLE III. Binding energies (in eV) for the lowest 22 states of
In included in the RCCC close-coupling expansions. Here “Conf.”
refers to the dominant configuration.

Conf. State NIST [28] RCCC Diff.

5s25p 2Po
1/2 −5.786 −5.782 −0.004

5s25p 2Po
3/2 −5.512 −5.521 0.009

5s26s 2S1/2 −2.765 −2.754 −0.011
5s26p 2Po

1/2 −1.842 −1.808 −0.034
5s26p 2Po

3/2 −1.805 −1.773 −0.032
5s25d 2D3/2 −1.708 −1.706 −0.002
5s25d 2D5/2 −1.705 −1.702 −0.003
5s5p2 4P5/2 −1.450
5s5p2 4P3/2 −1.320
5s27s 2S1/2 −1.286 −1.280 −0.006
5s5p2 4P3/2 −1.143
5s27p 2Po

1/2 −0.968 −0.952 −0.016
5s27p 2Po

3/2 −0.954 −0.939 −0.015
5s26d 2D3/2 −0.945 −0.926 −0.019
5s26d 2D5/2 −0.939 −0.924 −0.015
5s24 f 2F o

5/2 −0.863 −0.864 0.001
5s24 f 2F o

3/2 −0.863 −0.864 0.001
5s28s 2S1/2 −0.748 −0.704 −0.044
5s28p 2Po

1/2 −0.600 −0.506 −0.094
5s27d 2D3/2 −0.599 −0.551 −0.048
5s27d 2D3/2 −0.596 −0.550 −0.046
5s28p 2Po

3/2 −0.594 −0.495 −0.099

not expected to be a serious issue for the calculation of the
excitation process considered here.

In the scattering calculations, the set of target states is used
to expand the total wave function of the e-In collision system
and formulate a set of close-coupling Lippmann-Schwinger
equations for the transition matrix. These equations are solved
by standard techniques that include a partial-wave expansion
and a reduction to a set of linear equations. Close-coupling
calculations were conducted for partial waves up to Jt = 20.
Account of the larger partial waves is taken with an analytical
Born subtraction technique. The solution of the Lippmann-
Schwinger equations enables us to determine the collision
cross sections for the transition of interest. The convergence
of the calculated cross sections was established by performing
a number of calculations with different sizes of the underly-
ing L-spinor basis and the inclusion of progressively more
positive-energy states in the close-coupling expansion. The
present calculations have been conducted with a fully paral-
lelized MPI-OMP version of the RCCC code.

III. EXPERIMENTAL CONSIDERATIONS

In the current experiments, we utilized an electron-
scattering apparatus that has already been described in some
detail previously [39,40], so that only a brief description of its
features and operational performance need be given here. It
consists of an oven for the production of the indium beam, a
monochromator for producing the incident electron beam and
an analyzer, consisting of electrostatic optical elements and
a single channeltron for electron detection, to energy analyze
the scattered electrons. Note that the incident electron beam
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(a)

(b)

FIG. 1. Typical electron-energy-loss spectra in indium at (a) T =
1220 K for E0 = 40 eV and θe = 10◦, (b) T = 1300 K for E0 =
20 eV and θe = 10◦. Positions of the excited states are labeled
according to the NIST labels of energy levels [28]. The ionization
potential (I.P.) at 5.786 eV is also indicated. See text for further
details.

was produced by thermionic emission from a tungsten hairpin
filament, with further sets of electrostatic optical elements
then collimating and transporting those electrons to the inter-
action region. The electron spectrometer was operated in three
different modes: (i) an energy-loss mode where energy-loss
spectra (see Fig. 1) were recorded for a given incident electron
energy (E0) and scattered electron angle (θe), (ii) a mode
where the energy loss was set at 0 eV (i.e., on the elastic peak)
and the elastic count rate at fixed θe is recorded as the incident
electron energy is scanned for E0 = 1.0−4.4 eV, and (iii) the
energy loss is fixed at ∼3.022 eV [i.e., the excitation energy
of the (5s26s) 2S1/2 state of interest] and the scattered inelastic
count rate is recorded as a function of θe from 2◦−150◦ at a
fixed E0 (either 10, 20, 40, 60, 80, or 100 eV).

The atomic indium beam was produced by a resistively
heated oven filled with 99.9% purity indium granules. Two
temperatures were typically employed during the present mea-
surements, one at approximately 1220 K and the other at about
1300 K. These operational temperatures gave metal-vapor

pressures of approximately 2.1 Pa (16 mTorr) and 8.6 Pa (65
mTorr), respectively [41]. In both cases, the effusive indium
beam consists of only ground-state atoms since each temper-
ature is well below that needed to thermally populate the first
(5p) 2P3/2 metastable state (whose energy of 0.274 eV cor-
responds to a T ∼ 3180 K). Using the electron spectrometer
in mode (i) described above, two typical energy-loss spectra at
T = 1220 and 1300 K are, respectively, given in Figs. 1(a) and
1(b). Note that, as we shall see in the next section, the inelastic
6s differential cross sections could vary over five orders of
magnitude as θe changed from 2◦ to 150◦. Therefore, the
lower temperature was often utilized to make measurements
of the angular distributions at the more forward-scattered
electron angles, thereby avoiding saturation of the scattered
electron detector (channeltron), while the higher temperature
was employed at the larger scattered electron angles where
the excitation cross sections were very small. There are two
important points to be gleaned from Fig. 1. The first is
that irrespective of the operational temperature, the (6s) 2S1/2

inelastic state of interest is well resolved from any of the
other elastic and inelastic features. The second is that in
Fig. 1(b), we can clearly also find features that originate from
the excitation of the (5p) 2P3/2 metastable state. These latter
features can only arise if the following scenario is met: an
initial electron excites the (5p) 2P3/2 state from the ground
(5p) 2P1/2 state, and then, before that metastable atom can
decay (lifetime ∼10.3 s [42]) or leave the interaction region, a
subsequent incident electron scatters from it, leading to those
additional observed two-step features in Fig. 1(b).

The overall energy resolution (�Eres) is ∼140 meV in this
work, as determined from the full width at half maximum
(FWHM) of the measured 6s peak in our energy-loss spectra
(see Fig. 1). While allowing us to resolve the 6s line from all
others in the relevant spectra, it did not allow us to resolve
transitions to the (6p) 2P1/2,3/2 states (3.945 and 3.982 eV,
respectively) and to the (5d ) 2D3/2,5/2 states (4.078 and
4.081 eV, respectively). The next weak peak in our energy-loss
spectra (again, see Fig. 1) is due to the combined excitation of
the (7s) 2S1/2 (4.501 eV) and the (5s5p2) 4P1/2,3/2,5/2 states
(4.337, 4.467, and 4.643 eV, respectively). The existence of
other higher-lying discrete inelastic states is also visible up
to the ionization potential at 5.786 eV. The incident electron-
energy scale was calibrated using the spectrometer in mode
(ii), and looking for a Wigner-Cusp-like feature in the elastic
intensity versus energy distribution at 3.022 eV. Typically, this
calibration was made at θe = 20◦, and we believe it is accurate
to about 100 meV.

The experimental procedure for the determination of our
inelastic 6s DCSs initially involves calibrating the angular
scale for the true 0◦ scattering angle. This is achieved, for a
given E0, by setting the energy loss to 3.022 eV (i.e., for the
6s peak) and then measuring the symmetry of the scattered
electron intensity at small negative and positive angles about
0◦. Once calibrated, again for a given E0 and the energy
loss set at 3.022 eV, we next measured the scattered inelastic
6s intensity as a function of θe at fixed angles in the range
2◦−150◦ (see Table IV). Background-intensity measurements
were made at each θe by moving the energy loss off 3.022 eV
and to a value where no peak is observed, and measuring the
signal there. This background intensity is then subtracted from
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TABLE IV. Differential cross sections for the excitation of the 6s 2S1/2 state of indium. The last row contains the angle-integrated cross
sections in units of 10−20 m2. The absolute uncertainties are indicated in parentheses.

Scattering
DCS (×10−16 cm2 sr−1)

angle
(degrees) 10 eV 20 eV 40 eV 60 eV 80 eV 100 eV

2 12.5(1.6) 30.1(3.9) 45.0(6.2) 45.2(7.3) 49.9(10.6) 50.1(10.9)
4 9.2(1.2) 21.1(2.8) 24.3(3.6) 19.9(3.4) 18.3(3.4) 14.3(2.8)
6 6.10(0.83) 13.2(1.8) 11.1(1.7) 7.72(1.36) 5.17(1.01) 3.13(0.65)
8 3.73(0.52) 7.54(1.13) 4.67(0.80) 3.07(0.55) 1.44(0.28) 0.839(0.148)
10 2.32(0.35) 4.32(0.64) 2.18(0.34) 1.27(0.24) 0.555(0.099) 0.316(0.048)
20 0.266(0.041) 0.138(0.021) 0.0595(0.0103) 0.0468(0.0105) 0.0269(0.0065) 0.0090(0.0021)
30 0.0556(0.0095) 0.0527(0.0084) 0.0145(0.0035) 0.0084(0.0019) 0.0063(0.0024) 0.0040(0.0014)
40 0.0237(0.0048) 0.0173(0.0033) 0.0017(0.0009) 0.0035(0.0010) 0.0044(0.0021) 0.0026(0.0008)
50 0.0128(0.0026) 0.0026(0.0009) 0.0013(0.0008) 0.0027(0.0009) 0.0028(0.0019) 0.0022(0.0015)
60 0.0071(0.0017) 0.0024(0.0010) 0.0020(0.0009) 0.0011(0.0008) 0.0031(0.0022) 0.0025(0.0016)
70 0.0028(0.0011) 0.0012(0.0009) 0.0017(0.0009) 0.0011(0.0008) 0.0013(0.0009) 0.0025(0.0017)
80 0.0022(0.0010) 0.0032(0.0011) 0.0012(0.0008) 0.0012(0.0008) 0.0022(0.0015) 0.0019(0.0014)
90 0.0014(0.0008) 0.0015(0.0009) 0.0013(0.0009) 0.0014(0.0009) 0.0021(0.0015) 0.0040(0.0026)
100 0.00083(0.00070) 0.00072(0.00029) 0.0022(0.0010) 0.0021(0.0009) 0.00093(0.00074) 0.0041(0.0027)
110 0.0015(0.0005) 0.00043(0.00015) 0.0043(0.0012) 0.0038(0.0011) 0.0018(0.0013) 0.0043(0.0027)
120 0.0021(0.0010) 0.00107(0.00034) 0.0066(0.0017) 0.0036(0.0010) 0.0034(0.0022) 0.0045(0.0028)
130 0.0036(0.0014) 0.0039(0.0037) 0.0043(0.0014) 0.0024(0.0009) 0.00095(0.00076) 0.0046(0.0032)
140 0.0038(0.0012) 0.0023(0.0005) 0.0031(0.0011) 0.00082(0.00061) 0.0036(0.0022) 0.0041(0.0027)
150 0.0037(0.0015) 0.0054(0.0010) 0.0100(0.0022) 0.0018(0.0008) 0.0011(0.0008) 0.0054(0.0031)
ICS 0.941(0.423) 1.60(0.56) 1.53(0.54) 1.10(0.38) 0.998(0.349) 0.819(0.287)

that obtained for the 6s peak in order to obtain the true 6s
signal.

This entire procedure is, at the required E0, repeated three
to five times and on different days, with the weighted mean
of the relative DCSs of those measurements subsequently
being determined. The resulting angular distribution is then
multiplied by the effective path-length (or volume) correction
factor [43,44], as previously determined, at the same E0, by
Rabasović et al. [45]. The absolute scale of that angular
distribution is then determined, at 20, 40, 60, 80, and 100 eV,
respectively, by measurement of the 6s inelastic to elastic
intensity ratios at 10◦ (for each E0) and then using the absolute
values of the elastic DCS from Rabasović et al. [13]. We
note that this method could not be employed at 10 eV, as
no 10 eV and 10◦ elastic DCS is available in the work of
Rabasović et al. [13]. As a consequence, the absolute scale
at 10 eV is set by a generalized oscillator strength analysis
[6] of its 6s angular distribution in a method very similar to
that of the preliminary study from Rabasović et al. [15]. The
overall uncertainty on our DCSs is determined as the square
root of the sum of the squared individual error contributions:
(i) statistical uncertainties determined for each E0 and every θe

from the weighted mean of the relative true signal intensities;
(ii) estimated uncertainty contributions due to errors in the
energy-scale calibration, the effective path-length correction
factor, and the calibration of the true 0◦ scattering angle;
(iii) the uncertainty in the 6s to elastic intensity ratios in the
normalization process; and (iv) the inherited errors on the
elastic DCSs from Rabasović et al. [13]. Values of the absolute
errors in our 6s DCSs, at each E0 and θe, can be found in
Table IV. Note that in some cases (e.g., at 20 eV and θe =
130◦), relatively large and somewhat anomalous errors are

found. This is due to working in regimes where the scattered
intensity is weak, and the signal-to-noise characteristics are
quite marginal.

Having determined our measured inelastic 6s DCSs, we
now need to extrapolate them to θ = 0◦ and 180◦, perform an
interpolation, and then undertake the appropriate integration
in order to derive the 6s ICSs at each energy. Two approaches
were utilized to achieve that aim. In the first, we used the an-
gular dependence predicted by our DBSR-214 theory in order
to make the extrapolation, while in the second, the fitting anal-
ysis of Allen and co-workers [46,47] provided an independent
self-consistency check. In all cases, the 6s ICSs we obtained,
from each of the aforementioned approaches, were found
to be consistent with one another to within our uncertainty
estimates on the ICSs. A summary of our measured ICSs and
their associated errors can be found at the foot of Table IV.
Note that our uncertainty estimates on the ICSs incorporate
all the uncertainties on the DCS, but weighted for the sin θ

term in the integrand when calculating those ICSs, and an
additional uncertainty due to the extrapolation of our DCS to
0◦ and 180◦ in order to perform the integration at each E0.

IV. RESULTS AND DISCUSSION

In Table IV and Figs. 2(a)–2(f), we present our measured
6s excitation DCS for the incident electron energies (a) 10, (b)
20, (c) 40, (d) 60, (e) 80, and (f) 100 eV. Also shown in Fig. 2
are the corresponding results from our BSR-222, DBSR-22,
DBSR-214, and RCCC-75 computations, as well as the results
from an earlier RDW calculation [14].

There are several general observations we can make with
regard to Fig. 2. First, we highlight the excellent agreement
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FIG. 2. Angle-differential cross section for electron-impact excitation of the (5s25p) 2Po
1/2 → (5s26s) 2S1/2 transition in neutral In at

incident projectile energies of (a) 10, (b) 20, (c) 40, (d) 60, (e) 80, and (f) 100 eV. Predictions from the DBSR-22, BSR-222, DBSR-214,
and RCCC-75 models are compared with the present experimental data. See, also, the legend in the figure.

between our DBSR-214 and RCCC-75 theories and the
present experimental data, at the more forward-scattered elec-
tron angles (θ � 10◦) and for all the incident electron energies
in the 10–100 eV range that we studied. This is no moot point;

it is precisely these very forward angles θ which make the
major contribution to the integrand in calculating the ICS at
each E0. Thus, on the basis of this very good accord between
measurement and calculation at those more forward-scattered
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FIG. 3. Angle-integrated cross section for electron-impact ex-
citation of the (5s25p) 2Po

1/2 → (5s26s) 2S1/2 transition in neutral
In. We show predictions from the (b) BSR-22, BSR-100, BSR-
222, DBSR-22, DBSR-104, and DBSR-214 models, as well as the
(a) RCCC-75 model and a comparison with the current experimental
data.

electron angles, we can also safely anticipate a good level of
agreement between them at the integral cross-section level of
comparison (see later and Fig. 3).

Second, we highlight the very good level of accord in Fig. 2
between our RCCC-75 and DBSR-214 calculations across all
θ and at each E0 studied. This is no moot point either, as, in
attempting to construct a recommended data set for this ex-
citation process, it is vital to have two high-level calculations
in such good agreement with one another. We note that where
differences in our RCCC-75 and DBSR-214 computations are
observed, we believe that they are attributable to the subtle
differences in the target-structure descriptions in both models.

The third general observation we make relates to the RDW
results. At 10 and 20 eV, they overestimate the magnitude of
the present measured and calculated DCS across the entire
scattered electron angular range. This is not a new observa-
tion; the limitations of the (R)DW approach to calculating
inelastic DCS at lower energies are well known. By 40 eV,
however, the RDW is at least correctly predicting the mag-
nitude and angular dependence [see Fig. 2(c)] of the very

forward-angle DCS, although it continues to overestimate
the magnitude of the cross section at intermediate scattered
electron energies. This forward-angle behavior of the RDW
persists at 60, 80, and 100 eV, so that estimates of the RDW
ICS at those energies might be expected to be physical.
Furthermore, it is clear from Fig. 2 that as the energy of
the incident electron increases, the RDW results become in
better accord with the present measured and calculated cross
sections.

The final general point that we highlight is the excellent
quantitative agreement between our DBSR-214 and RCCC-75
results and the present measurements for 20, 40, 60, and 80 eV
impact energies and across all the scattered electron angles
(see Fig. 2). In addition, we believe that at 100 eV, the level of
accord is semiquantitative in nature, with the comparison we
observe in Fig. 2(f) probably highlighting just how difficult
it is (experimentally) in measuring very small cross-section
values at middle and backward angles.

Only at 10 eV and for θ > 10◦ [see Fig. 2(a)] do we find
a serious discrepancy in the magnitude of the DCSs between
our calculations and measurement, although the shape accord
between theory and experiment remains qualitatively very
good. One possible experimental explanation for this discrep-
ancy is if, despite our best efforts, our effective path-length
correction factor [45] for 10 eV was a little inaccurate. From
the theoretical side, the fact that the diverse calculations are
in such agreement indicates that convergence with increasing
number of states in the close-coupling expansion has been
reached to sufficient accuracy. However, given the smallness
of the cross sections, the observed discrepancy could be due to
some minor systematic inaccuracy in the calculations. Never-
theless, for practical purposes, the agreement at the forward-
scattering angles is such that the integrated cross section
obtained from experiment and theory would be in excellent
agreement.

One of the key features from the present study is the strong
oscillatory nature of the angular distributions in Fig. 2. Indeed,
this behavior appears to be ubiquitous in electron-metal vapor
scattering, for both the elastic and discrete inelastic channels,
with a few examples supporting that assertion being bismuth
[40], zinc [39], sodium [48], and magnesium [49]. The oscil-
latory nature of any differential cross section arises from the
interference, both constructive and destructive, between the
various partial waves that describe the collisional behavior.
In the present case of inelastic scattering, where the orbital
angular momentum of the projectile necessarily has to change
from the initial state to the final state in order to conserve the
parity as well as the coupled electronic angular momentum
(J) of the combined target + projectile collision system, the
details depend in a complex way on the interference between
T -matrix elements that need to be combined with spherical
harmonics in order to generate the scattering amplitudes [50]
and, subsequently, the angle-differential cross section [51].
It is, therefore, generally not possible to predict either the
number or the positions of the minima (maxima) in the
DCS. Even though in some special circumstances and models
a resemblance to elastic scattering may appear in inelastic
collisions [52], and the DCS generally exhibits less structure
in the angular dependence with decreasing projectile energy,
drawing truly quantitative conclusions is not possible.
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At the foot of Table IV and in Fig. 3(a), we present
our derived 6s experimental excitation ICSs. Also shown in
Fig. 3(a) are the results from our BSR-222, DBSR-214, and
RCCC-75 computations. Our best calculations, the RCCC-75
and DBSR-214, agree extremely well with each other and, to
within the uncertainties on the experimental ICSs, they also
agree very well with the measured data. Our nonrelativis-
tic BSR-222 computation also agrees with the experimental
results to within the uncertainties on those measurements,
with the observed differences between it and the DBSR-214
calculation being due to the different structure model used in
each case. As noted in Sec. II, both the (D)BSR and RCCC
calculations appear to be well converged with the number
of states included in the close-coupling expansion. Indeed,
if we were to take an average of the RCCC-75 and DBSR-
214 ICSs, and then calculate the standard deviation of that
average from the individual computations, a discrepancy of
typically less than 10% is found. We therefore ascribe the
uncertainty on our RCCC-75 and DBSR-214 results to be a
conservative ±10%. Furthermore, that average theoretical ICS
remains in very good accord, as expected, with the measured
ICSs and so represents an excellent candidate for being a
recommended 6s integral cross section for electron-indium
scattering.

In Fig. 3(b), we explicitly demonstrate the convergence
properties of our BSR and DBSR calculations. This is one
of the procedures recommended in [53]. As we can see
from this figure, away from the near-threshold energy region,
the 6s ICS does not change significantly in going from our
BSR-100 to BSR-222 calculations and, similarly, it does not
change significantly in going from our DBSR-104 to DBSR-
214 computations. These observations give us confidence in
the convergence of our BSR-222 and DBSR-214 ICSs. In
the near-threshold region, both our BSR and DBSR results,
and our RCCC results, show peaklike structures in the ICS,
which are mainly due to Feshbach resonances, and some more
smoother structures, reminiscent of Wigner cusps, that are
related to the opening of higher-lying channels as the incident
electron energy is increased. The near-threshold structure
seen in the (D)BSR calculation is very complex. To resolve
the details and to check the stability with regard to even
minor changes in the models, a very narrow energy grid
would have to be used, followed by a thorough analysis
of the partial-wave contributions and fitting of the T -matrix
elements to multichannel resonance theory [54]. This is far
beyond the scope of the present paper, where our main aim
is to lay the groundwork for a set of recommended cross
sections that can be used to produce reliable rate coefficients
for modeling. For that purpose, the fine details of the res-
onance structure over a small energy range are irrelevant.
Nonetheless, it does remain an interesting project for the
future.

V. CONCLUSIONS

We have reported on experimental and theoretical re-
sults for electron-impact excitation of the (5s25p) 2Po

1/2 →
(5s26s) 2S1/2 transition in neutral indium, and in doing so
we have significantly extended the available cross-section
database for this scattering system. Strong interference ef-
fects, both constructive and destructive, in the partial waves
describing this inelastic scattering process were clearly ob-
served in our measured and calculated angular distributions,
as was their energy dependence. Generally excellent agree-
ment was found between our highest-level RCCC-75 and
DBSR-214 calculations, at both the DCS and ICS levels of
comparison; and with the main exception of 10 eV and for
scattered electron angles >10◦, there was also very good
accord found between those calculations and our measured
data. Given this high level of accord between our experimental
and theoretical results, we believe a recommended 6s data
set could be formed by taking an average, at any energy,
between our RCCC-75 and DBSR-214 calculations with the
uncertainty on that average result being about ±10%.

Structures, near threshold, in the 6s integral cross section
were also found. These originate from either Feshbach res-
onances or are associated with the opening of higher-lying
discrete excited electronic states (possibly Wigner cusps) as
the incident electron energy is increased. However, more de-
tailed calculations, beyond the scope of this study, are required
before any attempt to classify them might be made. We note,
additionally, that negative-ion resonance features in indium
were also briefly mentioned in the review of Buckman and
Clark [55].
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