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Abstract

Knowledge of ionization and excitation cross sections is of fundamental importance for un-
derstanding collision-dynamics and electron-atom interactions, as well as in several applied
fields such as radiation science, astrophysics and plasma physics. These areas of study need
enormous and continuous quantities of data, within a certain accuracy level, for different
targets over a wide range of energy values. Plasma diagnosis is a particular field in which
analytical expressions for electron impact ionization cross sections are welcome.

In the first part of this thesis, we have derived new expressions for the analytical calcu-
lation of ionization cross sections by electron impact based on the binary encounter Bethe
(BEB) model, valid from ionization threshold up to relativistic energies. The new modified
binary-encounter Bethe model (MBEB), and its relativistic counterpart (MRBEB) expres-
sions are simpler than the BEB (nonrelativistic and relativistic) expressions because they
require only one atomic parameter, namely the binding energy of the electrons to be ionized,
and use only one scaling term for the ionization of all sub-shells of neutral atoms and ions.

The new models are used to calculate the K-, L- and M-shell ionization cross sections by
electron impact for several atoms with Z from 6 to 83, as well as direct electron impact ion-
ization cross sections for several ionization stages of Kr, Ar and Fe. Excitation-autoionization
cross sections were evaluated using the First Order Many Body Theory (FOMBT) for Kr+,
Kr5+, Kr6+, Kr10+, Kr15+ and Kr17+. Our results were compared to configuration-averaged
distorted-wave (CADW) calculations, the widely used Lotz formula and available experimen-
tal results. Direct ionization cross sections for the Ar and Fe isonuclear series were also
calculated with the goal of assessing the versatility of the MRBEB model for computing
electron impact ionization cross sections of species that are usually present in plasmas of any
type.

In the second part of this thesis, Ar plasmas, generated in electron-cyclotron-resonance
ion-sources (ECRIS), are used to perform state-of-the-art highly charged ions X-ray transi-
tion energy measurements with a double-crystal-spectrometer (DCS). Such a spectrometer,
used for the first time on a highly charged ion transition, provides absolute (reference-free)
measurements in the X-ray domain. From this measurements we were able to extract use-
ful information about the plasma conditions inside the ECRIS chamber, such as the ionic
temperatures, charge-state-distribution and electronic densities.

The measurement of the relativistic magnetic dipole transition, 1s2s 3S1 → 1s2 1S0,
in He-like Ar has been performed and a transition energy of 3104.1605(78) eV was found,
which corresponds to an accuracy of 2.5 ppm. This value is the most accurate, reference-
free measurement done for such a transition and is in good agreement with recent QED
predictions. From the DCS measurements, we were also able to probe the natural width
of several lines. The natural width of the diagram line 1s2p 1P1 → 1s2 1S0 is found to be
79.08± 10.40 meV which corroborates the theoretical value of 70.4 meV.

The charge state distribution of the Ar ions inside the plasma has been calculated with
the use of the electron impact ionization cross sections calculated in the first part of the thesis



with our MRBEB model. For this purpose, a wide scan containing several transitions of the
highly charged Ar ions has been done, and an iterative process using balance equations of
the plasma species was used to obtain the charge-state-distribution.

Keywords: electron-impact ; ionization; cross sections; X-ray ; transitions; highly-charged

ions.

vi



Resumo

O conhecimento dos valores das secções eficazes de ionização e excitação é de uma importância
fundamental no estudo de colisões atómicas e interacções electrão-átomo, bem como em
diversos campos de f́ısica aplicada tal como ciência da radiação, astrof́ısica e f́ısica dos plasmas.
Estas áreas de estudo necessitam de quantidades enormes e num espectro cont́ınuo de dados
de secções eficazes, dentro de um certo ńıvel de precisão, para diversos alvos dentro de uma
gama de energias bastante alargada. O diagnóstico de plasmas é um campo particular em que
expressões anaĺıticas para o cálculo de secções eficazes de ionização por impacto electrónico
são bem recebidas.

Na primeira parte desta tese, foram derivadas novas expressões para o cálculo anaĺıtico
de secções eficazes de ionização por impacto electrónico, baseadas no modelo do encontro
binário de Bethe (BEB), que são válidas desde o limiar de ionização até energias relativistas.
O novo modelo do encontro binário de Bethe modificado (MBEB) e a sua versão relativista
(MRBEB) utiliza expressões que são mais simples do que as do modelo BEB (relativista e
não-relativista), porque requerem apenas um parâmetro atómico, nomeadamente a energia
de ligação dos electrões que serão ionizados, e utilizam apenas um factor de escala para a
ionização de qualquer camada electrónica de átomos neutros ou iões.

Os novos modelos foram usados para calcular secções eficazes de ionização para as camadas
K, L e M para diversos átomos com número atómico Z entre 6 e 83, bem como secções eficazes
de ionização directa para diversos estados de carga de iões de Kr, Ar e Fe. Secções eficazes
de excitação-autoionização foram calculadas usando a teoria de muitos corpos em primeira
ordem (FOMBT) para os iões Kr+, Kr5+, Kr6+, Kr10+, Kr15+ e Kr17+. Os nossos resultados
foram comparados com cálculos de configuração média de ondas distorcidas (CADW), com
a recorrentemente utilizada fórmula de Lotz e resultados experimentais dispońıveis. Secções
eficazes de ionização directa para as séries isonucleares de Ar e Fe também foram calculadas
com o objectivo de estudar a versatilidade do modelo MRBEB no cálculo de secções eficazes
de ionização de espécies que usualmente estão presentes em plasmas de todos os tipos.

Na segunda parte desta tese, plasmas de argon gerados em fontes de iões de ressonância
de electrões em ciclotrão (ECRIS), foram usados para medir energias de transição em iões
altamente carregados com um espectrómetro estado-da-arte de duplo cristal (DCS). Este es-
pectrómetro, usado pela primeira vez numa transição de um ião altamente carregado, provi-
dencia medidas absolutas (sem referência a outras linhas) no domı́nio da radiação X. Destas
medições consegúımos extrair informação útil acerca das condições do plasma no interior da
câmara do ECRIS, tal como a temperatura dos iões, a distribuição de estados de carga e a
densidade electrónica.

A medição da transição dipolar magnética relativista, 1s2s 3S1 → 1s2 1S0, em iões de
argon heliumóides foi efectuada e uma energia de transição de 3104.1605(78) eV foi obtida,
o que corresponde a uma precisão de 2.5 ppm. Este valor é o mais preciso, sem referência a
outras linhas, para uma transição deste tipo e está de acordo com cálculos de electrodinâmica
quântica (QED) recentes. Das medições com o DCS consegúımos também sondar a largura



intŕınseca de várias linhas. A largura intŕınseca da linha 1s2p 1S1 → 1s2 1S0 obtida foi de
79.08±10.40 meV o que está de acordo com o valor teórico de 70.4 meV.

A distribuição de estados de carga dos iões de Ar dentro do plasma foi calculada com o uso
das secções eficazes de ionização obtidas na primeira parte da tese com o modelo MRBEB.
Para este propósito, um espectro largo, contendo várias transições dos iões de argon alta-
mente carregados, foi obtido experimentalmente, e através de um processo iterativo, usando
equações de balanço de espécies no plasma, a distribuição de estados de carga do plasma foi
obtida.

Palavras-chave: impacto electrónico; ionização; secções eficazes; raios-x ; transições; iões
altamente carregados.
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Chapter 1
Introduction

1.1 Goals and Motivation

In the last decades, with the onset of fusion plasma physics, x-ray spectroscopy for plasma
diagnostics has been a trendy topic, being thoroughly studied by several groups. One of the
main problems in plasma diagnostics is the determination of the ion charge-state distribution
(CSD) inside the plasma. The most used method for inferring the CSD is through extracted
ion beam currents, but it is not very reliable because the extraction is optimized for a partic-
ular charge state and also because the ions are extracted from the plasma edges, so it does
not fully represents the CSD inside the plasma. Alternatively, the CSD could be obtained
through the analysis of high-resolution x-ray spectra emitted from the plasma [1–4]. Similar
processes for optical plasma diagnostics were reviewed in the work of Boffard et al. [5].

Theoretical methods for estimating the CSD inside the plasma have been developed by
our group in the last decade, based on the work of Douysset et al. [6] and Küchler et al. [7].
In 2001, a detailed analysis of K x-ray spectra emitted by Ar ions in an electron-cyclotron-
resonance ion-source (ECRIS) plasma [8] was performed. That work showed that a correct
analysis of these spectra calls for a detailed and careful examination of all excitation and
ionization processes that could lead to the detected lines. In 2009 and 2010, an improved
method was used to estimate the ion CSD in ECRIS through the analysis of x-ray emitted by
Sulphur plasmas, and it was concluded that the role of single and multiple electron impact
ionization is very important to reproduce all the features in the experimental x-ray spectra
[9]. Also, a more realistic electron energy distribution was used. Since electrons in a ECRIS
plasma are far from thermodynamical equilibrium, their energy distribution is highly non-
Maxwellian and can be represented by two populations with different temperatures, instead
of only one.

The main goal of the first part of this thesis is to obtain an analytical expression, free
of adjustable parameters, that can calculate the electron-impact ionization cross sections
(EIICS) for all the sub-shells of a wide range of elements of the periodic table in any charge
state. Being one of the fundamental ingredients in the analysis of x-ray spectra, it is very
important that the accuracy over a wide range of targets, such as inner- and outer-shells of
neutral atoms and ions in all of the periodic table, is maintained within a reasonable accuracy
range.

The choice for our starting point is a widely used expression, developed by Kim and
Rudd [10] in 1994, that successfully combines the binary-encounter theory with the dipole
interaction of the Bethe theory for fast incident electrons [11], and meets some of the above
mentioned requirements.

The binary encounter Bethe model (BEB) and its relativistic counterpart RBEB; that
can be obtained as analytical formulae which require only the incident particle energy (T ),
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the target particle’s binding energy (B) and the target particle’s kinetic energy (U); generate
direct ionization cross section curves for neutral atoms, which are reliable in intensity (±
20%) and shape, for many atomic systems, from the ionization threshold to a few keV in the
incident energy [12, 13]. If its relativistic version (RBEB) [14] is considered the energy range
stretches to thousands of keV [15] .

1.2 Electron Impact Cross Sections

Knowledge of ionization and excitation cross sections is of fundamental importance for under-
standing collision-dynamics and electron-atom interactions, as well as in several applied fields
such as radiation science, astrophysics, elemental analysis using x-ray fluorescence (XRF),
Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and electron
probe microanalysis (EPMA), and, as has been explained before, in plasma diagnostics. These
areas of study need enormous and continuous quantities of data, within a certain accuracy
level, for different targets over a wide range of energy values.

Electron impact ionization and excitation have been actively studied by many research
groups since the 1920’s. Most of the work produced was based on classical collision theory,
and several first principle theories were developed [11, 16–20]. The most important work in
the field of electron-atom collision was made by Bethe (1930) who derived the correct form
of the ionization cross section shape for high-energy collisions [11] using the plane-wave Born
approximation (PWBA). Since then, several empirical and semi-empirical models have been
proposed to describe electron impact ionization of atoms and molecules [21–26], and several
reviews on them were published [27, 28].

All works can be divided into three types: those based on quantum mechanics, which
have a far superior accuracy than their classical counterparts but at the cost of complexity;
those based on classical mechanics, which give rise to much simpler expressions at the cost
of accuracy; and semi-empirical ones, that are often based in the classical formulations. The
simpler quantum mechanical models for electron impact ionization tend to fair better than the
classical models for high energies, essentially because of the use of the Born approximation,
although for collisions where the momentum transfer is large, the classical expressions seem
to be better at describing the ionization. Empirical and semi-empirical models can be very
simple to use, but the fact that the experimental cross sections are scarce for some elements
and sub-shells does not make it easy to pinpoint the accuracy of such models for the entire
range of targets. They are, however, a very good way to get an estimate of the cross sections
for a fairly wide range of elements and sub-shells.

With the advance of quantum mechanical computational methods, some very sophisti-
cated ab initio theories became available such as the convergent close coupling (CCC) [29, 30],
the R-matrix method [31] and exterior complex scaling [32]. These calculations, however, are
very time-consuming, limiting the domain of applicability of such models [29, 30, 33, 34].

In the last years, many analytical formulas have been developed to overcome these difficul-
ties, some of them empirical [35–37] and others derived from first principles [10, 14, 38, 39].
Analytical expressions, derived from first principle are still widely used in all the fields of
physics described above, even in a era where the large and steady increment in computa-
tional power seem to consistently elevate numerical computations.

1.2.1 Overview of the approximations used in atomic collisions

In the last one hundred years, the atomic physics community devoted a lot of effort into the
study of particle collisions. Many methods and approximations derived throughout the times
are still used in the interpretation of particle interactions. Below we attempt to make a brief
overview of the main approximations and methods that are widely used and try establish a

4
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starting point for the work developed in this thesis.

1.2.1.1 The Born approximation

The Born approximation (BA) usually refers to the first Born approximation. In this ap-
proximation, the incident and scattered particles are described as plane waves that remain
undistorted by the interaction. Only direct ionization is treated, and for electron impact,
electron exchange and spin are not taken into account. No coupled equations are involved
since the solution to the scattered amplitude is unique. The validity of the first Born approx-
imation remains essentially for high velocity projectiles, but accurate cross sections can only
be obtained if good quality wave functions for the stationary states of the of the colliding
structures are available.

At low energies, the first Born approximation usually overestimates the scattering cross
sections, however it may be used at very low impact energies provided that the interaction
energy is too shallow to accommodate a bound state of the interacting system [40].

1.2.1.2 The Bethe approximation (BeA)

In the Bethe theory for the stopping power of fast projectiles [11], a slight modification of the
Born approximation was performed, in which Bethe made an additional assumption that the
product of the momentum transfer and the range of the interaction is small. In this way, the
exponential term in the Born approximation for the scattered amplitude can be expanded,
and the following integration carried out term by term.

Doing this leads to a series of terms that can be related to atomic transition moments
(electric dipole, quadrupole, etc.). Bethe has shown that the soft collisions take place es-
sentially through the dipole interaction between the incident particle and the target electron
[10], so only the first term after integration can be used to account for soft collisions. This
method is also called Bethe-Born approximation.

1.2.1.3 The Coulomb-Born approximation (CBA)

The Coulomb-Born approximation (CBA) is useful in describing collisions of electrons and
ions with target ions, in which the Coulomb interaction of the projectile with the target
nucleus can be important. The Born plane wave are replaced by Coulomb wave functions
corresponding to the nuclear charge. For highly charged ions, the long range Coulomb inter-
action is dominant, and all other interactions may be treated as small perturbations. In this
way, it is not expected to hold for collisions between electrons and neutral atoms. Comparing
to the Born approximation, we usually get better results in electron-ion scattering with the
Coulomb theory than in the Born approximation for electron-neutral scattering.

1.2.1.4 Born approximation with exchange (BAE)

In 1928, the first attempt to include exchange in the Born formalism was made by none
other than J. R. Oppenheimer. He made the same basic assumptions as used in the Born
approximation, but his method of calculating the exchange amplitude is less satisfactory than
the Born method for direct scattering, in the sense that it sometimes leads to incorrect results,
mainly because in the Born-Oppenheimer approximation [41] the initial and final states are
not orthogonal. This results in the fact that the addition of any constant to the interaction
potential gives a non-zero change in the exchange amplitude. The Born approximation tends
to excessively overestimate the scattering cross sections.

Later, Bates et al., were able to develop a formulation that was correct to first order and
that included the orthogonality between the initial and final states [41].

5
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Another improvement was made by V. I. Ochkur, who suggested that the exchange am-
plitude should be regarded as an expansion in inverse powers of the impact energy, with
the result of only the first term being retained since higher terms would cause the result to
diverge at low impact energies. The Ochkur approximation to the exchange integral is a good
approximation only at impact energies that are high enough for the integral to be small.

1.2.1.5 The sudden approximation (SA)

The sudden approximation (SA) was introduced by Enrico Fermi in 1936, and describes a
many-body scattering problem in terms of two-body amplitudes, that are well known. This
method rests on the assumption that, apart from having to determine a velocity distribution
of the target electron, it plays no part in the scattering calculation. Another statement of
the basic assumption is that the interaction occurs at a much shorter time than the orbital
motion period of the target electron, or, in other words, the interaction is sudden. One
would, therefore, expect the approximation to hold at energies much higher than the binding
energy of the target particle being considered and/or the reduced wavelength of the relative
motion of the projectile and target system is much smaller than the mean separation of the
constituents of the target atom.

1.2.1.6 The Binary Encounter Approximation (BEA)

In the Binary Encounter Approximation (BEA), the incident and target electron’s interaction
is treated as a billiard ball-like collision. A straightforward analytical expression for the
scattering amplitude in this formalism can be easily derived from first principles. Exchange
is included as in the Mott formalism [40, 42] and a velocity distribution for the target electron
is assigned, unlike the Mott and Rutherford theories, which are only valid for collisions with
free electrons at rest. The close or hard collisions are very well described by this theory as
is expected, but the lack of a long range interaction results in soft or distant collisions that
deviates from the expected Bethe-Born approximations. The predictions of near threshold
cross sections are thus very good but the asymptotic behaviour does not have the correct
form. The binary encounter approximation matches most of requirements in our goals, and
thus will be our starting point for the construction of a reliable, analytical, parameter-free
electron impact ionization model.

1.2.1.7 The distorted wave approximation (DWA)

The distorted wave approximation takes into account the distortion of the incident and scat-
tered waves by the static field of the target. From the calculation of the excitation of an
electron in the hydrogen atom, in a time-independent quantum mechanical calculation, one
eventually arrives at an asymptotic solution that corresponds to a distorted wave with the
asymptotic form of a plane wave and an outgoing spherical wave. The incoming wave is
described by a plane wave and the scattered wave is represented by a distorted wave with
the asymptotic behaviour of a spherical wave [43]. This approximation provides a very good
compromise between computation time and accuracy, although for very high incident energies
the size of the matrices involved result in a overcharge of computational resources even for
state of the art machines.

1.2.1.8 Close-Coupling approximation (CCA)

In the close-coupling approximation, the wave function for the projectile and target system
is expanded in terms of a complete set of eigenfunctions ψ0 of the target Hamiltonian. We
assume that the eigenfunctions are known. For a structureless projectile colliding with an
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N-electron atom, we write

ψ (r1, r2) =
∑

γ

Fγ (r1)ψ0 (γ, r2) , (1.1)

where r1 represents the spatial and spin coordinates of the the projectile and r2 the coor-
dinates of the atomic electrons. Any possible combination of the good quantum numbers is
represented by γ.

The overall wave function must be antisymmetric, and the functions Fγ (r1) describe the
radial motion of the projectile relative to the target in its various quantum states. The close-
coupling approximation allows us to retain only a small number of terms in the wave function
expansion [Eq. (1.1)]. The number of terms retained depends on the number of allowed
scattering channels. These channels are a function of the number of possible outcomes in a
collision: elastic scattering, excitation, dissociation, charge transfer, and so on. The channels
are said to be open if they are allowed by conservation laws, otherwise they are considered
closed.

The radial part of the scattering wave functions satisfy a set of M (M being the number
of channels) integrodifferential equations of the form

[

d2

dr2
+ k2i −

li (li + 1)

r2
~
2

2me

]

Fi (r) =

M
∑

j=1

Vij (r)Fj (r) +

∫

∞

0
Wij

(

r, r′
)

Fj

(

r′
)

dr′,

where Vij (r) is a direct electron-electron plus electron-nucleus potential, andWij (r, r
′) is the

exchange term. The r′ refers to the exchanged electron.
These closed-coupling equations can provide accurate cross sections if all of the target

states lying close to the initial and final states are included in the expansion [Eq. (1.1)]. The
slow convergence of the truncated expansions makes this method intractable at high impact
energies, at which more states are available and more angular momenta become important.
Also, if we try to use close-coupling to calculate scattering from excited states, the close
spacing of the energy levels makes the procedure much more time-consuming. This method
is, however, effectively exact in the prediction of the positions and shapes of threshold effects
and resonances in low-energy collisions of electrons with ground-state atoms, contrary to the
other methods mentioned above. This method is one of the most accurate way of calculating
electron impact ionization cross sections, but only very simple systems can be completely
studied with this formalism.

1.2.1.9 The Pseudo-state approximation (PsA)

As we have seen, computational difficulties increase rapidly with the number of target eigen-
functions used in the close-coupling expansion; in practice, only a few of bound-states and
continuum states are included. One method to overcome this difficult is to include in the
wave function expansion some function φnFn (r1) where φn is not a target eigenfunction but
a function representing an appropriate average of bound and continuum states. These states
are thus not real, and for this reason they are called pseudo-states. Although there is no
unique way to choose which pseudo-states to be used, some questions of normalization and
orthogonality must be addressed. This pseudo-states can in turn introduce fictitious thresh-
olds and resonances, and this artefacts can lead to inaccuracies in computed cross sections.

1.2.1.10 The R-Matrix method

The R matrix was introduced in nuclear physics by Wigner in 1946 [44, 45] and since has been
developed by Burke, Noble and Schneider and subsequently widely used in atomic physics.
A very good review can be seen in Ref. [46].

7



Introduction

The reactance R matrix is related to the scattering S matrix by the equation

S = (1 + iR) (1− iR)−1 .

As expected, the R matrix is Hermitian, and if the potential describing the scattering
is real, the elements Rij are real and the matrix is symmetric. This is why it is frequently
advantageous to work with R instead of the S matrix. Furthermore, any approximation to
R that preserves the symmetry of the matrix ensures that S is unitary and hence that the
total number of particles in the system is conserved.

In this method, the configuration space is divided into two regions. For the scattering of
electrons from an atom, one can exclude exchange outside some radius r0. Hence, if r > r0,
the collision is described by coupled differential instead of integrodifferential equations that
often have analytic solutions easily obtained. The basic problem is, then, to calculate the R

matrix elements in the internal region r > r0. The S matrix and cross section can then be
obtained from the R matrix trough the solution of the external region. The computational
time required for such calculations compete with those of the DWA.

1.3 Thesis Outlook

After describing the main goals and motivations behind this thesis, a brief outlook of the
organization of this work is in order. This thesis is comprised of two parts,

• Part I is entirely devoted to the formulation and subsequent testing of an analytical
expression for the calculation of electron impact ionization cross sections. The deriva-
tion of the key ingredients of the theory are presented and the role of the scaling laws
for binary encounter theories is analysed. The modified expression is then compared to
inner-shell ionization experimental and theoretical results as well as total ionization of
highly charged ions.

• Part II describes the experimental work performed on a double crystal spectrometer
(DCS) coupled to an electron-cyclotron-resonance ion-source (ECRIS) in order to obtain
absolute measurements in the X-ray domain. This instrument provides accurate and
absolute measurements of X-ray energies and widths, thus allowing a reference-free
comparison with state of art QED and many-body theory calculations reported in the
literature. An overview of the experimental apparatus is given, and the improvements
made are highlighted. An absolute measurement of the ”Relativistic M1” transition
energy in helium-like argon is presented and the response function of the instrument
is probed. Finally an X-ray spectrum of an argon plasma is analysed, using some
tools developed in Part I, in order to obtain an external reference of the charge state
distribution inside the ECRIS plasma.
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Chapter 2
Scattering Cross Sections

2.1 Rutherford scattering

The scattering of charged particles has been under the scope of scientists since the begin-
ning of last century. One of the first puzzling phenomena observed was the Geiger-Mardsen
experiment, which lead to the development of the Rutherford model for scattering.

Scattering in a coulomb field is of particular interest for physicists that study charged
particles interactions. In the case of a elastic colision we can use quantum mechanics to
describe the scattering cross section and it will yield the same result as if we use classical
physics.

When there is a fixed direction (in this case, the direction of the incident particle),
Schroedinger’s equation can be solved by using a set of parabolic coordinates (ξ, η, φ).

The Schroedinger equation, with µ as the reduced mass between the two colliding particles,

[

− ~
2

2µ
∆+ V (r)

]

ψ = Eψ, (2.1)

becomes, if we set the potential as being of a Coulomb nature, V = −1
r = − 2

ξ+η

4

ξ + η

[

∂

∂ξ

(

ξ
∂ψ

∂ξ

)

+
∂

∂η

(

η
∂ψ

∂η

)]

+
1

ξη

∂2ψ

∂φ2
+ 2

(

E +
2

ξ + η

)

ψ = 0. (2.2)

Since the problem of the scattering of a particle in a central field is axially symmet-
ric, and hence independent of the coordinate φ, we can write the particular solution of the
Schroedinger’s equation as

ψ = ψ1 (ξ)ψ2 (η) . (2.3)

Substituting Eq. (2.3) in (2.2), we obtain, after separation of variables

∂

∂ξ

(

ξ
∂ψ1 (ξ)

∂ξ

)

+

(

1

4
k2ξ − a

)

ψ1 (ξ) = 0, (2.4)

∂

∂η

(

η
∂ψ

∂η

)

+

(

1

4
k2η − b

)

ψ2 (η) = 0,

with the separation variables obeying the following relation

a+ b = 1.

Here we have put the energy (in atomic units) E = 1
2k

2, where k is the momentum of the
projectile. The signs in Eqs. (2.4) are for the case of a repulsive field, but the final result
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will be the same for attractive fields, hence the scattering of positrons by electrons will have
the same cross sections, in Rutherford’s theory, as the electron-electron case.

Now we shall find the solution of Schroedinger’s equation which, for large r (and negative
z, since we are saying that the incident particle travels with the direction of the positive z),
has the form of a plane wave

ψ ≈ eikz, −∞ < z < 0, r → ∞,

corresponding to a particle travelling in the positive z-axis direction and very far away from
the scattering center. In parabolic coordinates, this takes the form

ψ ≈ eik(ξ−η)/2, η → ∞, ξ ∈ R.

One easy way to satisfy this condition will be to set

ψ1 (ξ) = eikξ/2, (2.5)

and
ψ2 (η) ≈ e−ikη/2. (2.6)

Substituting Eq. (2.5) in the first equation of the system (2.4), we observe that this
function does indeed satisfy the equation, provided that a = 1

2 ik. The second equation, with
b = 1− a, will then become

∂

∂η

(

η
∂ψ

∂η

)

+

(

1

4
k2η − 1 +

1

2
ik

)

ψ2 (η) = 0.

Given the guess we made earlier for ψ2 (η), we shall seek the above equation’s solution in
the form

ψ2 (η) = e−ikη/2w (η) ,

were the function w (η) must tend to a constant as η → ∞. The resulting differential equation
will be

ηw′′ + (1− ikη)w′ − w = 0, (2.7)

which, introducing the new variable η1 = ikη, can be reduced to the equation for a confluent
hypergeometric function with parameters α = −i/k, and γ = 1. We must choose the right
solution of Eq. (2.7), so that the product of it by ψ1 (ξ) will only contain an outgoing spherical
wave. It can be written as (A being an arbitrary constant)

w = A× F (−1/k, 1, ikη) .

Assembling the functions obtained and choosing a normalization constant such that the
incident wave will have unit amplitude, we get the wavefunction [Eq. (2.3)], describing the
scattering, as

ψ = e−π/2kΓ

(

1 +
i

k

)

eik(ξ−η)/2F

(

−1

k
, 1, ikη

)

. (2.8)

For simplicity in calculating the cross section from the wave equation, we need to obtain
the asymptotic behaviour of Eq. (2.8), and after changing to spherical polar coordinates, and
some straightforward algebraic calculation, we have the final asymptotic expression for the
wavefunction

ψ =

[

1 +
1

2k3r (1− cos θ)

]

eikz+(i/k) log(kr−kr cos θ) +
f (θ)

r
eikr−(i/k) log(2kr), (2.9)

with

f (θ) = − 1

2k2 sin2 1
2θ
e(2i/k) log sin θ/2Γ (1 + i/k)

Γ (1− i/k)
. (2.10)
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The first term in Eq. (2.9) represents the incident wave, and we can see that even at
large distances, the wave is somewhat distorted, mainly because of the logarithmic term in
the phase and the presence of the 1/r dependence in the amplitude.

Thus, bearing in mind that the effective scattering cross section can be calculated as
dσ = |f (θ)|2 dΩ, we get for the Rutherford cross section

dσ =
dΩ

4k4 sin4 1
2θ
,

or in ordinary units,

dσ =
( α

2mv2

)2 dΩ

sin4 1
2θ
, (2.11)

where we have set the relative velocity of the particles v = k~/m, and α is the fine-structure
constant. Expression (2.11) is the familiar Rutherford’s formula given by classical mechanics,
as can be seen in the references [43] and [40].

Expressing Eq. (2.11) in a coordinate system in which one of the particles is at rest is
very easy, since we know that for a collision between particles with the same mass, changing
from the center of mass frame to the laboratory frame corresponds to changing from θ → 2ϑ.
The element of solid angle dΩ must be replaced by 4 cosϑdΩ in the new coordinate system.
After algebraic manipulation, Eq. (2.11) becomes

dσ =
( α

mv2

)2 1

sin4 ϑ,
cosϑdΩ, (2.12)

where v is the relative velocity between the two electrons and m is the electron rest mass.
At this point it is convenient to express the scattering angle ϑ in terms of the energy which
the ejected electron has after the collision. As is well known, when a particle of kinetic energy
T = 1

2mv
2 collides with another of the same mass at rest, the energy with which the particles

are left is

W = T sin2 ϑ, T −W = T cos2 ϑ, (2.13)

where W stands for kinetic energy of the ejected electron. In order to solve Eq. (2.12)
with respect to the energy of the ejected electron, we express dΩ in terms of dW by the
relation cosϑdΩ = 2π sinϑ cosϑdϑ = ( πT )dW . Substituting in Eq. (2.12) and writing the
fine-structure constant α as a function of the Bohr radius, we get the energy distribution of
the ejected electron

dσ (W,T )

dW
=

4πa20R
2

T

1

W 2
. (2.14)

In Eq. (2.14), T is the non-relativistic relative kinetic energy of the incident electron, W
is the kinetic energy of the ejected electron, a0 is the Bohr radius (a0 = 5.29× 10−11 m) and
R is the Rydberg energy (R = 13.6 eV). After inspection, we see that Eq. (2.14) diverges
for W → 0, although we know that for a real atom, the cross section for ejecting an electron
with W = 0 is finite. To overcome this difficulty we can replace W by the energy transfer

E =W +B, (2.15)

where B is the binding energy of the ejected electron. With this substitution, the Rutherford
cross section becomes

dσ (W,T )

dW
=
dσ

dE
=

4πa20NR
2

T

1

E2
, (2.16)

where we have inserted the number of bound electrons, N , in the sub-shell.
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2.2 Scattering of like-particles

In the case of electron-electron collision, which is the main subject in this part, the indistin-
guishability of the colliding particles raise special considerations. As we know, this identity
leads, in quantum mechanics, to the appearance of a peculiar exchange interaction between
them. This has an important effect on scattering as described by Mott [42]. The orbital wave-
function of a system with two like-particles must be symmetric or antisymmetric with respect
to coordinate change, according to whether their total spin is even or odd [40]. The wavefunc-
tion that describes the scattering, and which is obtained by solving the usual Schroedinger’s
equation [Eq. (2.1)], must then be symmetrized or anti-symmetrized with respect to the
particles. In this case, an interchange of the particles, corresponds to reversing the direction
of the radius vector joining them, and in the coordinate system in which the center of mass
is at rest, this is equivalent to changing the scattering angle θ to π− θ (and hence z = r cos θ
becomes −z). So, instead of the asymptotic expression, [Eq. (2.9)] we have

ψ ≈ eikz ± e−ikz +
eikr

r
[f (θ)± f (π − θ)] . (2.17)

It is impossible to distinguish the two electrons apart, so we can’t say which of them
scatters and which is scattered, thus we now have two incident plane waves that propagate in
opposite directions, and the outgoing spherical wave must take into account the scattering of
both particles. The probability current calculated from it, must then result in the probability
that either one of the particles will be scattered into the element dΩ of solid angle considered.
The effective cross section will be the ratio between this current and the current density of
either of the incident plane waves. This results, as before, in the squared modulus of the eikr

r
term’s coefficient in the wave function [Eq. (2.17)].

If the total spin of the colliding particles is even (symmetric form), the effective cross
section must take the form

dσ+ = |f (θ) + f (π − θ)|2 dΩ, (2.18)

and if the spin is odd (antisymmetric form) it is

dσ− = |f (θ)− f (π − θ)|2 dΩ. (2.19)

In classical mechanics, the probability that either particle would be scattered through a
given solid angle dΩ would be just the sum of probabilities that one of them is deviated by
an angle θ and the other by an angle π − θ. In other words, the effective cross section would
be

dσ =
(

|f (θ)|2 + |f (π − θ)|2
)

dΩ.

The appearance of the interference term, f (θ) f∗ (π − θ) + f∗ (θ) f (π − θ) characterizes
the exchange interaction, and its nature is purely quantum mechanical.

In the symmetric [Eq. (2.18)] and antisymmetric [Eq. (2.19)] cross sections, one needs
to know the definite value of the total spin but, usually, such information is not available.
We must, then, average over all possible spin states to calculate the effective cross section
assuming that all spin states are equally probable. It is well known that of the total number
of spin states of a system with two particles with spin s (s being half-integral), s (s+ 1)
states correspond to an even total spin, and (s+ 1) (2s+ 1) to an odd total spin (if s is
integral the inverse applies). So, using the Lagrange definition of probability [40], we get
that the probability that the system of two colliding, half-integral spin, particles will have an
even total spin S is s/ (2s+ 1) and the probability of odd S is (s+ 1) / (2s+ 1). Hence, the
effective cross section will be

dσ± =
s

2s+ 1
dσ+ +

s+ 1

2s+ 1
dσ−. (2.20)

12
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Substituting Eqs. (2.19) and (2.18) on Eq. (2.20), we obtain

dσ± =

(

|f (θ)|2 + |f (π − θ)|2 − 1

2s+ 1
[f (θ) f∗ (π − θ) + f∗ (θ) f (π − θ)]

)

dΩ. (2.21)

2.2.1 Coulomb scattering of like-particles

As an example we will obtain the formulas for electron-electron scattering. We know that the
interaction between the two electrons is of a Coulomb nature, so if we insert the scattering
amplitude, obtained for the Rutherford expression, [Eq. (2.10)],

f (θ) = − 1

2k2 sin2 1
2θ
e−(2i/k) log sin θ/2Γ (1 + i/k)

Γ (1− i/k)
, (2.22)

in Eq. (2.21), and set s = 1
2 we obtain

dσ± =

(

e2

mv2

)2




1

sin4 1
2θ

+
1

cos4 1
2θ

−
cos
(

e2

~v log tan
2 1
2θ
)

sin2 1
2θ cos

2 1
2θ



 dΩ (2.23)

where, m and e is the electron’s mass and charge respectively, v is the electron’s velocity on
the center of mass coordinate system and ~ is Plank’s constant divided by 2π. If we transform
the formula to a coordinate system in which one of the electrons is at rest, we obtain [40]

dσ± =

(

2e2

mv2

)2




1

sin4 ϑ
+

1

cos4 ϑ
−

cos
(

e2

~v log tan
2 ϑ
)

sin2 ϑ cos2 ϑ



 cosϑdΩ (2.24)

where the element of solid angle, dΩ = sin θ dθdφ was replaced by 4 cosϑ sinϑ dϑdφ =
4 cosϑdΩ.

2.3 Mott cross section

Based on the derivation above, Mott has generalized the Rutherford cross section for the
collision between two electrons, by taking exchange into account [40, 42]. As in the Rutherford
expression [Eq. (2.14)], by solving the singly differential cross section (SDCS) to obtain the
energy distribution of the ejected electron, W , we get

dσ (W,T )

dW
=

4πa20R
2

T

[

1

W 2
− Φ

W (T −W )
+

1

(T −W )2

]

, (2.25)

where Φ is a function of E and T that lies is the [0, 1] interval and approaches 1 for large
values of T , and is given by

Φ = cos

[
√

(

R

T +B

)

ln

(

T

B

)

]

. (2.26)

As before, T is the non-relativistic kinetic energy of the incident electron and T −W is the
kinetic energy of the scattered electron. The first term of Eq. (2.25) is the direct collision term
as in the Rutherford formula, while the third term represents the exchange. The second term
is the interference between the direct and exchange terms. Note that the Mott expression
is symmetric in respect to the kinetic energies of the ejected electron W and the scattered
electron T −W , as it was expected to be. Similarly to the Rutherford expression, the Mott
SDCS diverges when W → 0 and W → T , which is not true for a real atom because the
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binding energy must be overcome for a bound electron to be ejected. Hence, by substituting
W for the energy transfer, E [Eq. (2.15)], we get

dσ (W,T )

dW
=
dσ

dE
=

4πa20NR
2

T

[

1

E2
− Φ

E (T −W )
+

1

(T −W )2

]

, (2.27)

where we have included the occupation number, N , of the sub-shell undergoing ionization.
Note that while the original Mott cross section, Eq. (2.25), is an exact solution for two
unbound electrons, [Eq. (2.27)] is an approximation for a bound target electron, which
becomes a very good approximation for W ≫ B.

2.4 Binary encounter (BE) theory

Up to now the cross sections derived report to an electron with kinetic energy T colliding
with another electron at rest. To better describe the ionization of an atom by an electron,
Vriens, following the work of Gryzinski, proposed that the target electron should be assigned
a velocity or momentum distribution to represent its orbital motion [21, 47]. Such momentum
distribution is usually derived from the bound electron wave function.

Deriving the binary encounter cross section for the collision between two electrons we can,
from first principles, arrive at an exact solution for a collision between an incident electron
with kinetic energy T and a target electron with an average kinetic energy U . The average
kinetic energy is obtained through

U ≡
〈

p2
〉

2m
,

where p is the momentum operator in a given sub-shell. The quantum mechanical solution
for this problem can be calculated analytically and the symmetrical binary encounter model
of Thomas, Burgess and Vriens can be presented as [47]

dσ(E, T ) =
4πa20NR

2

T

[

1

E2
+

4U

3E3
+

1

(T − U − E)2

+
4U

3 (T − U − E)3
− Φ

E (T − U − E)

]

dE. (2.28)

Due to the Coulomb interaction between the elements involved in the process, we should
note that the incident and ejected electrons energies are not constant throughout the collision,
and must be changed if we want to better describe the ionization of multi-electronic atoms.
Burgess and Vriens have proposed a change in the binary encounter cross section to describe
this effect. As can be seen in Fig. 2.1, the changes are due to the Coulomb interaction
between the incident and ejected electron with the nucleus and other bound electrons.

For hydrogen, the potential energy of an electron in the lowest bound state corresponds
to 1 a.u. because it is the sum of the binding energy B and the kinetic energy U . Vriens
proposed that this change in energy should be inserted in the binary encounter theory, Eq.
(2.28), although it is only correct for Hydrogen. Hence, if we change T → T +U +B, which
should be referred from now on as the ”‘Burgess-Vriens”’ term or denominator, and taking
into account Eq. (2.15), we can simplify the binary encounter expression to

dσ(E, T ) =
4πa20NR

2

T + U +B

[

1

E2
− Φ

E (T −W )
+

1

(T −W )2

+
4U

3

(

1

E3
+

1

(T −W )3

)]

dW. (2.29)

This expression is the same obtained by Kim et al [10] if we set Φ = 1. In L. Vriens
1966 paper [24], a detailed description of the Φ function, is given. In most of the binary
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Figure 2.1: Kinetic energies of the primary and secondary electrons before and after the
binary collision as proposed by Vriens.

encounter-derived models, the Vriens Φ function is set to unity, although this approximation
is only valid if the binding energy of the atomic electron is much higher than the Rydberg
energy, and we can get differences of as much as 15% in the cross section values for binding
energies of few eV. This may be of some importance for molecules and outer shell ionization
of atoms and lowly charged ions. In Fig. 2.2 we can see the behaviour of the Φ function for
several B/R ratios.

At this point it is convenient to express the energy variables in units of the binding energy
B of the electrons in a sub-shell;

t = T/B,

w = W/B,

u = U/B,

S = 4πa20N(R/B)2. (2.30)

Performing this variable substitution, we get

dσ (W,T )

dW
=

dσ (w, t)

Bdw

=
S

B (t+ u+ 1)

[

1

(w + 1)2
+

1

(t− w)2
− φ

(w + 1) (t− w)

+
4u

3

(

1

(w + 1)3
+

1

(t− w)3

)]

, (2.31)
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Figure 2.2: Plot of the Vriens Φ function for several B/R ratios.

with

φ = cos

(
√

R

B(t+ 1)
ln t

)

. (2.32)

2.5 Binary encounter dipole (BED) model

The following derivation was originally proposed by Kim and Rudd [10], and is transcribed
here to better understand the origin of each term of the final expression. The binary encounter
singly differential cross section, Eq. (2.31), can be recast as a series

dσ (W,T )

dW
=
S

B

3
∑

n=1

Fn (t)

[

1

(w + 1)n
+

1

(t− w)n

]

, (2.33)

where the terms containing w+1 represent the secondary electron, which is ejected from the
target after the collision, and the terms containing t− w represent the primary or scattered
electron which has lost energy in the collision. As was mentioned before, the n = 1 terms
represents the interference between the direct and exchange collisions, the n = 2 terms is
due to the close or hard collisions, in which the momentum transfer from the primary to the
secondary electrons is large. The terms corresponding to n = 3 accounts for the broadening
of the energy distribution due to the intrinsic momentum of the bound electron in the atom.
The binary encounter cross section, Eq. (2.31), can be reproduced by the following choice of
Fn(t)

F1 = − F2φ

t+ 1
, F2 =

1

t+ u+ 1
, F3 =

4u

3 (t+ u+ 1)
. (2.34)
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The total ionization cross section (TICS) can be obtained by integrating Eq. (2.33) from
w = 0 to w = (t− 1)/2, with the choice of functions of Eq. (2.34). Hence, we get

σBE =

∫ (t−1)/2

0

dσ (w, t)

dw
dw (2.35)

= S

[

F1 ln t+ F2(1− t−1) +
1

2
F3(1− t−2)

]

. (2.36)

Analysing the asymptotic (t≫ 1) behaviour of Eq. (2.36), we conclude that the obtained
trend (σBE → t−1) is in disagreement with the prediction of Bethe’s ”Theory of the Passage of
Fast Corpuscular Rays Through Matter” [11] and with experimental results. A more realistic
asymptotic t dependence is predicted by Bethe’s theory, namely t−1 ln t, which arises from
the dipole interaction of soft or far collisions. In order to correct such deficiency, one must
consider that at high energies (t≫ w), the terms (t− w)−n may be ignored, i.e.

dσ (W,T )

dW
=
S

B

3
∑

n=1

Fn (t) fn (w) , (2.37)

with

fn (w) =
1

(w + 1)n
, for n = 1, 2, (2.38)

while Fn(t) and f3(w) are to be determined. In order to derive an expression that combines
the classical binary encounter theory with the leading dipole part of Bethe’s theory, we need
to introduce the stopping cross section for ionization, σSP, which is defined by

σSP ≡ B

R

∫ (t−1)/2

0
(w + 1)

dσ (w, t)

dw
dw. (2.39)

The asymptotic limits of σBE and σSP are obtained by substituting Eq. (2.37) on Eqs.
(2.35) and (2.39):

σBE = S (F1 ln t+ F2 + F3G) , (2.40)

where

G =

∫

∞

0
f3 (w) dw, (2.41)

and

σSP =
SB

R
((ln 2)F1t+ F2 ln t+ F3H) , (2.42)

where

H =

∫

∞

0
(w + 1) f3 (w) dw. (2.43)

The upper limits for the integration of G and H have been extended to ∞ in the antic-
ipation that f3 (w) diminishes rapidly enough as w → ∞. This way, the asymptotic part of
f3 (w) does not contribute to the asymptotic t dependence in Eqs. (2.40) and (2.42) hence,
it is a requirement that f3 (w) → w−m with m > 2 for w ≫ 1.

The asymptotic ionization and stopping cross sections, σB and σBSP respectively, derived
by Bethe in the first Born approximation [11, 28] are,

σB =
SQ

2

ln t

t
, (2.44)

where

Q =
2BM2

i

NR
, M2

i =
R

B

∫

∞

0

1

w + 1

df (w)

dw
dw, (2.45)
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and

σBSP =
2SB

R

ln t

t
. (2.46)

In the derivation of Eq. (2.46), excitations to both discrete and continuum states were
included, because the coefficient of the t−1 ln t term for ionization alone, not only is very
hard to calculate but will also be different from one atom to another. Nevertheless, at high
incident energies, ionization processes account for more than 80% of the cross section [48],
hence using both excitations and ionization is a simple yet effective way of obtaining the
asymptotic stopping power in the Bethe’s formalism. Matching the asymptotic expressions
for ionization and stopping cross sections of the binary encounter theory, Eqs. (2.40) and
(2.42) with those obtained by Bethe, Eqs. (2.44) and (2.46), respectively we get

F1 ln t+ F2 + F3G =
Q

2

ln t

t
, (2.47)

(ln 2)F1t+ F2 ln t+ F3H = 2
ln t

t
. (2.48)

There is no function F1 (t) that will yield a t−1 ln t dependence on both Eqs. (2.47) and
(2.48), so we choose F1 in such a way that it will fall off faster than t−1 ln t so as to become
asymptotically negligible in both equations. The simplest way to accomplish this is to make
F1 ∝ t−2. This is consistent with the t dependence of the F1 term in the binary encounter
cross section, Eq. (2.34), as long as we make it negative. If we choose F2 ∝ t−1, as in the
binary encounter expression, the second term of Eq. (2.47) becomes asymptotically negligible,
but the second term in Eq. (2.48) yields the expected t−1 ln t dependence. With this choices
for the first two coefficients, F3 dominates the asymptotic equation for ionization, while for
the stopping cross section Eq. (2.48), the second and third terms dominate.

The asymptotic SDCS expression in the Bethe theory is given by [49]

dσ

dw
=
S ln t

Nt

1

w + 1

df (w)

dw
, (2.49)

where df (w) /dw is the differential oscillator strength. Since the asymptotic limit of Eq.
(2.37) is

dσ

dw
= SF3 (t) f3 (w) , (2.50)

we can conclude from Eqs. (2.49) and (2.50) that

F3 (t) f3 (w) =
ln t

Nt

1

w + 1

df (w)

dw
. (2.51)

An obvious choice is to set

F3 (t) =
ln t

t
and f3 (w) =

1

N (w + 1)

df (w)

dw
. (2.52)

From this choice of f3 (w), the definition of M2
i [Eq.(2.45)] and Eqs. (2.41) and (2.43)

respectively, we get

G =
1

N

∫

∞

0

1

w + 1

df (w)

dw
dw

=
BM2

i

RN
, (2.53)

and

H =
1

N

∫

∞

0

df (w)

dw
dw,

=
Ni

N
, (2.54)
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where

Ni ≡
∫

∞

0

df (w)

dw
dw. (2.55)

This choice of f3 (w) satisfies the requirement made above which led to the extension of
the integral limits in Eqs. (2.41) and (2.43) to ∞, since the differential oscillator strength
[28] diminishes in the asymptotic region faster than w−3.5.

To find F2(t) and F3(t) we start by writing F2 = at−1, then from the second and third
terms of Eq. (2.48) we get

a ln t

t
+
Ni ln t

Nt
= 2

ln t

t
, (2.56)

which leads to a = 2− (Ni/N), or

F2 (t) =
2− (Ni/N)

t
and F3 (t) =

ln t

t
for t≫ 1. (2.57)

What we have done so far was basically to let the F3f3 term in Eq. (2.33) represent the
dipole interaction. The Bethe theory is not usually used in the symmetric form, i.e., it does
not have the exchange and interference terms as in the Mott cross section. It is not clear what
the appropriate symmetric form of the dipole interaction should be, so we simply omit the
exchange term (t− w)−3 in Eq. (2.33). Besides, the exchange interaction becomes negligible
at high incident energies where the dipole interaction is important.

Finally, the choice for F3 and f3 is combined with the symmetric binary encounter cross
section, Eq. (2.34), and result in

F1 = − F2φ

t+ 1
, F2 =

2− (Ni/N)

t+ u+ 1
, F3 =

ln t

t+ u+ 1
. (2.58)

We can now write the SDCS of a sub-shell, based on the BED model, by combining the
definition of f3 (w) defined in Eq. (2.52), the Fn (t) coefficients defined in Eq. (2.58) on Eq.
(2.33)

dσ (W,T )

dW
=

S

B (t+ u+ 1)

[

φ
(Ni/N)− 2

t+ 1

(

1

(w + 1)
+

1

(t− w)

)

+ [2− (Ni/N)]

(

1

(w + 1)2
+

1

(t− w)2

)

+
ln t

N (w + 1)

df (w)

dw

]

. (2.59)

In order to use the BED model, values of B,U,N and the differential oscillator strengths,
df (w) /dw, are needed for each sub-shell of an atom. Of these values, B and N are readily
available in the literature, while the average kinetic energy U can be calculated from electronic
structure codes such as those developed by Desclaux and Indelicato [50, 51] and Froese-Fisher
[52]. Differential oscillator strengths are usually harder to get, although total and partial
values of df (w) /dw for many atoms can be found in the literature.

In Ref. [10] a list with the relevant values for the application of the BED model to H,
He, Ne and H2 is presented. The differential oscillator strengths for these targets are also
listed as fits to experimental values except for H for which theoretical values have been used
in the fitting process. Although any form of theoretical df (w) /dw can be used, analytic fits
are certainly more convenient to use than numerical tables or graphs.

2.6 Binary encounter Bethe (BEB) model

As Kim et al [10] pointed out, although the BED model is substantially simpler to use than
most ab initio theories for electron impact ionization, the differential oscillator strengths
are usually not very simple to obtain, especially sub-shell by sub-shell. Because of this,
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and taking into account our main goal of obtaining a simple, analytical expression free of
adjustable parameters, a simplified version of the BED model is needed. In this version, to
be referred as binary encounter Bethe (BEB) model, we follow the derivation of Kim and
Rudd [10] that make use of the fact that differential oscillator strengths for targets such as
H, He and H2 have simple shapes, and can be cast as a series of inverse powers of w + 1,
starting from (w + 1)−2, that is,

df (w)

dw
=

b

(w + 1)2
+ ..., (2.60)

where b is a constant. If we truncate the series in the first term, we can get simple functions
for Ni and M

2
i ,

Ni = b

∫

∞

0

dw

(w + 1)2
= b, (2.61)

M2
i =

Rb

B

∫

∞

0

dw

(w + 1)3
=
Rb

2B
. (2.62)

By combining Eqs. (2.45), (2.61) and (2.62), we get

M2
i =

RNi

2B
and Q =

Ni

N
. (2.63)

Going back to our choice of F3 and f3 and taking note that both functions will always be
used as a product and not individually, we can rewrite Eq. (2.51) using the first term of Eq.
(2.60), Eq. (2.61) and Eq. (2.63) and obtain

F3 (t) f3 (w) =
Q ln t

Nt

1

(w + 1)3
, (2.64)

after which we can, just to simplify our notation for f3, separate to

F3 (t) =
Q ln t

t
and f3 (w) =

1

(w + 1)3
. (2.65)

Combining Eqs. (2.33), (2.58), (2.63) and (2.65), the SDCS in the BEB formalism is given
by

dσ (W,T )BEB

dW
=
S

B

3
∑

n=1

Fn (t)

[

1

(w + 1)n
+

1

(t− w)n

]

(2.66)

where

F1 = − F2φ

t+ 1
, F2 =

2−Q

t+ u+ 1
, F3 =

Q ln t

t+ u+ 1
. (2.67)

When nothing is known, apart from the binding and kinetic energies of the electron
undergoing ionization, Kim and Rudd setQ = 1. From now on, we will only refer to this model
as binary encounter Bethe model (BEB) if this approximation is made. If Q is not set to 1 we
should label it as BEQ to avoid confusion. To further simplify, Kim and Rudd used the Vriens
Φ function in its asymptotic form, meaning that φ = 1. The two approximations made above
severely simplify the BEB expression and still provide cross sections that are very reliable
in shape and magnitude, from the ionization threshold to several keV [10, 12, 13, 53, 54].
The role of the Vriens Φ function can be better understood if we plot the relative difference
between the BEB model with φ = 1, and the same model without the said simplification [Eq.
(2.32)], which we will call binary encounter Bethe-Vriens BEBV model.

In Fig. 2.3 we can see that for low binding energies, of the order of the Rydberg constant,
we can get discrepancies up to 15%. This effect should be important when calculating cross
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sections for the ionization of outer-shells of alkaline metals, but as a rule should always be
inserted for total ionization cross section computations.

The total ionization cross section (TICS) for a given sub-shell in the BEB(Q) model is
then obtained by integrating Eqs. (2.66) and (2.67) from w = 0 to w = (t− 1) /2, and the
final expression is given by

σBEB(Q) =
S

t+ u+ 1

[

1

2
Q

(

1− 1

t2

)

ln t+ (2−Q)

((

1− 1

t

)

− ln t

t+ 1

)]

, (2.68)

where once again the reduced units are

t = T/B,

w = W/B,

u = U/B,

S = 4πa20N(R/B)2. (2.69)

Figure 2.3: Plot of the ratio of the difference between the BEBV and BEB model to the BEB
cross section. The starting point of each curve corresponds to T = B

2.7 Relativistic binary encounter Bethe (RBEB) model

In the derivations above, as well as in the original derivations of Mott and Bethe, all non-
relativistic energy values were obtained from the velocities of the primary and secondary
electrons. All quantities, such as the momentum transfers and binding energies have been
obtained in the non-relativistic regime through K = mv2/2 where v is the speed of an elec-
tron and m its mass. On the other hand, in relativistic formulas, these quantities are written
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as ratios of the electron speed to the speed of light. Taking into account the Lorentz trans-
formations and the specific energy values used in the BEB model, we get a set of relativistic
energy terms which will be used to change the BEB expression accordingly,

βt =
vt
c
, β2t = 1− 1

(1 + t′)2
, t′ =

T

mc2
, (2.70)

βb =
vb
c
, β2b = 1− 1

(1 + b′)2
, b′ =

B

mc2
, (2.71)

βu =
vu
c
, β2u = 1− 1

(1 + u′)2
, u′ =

U

mc2
, (2.72)

where vt is the speed of an electron with kinetic energy T , vb is the speed of an electron
with kinetic energy B and vu is the speed of an electron with kinetic energy U . Applying
this transformations on Eq. (2.68), as can be seen on Ref. [14], results in the TICS for the
relativistic binary encounter Bethe (RBEB) model, Eq. (2.73). Each term has its origin on
the relativistic version of the Mott and Bethe cross sections, and a similar treatment to what
was performed for the BEB expression, which will not be shown here, was done in order to
achieve the final RBEB expression [10].

σRBEB =
4πa20α

4N
(

β2t + β2u + β2b
)

2b′

[

1

2

(

ln

(

β2t
1− β2t

)

− β2t − ln
(

2b′
)

)(

1− 1

t2

)

.

+1− 1

t
− ln t

t+ 1

1 + 2t′
(

1 + t′

2

)2 +
b′2

(

1 + t′

2

)2

t− 1

2

]

. (2.73)

As can be readily seen, the relativistic Eq. (2.73) reduce to its non-relativistic counterpart,
Eq. (2.68) in the limit βt ≪ 1 by noting that

R =
mc2α2

2
,

T ∼= mv2t
2
,

U ∼= mv2u
2
,

B ∼= mv2b
2
. (2.74)

2.8 Considerations on the binary encounter Bethe models

Cross sections based on the Bethe theory, are normally very reliable for high T mainly because
of the correct asymptotic behaviour that is not present in other classical theories, such as
Gryzinski’s [21, 55–57] and further models which were based on Gryzinski’s such as Quarles’s
[58], Deutsch’s [59] and Vriens’s [22–24, 47] models. These classical theories, however, tend
to provide reliable cross sections in the low energy regime. Since the BEB/RBEB models
combine the classical binary encounter model at low T with the leading dipole term of Bethe’s
theory at high T and since the RBEB model reduces to the correct non-relativistic BEB model
at low energies, we expect the RBEB model to provide reliable ionization cross sections for
a very wide range of T , thus making it ideally suited for modelling ionization events that
cover incident electron energies from the threshold to several MeV, such as those occurring
in plasmas.

The most noticeable relativistic effect, which is known as the relativistic rise since it raises
the cross section at high energies T > mc2 sometimes to values higher than the peak itself,
is very well described by the RBEB model. Other relativistic effects, which occur mainly at
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energies much higher than mc2, such as the density effect are not taken into account. The
density effect is an apparent increase in the target density due to Lorentz contraction of the
length in the direction of the incident electron beam.

The RBEB model is in very good agreement with experimental results [14, 15], as well
as with relativistic plane wave Born approximation (RPWBA) calculations [60], although
in the ultra-relativistic regime (T > 1MeV ) it seems to overestimate the ionization cross
section of inner-shells. This might be due to the fact that for inner-shell ionization the
RBEB model overestimates the M2

i term, which is a weighted integral of the differential
oscillator strength. This shortcoming could be corrected by actually calculating this term
with a suitable relativistic continuum wave function, although this quantity is not very easily
obtained. Nevertheless, even in the BEB approximation, Q = 1, the cross sections are very
reliable for a very wide range of energies.

In Fig. 2.4 we can see the contribution of the different approximations made in the BEB
model with respect to the BED and BEQ expressions. We conclude that the approximations,
which were performed for the asymptotic regime, hold very well in the low T region. At this
point the experimental uncertainties do not allow us to choose one theory instead of another.

Figure 2.4: Comparison of the BED model with BEQ and BEB models for the calculation of
electron impact ionization cross sections for a) hydrogen and b) helium. Experimental results
are taken from Refs. [61–64]

We should note, however, that the ”‘Burgess-Vriens”’ denominator, T +U +B is the only
ad hoc term inserted without proper derivation in the BED and BEB/RBEB models, and
application to diverse atomic targets suggests that the role of this term should be further
investigated. The substantial reduction of cross sections at low T achieved with the use of
the Burgess-Vriens denominator for neutral targets is unlikely to be correct in magnitude, as
concluded by Kim and Vriens, when the incident electron is subject to a long-range Coulomb
interaction from an ion target. Also, application to K-shell ionization showed that, even for
neutral targets, the denominator would reduce the cross section too much, probably because
of the distortion of the wave functions in the presence of the incident electron, as well as the
polarization of the target.
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Chapter 3

Scaling Rules of Binary Encounter
Cross Sections

3.1 Scaling factors of the BEB model

In this section we will address mainly the role that the Burgess-Vriens denominator plays on
the correct calculation of atomic targets. A thorough Pareto-type analysis was performed
for every other term in the BEB theory in order to check the contribution of the different
terms to the overall cross section. The first thing investigated was the contribution of the
correlation of the bound electrons on the target. Although the binding energy values can be
usually obtained from experiments, the kinetic energy of the bound electrons are normally
calculated using Hartree-Fock or Dirac-Fock codes. In this work, we used almost exclusively
the multiconfiguration Dirac-Fock general matrix elements, MCDFGME, code developed J.
P. Desclaux and P. Indelicato [50, 51] to calculate all atomic theoretical quantities. The
binding and kinetic energy values of the bound electrons in the sub-shell to be ionized were
calculated both in the monoconfiguration and the multiconfiguration modes with correlation
orbitals with principal quantum number up to n = 6 for oxygen, sulphur, silver, gold and
uranium. The change in energy between the monoconfiguration and the multiconfiguration
modes resulted in a very small change in the cross section (< 1%) at the cross section peak
for this elements. In fact, deriving the BEB TICS with respect to U , we see that the slope
is almost zero for T ranging from the ionization threshold to several keV. However, the cross
section is much more sensible to changes in the binding energy. In the ionization peak, the
relative change in intensity is almost linear with the relative change of the binding energy,
changing up to 50% with a 35% change in B. Hence, since the energy values obtained with
state-of-the-art electronic structure codes such as the one used in this work are accurate up
to 1% or better, we do not expect these uncertainties to dominate the error budget. Another
main source of error could arise from the differential dipole oscillator strength simplification.
Fig. 2.4 already shows that the approximation seems to be quite good for low Z neutral
elements. The df(w)/dw functions can be obtained either from photoionization experiments
or reliable theories, although the literature is quite scarce. However, since the differential
oscillator strength is contained in the leading dipole term, and the Bethe theory describes
the asymptotic region very well, we can compare the quantity M2

i with our theories. This
could only be done due to the analytical nature of the BED/BEQ/BEB models. Lets recall
that

M2
Bethe =

R

B

∫

∞

0

1

w + 1

df (w)

dw
dw =

NRQ

2B
. (3.1)
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Table 3.1: Q values for hydrogen, helium and neon.

Element subshell Q
H 1s 0.4343
He 1s 0.8025
Ne 1s 0.8430
Ne 2s 0.3528
Ne 2p 1.1605

Both the M2
BED and M2

BEQ are similar to the one obtained by Bethe because of the approxi-
mation Q = 1 made in the BEB model,

M2
BEB =

NR

2B
. (3.2)

In Table 3.1, Q values for hydrogen, helium and neon are listed.
The fact that Q was set to 1 in the BEB model was not arbitrary. A survey of Q values

showed that the order of magnitude involved was consistent with the choice, and from previous
papers [10, 14] we know that the BEB cross section provides cross sections for low Z neutral
atoms that are within 10 − 15% of the ones obtained in the BED formalism. The apparent
erratic behaviour of the differential oscillator strength for medium to high Z elements did not
enabled us to find a function that could provide a better simplification than the one made
by Kim and Rudd.

The term that remains, 1/(T + U +B) is the only ad hoc term, inserted without proper
derivation in the three models, the Burgess-Vriens denominator. This term reflects the scal-
ing method used to scale first-order PWBA electron impact excitation and ionization cross
sections [65], and the original qualitative justification for it was that the ”effective” incident
energy seen by the incoming electron is T plus the potential energy of the target electron.
The choice to insert this denominator originated from the symmetric form of the binary en-
counter theory [47]. The resultant reduction of the cross section is a desired effect since most
collision theories overestimate the cross section near the peak. Much of the sucess of the BEB
model for neutral low Z targets can be attributed to this denominator.

In the early days of the model, Kim and Rudd [10] noticed that they had to reduce the
denominator to apply the non-relativistic BEB to the ion He+. Also, several applications of
the BEB to singly charged ions revealed that the use of T +(U +B) /2 instead of T +U +B
resulted in better agreement with experimental data [53]. Moreover, comparisons to distorted-
wave Born cross sections [66] and experimental data [15] suggested that a simple average of
the BEB cross sections with T + U + B denominator and T reproduces the theoretical and
experimental K-shell ionization cross section data at low to intermediate Z values. For L- and
M-shell ionization of heavy atoms, the classical denominator T is actually the most suited.
For sub-shells with large angular momentum of heavy neutral atoms, another ”fine tuning”
of the Burgess-Vriens denominator was needed [14], and the denominator T + U + B was
replaced by T + (U +B) /n, where n corresponds to the principal quantum number of the
sub-shell being ionized. The reason was to avoid excessive reduction of the cross sections due
to large values of U for outer orbitals, resulting from many radial nodes and high quantum
numbers in the kinetic energy operator ℓ (ℓ+ 1) /2r2.

In Table 3.2 the denominators commonly used as scaling factors in the binary encounter
theory are listed and their domain of applicability is shown.

The existence of such a range of different scaling factors, lead to a necessity in understand-
ing the role of the Burgess-Vriens denominator in the BED/BEB model. In the succeeding
years after the model development, Kim and co-workers failed in finding an explanation for
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Table 3.2: Scaling factors used in the binary encounter theory.
Type Denominator Applications
Classical 1

T L- and M-shells, highly charged ions
Burgess 1

T+B He+, Li2+, outer-shells of neutral atoms

Vriens 1
T+B+U H, He and mostly neutral targets

Kim (average) 1
2

(

1
T + 1

T+B+U

)

K-shell of low to intermediate Z elements

Kim (ions) 1
T+(B+U)/m lowly charged ions (m = charge state)

the denominators variation, although it was well known that it was related to the shielding
of the nuclear charge as seen by the incident electron. Moreover, the analysis of the results
obtained by Santos et al. [15] shows that there is a hidden Z dependence on the correct value
of the denominator which cannot be accurately described by the scaling of either the binding
energy and/or the kinetic energy of the target electron.

3.2 X-Type scaling

In this work, we propose a different scaling for the BEB/RBEB models, in which, instead
of using the denominator T + U + B, we adopt the denominator T +X, following the work
done by Kim [65] for electron impact excitation. As described in the mentioned reference, the
X constant should be related somehow to the shielding of the nuclear charge by the bound
electrons of the target atom and has units of energy.

Although this type of scaling has been inserted in several theories such as the PWBA
[65], its success remains to be explained, even though it is an excellent way to account for
the electron exchange, distortion and polarization effects that are absent in the first-order
PWBA.

The X-type scaling is in agreement with the original Burgess papers [67, 68], in which
the constant X was equivalent to the binding energy B since it represents the energy gain of
the incident electron by travelling from outside the atom to the vicinity of the target electron
inside the atomic cloud.

Although, Vriens noted that the Burgess assumption was not correct since the effective
potential seen by the incident electron was higher than the binding energy. This happens due
to the fact that the bound electron has a non zero kinetic energy, and a corresponding cen-
trifugal term that lowers the binding energy. In hydrogen, for instance, the correct potential
energy of the bound electron is −|U +B|. However, when analysing a multielectronic atom,
we conclude that both the Burguess and Vriens assumption is not correct for every sub-shell
essentially because of correlation and the complex orbital motion (on a purely classical view-
point) of the bound electrons; it is an simplified way of describing the overall work required
to bring an electron from infinity to the region where the binary encounter occurs.

Considering the electrostatic interaction between the incident and target electrons, we
may calculate this effect by looking at the atomic electrons as a space charge distribution,
given by

Qn,ℓ (r) = e |ψn,ℓ (r)|2 , (3.3)

where e is the electron’s charge, and ψn,ℓ (r) are the normalized radial wavefunctions of the
target electrons in the sub-shells labelled by the principal quantum number n and the orbital
quantum number ℓ.

Accordingly, the work required to bring an electron from infinity to a distance R from the
nucleus is given by the sum of all contributions from the charge distributions of every single
orbital plus the nuclear potential. Thus, the parameter X, which is a function of R and Z,
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is given by

X(Z,R) =
Ze2

R
+

Ntotal
∑

n=1

n−1
∑

l=0

∫ π

0

∫ 2π

0

∫

∞

0

e2 |ψn,l (r)|2
|R− r| r2 sin θ drdφdθ. (3.4)

where, in spherical coordinates, r = r (r sin θ cosφ; r sin θ sinφ; r cos θ) and R = R (0; 0;R).
Since the impact parameter is absent from the binary encounter model, and only the energy
gain of the incident electron is important in this framework, the collision was set as head-on
with the direction of the z− axis. This can be done with no accuracy compromise because
the integral is independent of the path taken, depending only on the integration limits, which
in this case are ∞ and R. After studies of convergence and final accuracy, the high limit
of the integration was set to 100 a.u. since the potential at that distance is effectively zero,
specially for neutral atoms. For highly charged ions the integration limit was set to 1000
a.u. because of the high range tail of the nuclear potential, compromising CPU time but not
changing the overall accuracy.

After obtaining the X(Z,R) function for a given atom, the distance R at which the
ionization of a given sub-shell occurs is needed.

To our knowledge, there is no study of the parameter corresponding to the necessary
overlap between the incident and target electron’s wavefunction to allow ionization in binary
encounter-type models.

An educated guess could be obtained by calculating the distance corresponding to the
maximum of the probability distribution of the target electron, i.e. the radius of the classi-
cal orbit in the Bohr model of the atom, although it is somewhat intuitive that the direct
ionization does not require such high overlap between the incident and target electron’s wave-
function. In Fig. 3.1 we can see the X(Z,R) function for carbon, Z = 6. In the plot we have
represented the nuclear potential and the effective potential seen by the incident electron, Eq.
(3.4). The point corresponding to the crossing of the maximum of the 1s wavefunction and
the binding energy, B, of the K-electrons of Carbon is represented, schematising the Burgess’s
assumption. The same is done for B + U to represent the Burgess-Vriens denominator.

Bearing in mind the success of the BEB model with the average of 1/T and 1/(T +U+B)
for K-shell ionization [15], BEBaverage, a systematic study was performed for elements with
3 ≤ Z ≤ 92, in which the BEBaverage cross section value at the peak was compared to the
BEB model with the X-scaling, BEBX , in order to obtain the distance R = RK at which the
K-shell ionization cross section peaks for a given Z value.

The function X(Z,R) was obtained by computing Eq. (3.4) for elements ranging from
Lithium to Uranium, with Dirac-Fock wave functions calculated using the MCDFGME com-
puter code developed by J. P. Desclaux and P. Indelicato [50, 51].

The code was used in the single-configuration mode, that is, no correlation orbitals were
included in the wave function calculations. Details of the method can be found, for instance,
in [69, 70].

The obtained results are represented in Fig. 3.2, where we can observe that the RK(Z)
parameter follows an inverse power law, the same approximate behaviour as the maximum
of the 1s and 2s probability densities.

The X(Z,R) function, for R = RK, is approximately given by

X(Z,RK) = 0.203 Z2.147. (3.5)

Looking at Eq. (3.5) and taking into account that the binding energy of the K-shell of neutral
atoms (in a.u.) scales as [71]

B

2R
= 0.212Z2.1822, (3.6)

we can see the reason for the success of Burgess theory. In fact, only for the total ionization of
very light atoms, the need for the Vriens modification of the denominator is really required.
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Figure 3.1: Nuclear and effective potential, X(R), calculated with Eq. (3.4) for carbon. The
spatial distribution of the electronic radial wavefunctions is also shown.

3.2.1 Binary encounter ionization region

In order to find the correct distance R at which the binary encounter occurs, we proceed in a
similar fashion as in the previous section. Using experimental results near the ionization peak
we iteratively scale the RBEB model with the new denominator so as to minimize the χ2 and
record the corresponding X value, which from Eq. (3.4) translates to a specific RK value.
We then repeat the process for the entire range of elements. When the quotient between
the RK parameter and the RMax1s, obtained with the MCDF code, is calculated, it can be
seen in Fig. 3.3 that the binary encounter occurs at increasing relative distances from the
maximum of the 1s distribution as the atomic number is increased. For Lithium, the binary
encounter region is already at approximately 1.5 times the maximum of the 1s wavefunction
and extends up to 3 times for Uranium.

Considering the form of the X(Z) function in Eq. (3.5), and that the binding energy of
the K-shell electrons in neutral atoms (in a.u.) scales as 0.4240Z2.1822 (Casnati et al. [71]),
we see that X(Z) has an almost quadratic form.

Therefore, as a first approximation, we can adopt X(Z) to be equal to the hydrogenic
energy levels expression, i.e., X(Z) = Z2

eff/(2n
2), where n the principal quantum number, and

Zeff is the effective nuclear charge that accounts for the electronic shielding and electronic
correlation. In the cases where the Zeff is not known, we may use the well-known approxima-
tion [Eq. (3.7)] that considers the effective nuclear charge to be given by the atomic number
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Figure 3.2: Variation of parameters X and RK for K-shell ionization of atoms with atomic
number 3 ≤ Z ≤ 79 obtained by comparing the X-type scaling BEB/RBEB model with the
averaged denominator BEB/RBEB model.

minus the inner electrons up to the sub-shell being ionized.

Zeff(nℓj) = Z −
nℓj
∑

i=1s1/2

Ni. (3.7)

where Z is the target atomic number and Ni is the number of electrons of the subshell
i. Moreover, based on the results from Figs. 3.3 and 3.2, in order to emulate the energy
change of the incident electron when it penetrates the electronic cloud, we assume a linear
combination of the consecutive corresponding sub-shell hydrogen-like energy levels for the
function X(Z). Although the correct Z dependence cannot, until now, be derived from first
principles, the functional behaviour of Eq. (3.8) should describe fairly well the scaling of
the X function for a wide range of Z values. Thus, the X function, in atomic units, can be
written as

Xnℓj(Z) = a
Z2
eff,nℓj

2n2
+ b

Z2
eff,n′ℓ′j′

2n′2
, (3.8)

where a and b are constants and n′ℓ′j′ stands for next subshell after the subshell nℓj.. In
order to assess the correct values for the a and b coefficients, we used the experimental values
of the RK calculations and the theoretical calculations for the maximum of the probability
distribution of the 1s and 2s wavefunctions across the Z spectra from carbon to uranium.
To find the values of the coefficients a and b, we plotted the relative distance between the
RKand the maxima of the 1s and 2s wavefunctions in the following way

RKrel1s
=

RK −max1s
max2s −max1s

. (3.9)
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Figure 3.3: Quotient between the binary encounter region for k-shell ionization and the
maximum of the 1s probability distribution.

Thus, since the collision region for K-shell ionization is always between the two shells the
coefficients are always restricted to the rule a + b = 1. An analysis of the results shown in
Fig. 3.4 leads to the use of a = 0.3 and b = 0.7. We can see that for elements lighter than
argon, the penetration of the atomic cloud is more pronounced. This might be due to the
fact that for lighter atoms, the K-shell is much less contracted, thus requiring the incident
electron to penetrate deeper to a region where the probability of finding the 1s electron is
higher. The contraction of inner-shells for high-Z atoms on the other hand moves the binary
encounter region to the tail of the probability distribution. In this case, although for heavy
atoms the binary encounter occurs much closer to the nucleus, the relative distance to the
maximum of the 1s wavefunction increases.

Although this hypothesis was proposed for K-shell ionization, there is no reason a priori

for it not to work for other sub-shells. For L-shell ionization we expect the same behaviour
presented in Fig. 3.4, although somewhat shifted to the high-Z end of the graph. The lack
of experimental L-shell electron impact ionization cross sections near the ionization peak for
low- to medium-Z elements prevents us from effectively evaluating the behaviour. The model
was tested for K-, L- and M-shells of neutral targets and later used on all shells of several ions.
We have used the coefficients obtained from Fig. 3.4 in all shells apart from the last occupied
shell for total ionization of ions since there is no orbital above it for the linear combination
of Eq. (3.8) When applying this scaling factor for calculations of total ionization, the scaling
factor Xnℓj(Z) for the last occupied sub-shell should be written as

Xnℓj(Z) =
Z2
eff,nℓj

2n2
, (3.10)
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Figure 3.4: Coefficient of the 1s term in the linear combination of energy levels of Eq. (3.8).

meaning that for the outer shells the penetration of the incident electron upon ionization, in
this model, is much higher than for inner-shells as expected if the hypothesis given above for
the behaviour of Fig. 3.4 is correct. Application of this scaling factor in the BEB formalism
shows very good agreement for both inner-shell and total ionization cross sections of atoms
and ions, as is presented on Chapter 4.

3.3 Modified binary encounter Bethe (MBEB) model

Taking into account the scaling factor described above, and the derivation made in Chapter
2, specially Eq. (2.68) the total ionization cross section expression of the modified binary
encounter Bethe model (MBEB), in reduced units, is written as [72]

σMBEB =
S

t+ χ

[

1

2

(

1− 1

t2

)

ln t+

(

1− 1

t

)

− ln t

t+ 1

]

, (3.11)

where the reduced units are expressed as

t = T/B,

χ = (X/B)2R,

S = 4πa20N(R/B)2. (3.12)

In Eq. (3.12), X is the scaling constant given by Eq. (3.8), N is the occupation number of
the sub-shell to be ionized, a0 is the Bohr’s radius (5.29 × 10−11 m), and R is the Rydberg
energy (13.6 eV).
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The relativistic counterpart of the modified binary encounter Bethe model (MRBEB)
reads

σMRBEB =
4πa20α

4N
(

β2t + χβ2b
)

2b′

{

1

2

[

ln

(

β2t
1− β2t

)

− β2t − ln
(

2b′
)

]

× (3.13)

×
(

1− 1

t2

)

+ 1− 1

t
− ln t

t+ 1

1 + 2t′

(1 + t′/2)2
+

+
b′2

(1 + t′/2)2
t− 1

2

}

where

β2t = 1− 1

(1 + t′)2
t′ = T/mc2,

β2b = 1− 1

(1 + b′)2
b′ = B/mc2,

t = T/B χ = (X/B)2R,

(3.14)

and α is the fine structure constant, c is the speed of light in vacuum, and m is the electron
mass. It is assumed that all the energy values are in the same units and a0 is in the SI
system. This expression is valid for all shells of elements with atomic number ranging from
Z = 3 (Lithium) to Z = 92 (Uranium). In order to calculate total ionization cross sections
for neutral elements or ions, we need only to sum the contributions from all active shells,
hence

σTotal =
∑

occupied nℓj

σM(R)BEB,nℓj . (3.15)
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Chapter 4
Results

4.1 Electron impact ionization of inner-shells

The present MBEB/MRBEB models produce reliable cross sections between the threshold
and the ionization peak without using any shell-dependent parameters.

As an illustration, we apply the non-relativistic MBEB and relativistic MRBEB expres-
sions to the K-shell ionization of C, Ne, Si, Sc, Ti, V, Cr, Fe, Zn, Co, Sr, and Ag, to the
L-shell ionization of Se, Kr, Ag, Sb, Xe, and Ba, and to the M-shell ionization of Pb and Bi.

Contrary to the BEB/RBEB models, which require two input parameters (B and U), the
MBEB/MRBEB models require only the knowledge of one parameter, the binding energy
B. For the binding energies of inner-shell electrons, one can use experimental values [73]
to match experimental thresholds precisely, or theoretical binding energies from Dirac-Fock
wave functions that are reliable to 1% or better in general. The values of B for the elements
studied in this work are listed in Table 4.1. For the carbon atom the K-shell binding energy
was taken from Ref. [74], while the remaining elements K-shell binding energies were obtained
from Ref. [73]. The L- and M-shell binding energies were evaluated using the MDFGME
code [50, 51].

The electron occupation number was set to N = 2 for full s1/2 and p1/2 orbitals, N = 4
for full p3/2 and d3/2 orbitals and N = 6 for full d5/2 orbitals. The results presented here
were published in [72].

4.1.1 K-shell ionization

On Fig. 4.1 (for C, Ne, Si, Sc, Ti, and V) and Fig. 4.2 ( for Cr, Fe, Zn, Co, Sr and Ag),
we compare the present MBEB [Eq. (3.11)] and MRBEB cross sections [Eq. (3.13)] to all
available experimental data, to the empirical cross sections by Hombourger et al [75], Haque
et al [37], and to the analytical model by Bote et al. [36], which results from a fit to a database
of cross sections calculated using the plane-wave (PWBA) and distorted-wave (DWBA) Born
approximations. For overvoltages (t = T/B) lower than 16, the fit was done to the DWBA
database, and for t > 16 the PWBA database was used, since, for high-energies, the difference
between the DWBA and PWBA cross sections is negligible. The DWBA/PWBA model,
labelled solely as DWBA for simplicity, provides ionization cross section values that agree
with those in the DWBA/PWBA database to within about 1%, except for projectiles with
near-threshold energies. Since both the Hombourger et al model and the XCVTS model of
Haque et al are empirical, the range of validity of such models is limited by the availability
of experimental data. Furthermore, the XCVTS model uses a scaling term with different
coefficients for different shells as in the unmodified BEB/RBEB expressions.

In the analysis of Figs. 4.1 and 4.2, as discussed previously by Santos et al [15], caution is
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Table 4.1: Binding energy B values for the K-, L- and M-shells. The B value for C is from
Ref. [74]. The remaining K-shell and L-shell B values are from Ref. [73]. The M-shell
binding energies were evaluated using the MDFGME code [50, 51]
Element B(eV)

K-Shell L-shell M-shell
L1 L2 L3 M1 M2 M3 M4 M5

C 296.07
Ne 866.90
Si 1840.05
Sc 4489.37
Ti 4964.58
V 5463.76
Cr 5989.02
Fe 7110.75
Co 7708.75
Zn 9660.76
Se 1652.44 1474.72 1433.98
Kr 1916.30 1729.66 1677.25
Sr 16107.20
Ag 25515.59 3807.34 3525.83 3350.96
Sb 4698.44 4381.90 4132.33
Xe 5452.89 5103.83 4782.16
Ba 5995.90 5623.29 5247.04
Pb 3905.53 3601.14 3110.21 2628.17 2525.49
Bi 4056.25 3744.91 3223.11 2731.84 2623.08

warranted when comparing the experimental and theoretical data represented. Experimental
data are mainly obtained through the detection of X-rays or Auger electrons emitted when
bound electrons fill the K-shell vacancies created by electron impact. However, K-shell va-
cancies can be created not only by direct ionization but also by excitations of K electrons
to unoccupied bound states. Since most theories, including the MBEB/MRBEB models, are
designed for only direct ionization by electron impact, experimental data may exceed the
theoretical data by the amount due to excitations of K electrons to bound levels. Therefore,
unless experimental data have explicitly excluded the K-shell vacancies created by excitation,
comparisons of theories and experiments may have an inherent ambiguity of ∼10%.

Below we discuss the cases that we analysed and that are shown in Figs. 4.1 and 4.2. In
order to compare the experimental values to the different theoretical results, we calculated
the reduced χ2, Q, defined by

Q = χ2
red =

1

ν

N
∑

i=1

(

fi − ftheo (xi, A, x0, w)

σi

)2

(4.1)

where, f (xi) is the measured experimental data, ftheo (xi) ν is the theoretical data. σi is the
variance of the observation and ν is the number of degrees of freedom, usually given by N−n,
where N is the number of data points and n the number of fitted parameters, which in this
case is 0 because we are not fitting the data points with our model but simply estimating if
our model follows the experimental trend.

• Carbon: The relativistic and non-relativistic cross sections are almost identical for
T < 1 keV. The present MRBEB cross section, the DWBA and the XCTVS results
are in good agreement with the experimental data by Egerton et al [76], Tawara et

al [77], and Isaacson et al [79] (with the reduced χ2, Q, equal to 0.91, 0.65 and 0.73,
respectively), while the experimental data by Hink et al [78] display an increasing trend
toward lower T not seen in any other theory or experiment.
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• Neon: The relativistic and non-relativistic cross sections are almost identical for T <
100 keV. The theoretical cross sections are in fairly good agreement with experimental
data by Tawara et al [77], Glupe et al [80], and Platten et al [81].

• Silicon: We see the beginning of the relativistic rise at T > 100 keV, which is not
followed by the non-relativistic MBEB. In this high T region, all theoretical relativistic
data agree with the experimental data by Ishii et al [82] and Shchagin et al [85], with Q
values from 0.4 (Hombourger) to 0.7 (DWBA).

• Scandium: The experimental results by An et al. [88] are not in agreement with any of
the theories presented here, so new experimental data are required to better understand
this case.

• Titanium: The experiments are divided into two groups. The experimental cross sec-
tions by Jessenberger et al. [87] lie above all theoretical data in the peak region, while
the experimental cross sections by He et al. [86] are lower than all theoretical data.

• Vanadium: The MRBEB cross section values for vanadium are in good agreement with
the experimental data by An et al. [88], having the lowest Q value of all theoretical
models, which ranges from 20.9 to 130.5.

• Chromium: We notice that all experimental data except the one from He et al. [86] for
chromium agree with the represented theoretical models, confirming the trend of the
experimental data by He et al. observed in Ti.

• Iron: Although there is a general agreement between the theoretical data and the
experimental results, the MRBEB model underestimates slightly the ionization cross
sections in the peak region.

• Zinc: The MRBEB cross sections are in good agreement with the experimental data by
Tang et al. [93] at low T , and with the only experimental value at high T from Ishii et
al. [82]. This is confirmed by the low Q value of 1.1 that we find, to be compared to
the high value of 18.3 for the XCVTS model. Nevertheless, the MRBEB values become
larger than the other three theoretical cross section values beyond T = 1 MeV. There is
thus a strong need of new experiment for T > 1 MeV is desirable to distinguish different
predictions from different theories.

• Cobalt: The experimental data by An et al. [94] agree very well with the MRBEB
model, from threshold to the ionization peak, which produces the lowest Q value of all
models in a range from 0.2 to 10.6.

• Strontium: The theoretical data disagree among them and with the experimental data.
However, we observe that the MRBEB model (Q=3.2) follows more closely the ex-
perimental data by Shevelko et al. [95] at low T , while the DWBA (Q=6.3) and the
Hombourger (Q=10.0) models follow more closely the experimental data by Middleman
et al. [96] at high T .

• Silver: Ten sets of experimental data are compared with the MRBEB cross sections
and other theories. Again, experiments are divided into groups near the peak. The
experimental data by Davis et al. [97] agree well with the Hombourger cross sections.
The experimental data by Schneideret al. [98], Kiss et al. [101], Hoffman et al. [84]
agree with the MRBEB cross sections. The data by el Nasr et al. [103] and Hubner et al.
[104] disagree with all the presented theoretical cross sections. Although all theoretical
cross sections agree in the vicinity of T = 500 keV, the difference between the present
MRBEB cross section values and the other theoretical relativistic cross section values
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is widening at T = 1 MeV, amplifying the trend observed in Zn and Sr. The silver
atom is another example for which definitive measurements would help to distinguish
different theories.

4.1.2 L- and M-shell ionization

In order to investigate the range of applicability of the approach presented in this work besides
the K-shell ionization, we have also applied the MBEB and MRBEB models to the L-shell
ionization of Se, Kr, Ag, Sb, Xe and Ba, and to M-shell ionization of Pb and Bi.

On Fig. 4.3 and Fig. 4.4 the MBEB and MRBEB cross sections for the L- shell (for Se,
Kr, Ag, Sb, Xe, and Ba) and M-shell (for Pb and Bi), respectively, are displayed as well as
the theoretical results obtained with the DWBA, XCVTS and Lotz [26, 106] models, and by
Scofield [60], and the experimental available data for the analysed elements.

The Lotz empirical expression, proposed more than 30 years ago, is one of the most
successful formulas for calculating total direct ionization of any given state.

Concerning the L-Shell ionization, we notice that the MRBEB cross sections are in good
agreement with the experimental data for the analysed elements, except Xe, having the
lowest Q value for Se, Kr, Sb and Ba (1.2, 0.6, 0.5, 0.6, respectively), and the second lowest
for Ag (1.4). The theoretical data disagree among them, namely in the peak region; the
DWBA values produce the highest peak, followed in equal ground by the XCVTS and the
Lotz curves, and finally by the MBEB and MRBEB curves. It should be pointed out that
the experimental data by Hippler et al. [107] for Xe exhibits the greater uncertainty (about
30%) among the studied cases. This uncertainty is less than 17% for the other elements.
The experimental data for the M-shell ionization is scarce and exist only for high incident
electron energies, in the relativistic regime (T > 104 keV). In this high region, all theoretical
relativistic data agree with the experimental data by Ishii et al. [82] and Hoffman et al.

[84], with Q values equal to 0.4 (XCVTs), 0.7 (MRBEB), and 1.7 (DWBA) for Pb, and 0.3
(XCVTs), 0.9 (MRBEB), and 2.0 (DWBA) for Bi. The comparison among the theoretical
data have the same outcome obtained for the L-Shell, showing that to a certain degree the
goal of obtaining a parameter-free, shell-independent, analytical expression for the calculation
of EICS was fulfilled.

4.2 Electron impact total ionization of highly charged ions

As described in Chapter 3, the scaling of the BEB theory had to be changed in order to apply
it to ionized systems, and the choice of denominators was not obvious. Although the scaling
term proposed in this thesis was calculated for inner-shell ionization of neutral atoms, the key
physical aspects are still valid and there is no reason a priori not to apply the model to ions
of all charge states. Hence, in this work the we deal mainly with the results obtained for the
total ionization of Kr ions in a wide range of charge states. Calculations of the distribution
of atoms over all ionization stages and quantum states is one of the key steps in modeling
astrophysical and laboratory plasmas. Krypton is an ubiquitous element in plasmas, from
controlled fusion to ECR ion sources, which is used either as a main gas or as a tool for ion
density diagnostics. Consequently, a great amount of work has been done in studying the
excitation and ionization of this element and its ions, both theoretically and experimentally.

Electron impact ionization cross sections of several ionization stages of Kr have been
experimentally obtained by several groups. For neutral Kr see for example [109–111], for
Kr+, Kr2+, and Kr3+ see [112], for Kr4+, Kr5+, Kr7+ see [113], for Kr8+ see [114], and for
Kr10+ and Kr11+ see [115]. It should be mentioned that the Kr8+ measurements were strongly
affected by ionization from metastable states in the first excited configuration. Recently,
ionization cross sections for Kr12+ through to Kr18+ were measured by Khouilid et al [116]
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using an animated crossed-beams method.
The Kr14+, Kr16+ and Kr18+ results show presence of metastable ions in the primary ions

beam. Theoretically, all these ions were studied in the configuration-averaged distorted-wave
(CADW) level by Loch et al [117], and Coulomb-Born calculations using the ”ATOM” code
[118] were performed for ions ranging from Kr10+ to Kr18+.

Although there are no experimental data for charge states higher than Kr18+, some the-
oretical studies were made. Chen and Reed [119] carried out fully relativistic distorted-wave
calculations for the ionization of Kr24+ and Kr25+, including contributions from both reso-
nant excitation and excitation-autoionization. Badnell and Pindzola [120] calculated level to
level distorted-wave calculations for the ionization, including contributions from both reso-
nant excitation and excitation-autoionization of Kr30+, Kr31+, and Kr32+. Loch et al [117]
also carried out CADW calculations for Kr24+ and Kr25+ and obtained single-ionization rate
coefficients from the ground state of Kr33+. High level calculations like R-matrix with pseu-
dostates, convergent close coupling and time dependent close coupling methods have only
been applied in calculating direct ionization cross sections for ions with only one or two
active electrons. For the calculation of excitation-autoionization contributions to the total
cross section, which becomes important for moderately high ionization stages, level-to-level
multiconfiguration, configuration averaged distorted wave and R-matrix methods have been
employed [121].

In X-ray spectroscopy analysis of plasmas there is a need for large amounts of high quality
cross sections for the ionization processes involved in the plasma, namely the K-shell direct
ionization [8, 9, 122]. Given the analytical nature of the MRBEB model, which has been
shown to provide accurate electron impact cross sections for inner-shell ionization for a wide
range of neutral elements and energies [72], we investigate in this work how the MRBEB [Eq.
(3.13)] performs for highly charged ions. Taking into account the plasma diagnosis tools,
and comparing to other analytical methods, a 20% or less uncertainty is enough so that
the contribution to the final error budget is not dominated by the cross section calculation
with the MRBEB model. The widely used Lotz expression, and other empirical theories,
are not ideally suited for this since they often have different coefficients or even expressions
for different elements, shells and/or charge states. Also, in some atomic systems, they show
more than a 20% disagreement with experimental data.

Because we want to study the applicability of the MRBEB model from lowly to highly
charged ions across the Z spectra, emphasis is given not only to ionization of Kr but also to Ar
and Fe isonuclear series. We have chosen Ar and Fe for this work because of their importance
in fusion, astrophysical and industrial plasmas [123–125]. In magnetic confinement fusion,
Ar, along with Kr, is a species of choice for the modification of edge conditions (via transport
barriers etc) by radiative cooling and this has led to the decision by the fusion community
to establish argon as a reference species [125]. In the astrophysical domain, high-resolution
soft x-ray spectra of iron from solar flares have been observed for many years from SMM
and YOKHOH satellites and, since 1999, the CHANDRA X-ray observatory as well. Hence,
besides Kr, we have studied also the behaviour of the MRBEB model in Ar2+, Ar3+, Ar4+,
Ar5+, Ar6+, Ar7+, Fe2+, Fe5+, Fe6+, Fe9+, Fe11+ and Fe13+. Results for the direct ionization
cross section were compared to the Lotz expression, the Hydrogenic Scaling (HS) model of
Sampson et al [126] and the Distorted Wave Approximation (DWA) calculated with the
GIPPER code of the Los Alamos National Laboratory [127].

The processes that play a major role in electron impact ionization cross sections of ions
can be described by the following expressions

Krq+ + e− −→ Kr(q+1)+ + 2e−,

Krq+ + e− −→ (Krq+)∗ + e− −→ Kr(q+1)+ + 2e−,

where q is the charge of the Kr ion to be ionized. The first process is called direct ionization
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Table 4.2: Ground state configurations obtained from reference [73] and threshold ener-
gies for ionization and excitation-autoionization (EA) for Kr+, Kr5+, Kr6+, Kr10+, Kr15+

and Kr17+. The binding energies (B) and excitation thresholds were evaluated using the
MDFGME code [50, 51].

Ground Bexp Bth nℓ EA3d
th

Ion State (eV) (eV) 3d→ nℓ (eV)
Kr+ [Ar] 3d10 4s2 4p5 24.6 24.73 4p 79.46
Kr5+ [Ar] 3d10 4s2 4p1 78.5 77.71 4p 90.06
Kr6+ [Ar] 3d10 4s2 107.20 4d 122.92

Ions Ground State Bexp Bth 3p→ nℓ 3s→ nℓ 2p→ nℓ EA2p
exp EA2p

th

Kr10+ [Ar] 3d8 314±3 313.83 4f 4s 3d 1750±25 1605.39
Kr15+ [Ar] 3d3 542±3 543.63 8s 6s 3d 1645±5 1636.32
Kr17+ [Ar] 3d1 637±5 641.18 9s 6s 3d 1655±5 1655.65

(DI), while the second corresponds to a process of excitation to a bound state followed by
autoionization (EA). The later process can occur if the excitation energy is greater than the
lowest ionization energy of the atom. For highly charged atoms, radiative stabilization can
act to reduce the wheigt of the excitation-autoionization process on the total ionization cross
section, which can be described by

(Krq+)∗ −→ Krq+ + γ.

For the purpose of comparing our calculations with experimental data for ionization of ions,
one must compute the contribution of the excitation-autoionization (EA) process to the
ionization cross section. Excitation cross sections for transitions that result in autoionizing
states were summed to the total ionization cross section calculated with the MRBEB model
for Kr+, Kr5+, Kr6+, Kr10+, Kr15+ and Kr17+, and compared with configuration averaged
distorted wave calculations of Loch et al [117] and experimental data.

For the indirect process, described above, we have calculated the excitation cross sections
using the averaged approximation (AA) method of Peek and Mann [128] with first order many
body theory (FOMBT) for Kr+, Kr5+, Kr6+, Kr10+, Kr15+ and Kr17+. The AA code uses
target state wave functions from the Hartree-Fock atomic structure code of R.D. Cowan. To
our knowledge, the dependence of the cross sections of neither the charge-state nor the atomic
number have been systematically investigated for the ionization of medium to highly charged
ions with binary-encounter models. The electron impact cross section data for such targets is
incredibly scarce and when existent is almost impossible to deconvolute the direct ionization
from all other indirect processes such as excitation-autoionization, radiative recombination
and dielectronic recombination.

In order to compute the excitation-autoionization cross sections, a previous calculation of
transitions with energies above the ionization threshold, had to be performed. The ground
state configurations of each ionization stage of Kr were taken from ref. [129] and the MCD-
FGME code developed by J. P. Desclaux and P. Indelicato [50, 51] was used to assess the
possible transitions involved in the excitation-autoionization channels. The excited state cal-
culations were performed in single configuration mode, hence no correlation was employed.
For the cases studied, all of the thresholds for excitation-autoionization, apart from the 2p-3d
transition in Kr10+, agree with experimental data as shown in Table 4.2.

Three sets of data are shown on Figs. 4.5, 4.6 and 4.7, representing ionization cross
sections for electron impact of Kr, Ar and Fe isonuclear series, respectively. Excitation-
autoionization cross sections were summed to the direct terms for ionization in the Kr isonu-
clear series and compared to experimental and theoretical data, while for the Ar and Fe
isonuclear series only the direct contribution was compared to other models.
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4.2.1 Kr isonuclear series

Table 4.2 lists the ground state configuration of the Krypton ions presented in Fig. 4.5 as
well as ionization and excitation thresholds. Autoionizing transitions are also presented for
the six krypton ions analysed.

• Kr+: The two experimental data sets for Kr+ show good agreement between them up to
the ionization peak at 60 eV. In that region the MRBEB+EA curve follows closely the
rise of the cross section presented by all data points. Above that energy our calculation
shows a better agreement with the data of Tinchert et al. The small bump in the
peak of these data can’t be assigned to any direct or indirect process in the collision.
Excitations from both the 4s and 3d subshells were included in the EA calculation. The
overall agreement for Kr+ is quite good.

• Kr5+: The experimental data shows non zero cross section values between 60 eV and
the ground state ionization energy of 77.7 eV, calculated using the MCDF code. This
is an indication of the presence of metastable states in the ion beam, possibly with
the configuration 4s4p2. The discrepancies seen in the low energy end of the spectra
can, therefore, be due to these metastable ions. For energies higher than 125 eV, our
calculations tend to overestimate the cross section, when compared to the experimental
data. At this stage, it is not conclusive if the direct ionization or the EA are responsible
for this discrepancy.

• Kr6+: Contributions from excitation-autoionizaton from the 3spd subshells were in-
cluded in the calculation. The ionization cross section values for Kr6+, calculated in
this work, are in good agreement with the configuration averaged distorted wave cal-
culation of Loch et al [117]. It can be seen that, for this charge state, the direct
cross section calculated with our model is very similar to the direct contribution of the
configuration averaged distorted wave calculation (CADW).

• Kr10+ and Kr15+: Near the ionization threshold our values follow closely the experi-
mental data, but for energies greater than 500 eV, approximately where the excitation
series from the 3s subshell ends, the excitation-autoionization cannot account for the
difference between the experimental data and the direct contribution of the MRBEB
model. The bump in the cross section around 1618 eV, which derives from excitations
of the 2p electron to the 3d subshell, can barely be seen in the spectra. At the ioniza-
tion peak, the difference between experimental data and our values is about 20%. The
analysis of the Kr15+ cross section shows some of the features also present in the Kr10+

figure. Near the ionization threshold, results are very similar to both the experimental
data and the configuration averaged distorted wave values of Loch et al. For energies
greater than 700 eV, both the direct term, which seems a bit skewed to the right, and
the excitation-autoionization contribution seem to be underevaluated. Compared to
the Lotz cross section, the MRBEB model shows a shallow rise which can in part be
responsible for the underestimation of the total cross section. Although this case shows
the greater discrepancy of all the cases studied, comparing our calculation to the dis-
torted wave results instead of the experimental data, we obtain the same differences as
in both the Kr10+ and Kr17+ ions.

• Kr17+: The observed threshold for Kr17+ of 637 eV, from the data of Khouilid et al, is 4
eV below the 641 eV value calculated in this work. As can be seen in the EA curve in Fig.
4.5, excitations from the 3s and 3p orbitals to nℓ greater than 6 and 9, respectively, are
present in the energy region from the threshold to approximately 750 eV. More than 100
autoionizing excitation cross sections were summed to the direct ionization cross section,
from the 3s and 3p orbitals up to orbitals with principal quantum number 12. For
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n = 12, the EA cross section is more than 4 orders of magnitude lower than the direct
contribution. At an incident energy of 1655 eV, excitation followed by autoionization
for 2p-3d, becomes extremely pronounced and at 1909 eV the 2s-3d EA is also observed.
The 2p-3d experimental threshold of 1655 eV completely agrees with our calculation
(see Table 4.2). The MRBEB cross section curve doesn’t show such a steep rise as the
Lotz empirical formula. That is the reason why, at energies below the cross section
peak, the MRBEB+EA curve is lower than the experimental data. It can be also seen
that, for energies greater than 3 keV, the MRBEB+EA curve overestimates the cross
section. This might be linked to the fact that, for energies greater than 2.4 keV, the
direct ionization of the 2p shell contributes to the double ionization of Kr17+, thus
lowering the EA cross section. This fact which was not taken into account in our
calculation. The overall agreement is quite good, showing a maximum discrepancy of
about 20% just before the 2p-3d threshold.

4.2.2 Ar isonuclear series

There is very good agreement between the Lotz, the HS and the MRBEB model for Ar2+,
although all three are consistently higher than the DWA peak. The slope of the HS cross
section at energies just above the first threshold is higher than all other theories. The same
behaviour is observed for Ar3+, although the difference between the MRBEB and the DWA
cross section is lower. Since the HS theory shows much skinnier peaks than the other theories,
the 2p3/2 threshold for Ar4+ is more pronounced than in the MRBEB, Lotz and DWA
theories. The difference between the MRBEB and the DWA cross section values is less than
20%. For Ar5+ and Ar6+, the MRBEB curve shows a similar behaviour as the Lotz curve.
Both are higher than the DWA peak around 20%. Fig. 4.6 e), which represents the ionization
cross section of Ar7+, shows the best agreement between all curves. For this ion, the difference
is less than 10% between the MRBEB theory and all the others.

4.2.3 Fe isonuclear series

For Fe2+ there is a very good agreement between all theories apart from the hydrogen scaling
which sits 35% above the MRBEB curve around the ionization peak. The MRBEB and
Lotz cross section are very similar for Fe5+, although they seem to be underestimated when
compared to the DWA and HS cross sections by about 12%. The same behaviour is observed
for Fe6+. The slope of the cross section just above the ionization threshold is lower in the
MRBEB than in all other theories. Regarding the ionization cross section values of Fe9+,
there is a very good agreement between the MRBEB, DWA and Lotz cross section, with
the HS cross section peak 13% above the MRBEB theory. For electron energies above 100
keV the relativistic rise can be already seen. The height of the ionization cross section peak
for Fe11+ seems to be very well described by the MRBEB theory, although the rise of the
cross section up to the peak is slower than in the three other theories. For Fe13+ all four
theories presented agree very well with each other except in the high energy region where the
relativistic effects are already important.
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Figure 4.1: Electron impact K-shell ionization cross sections for (a) C, (b) Ne, (c) Si, (d)
Sc, (e) Ti, (f) V. Thick solid curve, present MRBEB cross section Eq. (3.13); dash-dash
curve, MBEB cross section Eq. (3.11) dot-dot curve, DWBA by Bote et al [36]; dot-dash
curve, relativistic empirical formula by Hombourger [75]; short dot-dash curve, XCVTS semi-
empirical formula by Haque et al [37]; Experimental data by Egerton et al [76], Tawara et

al [77], Hink et al [78], Isaacson et al [79], Glupe et al [80], Platten et al [81], Ishii et al [82],
Kamiya et al [83], Hoffman et al [84], Shchagin et al [85], He et al [86], Jessenberger et al [87],
and An et al [88].
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Figure 4.2: Electron impact K-shell ionization cross sections for (a) Cr, (b) Fe, (c) Zn, (d)
Co, (e) Sr and (f) Ag. Thick solid curve, present MRBEB cross section Eq. (3.13); dash-dash
curve, MBEB cross section Eq. (3.11) dot-dot curve, DWBA by Bote et al. [36]; dot-dash
curve, relativistic empirical formula by Hombourger [75]; short dot-dash curve, XCVTS semi-
empirical formula by Haque et al. [37]; Experimental data by Llovetet al. [89], He et al. [86],
Luo et al. [90] (Cr), Luo et al. [91] (Fe), Scholz et al. [92], Ishii et al. [82], Tang et al. [93],
An et al. [94], Shevelko et al. [95], Middleman et al. [96], Davis et al. [97] Schneider et al.

[98], Shima et al. [99], Rester et al. [100], Kiss et al. [101], Schlenk et al. [102], El Nasr et

al. [103], Hubner et al. [104], Ricz et al. [105], and Hoffman et al. [84].
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Figure 4.3: Electron impact L-shell ionization cross sections for (a) Se, (b) Kr, (c) Ag, (d)
Sb, (e) Xe and (f) Ba. Thick solid curve, present MRBEB cross section Eq. (3.13); dash-
dash curve, MBEB cross section Eq. (3.11) dot-dash curve, relativistic empirical formula
by Lotz [26, 106]; dot-dot curve, DWBA by Bote et al. [36]; short dot-dash curve, XCVTS
semi-empirical formula by Haque et al. [37]; ×, DWBA values by Scofield [60]; Experimental
data by Ishii et al. [82], Kiss et al. [101], Hippler et al. [107], and Hoffman et al. [108].
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Figure 4.4: Electron impact M-shell ionization cross sections for (a) Pb and (f) Bi. Thick
solid curve, present MRBEB cross section Eq. (3.13); dash-dash curve, MBEB cross section
Eq. (3.11) dot-dash curve, relativistic empirical formula by Lotz [26, 106]; dot-dot curve,
DWBA by Bote et al. [36]; short dot-dash curve, XCVTS semi-empirical formula by Haque
et al. [37]; Experimental data by Ishii et al. [82], and Hoffman et al. [108] .
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Figure 4.5: Total electron impact ionization cross sections for (a) Kr+, (b) Kr5+, (c) Kr6+,
(d) Kr10+, (e) Kr15+, (f) Kr17+. Thick solid curve, presents the MRBEB cross section Eq.
(3.13) with the contribution of excitation-autoionization calculated with the code of Cowan;
dash-dash curve, MRBEB direct cross section Eq. (3.11); dot-dot curve, Lotz expression et

al [26]; the remaining curves are explained in the figure; Experimental data by Man et al [130],
Tinchert et al [112], Bannister et al [113], Oualim et al [115] and Khouilid et al [116]
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Figure 4.6: Total direct electron impact ionization cross sections for (a) Ar2+, (b) Ar3+, (c)
Ar4+, (d) Ar5+, (e) Ar6+ and (f) Ar7+. Thick solid curve, presents the MRBEB cross section
Eq. (3.13); dash-dash curve, Hydrogenic Scaling (HS) direct cross section (Ref. [126]); dot-
dot curve, Lotz expression (Ref. [26]); dash-dot curve, Distorted Wave Approximation (Ref.
[127]).
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Figure 4.7: Total direct electron impact ionization cross sections for (a) Fe2+, (b) Fe5+, (c)
Fe6+, (d) Fe9+, (e) Fe11+ and (f) Fe13+. Thick solid curve, presents the MRBEB cross section
Eq. (3.13); dash-dash curve, Hydrogenic Scaling (HS) direct cross section (Ref. [126]); dot-
dot curve, Lotz expression (Ref. [26]); dash-dot curve, Distorted Wave Approximation (Ref.
[127]).
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Chapter 5
Conclusions

5.1 Conclusions

The new MBEB and MRBEB models presented in this work require only one atomic pa-
rameter, namely the binding energy of the electrons to be ionized, and, contrary to the
BEB/RBEB models, use only one scaling term [1/(T +X)] for the ionization of all sub-shells.
The role of the Burgess-Vriens denominator was investigated, and some light was shed on the
early success of binary encounter-type models that relied on this scaling factor.

The MBEB and MRBEB expressions were used to obtain the K-, L-, and M shell ionization
cross sections by electron impact for several atoms with Z from 6 to 83. The scarcity of data
for near threshold energies of L- and M-shell cross sections does not allow us to assess the
competing models in the ionization peak. On the other hand, in K-shell ionization our model
excels and is very accurate in a wide range of elements.

We pointed out that the comparison of the MRBEB cross sections to experimental values
contains inherent ambiguities because, like most of the analytical models, whether derived
from first principles or empirical, the MRBEB model predicts cross sections for the direct
ionization of electrons of a definite sub-shell. However, most experimental data are based
on all sub-shell vacancies created by direct ionization as well as excitations to bound levels,
so unless this processes are effectively excluded there will be some indirect processes in the
experimental data.

As show on Figs. 4.1 to 4.7, relativistic effects become increasingly important as the
binding energies of the elements increase. Hence, relativistic theory must be used for treating
both atomic structure and collision dynamics for medium to heavy atoms or ions.

The method shows that for inner-shell of neutral atoms and total ionization of lowly
charged as well as for moderately charged ions, the cross section shape and intensity is
within resonable limits (± 20%) for use in X-ray spectroscopy analysis of plasmas of any
kind, which was our main goal.

The calculation of excitation cross sections for the Kr ions were also performed in this
work as they are one of the dominant processes in X-ray analysis from plasmas.

Comparison to crossed-beams experimental measurements, as well as configuration av-
eraged distorted wave and distorted wave approximation theories, shows that the slope of
the MRBEB cross section at energies below the first ionization peak is lower than expected.
Nevertheless, in electron-cyclotron-resonance ion-source (ECRIS) plasma processes, the near
threshold effects for the valence electron are not as important as the processes which occur
at higher energies. The electron temperatures considered in the analysis of ECRIS plasma
spectra are normally higher than 1 keV and lower than 20 keV [9, 122] as will be shown in
Chapter 8. These values were taken from a survey of temperature measurements from the
electrons in the plasma of a variety of ECRIS [131–137], with microwave frequencies ranging



Conclusions

from 2.45 GHz to 28 GHz and with conventional, permanent or superconducting magnets.
The simple relativistic MRBEB expression presented in this work provides a continuous

coverage of inner and outer-shell ionization cross sections by electron impact of neutral atoms
and ions from the threshold to relativistic incident energies, making this expression ideally
suited for modelling systems where ionization cross sections for a wide range of incident
energies are required, such as fusion plasmas.

A web database was built during the course of this work for the purpose of allowing
electron impact ionization cross sections calculations with the MRBEB model in a very easy
way. This ionization cross section database was named ELIIXS. In ELIIXS, elements ranging
from hydrogen to uranium can be picked and the ionization cross sections can be calculated for
every sub-shell of the chosen element. The database is being constantly updated in order to
present, along with the MRBEB results, experimental results for each atom and/or subshell.
Every result will be exportable as an Excel file for practical usage. The ELIIXS web database
is located at http://sites.fct.unl.pt/eliixs/.
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Chapter 6
Experimental Aparattus

6.1 Goals and Motivation

In the experimental part of this work, we have used a double crystal spectrometer (DCS)
and an electron cyclotron resonance ion source (ECRIS) to perform a 2.5 ppm measurement
on the 1s2s 3S1 → 1s2 1S0 ”relativistic” M1 transition in He-like argon. This measurement
was made without reference to any theoretical or experimental energy, using the known
lattice spacing of a Si crystal, tied to the definition of the meter, as a transfer standard.
The experimental apparatus has been built during the last ten years at an ECRIS source
located at Source d’Ions Multichargés de Paris (SIMPA). The experiment is located at the
Laboratoire Kastler Brossel in the Ecole Normale Supérieure, CNRS, Université Pierre et
Marie Curie-Paris 6.

Detailed tests of bound-state QED have been provided by measuring transitions in simple
systems like hydrogen. Decays to the 1s level have been measured [138] with an accuracy
of a few parts in 1014 while the n = 2 Lamb shift is known to a few ppm accuracy [139].
Helium has also been thoroughly studied [140], and agreement between experiment [141, 142]
and theory [143] in the fine structure is now very good. However, a recent measurement of
the Lamb shift in muonic hydrogen (µP) [144] provides a proton charge radius 6.9 standard
deviations away from the latest 2010 CODATA value obtained by combining results from
hydrogen spectroscopy and electron-proton scattering [145].

The cause of this discrepancy can be investigated with measures in atomic ions with
different scale compared to the electron Compton wavelenght λC , the fundamental scale of
QED, different field strengths as measured by (Zα) and different nuclear size corrections.
Compared to simple neutral systems like hydrogen or helium, one- and two-electron ions are
more sensitive to QED corrections, which vary as (Zα)4, while the dominant non-relativistic
contribution to the transition energy varies like (Zα)2, thus making these systems highly
adequate to explore the said corrections.

In the last years, a number of accurate experiments have been performed on the 1s22p→
1s22s transition in Li-like ions with Z = 1 to 92 at storage ring [146] or EBIT facilities [147].
These measurements have accuracies of the order of the size of two-loop QED corrections
to the lower level energy (see for example Ref. [148] for a recent review). Such ∆n = 0
transitions have also been measured in two-electron Si12+ with laser spectroscopy to 0.8 ppm
[149] and in U90+ [150]. Measurements of n = 2 → n = 1 transitions, even at high-Z, are
not yet sufficiently accurate to test two-loop QED corrections [151]. Very high-Z systems
are also very sensitive to nuclear size corrections (see, e. g., [152]) and nuclear polarization
[153], which ultimately limits the accuracy of the comparison. Recently, the allowed 1s2p
1P1 → 1s2 1S0 transition in He-like Ar has been measured to 1.9 ppm accuracy, relative to
the theoretical value of the Lyman α transition in H-like Ar [154]. In the same work, the
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Lyman α transition in H-like chlorine was measured to 10 ppm accuracy, without external
reference. Earlier absolute measurements on both the 1s2s 3S1 → 1s2 1S0 ”relativistic”
M1 and 1s2p → 1s2 transitions of He-like V [155], were calibrated against a series of X-ray
standards [73, 156], reaching an accuracy of ≈ 30 ppm. Half of this uncertainty is related to
the difficulties associated with broad, asymmetric X-ray standards from core-excited neutral
elements, sensitive to excitation conditions and chemical effects [73, 156].

The method used in this work, which successfully combines for the first time a DCS and
an ECRIS, prevents the difficulty associated with existing X-ray standards since it provides
absolute measurements tied to the definition of the meter. Contrary to the case of x rays
emitted by neutral elements with a K-hole, which were, up to now, the only transitions
measured with a DCS, the M1 line is much narrower than the instrument response function.
It can thus be directly used to probe for the first time the shape of this response function.
To deconvolute the experimental spectra from all the known physical features arising from
the use of a DCS in reflectivity mode, Amaro [157] developed a simulation code, that exactly
contains the geometry of the instrument and of the X-ray source, the X-ray beam vertical
divergence and the shape of the crystal reflectivity profile, as well as the line width and
Gaussian Doppler broadening. This simulation was also a key ingredient in the fine tuning
of the experimental apparatus by targeting and correcting systematic errors as can be seen
in Ref. [157].

The experimental part of this work is organized as follows: On the remainder of this
chapter we will make a brief overview of the technical aspects of the ECRIS (Sec. 6.2).
In Sec. 6.3 we will explain the operating mechanics of the DCS and describe roughly the
Monte-Carlo simulation used to both improve and interpret experimental results obtained
from this particular DCS. In Sec. 6.4 we will make a description of the temperature control
for both crystals of the DCS and discuss the role of the temperature control on the overall
error budget.

On Chapter 7 we will present a measurement of the ”relativistic M1” transition energy
in heliumlike argon and compare them with other experimental and theoretical results. From
the M1 line we will probe the response function of the experimental apparatus (Sec. 7.2).
This will set the basis on which the natural lines of any given transition can be thoroughly
investigated.

On Chapter 8 the first survey spectrum of an argon plasma obtained with a DCS is
analysed in order to obtain an external reference for the charge state distribution inside the
ECRIS.

The final conclusions will be given in Chapter 9.

6.2 Electron-Cyclotron-Resonance Ion-Source (ECRIS)

Electron-cyclotron-resonance ion-source devices are in wide use, providing medium to highly
charged ion (HCI) beams for injecting in accelerators, ion traps or to study the interaction
dynamics of ions with matter at low energies. The ECRIS was first proposed by Geller et

al [158] in 1969 and by Potsma et al. [159] in 1970, and the first operational ECRIS was
presented by Geller and his co-workers in 1971 [160]. From that time on, the technology has
rapidly advanced and several splendid reviews on the technique can be found in the literature
[161–164].

In an ECRIS, the energy source for plasma generation and maintenance is resonant elec-
tron heating by microwave radiation. The basic principles upon which the ECRIS is pred-
icated are demonstrated in Fig. 6.1. A metallic vessel serves both as a multi-mode cavity
and as a plasma chamber. The dimensions of the chambers must be larger than the mi-
crowave wavelength being used, generally with frequencies ranging from 2.2 to 28 GHz. For
a frequency of 14.5 GHz like the all permanent-magnets, SUPERNANOGAN [165] ECR ion
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source, named SIMPA (Source d’ Ions Multichargés de Paris), the wavelength is λ = 2 cm.
The SIMPA, on which this work has been performed, has been jointly operated by Labora-
toire Kastler Brossel (LKB) and the Institut des NanoSciences de Paris (INSP) since 2004.
The microwave field, in this particular machine is created by a 2KW klystron and inserted
through a single ridge wave guide on the plasma chamber. From the first stage or injector
stage, a reservoir of electrons, provided by a polarization electrode, a stream of electrons
diffuses into the main second stage where the cold plasma is ignited. In order to produce

Figure 6.1: Principle of operation of a 10 GHz ECRIS. The plasma electrons are trapped in a
Bmin structure and are energized at the magnetic surface where the magnetic field is BECR.
Picture taken from Ref. [166] c©1991 Springer

multiply charged ions through step-by-step ionization it is essential to maximize the product
of electron density, electron velocity and ion confinement time, Neveτc. At the same time
the neutral density has to stay low in order to avoid charge exchange between neutral atoms
and highly charge ions, which results in ion-charge reduction. Theoretical estimates [167]
show that ion confinement times of 10 ms or more are required to effectively produce highly
charged ions like Ar16+. Such high confinement times are achieved through the use of mag-
netic traps or bottles in a so-called minimum-B structure. This is illustrated in Fig. 6.1
where the magnetic configuration is a superposition of an axial mirror and an hexapole field
used, respectively, for the axial and radial confinement of electrons. This magnetic bottle
is usually created using either permanent magnets, or normal coils, although several devices
such as the VENUS in Berkeley [168] and SERSE in Catania [169, 170] use superconducting
coils. Other devices, such as the ECR ion trap (ECRIT) at the Paul Scherrer Institute (PSI),
use a combined superconducting coils magnetic bottle and a permanent magnet hexapole
[171]. In Fig. 6.1 the Bmin and Bmax values of the axial field and the ellipsoidal electron-
cyclotron-resonance surface fulfilling the resonance condition for a 10 GHz microwave field
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are illustrated.

The absorption of the microwave energy occurs on a constant |B| surface in the source
such that 2πf = e|B|/me where f is the electromagnetic wave frequency and e and me

are the electron charge and mass, respectively. For a 14 GHz frequency, the magnetic field
corresponding to the ECR surface is BECR = 0.51 T. Upon passing the resonant surface,
the electrons may be stochastically heated if a component of the electric field vector of the
microwave is perpendicular to the direction of the magnetic field. The energetic electrons,
ionize by inelastic collisions the gas in the magnetic structure, and the resulting ions are
trapped in the space charge of the electron gas. The resulting plasma is non-thermal, where
the ions have temperatures in the range of a few eV while the electrons can reach several tens
of keV. Due to the high electron temperature, electron-impact ionization can create holes
in the inner-shells of any element present in the plasma, and the radiation coming from the
transitions to the created inner-shell holes in the ECRIS plasma can thus be used for plasma
diagnostics [172].

In the commercial 14.5 GHz, all permanent-magnets, SUPERNANOGAN [165] ECR ion
source, the electronic temperature has been measured through the use of electron Bremsstrahlung
spectra [131]. Also, high-resolution X-ray spectroscopy has been applied to characterize
charge state distribution and electronic density [8].

In Fig. 6.2, the SIMPA ECRIS is illustrated. On the right side of the ECRIS, a portion
of plasma can be extracted with the use of electrostatic lenses and focused with a solenoid.
Then, a single charge state from the extracted plasma can be selected with a dipole magnet
for experiments, such as spectroscopy inside an electrostatic trap and surface interaction
with HCI. On the left side of the ECRIS, there is a beryllium window that is resistant to the
vacuum pressure (≈ 100 N/m2) and semi-transparent to low energy x rays (reduction of a
factor of two at 3 keV). This enables the observation of x rays from the plasma center with
X-ray spectrometers such as the mosaic-crystal spectrometer or a double crystal spectrometer
(DCS).

Figure 6.2: On the right side of the apparatus, the HCI are extracted for experiments on
electrostatic traps and surfaces experiments, and on the left side, a double crystal spectrom-
eter measures the outcoming x rays from the plasma center. Picture taken from Ref. [131]
with a different X-ray detector (DCS)
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6.3 Double Crystal Spectrometer (DCS)

Double crystal spectrometers are Bragg-type spectrometers in which two flat crystals are
arranged in such a way that the incoming x rays are deflected consecutively by each crystal.
An illustration of the operating scheme of a DCS is presented on Fig. 6.3. From the Bragg law,

Figure 6.3: Representation of the two operating modes of a DCS. The spectrometer can be
set in a way in which the x rays undergo reflections from the two crystals in parallel,a), and
antiparallel, b), geometries.

which states that an monochromatic X-ray electromagnetic wave on a crystal will be reflected
only at a certain specific angle, θB depending on its wavelenght, λ, we get a dependence of
the wavelenght reflected from a crystal with the angle between the incident radiation and
vector normal to the crystal planes

nλ = 2d sin θB, (6.1)

where d is the interplanar distance of the crystal and n is the order of the diffraction. Taking
into account Bragg’s law and the geometrical settings illustrated in Fig. 6.3, we see that in
this device, the first crystal, which is kept at a fixed angle, acts as a collimator, defining the
direction of the incoming X-ray beam, which is analysed by the second crystal. It is also
shown in the figure that two different settings are possible for this spectrometer, one where
the two crystals are parallel (non-dispersive mode), and another where both crystals deflect
the beam in the same direction (dispersive mode), which will be labelled as anti-parallel
from now on. The operating system of a DCS is the following: a first peak is obtained by
scanning the second crystal angle in the parallel mode, the shape of which depends only on
the crystal reflection profile and provides the instrument response function, whose full width
at half maximum (FWHM), in this case, was calculated by Amaro to be (9.6±0.4)×10−4 ◦ or
0.6±0.2 eV [157]. A second peak is obtained in the anti-parallel mode, which is a convolution
of the line shape and instrument response function. The position of the first crystal is the
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same in both modes. The difference in angle settings of the second crystal between the non-
dispersive and the dispersive modes is directly connected to the Bragg angle by the relation
θB = [180 − (θdisp − θnondisp)]/2. Small corrections due to the Si index of refraction and to
the vertical divergence of the beam must be performed (see, e.g., [73]).

The spectrometer used in this work, which is presented in Figs. 6.4 and 6.5 was built
for mechanical and thermal stability and precision positioning of the crystals. The table
and the axis of the table are made of a special steel (nitrated stainless steel LK3) that was
thermally treated at 900 ◦C after machining to avoid residual constraints in the material.
An Huber goniometer 410/410A motor is used for the first crystal, a Newport RV80 for the
second crystal and a RV240 for the rotation of the detector which sits on a third rotation
table, concentric to the second crystal axis. The angle of the first crystal is measured with
an Heidenhain ROD800 encoder installed in the vertical axis to a precision of 0.07”, while
the second crystal angle is measured up to a precision of 0.2” (1.2 ppm at 3.1 keV) with an
Heindenhain RON905 encoder, controlled by an Heidenhain AWE1024 box. The encoders
have built-in transparent glasses with high quality graduated scales concentric to the axis
rotation. A LED and photocell system are mounted on opposing sides of the graduated
scale, resulting in a detected light signal which depends on the position of the LED/photocell
system in relation to the glass grating. As the encoder is turned on its axis the optical
signal is almost perfectly sinusoidal allowing for a very precise angle reading. Measurement
of absolute angles are possible trough a second glass scale which has only a single reference
mark, therefore after every reboot, a full turn of the encoders is needed in order to find
the reference. The table rotates inside a metallic chamber around the same vertical axis
as the first crystal. The metallic surface, where the table rotates on cone shaped wheels
inside the chamber, was prepared to be horizontally flat to a 2 µm accuracy. The chamber
can be pumped down with a rotary pump to primary vacuum of 102 mbar that reduces the
absorption of the low energy x rays. Other technical aspects about the DCS not mentioned
here can be found in Schlesser’s Thesis [173].

Figure 6.4: Top view illustration of a DCS. The rotating axes of both crystals are mounted
in a single table with a rotating axis concentric with first crystal axis. The detector is also
mounted in the table with a rotating path concentric with the second crystal axis..
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Figure 6.5: 1) vacuum enclosure; 2) axis ♯1 (crystal 1 and table); 3) axis ♯2 (crystal 2 and
detector); 4) detector rotation support; 5) crystal; 6) crystal holder; 7) detector; 8) table;
9) table rotation support; 10) rotating cones; 11) tracks for cones; 12) enclosure support;
13) translation stages; 14) support; 15) legs; 16) translating screws; 17) X-ray entrance;
18) bellows; 19) Be window; 20) ECRIS SIMPA; 21) window; 22) connection to pumping;
23) pressure gauge; 24) rotary vacuum pump; 25) a and b feed-through for cables. Figure
obtained from Ref. [157]

6.3.1 X-ray input

As said before, the incoming x rays emitted from the ECRIS pass through a beryllium window
which is semi-transparent to low energy x rays (attenuation of 50% at an energy of 3 keV).
The polarization electrode inside the plasma chamber, together with the first crystal, acts as a
collimator for the radiation reaching the second crystal. As described on Amaro’s PhD thesis
[157], the ray distribution reaching the first crystal with a given angle depend on the shape
of the geometrical slits and the distribution of the intensity of the focal spot. For an uniform
source and the combination of the collimators present on the experiment, the number of rays
reaching the first crystal with a given wavelength as a function of the horizontal and vertical
angles, is a conical distribution (Fig. 6.6). Because, varying the energy is effectively the
same as changing the first crystal angle, we conclude that, for a fixed first crystal angle, the
number of rays (or the X-ray radiation intensity) decreases almost linearly with the change in
energy from a central point in which the intensity is maximum. Simulations were performed
with high statistics in which the first crystal angle, optimized for an energy of 3104 eV, was
kept fixed and the energy of the monochromatic uniform-focal ray distribution was changed
in 1 eV intervals. Voigt functions were fitted to every spectra and the maximum of the Voigt
peak was recorded as a function of the energy. In Fig. 6.7 the simulated maximum number
of rays, as a function of their energy, reaching the detector are presented. From Fig. 6.6 we
expect that the distribution should be either triangular, if the vertical divergence is close to
zero, or hyperbolic, if the vertical divergence is not null. If the vertical angle φ varies with
the change in the horizontal angle ϑ the intensity distribution would not be hyperbolic nor
triangular. In fact, if the dependence of φ with ϑ in the measured region is linear, we would
observe a parabolic intensity distribution. Thus, measuring a given line with different first
crystal angles with sufficient accuracy could provide a reasonable method for inferring the
vertical alignment of the DCS, although for a correct distribution measurement the X-ray
source would have to be very stable in the course of several hours or the measured line would
have to be very intense. Fig. 6.7 shows that although the vertical divergence is not exactly
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Figure 6.6: Histogram of the number of rays for horizontal and vertical angles, ϑ and φ
respectively, for an uniform focal distribution and a cylindrical geometry as a collimator.
Figure taken from Ref. [157].

Figure 6.7: Intensity of the x rays reaching the detector for a given energy. A triangular fit
to the data is shown in blue and an hyperbolic fit is shown in red.
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zero, it is very close. The tails of the distribution do not follow the expected triangular or
hyperbolic behaviour because in that region the X-rays are hitting the second crystal near the
edge and other dynamical effects may play an important role. Nevertheless, measurements
are always performed with the first crystal angle set in such a way that the measured line
sits in the center of the distribution. The wide Ar spectrum presented in Sec. 8 sits on
the 3087-3119 eV energy range presented on Fig. 6.7 which as can be seen is within the
linear dependence. Depending on the energy of the peak, slight asymmetries of the line can
occur. Such asymmetries are taken into account if a fit is performed with a simulated profile
rather than a voigt profile. Such sensitivities to asymmetries arising from both the reflectivity
profiles and the geometrical effects of the DCS apparatus are taken into account for the first
time in X-ray standards measurements.

6.3.2 Crystal diffraction

The crystals used in this experiment were cut from a single bundle of silicon to ensure a
perfect crystal without defects. Two different pairs of crystals were cut with Miller indices
(111), which was used throughout this work, and (220). The crystals were polished and
etched at NIST with a symmetry of the cut (angle between crystal planes and crystal surface)
controlled to 11” at a temperature of 22.5 ◦C. The lattice spacing of the two orientations in the
same Si bundle was also measured at NIST, using the crystal of the Avogadro Project [174]
as the standard reference. The measured lattice spacing of the Si(220) crystal is d(220) =
1.92015569(50) Å that corresponds to a lattice spacing of the Si(111) crystal equal to d(111) =
3.13560111 Å. The uncertainty of these values varies according to the crystal and energy. For
the Si(220) the uncertainty ranges from 0.45 to 3.6 ppm for the energy range from 3.6 to 12.0
KeV, while for the Si(111), the range is 0.45 to 3.6 ppm for the energy range 2.2 to 7.5 KeV.
The linear thermal coefficient α(T ) was also measured, and was found to be α(T ) = 2.56×10−6

◦C1. To remove the mechanical stresses and strains caused by the cutting procedures of the
crystals and to avoid any mosaic effect, the crystals were etched in a bath of hydrofluoric
acid, then polished and etched again.

The incoming x rays are reflected by the first crystal onto the second crystal and using
dynamical theory of X-ray diffraction we can accurately calculate the reflectivity profiles
of the crystals. For this purpose, the XCRYSTAL package, included in the X-ray oriented
program 2.3 (XOP) [175] was used to obtain the reflectivity of both crystals. This package
provides models of X-ray sources, like a synchrotron source, characteristics of X-ray optical
devices, such as filters and crystals, data visualization and data analysis. In Fig. 6.8 a plot
of the reflectivity of the Si(111) flat crystal is shown as a function of the angle centered on
the Bragg angle (α − θB) for the σ and π polarization of the incoming 3.104 keV photons
as well as their sum, to account for the expected unpolarized radiation. Dynamical effects
such as pendellosung and anomalous absorption are taken into account in the calculation of
the reflectivity profiles and refraction indexes. Pendellosung occurs when a thin crystal is
used with a thickness of the order of the extinction length. In our case, we used a crystal
of thickness 0.6 cm, much higher than the extinction depth, which has values of 1.4 µm
for s-polarization and 7 µm for p-polarization at 3.104 KeV for Si(111). We performed
several simulations with XOP, proofing that pendellosung effects are washed out for crystal
thicknesss above 20 µm. The σ and π refer to the polarization vector perpendicular and
parallel to the surface, respectively. The inclusion of absorption on the generation of the
reflectivity profile causes an asymmetric distortion of the σ component which results in an
asymmetric unpolarized profile. The convolution of the reflection on both crystals results in
a symmetric line in the non-dispersive mode and a slightly asymmetric line in the dispersive
mode. We used the ray-tracing Monte-Carlo simulation code of Amaro [157] for the DCS, to
evaluate the polarization contribution with simulated spectra. We simulated a profile with
reflectivity of both crystals in three cases: unpolarized, σ polarization and π polarization.
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Figure 6.8: Reflectivity profiles of the Si(111) crystals obtained with the XOP code. The σ
and π polarization profiles are shown by the green and blue lines respectively along with an
unpolarized profile (red line) obtained by summing both polarization profiles [157].

We compared the simulated profiles to experimental data and we noticed excellent agreement
for the unpolarized case. The agreement for the σ-polarized was only slightly worse since the
reflectivity for the π case is much weaker than for the σ case. The worst agreement was for the
case of the π-polarization since the reflectivity curve for this case is very narrow, so that the
simulated spectra were much narrower than experimental ones. Therefore, we estimate the
effect of polarization as the energy difference between the simulations with the unpolarized
case and the σ-polarized case, obtaining 1 meV. One also should note that with π-polarized
x rays we would not have been able to observe any line, as the integrated reflectivity for a
single crystal for π-polarization is 6% of the σ-polarization. That would lead to roughly 230
times fewer counts.

6.3.3 X-ray detection

A xenon (90 %) and methane (10 %) gas filled proportional counter detector is mounted
on the table with an axis of rotation concentric with the second crystal vertical axis. The
detector has a 50 µm thick Be window and an active area of about 12 by 25 mm and is
charged to its operating high voltage of about 2000 V by an external power supply. The
detector signal is processed by a preamp, a 142AH ORTEC amplifier and a gated signal
adopted for the approximate X-ray energy to be measured and counted by a computer card
controlled by LabviewTM . The detector thresholds are adjusted for the specific line energy
being measured. The motors of both crystals, the detector and both encoders are controlled
by a LabviewTM interface. The same interface also allows to start scans of the second crystal
while the first crystal is steady and record spectra as well as the temperature of both crystals
as a function of time.
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6.4 Temperature Control

The role of the surface temperature of the crystals in the DCS can be easily understood
from the Bragg law [Eq. (6.1)], in which the lattice spacing d is directly tied to the Bragg
angle. The average interatomic distance of the Si atoms in the lattice is correlated with their
kinetic energy and hence with their temperature. As pointed before, the dilatation coefficient
provided by NIST for the Si(111) crystals used in our setup is 2.56× 10−6 ◦C−1. The correct
measurement of the surface crystal temperature is then essential in obtaining a reliable lattice
spacing that translates to a correct line energy. Because ∆E

E = ∆d
d = 2.56 × 10−6, for each

degree that the measured temperature strays from the real temperature, the obtained energy
will be off by 2.56 ppm, which can be a serious problem when trying to study energy transition
values at the ppm level.

In the measurements made in previous years, the temperature was not controlled and
the measured values could drift several degrees over the course of a full measurement day.
Later, a proportional-integral-differential (PID) controller, whose output is connected to a
heater inserted in a copper sandwich pressed to the back of the crystal was installed on the
apparatus. The PID chosen is a Jumo Dicon 500 with parameter self-optimization. The self-
optimization procedure provided by Jumo works really well when the experiment is running
at atmospheric pressure, but when in vacuum the optimization procedure resulted in incorrect
PID parameters, which made the system oscillate with very high temperature amplitudes,
sometimes higher than 10 ◦C. We can see this behaviour in Fig. 6.9 in which a 0.9 ◦C
variation for the first crystal temperature was measured with the self-optimized parameters
for a 16 hour survey. In order to properly calculate the temperature effects in the experimental

Figure 6.9: Temperature recorded with the DCS running during a 16 hour period with the
self-optimized PID parameters

spectra, not only should we keep the temperature oscillation to a minimum but we should
also record the instant temperature information during the whole scan time. This goal was
fulfilled by connecting the Jumo 500 via a RS422 serial interface to the control computer and
by improving the Labview code used to run the experiment. The communication protocols
from the PID controller were not very well described in the manual but through a very
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time-consuming investigation of the input/output strings we were able to conclude that the
protocol used was indeed a Modbus protocol with a CRC16 checksum. Having solved the
communication problem, we focused on the modification of the Labview code. Because the
final spectrum is a sum of individual spectra whose duration and number of bins can be
chosen, a new histogram was developed in which the average temperature recorded for each
bin was kept (usually the scan takes 5 to 10 seconds in each bin). The average temperature and
standard deviation during the whole scan is also kept. In order to deal with the temperature
oscillation problem we had to optimize the PID parameters ourselves, and the Ziegler-Nichols
method [176] was used. In our case, we can only properly control the system when the
temperature is higher than the reference value, because there is no cooler in the crystals,
only a heater. Although the method works best for a two-way controller in which both
regimes, higher and lower than the reference value, are controlled, we used the method as
a starting point for a manual tuning. The final PID parameters were chosen in such a way
that the settling time was less than 30 minutes and the overshoot wouldn’t be more than
10%. After the tuning, several temperature records were taken with different experimental
settings and in the time range of a single scan the variation of the temperature was less than
0.1 ◦C. Nevertheless, the cooling system of the encoder motors wasn’t enough to keep the
system at a 22.5 ◦C for the entire duration of a measurement and the temperature started
drifting up very slowly giving way to a 0.2 ◦C variation in the course of a full measurement
day. A screenshot of the modified Labview front panel is shown on Fig. 6.10, featuring the
temperature measurement and all of the measured properties.

Figure 6.10: Labview front panel of the DCS measurement control. Featured are the his-
tograms regarding the angular measurements and the temperature of the two crystals.

6.4.1 Temperature Miscalibration

The first measurements made for the ”relativistic” M1, after the temperature control had
been installed, showed an energy value 200 meV above the previous ones, which indicates
that maybe the temperature measurement was wrong. After ruling out all other possible
sources of error, the conclusion was that somehow the temperature was being misread. The
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temperature sensors were calibrated by Jumo to better than 0.05 ◦C in that temperature
region. The temperature sensor was pressed to the front of the crystals by a strand of
tape, and we considered the hypothesis that the temperature conduction from one surface to
another could be made by the air molecules between them, which vanish when the system
is in vacuum. In order to investigate this, we inserted one sensor in the back of the crystal
tightly pressed between the copper sandwich and the crystal back. The results obtained
are presented in Fig. 6.11. We can see that the heat conduction is at the core of this

Figure 6.11: [Front-to-back measured crystal temperatures. The blue line corresponds to
a temperature measurement at the crystal heater, while the red line corresponds to the
temperature at the crystal surface. The measurement was performed in order to do two or
three degrees steps at the crystal surface in each hour.

miscalibration, and after increasing the surface contact by tightly pressing the sensor on the
front with a clip system and using the PID with the back sensor instead of the front one, the
front-to-back temperature differences decreases dramatically as can be seen on Fig. 6.12. A
calibration of the front-to-back temperature difference was then performed and both sensors
were connected to the copper sandwich at the back of the crystal (see Fig. 6.13). The
recorded temperature for each scan was then modified accordingly. To account for this bad
thermal contacts under vacuum, we use a final uncertainty for the temperature measurement
of 0.5 ◦C which corresponds to 1.29 ppm, almost dominating the error budget. The use of
infrared temperature sensors pointed to the crystal surface could dramatically improve the
uncertainty.
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Figure 6.12: Front-to-back measured crystal temperatures with good heat conduction. The
red line corresponds to a temperature measurement at the crystal heater with the controlled
sensor, while the blue line corresponds to the temperature at the crystal surface.

Figure 6.13: Front-to-back temperatures calibration used for correcting the recorded average
temperatures in a scan.
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Chapter 7
Radiative Transitions on He-Like Ar

7.1 Measurement of the ”‘Relativistic M1”’ Transition Energy in
He-like Ar

The double-flat crystal X-ray spectrometer coupled to the electron-cyclotron-resonance ion-
source described in the previous section was used in this work with the goal of performing
measurements of several atomic properties of highly charged ions for the first time. Among
the measurements performed are absolute (reference-free) energies of radiative transitions
of heliumlike to boronlike argon ions. The design of the DCS, shown on Chapter 6, allows
measurements of transition energies without reference to any theoretical or experimental
energy, being tied only to the definition of the meter, as a transfer standard through the
lattice spacing of the crystals. The two Si (111) crystals were made and measured at the
National Institute of Standards and Technology (NIST) in Gaithesburg. Their lattice spacing
in vacuum was found to be d = 3.135601123(81)Å at a temperature of 22.5 ◦, using the NIST
lattice spacing comparator, calibrated against a known standard crystal (see [145, 174] and
Refs. therein). This method allows the avoidance of difficulties associated with existing X-
ray standards such as broad, asymmetric lines from core-excited neutral elements, sensitive
to excitations and chemical effects [73, 156]. We have measured the 1s2s 3S1 → 1s2 1S0
”relativistic M1” transition energy in heliumlike argon with a 2.5 ppm accuracy. The M1
transition was chose due to its very narrow natural width [177, 178] of ≈ 10−7 eV, completely
negligible when compared to the instrument response function. We can thus directly probe
for the first time the shape of the response function in that energy range in both the dispersive
and non-dispersive modes.

To analyse the experimental spectra, a Monte-Carlo based simulation code was developed
by Amaro [157], which performs an exact ray tracing using the geometry of the instrument
and of the X-ray source, the shape of the crystal reflectivity profile, as well as the line width
and Gaussian Doppler broadening. The effect of the X-ray beam vertical divergence is then
described exactly and not by an approximate formula as in previous works. A very thorough
description of the systematic errors of the DCS, the alignment procedure and the simulation
design can be found on Ref. [157]. The reflectivity profile used in the simulation is calculated
using the X0P program [175], which uses dynamical diffraction theory and the latest values for
the index of refraction and lattice spacing for Si(111) crystals provided by NIST. The result
was also checked with another program, X0h [179, 180], and the differences are negligible.
The index of refraction in XOP at 3104.148 eV is 5.100 × 10−5. The semi-empirical value
from Ref. [181] is 5.079× 10−5. We use this difference as an error bound for this correction.
The simulation is used not only for investigating the systematic errors, but also to provide
line shapes that can in the end be compared to the measured spectra. From that procedure
we can gather information on the correct energy of the transition as well as on the instrument
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response function, line broadening effects and natural widths. An example of a non-dispersive
spectrum obtained in this work can be seen in Fig. 7.1. The fit can be performed either with
a Voigt profile or a simulated profile. On the non-dispersive or parallel side, both fits give the
same peak position although the reduced χ2 is lower if the fit is done with a simulated profile,
resulting in χ2 ≈ 1.2. This value shows the near perfect quality of the crystals and their cut,
as well as the almost exact description of the experimental geometry within the simulation.
On the dispersive side, for which an experimental spectrum can be seen in Fig. 7.2, the

Figure 7.1: Parallel spectrum made at a first crystal position optimized for the M1 with a
acquisition time of 943 s.

geometrical constraints such as the collimation resulting from the polarization electrode and
the first crystal angle, as well as the reflectivity of both crystals, results in a profile that is
slightly asymmetric. Hence, a small shift is obtained if we use a Voigt profile or a simulated
profile that translates into a 14 meV (4.6ppm) energy shift. To our knowledge, this is the
first time that such a shift is observed and it has never been taken into account in previous
X-ray standard measurements reported in the latest X-ray energy tables [73]. In order to
study systematic errors, a series of spectra were recorded over a period of several months,
at different temperatures, with slightly different first crystal angles and ECRIS operating
conditions. The microwave power, gas composition and ion extraction voltage were varied to
check their influence on the line energy. No dependence on the first crystal angle or ECRIS
parameters was observed other than the change in X-ray intensity due to the collimation
effects described in the previous section.

To obtain the transition energy from the spectra, two distinct methods were used. A
Voigt profile was fitted to both the dispersive and non-dispersive spectra, as well as to high
statistic simulated spectra. The experimental energy was then deduced from the energy used
as an input for the simulation corrected for the difference in angle and temperature. In a
second method, the simulated profiles were directly used to fit the experimental lines and
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Figure 7.2: Antiparallel spectrum made at a first crystal position optimized for the M1 with
a acquisition time of 18239 s.

obtain a Bragg angle from which the line energy was deduced. Both methods provide the
same result to high accuracy.

The dependence of the energy values obtained on the crystal temperatures is represented
in Fig. 7.3. Weighted one- and two-parameter linear fits have been performed. The differ-
ence between the value at 22.5 ◦C obtained with those fits are combined to get an estimate
of systematic errors. The list of contributions to the uncertainty is shown in Table 7.1. The
uncertainty is limited by statistics, angle and temperature measurements. Possible contam-
ination from satellite transitions, originating from 1s2snℓ, n > 2 levels must be low: some
satellite lines should be resolved and seen outside of the M1 line, yet none can be observed.
This is because the nℓ electron decays by E1 transitions faster than the 2s one. The final
value for the M1 transition energy is 3104.1605(78) eV, i.e., an accuracy of 2.5 ppm. The
comparison with theoretical results is shown in Table 7.2. The theoretical result of Artemyev
et al. [182] is 1.6 σ below the experimental value. The list of contributions included in Ref.
[182] and their uncertainty is also shown in Table 7.2. Our experimental accuracy is 0.7%
of the one-electron QED corrections, and 7.4% of the self-energy correction to the electron-
electron interaction. The finite size correction represents 2.7 ppm of the transition energy,
barely larger than our uncertainty. Its uncertainty cannot influence the comparison between
theory and experiment in this case.

7.2 Line Widths of Transitions in Heliumlike Argon

The emission of radiation from an atomic transition does not result in a strictly monochro-
matic spectral line, but rather in an energy distribution around the central transition energy
value, E0. This gives rise to a line profile I(E −E0) with a full-width half-maximum, which
not only depends on the spectral resolution of the measuring apparatus but also on intrinsic
physical properties such as the lifetimes of the atomic states involved in the transition, the
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Table 7.1: Contributions to the uncertainty of the M1 transition energy measurement at a
68% confidence interval.

Contribution Value (eV) Value (ppm)
Fit and extrapolation 0.0044 1.42
Angle encoder error 0.0036 1.16
Lattice spacing error 0.0001 0.03
Index of refraction 0.0016 0.52
X-ray polarization 0.0010 0.32
Coefficient of thermal expansion 0.0002 0.06
Modeling error and alignement 0.0030 0.97
Energy-wavelength correction 0.0001 0.03
Temperature (0.5 ◦C) 0.0040 1.29
Total 0.0078 2.51

Table 7.2: Comparison between theoretical calculations and experiment (eV). Individual
contributions are from Ref. [182]. Older calculations are updated for fundamental constants
in Ref. [145]. The MCDF calculation follows Refs. [183, 184].

Contribution 1s2 1S0 1s2s 3S1 Transition
Dirac -4427.4154(3) -1108.0563 3319.3591(3)
∆Eint 305.6560 91.3873 -214.2687

∆EQED
1el 1.1310(1) 0.1525 -0.9785(1)

∆EQED
2el :

Scr. SE -0.1116 -0.0154 0.0962
Scr. VP 0.0072 0.0010 -0.0062
2-ph.exch. 0.0091(1) -0.0004(1) -0.0095(2)

∆EQED
ho 0.0009 0.0003 -0.0006

∆Erec 0.0575 0.0141 -0.0434
Total [182] -4120.6653(4) -1016.5169(1) 3104.1484(4)
MCDF [185] 3104.171
Drake [186] 3104.138
RMBPT [187] 3104.189
RMBPT [177] 3104.06(19)
Experiment 3104.1605(78)
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Figure 7.3: One and two parameter extrapolation of theM1 transition energy to the standard
temperature (22.5 ◦C). Each data point corresponds to the energy deduced from a one-day
measurement, a sequence of three spectra like the ones in Figs. 7.1 and 7.2, performed suc-
cessively in dispersive, nondispersive and dispersive mode, for a given temperature. The error
bars correspond to the statistical errors from the fits. Solid line: one parameter extrapolation,
dashed line: two parameter extrapolation, dot-dashed line: Ref. [182], dotted line: MCDF
calculation (see Table 7.2).

velocity distribution of the moving atoms or ions and the pressure or collision rate of the
sample. The energy levels of atoms and/or ions have an energy uncertainty related to their
finite lifetime, which can be understood from the Heisenberg uncertainty principle. From the
classical description of a spontaneous emission as a damped oscillation, a frequency profile
can be obtained through a Fourier transformation which results in a spectral line with a
Cauchy-Lorentzian distribution. In the physics community this distribution is known either
as a Lorentzian or Breit-Wigner profile [188].

Several effects contribute to the broadening of the natural widths of transition energy pro-
files. Depending on the design of the measuring apparatus their influence can be suppressed
or enhanced. The most important broadening mechanisms are the following:

• Doppler Broadening - Atoms in a gas or ions in a plasma move with a mean velocity v,
depending on their mass and on the temperature of the gas or plasma. The direction and
module of the velocity of the radiation emitting atoms and ions result in a Doppler-shift
of the transition frequency. The convolution of this process with a Maxwell-Boltzmann
distribution at a given temperature for the gas or plasma results in a Gaussian function
symmetric around the transition energy value.

• Collision Broadening - Every atom or ion in a gas or plasma interacts with other
neighbouring atoms and/or ions. The electrostatic or Van-der-Walls forces actuate to
shift the atomic energy levels. Since this interaction decreases with increasing distance
between the interacting atoms or ions, the level shifts increase with the density or
pressure of the gas or plasma. Some collisions may even be inelastic, in which some
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or all of the de-excitation energy can be transferred to another atom, shortening the
effective lifetime of the excited state and hence broadening the line profile. Unlike the
Doppler broadening, the collision broadening not only increases the line width but can
also shift the line position.

7.2.1 Doppler Broadening of the Ar ions in the ECRIS Plasma

As explained in the previous section, the sensitivity to small changes and asymmetry of the
lines measured in the DCS at SIMPA is unique. Due to the very small natural width of
the M1 line, much smaller than the instrument energy response function, and to all our
purposes considered monochromatic, we were able to investigate the Doppler broadening due
to the temperature of the Ar ions inside the plasma. Several high statistic simulations were
performed for the M1 transition in which the Lorentzian width of the input rays was set to
zero and the Gaussian width was scanned at regular intervals from zero to 400 meV. For each
of the dispersive measurements performed with the DCS, a fit was made with all the different
Gaussian width simulated profiles. The reduced χ2, given by Eq. (7.1), was recorded for
every different width spectra,

χ2
red =

1

ν

N
∑

i=1

(

f (xi)− fsim (xi, A, x0)

σi

)2

. (7.1)

Here, f (xi) is the measured experimental data, fsim (xi, A, x0) is the simulated theoretical
data, A and x0 are the fitting parameters, A being the intensity of the peak and x0 the
center of the peak. σi is the variance of the observation and ν is the number of degrees of
freedom, given by N − n, where N is the number of data points and n the number of fitted
parameters, which in this case is 2. This way we get a representation of the reduced χ2 as a
function of the Gaussian width w inserted in the simulation. This function, χ2

red(w), can be
fitted with a quadratic expression and we can then find its minimum, corresponding thus to
the Gaussian width that effectively minimizes the reduced χ2. We have also calculated the
standard deviation σw, for which we have a 68% chance of finding the experimental value in
the interval [w−σw;w+σw]. In Fig. 7.4 a graphic is shown with this procedure for a measured
M1 spectrum. This procedure is then repeated for every one of the 13 recorded spectra and
a final averaged value of 80.5(4.6) meV (FWHM) was found for the Doppler broadening.
From the Doppler broadening we can infer the temperature of the ions inside the plasma as
well as the electron density. As said before, the ions in the ECRIS are trapped in a space
charge distribution created by the electrons in the plasma. Assuming that the electrons in
the source are on a sphere [131] with 3 cm diameter, and that the plasma chamber, being
metallic, enforces a zero potential at the boundary, we can solve the Poisson equation for the
electrons, assuming constant density. We then get a quadratic potential, corresponding to
the space charge, with a depth proportional to the electron density.

The relativistic Doppler shifted energy of the M1 photons emitted by the Ar16+ ions in
the plasma can be written as a function of the angle θ between the velocity v of the ion and
the line connecting the ion and the observer, the relativistic β = v/c and the energy of the
M1 photon

EDopp (E0, β, θ) =
E0

√

1− β2

1− β cos (θ)
. (7.2)

Taking the two extreme cases in which the ion is travelling straight towards the observer
(θ = 0) and away from it (θ = π), we can obtain from the measured broadening of 80.5 meV
a value of the relativistic β of 1.29664687 × 10−5. This corresponds to a maximum velocity
of the trapped ions v = 3887 ms−1 and an energy E = 3.13 eV. Solving the Poisson equation
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Figure 7.4: Reduced χ squared as a function of the Gaussian sigma calculated using a voigt
fit for a particular M1 measurement.).

[Eq. (7.3)] for the center of the plasma sphere (r = 0)

− de

6ǫ0

(

R2 − r2
)

= −E
q

(7.3)

where e is the charge of the electron, ǫ0 is the vacuum permittivity, R is the radius of the
plasma sphere, E is the energy of the Ar16+ ions and q is their charge, we get an electronic
density d = 7.2 × 1010 particles/cm3. Comparing to the average electronic density obtained
for a krypton [131] gas in the SIMPA ECRIS of 5 to 30 ×1011 particles/cm3 and to the value
obtained by Adrouche [189] for an Ar plasma in the same ECRIS of 1.13×1011, we conclude
that this method is actually a very elegant way of obtaining ionic temperatures and electronic
densities in ECRIS plasmas. As can be seen, the very low ionic temperature of 3 eV is in
complete agreement with the ionic temperatures obtained in the ECR survey of Drentje [162].

7.2.2 Measurement of the He-like Diagram Line 1s2p 1P1 → 1s2 1S0 Spectral
Width

Having investigated the Doppler broadening of the He-like Ar ions inside the ECRIS plasma,
we can then turn to the He-like 1s2p 1P1 → 1s2 1S0 diagram line. In the Doppler broadening
calculation, performed in the previous section, we set the natural width of the line to zero
because we were measuring a magnetic dipole line, which to all purposes could be consid-
ered monochromatic. For this line, we can assume that the Doppler broadening remains
unchanged, which is sensible because the ion generating the transition is the same. Hence,
we can perform the same analysis as before, but instead of performing simulations with zero
natural widths and a range of Gaussian widths, consider a fixed value of the gaussian width
and a range of natural widths. The Gaussian width is set to 80.5 meV and the Lorentzian
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Table 7.3: Natural widths of the 7 measurements of the He-like Ar diagram line. The dates
of the measurements, its standard deviations and reduced χ2

min are also presented.

Measure Natural width Uncertainty Reduced
Date wmin (meV) at 68% (meV) χ2

min

23/05/11 21.63 47.02 1.230
24/05/11 105.34 24.23 0.975
25/05/11 89.13 34.54 1.0647
26/05/11 100.71 21.27 1.135
30/05/11 47.67 30.99 1.18
01/06/11 89.50 24.89 1.058
03/06/11 36.29 26.91 1.007

Average Width Std. Dev.
Results wav = 79.08 meV σw = 10.40 meV

width is then scanned around the expected theoretical value of 70.4 meV. Simulations with
high statistics for Lorentzian widths ranging from zero to 200 meV were performed and fits
were made to the 7 measurements of the diagram line. In Table 7.3, the minimum Lorentzian
widths, its standard deviation and the reduced χ2 are presented for each of the line measure-
ments. The expected natural width of the 1s2p 1P1 → 1s2 1S0 line of 70.4 meV is within
the wav = 79.08 ± 10.40 meV obtained interval, which once again proves that this method
can be thoroughly used to calculate radiative and auger transition widths for highly charged
ions as well as electronic densities and ionic temperatures for ECRIS plasmas. Nevertheless,
an increase of the number of measurements for this line should provide greater insight by
reducing the uncertainty of the width measurements.
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Chapter 8
Analysis of an Ar X-ray spectrum from
an ECRIS plasma

8.1 X-ray spectrum from an Ar plasma

One of the main problems of ECRIS plasmas diagnostics is the determination of the ion
charge-state distribution inside the plasma. Several articles from our group [8, 9, 122] have
shown that the analysis of high resolution X-ray spectra is an excellent tool to estimate
the ion charge state distribution (CSD) inside an ECRIS plasma. In 2001, Martins et al.

[8] performed a detailed analysis of a K X-ray spectrum emitted by Ar ions in a ECRIS
plasma. In that first work they showed that a complete analysis of these spectra called for a
careful examination of all excitation and ionization processes that lead to the excited states
of the different ionic species whose decay will yield the detected lines. In the same work,
the relevant atomic parameters were calculated for each charge state but a single average
energy for the electrons in the plasma was used. Also, the lack of multi-ionization processes
in the analysis was later proven [9] to be insufficient to explain all the features present in the
spectrum. The inclusion of double-KL and triple-KLL ionization accounts for many of the
low intensity peaks as was shown later in the study of sulfur plasmas [9, 122]. A re-evaluation
of Ar plasma X-ray spectra is thus in order. We are anticipating the need to fully develop
a reliable way for obtaining the CSD for any plasma and, from a realistic CSD obtained
from the extracted ions for example, check the theoretical intensities of some lines of interest.
In this way we can choose carefully what transitions to target with the DCS given all the
experimental restrictions.

8.2 Processes of Creation and Decay of Highly Excited States in
an ECRIS

In this section, we have used the methodology of Santos et al. [9] and inserted some of their
derivations to better understand the overall procedure. The process used to estimate the ion
CSD includes the following steps:

1. The spectrum of characteristic X-rays from ions inside the plasma was measured;

2. The excited states that produce the X-ray spectrum were identified;

3. The main processes leading to these excited states, from the ground configurations,
were found and the corresponding cross sections were calculated, using a physically
justified electron distribution function;
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4. Radiative and radiationless transition energies and probabilities of the identified tran-
sitions were obtained from the previous work of Martins et al. [190];

5. The real peak intensities of the measured spectra were obtained by simulating iteratively
the lines positions, intensities and widths until the overall reduced χ2 is minimized;

6. From the comparison of the peak intensities in the corrected theoretical and the mea-
sured experimental spectrum we arrive at the ion charge-state density ratios.

In this work, we assume that the ions in a ECRIS are in their ground configurations, since
the lifetimes of the excited configurations are orders of magnitude lower than the collision
times for K excitation and K, KL, KLL ionization. However, there are some metastable
states, like the 1s22s2p 3P0 state in Be-like ions, which could live long enough to be con-
sidered as alternative ground states. The processes that occur in X-ray emission from ECR
sources can range from electronic inner-shell ionization and excitation, dielectronic recombi-
nation, charge exchange reactions, radiative recombination and radiative and radiationless
decays. For highly charged ions, dielectronic recombination, charge exchange and radiative
recombination rates are usually low when compared to the dominant inner-shell ionization
and excitation and radiative and radiationless decays [6].

8.2.1 Transition Energies and Probabilities

The very high energy accuracy in the DCS experimental spectra calls for very sophisticated
theoretical methods for the calculation of transition energies. The importance of knowledge
of precise transition energy values cannot be overemphasized and the correlation contribu-
tion to transition energies is very important in few electron ions, which makes the use of
multiconfiguration or configuration-interaction approaches very useful. Electrons in highly
charged ions, especially in inner shells, are, in general, highly relativistic, so a relativistic
calculation is required. Finally, quantum-electrodynamics effects (QED) such as the electron
self energy and vacuum polarization must, in general, be taken into account. Radiative and
radiationless transition energies, transition probabilities and fluorescence yield values for the
Ar isonuclear series calculated with the MCDFGME code can be found on Ref. [190].

8.3 Distribution of Electron Energies in the Plasma

Because the plasma generated within an ECRIS is a cold plasma in which the electron
temperature and ion temperature differ, the resulting electron temperature is strongly non-
Maxwellian and can, in principle, be represented by two populations [137]: a cold one with
energies up to 10 keV, and a hot one with energies of several tens of keV; the latter being
well confined inside a closed egg-shaped surface centered around the source main axis. Barué
et al. [137] and Gumberidze et al. [131] studied the energy distribution of the hot electrons
inside ECRIS devices by observing the bremsstrahlung and electron cyclotron emission.

The cold electrons can be considered approximately Maxwellian whereas the hot electrons
distribution must differ from the Maxwellian distribution. Following the work of Pras et al.
[133], we set the global electron distribution f (E) as a linear combination of the Maxwellian,
fMw (E), and the non-Maxwellian, fNMw (E), energy distributions.

Let Ne, v (E) and σ (E) be the electron density, the electron velocity and the cross section
for a given process, respectively, at a specific electron energy E, then the quantity 〈Neσv〉 is
the rate of the number of events related to a process (excitation or ionization), averaged over
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the electron distribution energy, and is defined by

〈Neσv〉 = Ne

∫

∞

Emin

v (E)σ (E) f (E) dE

= Ne

∫

∞

Emin

v (E)σ (E) [(1− x) fMw (E) + xfNMw (E)] dE, (8.1)

where x is a mixing coefficient.
In order to evaluate the integral in Eq. (8.1), the cross sections for all the processes

considered must be calculated for a wide range of energies, from threshold, Emin, to infinity,
which is an impossible task if the cross sections for the processes considered are not given
in an analytical form. Although the ionization cross sections can be obtained through a
simple analytical expression, as the work performed in the first part of this thesis asserts, the
excitation cross sections cannot be obtained in a reliable analytical form.

Fortunately, the mathematical expression for the electron distributions used here is well
suited for the use of Gauss-Laguerre integration. With this method, only a small number of
cross section values, usually 7 to 20, are needed to calculate each process, each charge state
and each temperature value.

8.3.1 Gauss-Laguerre integration

The Gauss-Laguerre integral form is

∫

∞

0
e−xf (x) dx ≈

n
∑

i=1

wif (xi) , (8.2)

where xi is the i
th root of the Laguerre polynomial Ln (x), and the weight wi is given by

wi =
xi

(n+ 1)2 [Ln+1 (xi)]
2 . (8.3)

8.3.1.1 Maxwell distribution

In order to apply the Gauss-Laguerre integration method, we need to write the integral
∫

∞

Emin

fMw (E) v (E)σ (E) dE, (8.4)

in the form
∫

∞

0
e−xg (x) dx.

The Maxwell energy distribution function is given by,

fMw (E, T ) =
2√
π

E
1

2

(kTcold)
3

2

e
−

E

kTcold , (8.5)

where E is the kinetic energy of the electrons, T is the thermodynamical temperature, and
k is the Boltzmann constant. If we use the relativistic form of E, we can write the electrons
velocity as

v = cE
1

2

(

E + 2mc2
)

1

2

(E +mc2)
, (8.6)

and Eq. (8.4) transforms to [9]

∫

∞

Emin

fMw (E) v (E)σ (E) dE =
2c

√
π (kTcold)

3

2

∫

∞

Emin

Ee
−

E

kTcold

(

E + 2mc2
)

1

2

(E +mc2)
σ (E) dE. (8.7)
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Considering that
z = E − Emin,

Eq. (8.7) becomes
∫

∞

Emin

fMw (E) v (E)σ (E) dE

=
2ce

−
Emin

kTcold

√
π (kTcold)

3

2

∫

∞

0
(z + Emin) e

−
z

kTcold

(

z + Emin + 2mc2
)

1

2

(z + Emin +mc2)
σ (z + Emin) dz. (8.8)

Changing variables,

x =
z

kTcold
→ z = xkTcold → dz = kTcolddx, (8.9)

Eq. (8.8) assumes the form,

∫

∞

Emin

fMw (E) v (E)σ (E) dE =
2ce

−
Emin

kTcold

√
π (kTcold)

1

2

∫

∞

0
e−xg (x) dx, (8.10)

where

g (x) = (xkTcold + Emin)

(

xkTcold + Emin + 2mc2
)

1

2

(xkTcold + Emin +mc2)
σ (xkTcold + Emin) . (8.11)

8.3.1.2 Non-Maxwell distribution

Performing the same way for the non-Maxwellian energy distribution, fNMw (E), the integral,
∫

∞

Emin

fNMw (E) v (E)σ (E) dE, (8.12)

needs to be transformed accordingly. Concerning the non-Maxwellian electron energy dis-
tribution, we follow the suggestion of Celata [191] and use the relativistic version of the
Dory-Guest-Harris expression [137, 192],

fNMw (E, T ) = CnE

(

1 +
E

2mc2

)(

1 +
E

mc2

)

e
−

E

kThot , (8.13)

where

Cn =
1

(kThot)
2

1

1 + 3α+ 3α2
and α =

kThot
mc2

. (8.14)

Substituting this form of fNMw into Eq. (8.12) leads to
∫

∞

Emin

fNMw (E) v (E)σ (E) dE

=
Cnc

2 (mc2)2

∫

∞

Emin

E
3

2

(

E + 2mc2
)

3

2 e
−

E

kThot σ (E) dE. (8.15)

Considering that
z = E − Emin → dE = dz,

Eq. (8.15) becomes
∫

∞

Emin

fNMw (E) v (E)σ (E) dE

=
Cnce

−
Emin

kThot

2 (mc2)2

∫

∞

0
(z + Emin)

3

2

(

z + Emin + 2mc2
)

3

2 e
−

z

kThot σ (z + Emin) dz. (8.16)
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Performing the variable change

x =
z

kThot
→ z = xkThot → dz = kThotdx, (8.17)

we transform Eq. (8.16) to

∫

∞

Emin

fNMw (E) v (E)σ (E) dE =
Cnc (kThot) e

−
Emin

kThot

2 (mc2)2

∫

∞

0
e−xg (x) dx, (8.18)

with

g (x) = [x (kThot) + Emin]
3

2

[

x (kThot) + Emin + 2mc2
]
3

2 σ [x (kThot) + Emin] . (8.19)

8.3.2 Electron Impact Ionization

8.3.2.1 Electron Impact Single Ionization

The expression developed in the first part of this work fulfils perfectly the requirements of
the electron impact single ionization cross sections needed to simulate an ECRIS plasma.
The ability to model ionizing events that cover incident electron energies from the threshold
to relativistic values with a minimal input data, and its analytical nature, makes Eq. (3.13)
ideally suited to be applied in this method.

8.3.2.2 Electron Impact Multiple Ionization

In this work we have included double KL- and triple KLL-ionization processes from the
ions ground configurations. The binary encounter formalism can be applied to multiple
ionization, but as noted by Vriens [47], the fact that multiple hard collisions are needed to
express the multiple ionization processes in the binary encounter model, leads to an increasing
underestimation of the cross section as the number of collisions is increased. Although the fact
that such an expression, free of empirical parameters is ideal for this method, the dramatic
drop in accuracy of the model for multiple ionization makes it impossible to use. For the
calculations of the double and triple ionization cross sections we have used the semi-empirical
formula of Shevelko and Tawara [193], with the fitting parameters proposed by Bélenger et al.
[194], which, to our knowledge, is the only analytical expression that provides cross sections
for multiple ionization processes. This expression, in S.I. units reads

σn =
a (n)N b(n)

(In/R)
2

(

1− In
T

)c ln (T/In)

T/In
× 10−22, (8.20)

where T is the incident electron energy in eV, In is the combined ionization energy of the
KL, or KLL electrons, N is the total number of electrons in the target atom, n is the number
of electrons to be ionized and R is the Rydberg energy in eV. The fitting parameters a, b
and c were evaluated from experimental data and are a(2) = 14.0 and b(2) = 1.08 for the
removal of two electrons, and a(3) = 6.30 and b(3) = 1.20 for the removal of three electrons
[194]. The c parameter should be set as unity, c = 1, for neutral atoms and c = 0.75 for
ions. This expression was developed for the multiple ionization of the outermost electrons, so
its accuracy cannot be fully granted for inner-shell ionization. Because the expression works
best for multiple ionization of the outer electrons, Shevelko and Tawara suggested that the
parameter In should be calculated as the sum of the consecutive first ionization energies of the
chain of generated ions, i.e., the combined ionization energy of a given atom In is calculated
as

In =
n−1
∑

i=0

Bi, (8.21)

81



Analysis of an Ar X-ray spectrum from an ECRIS plasma

where Bi are the lowest electron binding energies of the atoms with charge states i. For
example, for the Kr atom we have B0 = 13.993916 eV, B1 = 24.728224 eV, B2 = 37.053620
eV, B3 = 50.995085 eV, corresponding to the first ionization energies of the elements Kr,Kr+,
Kr2+ and Kr3+ respectively. Hence, for the removal of 4 electrons from the neutral Kr atom
by electron impact, the combined ionization energy I4 = 13.99+24.73+37.05+50.99 = 126.76
eV.

For the selective multiple ionization of KL and KLL electrons, indispensable for this
work, we have used the MCDFGME code to obtain the total energy of the configurations
involved in the feeding mechanisms for these processes, and the total multiple ionization
energy was calculated as the difference between the total energies of those configurations.
Because the energy region of interest comprises transitions from combinations of electronic
configurations with two to four electrons with a K hole, we calculated the single, double and
triple ionization energy values presented in Table 8.1.

Table 8.1: Ionization Energies for the K, KL and KLL Ionization of Ar.

Ionization Type Initial Configuration Final Configuration Ionization Energy (eV)
1s22s22p 1s2s22p 3842.3588

K 1s22s2 1s2s2 3941.7821
1s22s 1s2s 4030.5030
1s22s22p2 1s2s22p 4518.3296
1s22s22p2 1s2s2p2 4518.3296

KL 1s22s22p 1s2s2p 4693.0492
1s22s22p 1s2s2 4693.1201
1s22s2 1s2s 4872.0409
1s22s22p3 1s2s22p 5137.0839
1s22s22p3 1s2s2p2 5137.0839
1s22s22p3 1s2p3 5189.7335

KLL 1s22s22p2 1s2s2p 5379.3080
1s22s22p2 1s2s2 5379.3790
1s22s22p2 1s2p2 5414.2007
1s22s22p 1s2s 5628.0626
1s22s22p 1s2p 5647.0496

8.3.3 Electron Impact Excitation

Electron impact excitation cross sections can be found in several sources, from scientific pa-
pers to atomic databases [195, 196], for a wide number of atoms and ions. However, the sheer
volume of data necessary for plasma diagnostic, specially on a large energy range makes the
use of published excitation cross sections inappropriate. The use of an analytical expression
for the calculation of excitation cross sections is better suited than other ab initio calculations
because of the number of transitions involved and the energy intervals for which the values
are needed. Estimates of electron-impact excitation cross sections are frequently provided
by the Fisher et al. expression [197], which is based on the van Regemorter expression for
bound-bound electron excitation [198]. Nevertheless, the use of this formula is questionable
for ions, because it was derived for neutral atoms and also because it only takes into account
electric dipole transitions. Sampson and Zhang tested extensively the Regemorter expression
and concluded that for ∆n ≥ 1 excitation transitions from levels with ℓ < n− 1, the expres-
sion is frequently found to be a very poor approximation [199]. On the other hand, accurate
excitation cross sections can be calculated from computer codes such as the MCDFGME of
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Desclaux and Indelicato [50, 51] or the GIPPER package of Archer et al. [127] that uses the
atomic structure code of Cowan [127, 200]. The MCDFGME code uses multiconfiguration
Dirac-Fock wave functions for the bound electron, Dirac wave functions for the free electron
and the first Born approximation for the electron impact excitation cross section. The GIP-
PER code uses the muticonfiguration Hartree-Fock method of R. D. Cowan for obtaining
the wave functions, and the electron impact excitation cross sections are calculated using the
distorted wave approximation. The use of such atomic structure programs is useful because
they calculate also other atomic parameters needed for modelling x-ray spectra from ECRIS
plasmas. Although the cross section values calculated with such codes are not continuous in
energy, the Gauss-Laguerre integration method, shown above, solves this complication, and

usually only 20 points in the energy grid are needed for the calculation of the
〈

Nevσ
K−exc,q
i

〉

quantities. As in electron impact ionization, the existence of a reliable, easy-to-use, ana-
lytical expression for the computation of excitation cross sections, would prove an excellent
improvement on the method proposed thus far.

8.4 Calculation of Line Intensities

For the calculation of the balance equation we need to consider all the processes leading to
a given ion in the charge state q = Z −m, m being the number of bound electrons in the
atom. However, depending on the energy region of the spectra we might be probing essentially
inner-shell transitions. In this work we are mainly concerned with ions with K holes in several
excited states, and we assume that the ions are initially in their ground configuration. The
balance equation for a process leading to an ion in charge state q with a K hole in the excited
level i, is given by [9]

N q
0

〈

Nevσ
K−exc,q
i

〉

+N q−1
0

〈

Nevσ
K−ion,(q−1,q)
i

〉

+N q−2
0

〈

Nevσ
K−double-ion,(q−2,q)
i

〉

+N q−3
0

〈

Nevσ
K−triple-ion,(q−3,q)
i

〉

= NK,q
i Aq

i , (8.22)

where Aq
i is the level i decay probability by any process (radiative and radiationless), N q′

0

is the ion density in the ground configuration for the ions with charge state q′. The exci-
tation cross section for the process leading from an ion in the charge state q in the ground
configuration to its excited level i with a K hole is represented by σK−exc,q

i . The single-,
double- and triple-ionization cross sections of the processes leading from ions with positive
charge q′ (q′ = q−3, ..., q) in their ground configuration, to the excited state i of the ion with

charge q and a K hole, are represented, respectively, by σ
K−ion,(q−1,q)
i , σ

K−double-ion,(q−2,q)
i

and σ
K−triple-ion,(q−3,q)
i . NK,q

i is the density of ions in the charge state q, with a K hole and

in the level i. All 〈Neσv〉 quantities are calculated using Eq. (8.1). The σK−exc,q
i values are

obtained by summing the individual cross sections for the processes leading from each level
j of the Xq+ ion ground configuration, to the excited level i of the same ion with a K hole,
weighted by the statistical weight gj of each j level of the ground configuration. Concerning
ionization, the cross section of the process leading from the X(q−n)+ (n = 1, 2, 3) ions in the
ground configuration to the Xq+ ion with a K hole, are multiplied by the statistical weight gi
of the level i, yielding the K-shell ionization cross sections σ

K−ion,(q−n,q)
i . These cross sections

are calculated with Eqs. (3.13) and (8.20) for the single and multiple ionization processes
respectively. Finally, the intensity of the line corresponding to the transition of an ion with
charge q and a K-shell hole from the level i to the level j is given by

Iqij = ~ωAq
ijN

K,q
i , (8.23)
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where ~ω is the transition energy, Aq
ij is the probability of the i → j radiative transition,

and NK,q
i is obtained by evaluating Eq. (8.22). In order to fully reproduce an experimental

spectra, all possible excitations as well as single- double- and triple- ionization processes must
be included in the evaluation of Eqs. (8.1), (8.22) and (8.23). All possible processes leading
from the ground configuration of He-like to N-like ions to excited states of He-like to Be-like
ions, with a K hole, are shown in Fig. 8.1. De-excitation processes for the resulting excited
ions are also illustrated schematically in the same figure.
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Figure 8.1: Excitation, ionization and decay processes considered in the analysis of HCI
spectra. K excitation, dashed line; single K ionization, dotted line; double KL ionization,
dash-dotted line; triple KLL ionization, dash-dot-dot line; radiative decay, solid line and
radiationless decay, small-dash line.

8.5 Analysis of an Ar Plasma with the DCS

For metrology purposes, all the transitions measured independently were angle optimized
in order to get the highest intensity of the particular line being investigated. However, in
order to perform plasma diagnosis, relative intensities of transitions from several charge state
Ar ions are needed. Because of the DCS geometry it is impossible to use separate single
measurements of different transitions for charge state distribution calculations. For this
purpose, a wide second crystal scan was performed for a fixed first crystal angle, containing
several features arising from Ar14+ up to Ar16+ ions. Using the procedure described above we
were able to obtain a theoretical spectrum, from which, upon comparison, we could extract
iteratively the charge state distribution of the Ar ions inside the ECRIS plasma.
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8.5.1 DCS Wide Spectrum

As was mentioned before, the use of a DCS with an ECRIS source is a state of the art way
of measuring both transition energy values and also natural widths of de-excitations in HCI.
However, regarding the intensity of the peaks obtained, the use of a double-flat spectrometer
raises some problems. As pointed out earlier, the number of X-rays reaching the detector
depends not only on the balance between the feeding mechanisms and the radiative transitions
of the plasma species, but also on the geometrical settings of the DCS. The Monte Carlo ray
tracing simulation code of Amaro [157] is used to estimate the intensity dependence of the
angular region of the second crystal for a fixed first crystal angle. An expression which relates
the normalized intensity of the radiation as a function of the second crystal angle is then
obtained. In order to compare the experimental DCS spectrum with the theoretical simulated
spectrum we have to multiply the theoretical spectrum with the normalized intensity angular
function.

For the geometrical experimental settings, measured and optimized through a series of
procedures that can be found in Amaro’s PhD thesis [157], the obtained function is an
hyperbole. The parameters of this function depend on the shape of the collimator between
the plasma and the first crystal and on the vertical divergence of the crystals. For this
particular energy region and first crystal angle, the best hyperbolic fit can be seen in Fig.
6.7 on Sec. 6.3 and has a normalized expression given by

I (E) = 1.04815− 6.27647× 10−5
√

|588509 + 690026(E − 3103.89)2|. (8.24)

8.5.2 Interpretation of the X-ray Spectrum Emitted by Ar ions in an ECRIS
plasma

In order to analyse the DCS spectrum we have considered all radiative transitions that fell
into the [3087, 3120] eV energy region, which corresponds mainly to lines arising from Ar14+,
Ar15+ and Ar16+ ions. The required parameters for this group of transitions were obtained
from Ref. [190]. The computational method for the calculation of bound state wavefunctions
and radiative transition probabilities was the general relativistic MCDF method developed
by Desclaux and Indelicato [50, 51]. The multiconfiguration approach is characterized by
the fact that a small number of configurations can account for a large amount of correlation.
All intra-shell correlation was included. Details of the method can be found, for instance, in
[69, 70]. The so-called optimized level (OL) method was used to determine the wavefunction
and energy for each state involved. Thus, spin-orbitals in the initial and final states for the
radiative transitions are not orthogonal, since they have been optimized separately. This
non-orthogonality effect is fully taken into account [178, 201], using the formalism proposed
by Löwdin [202].

The length gauge has been used for all radiative transition probabilities. Radiationless
transition probabilities were calculated using Desclaux’s code [203]. The bound wavefunc-
tions were generated using this code for configurations that contain one initial inner-shell
vacancy while the continuum wavefunctions were obtained by solving the Dirac-Fock equa-
tions with the same atomic potential of the initial state. With this treatment, the continuum
wavefunctions are made orthogonal to the initial bound state wavefunctions, thus assuring
orthogonality. No orbital relaxation is included.

The continuum wavefunction is normalized to represent one electron per unit time. Alto-
gether, energies and probabilities of 28 transitions were found to sit in the spectrum’s energy
range. The transitions considered in this work were the ones originating from the 1s2s and
1s2p configurations to the final configuration 1s2 for the He-like Ar ions, the 1s2s2p→ 1s22s
transitions for the Li-like ions and the 1s2s22p → 1s22s2 and 1s2s2p2 → 1s22s2p for the
Be-like ions. The most prominent features in the spectrum are the Be-like 1s2s22p 1P1 →
1s22s2 1S0 line labelled in Figs. 8.2 and 8.3 as 1), the relativistic M1 transition of the He-like
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Ar 1s2s 3S1 → 1s2 1S0 labelled as 2) and the Li-like 1s2s2p 2P1/2,3/2 → 1s22s 2S1/2 doublet,
which corresponds to numbers 3) and 4). All of the considered processes are represented
in Fig. 8.1, where all the feeding mechanisms can be also seen. As discussed before we
have considered that all the ionic species are in their ground state configurations prior to
the excitation/ionization mechanisms. Particularly, we have excluded the possibility of the
Be-like like ions to be in the metastable states of the 1s22s2p configuration because of the
low lifetimes of such states compared to the collision times for excitation and ionization of
the K, KL and KLL electrons. Comparing the obtained theoretical spectrum with the DCS
wide spectrum (see Figs.8.2 and 8.3) we see that all of the main features are accounted for.
We have used for each line a linear combination of a Lorentzian and a Gaussian distribution,

Figure 8.2: Wide scan spectrum of Ar ions in the SIMPA ECRIS plasma using a DCS.
Normalized theoretical spectrum convoluted with the DCS intensity distribution, solid line;
Normalized theoretical spectrum, dotted line; Experimental DCS wide spectrum, full circles.

designed to approximate a Voigt profile. Because of the very high sensitivity to the spectral
shapes of the transitions measured in the DCS, every one of the main peaks seen in the
spectrum was fitted independently with Voigt profiles. The obtained width parameters of
the pseudo-Voigt fits were then used in the theoretical spectrum in order to better fit the
overall spectrum. The simulated spectrum was normalized to the M1 intensity and the final
DCS normalized spectrum is obtained by further multiplying the theoretical normalized spec-
trum with Eq. (8.24). We can immediately see from the shift in the highest peak that the
calculated energy of 3091.95 eV, for the 1s2s22p 1P1 → 1s22s2 1S0 transition, is somewhat
higher than the experimental energy value of 3091.7669(38) eV. The small bump to the left
of the Be-like line, labelled as 5) in Figs. 8.2 and 8.3, which corresponds to a transition
energy of around 3090.2 eV, probably arising from the 1s2s2p2 1S0 → 1s22s2p 1P1, is not
present in the theoretical spectrum, mainly because of the absence of excitation and K-shell
ionization feeding mechanisms leading to the 1s2s2p2 configuration. This is due to the fact
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Figure 8.3: Logarithmic scale view of the DCS wide scan spectrum of Ar ions in the SIMPA
ECRIS plasma. Normalized theoretical spectrum convoluted with the DCS intensity dis-
tribution, solid line; Normalized theoretical spectrum, dotted line; Experimental DCS wide
spectrum, open circles.

that all starting configurations were chosen to be on the ground state. The fact that this
observed line is not present on the simulated spectrum leads us to the conclusion that maybe
this metastable state can live long enough to be K-shell excited or ionized. Because we
don’t know the ratios of the ground 1s22s2 to the metastable 1s22s2p state and the ground
1s22s22p to the metastable 1s22s2p2 state, we are not able to calculate the excitation cross
sections for the 1s22s2p → 1s2s2p2 process nor the K-shell ionization cross section for the
1s22s2p2 → 1s2s2p2 process. Hence, only through double and triple ionization can this states
be created, which results in a much lower intensity of the observed X-ray radiation than the
states that are fed through both excitation and K, KL and KLL ionization. This feeding
mechanisms play a very important role in the observation of certain decay channels. For ex-
ample, although the 1s2s 3S1 → 1s2 1S0 relativistic M1 transition has a very low transition
rate, of more than 7 orders of magnitude lower than the Li-like and Be-like lines, the fact
that the 1s2s configuration can be created by K-shell excitation and ionization as well as by
double KL and triple KLL excitation from the ground state configurations 1s2, 1s22s, 1s22s2

and 1s22s22p respectively, results in a very high intensity radiative transition. Comparing to
the dipole allowed 1s2p 1P1 → 1s2 1S0 diagram line, that has a transition rate of 8 orders
of magnitude higher than the M1 line, but can only be created by K-shell excitation from
the 1s2 ground configuration and by triple KLL ionization from the 1s22s22p ground state
configuration, the observed intensity is less than half of the relativistic M1 line. In the Table
8.2 we present all of the transitions that fall in the spectrum energy range. The initial and
final configurations are shown, as well as the transition energies and rates and the radiative
transition yields. The transition yields are calculated as the ratio of the radiative transition
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probability to the sum of the transition probabilities of radiative and Auger de-excitations.
Other decay channels such as dielectronic recombination, charge exchange and collisional de-
excitation have not been included in the transition yield calculation because these processes
are very rare in such cold plasmas.

Table 8.2: Energies and transition rates and yields for all of the transitions included in the
simulated theoretical Ar plasma spectrum.

Ar ion Initial LSJi Final LSJf Transition Transition Radiative
charge Configuration Configuration Energy (eV) Rate (s−1) Trans. Yield
16+ 1s2p 3P1 1s2 1S0 3123.37 1.81× 1012 1.00× 100

16+ 1s2s 3S1
1S0 3104.17 4.78× 106 1.00× 100

15+ 1s2s2p 2P 1
1/2 1s22s 2S1/2 3112.40 8.65× 1013 7.32× 10−1

15+ 2P 2
1/2

2S1/2 3125.37 1.97× 1013 1.65× 10−1

15+ 2P 1
3/2

2S1/2 3114.15 1.00× 1014 9.12× 10−1

15+ 2P 2
3/2

2S1/2 3125.9 6.77× 1012 5.62× 10−2

15+ 4P1/2
2S1/2 3086.69 1.64× 1011 9.47× 10−1

15+ 4P3/2
2S1/2 3087.55 4.50× 1011 9.83× 10−1

14+ 1s2s22p 1P1 1s22s2 1S0 3091.95 9.81× 1013 4.28× 10−1

14+ 1s2s2p2 1S0 1s22s2p 1P1 3090.93 5.29× 1013 1.79× 10−1

14+ 1S0
3P1 3119.25 4.07× 109 1.38× 10−5

14+ 1P1
1P1 3088.82 1.51× 1014 7.19× 10−1

14+ 1P1
3P2 3115.31 7.51× 109 3.58× 10−5

14+ 1P1
3P1 3117.15 7.90× 109 3.76× 10−5

14+ 1P1
3P0 3118.48 5.37× 1010 2.56× 10−4

14+ 1D2
3P2 3102.36 3.10× 1012 1.42× 10−2

14+ 1D2
3P1 3104.19 1.13× 1011 5.20× 10−4

14+ 3S1
3P2 3097.40 3.15× 1013 2.99× 10−1

14+ 3S1
3P1 3099.24 1.41× 1013 1.35× 10−1

14+ 3S1
3P0 3100.57 3.73× 1012 3.55× 10−2

14+ 3P 2
0

3P1 3103.80 9.38× 1012 5.01× 10−2

14+ 3P 1
1

3P0 3085.8 7.82× 1013 3.89× 10−1

14+ 3P 2
1

3P2 3103.54 1.13× 1013 8.92× 10−2

14+ 3P 2
1

3P1 3105.37 1.65× 1011 1.30× 10−3

14+ 3P 2
1

3P0 3106.7 7.14× 1011 5.62× 10−3

14+ 3P 1
2

3P1 3087.37 4.59× 1012 2.08× 10−2

14+ 3D1
3P1 3086.07 5.39× 1013 3.14× 10−1

14+ 3D1
3P0 3087.4 1.38× 1011 8.02× 10−4

From Eqs. (8.22) and (8.23) the intensities of all the transitions presented in Table 8.2
were calculated. The line intensity is a function of the feeding mechanisms and thus of the

ion densities in the ground configuration, N q′

0 , where q′ is the ion charge state. From the
extracted current of the ion beam of the SIMPA ECRIS we obtain a charge state distribution,
which is the starting point for the spectrum simulation. The ion current values were taken
from the PhD thesis of Adrouche [189] and are presented in Table 8.3. It is expected that the
ion currents are not completely proportional to the ion densities inside the plasma because
the ions are extracted from the plasma edges and the extraction system can be optimized
for a particular charge state. The ion currents for a 300 W Ar plasma in the SIMPA ECRIS
were normalized to the Ar16+ density obtained for another ECRIS by Douysset et al. [6]
and later to the Ar16+ density obtained in this work. The ionic densities calculated from the
ion current are also presented in Table 8.3. With this starting parameters it is possible to
obtain iteratively the set of ion densities which result in the best fit of the wide scan data
points from the simulated spectrum. A final χ2

red of 9.33 was obtained and the resulting set
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of ionic densities are also presented in Table 8.3 for comparison with the values from the ion
current data. In Fig. 8.4, the ionic densities calculated in this work are compared to the

Table 8.3: Ion current and ionic densities of the SIMPA ECRIS Ar plasma. The ion currents
were taken from Ref. [189].

Charge Ion Current Ion Density (cm−3) Ion Density (cm−3) Ion Density (cm−3)
State (µA) Adrouche [189] This work Douysset [6]
11+ 22 7.59×1016 8.0×1016 1.5×1016

12+ 16 5.52×1016 4.0×1016 1.6×1016

13+ 7.5 2.59×1016 2.0×1016 7.5×1015

14+ 2.5 8.62×1015 9.4×1015 3.1×1015

15+ 0.4 1.38×1015 2.0×1015 1.4×1015

16+ 0.058 2.00×1014 2.0×1014 2.8×1014

densities obtained from the extracted ion currents for a 300 W Ar plasma by Adrouche and
to the densities obtained by Douysset et al. for a different ECR Ar plasma. As can be seen

Figure 8.4: Charge state distribution of the Ar plasma. Densities obtained from the measured
ion current, normalized to the He-like ion density from this work, are in black; Densities
obtained in this work are in red; Densities obtained by Douysset for a different ECRIS are
in blue.

in Fig. 8.4 there is a much better agreement between the CSD calculated from the extracted
current and the CSD obtained in this work than with the CSD of Douysset et al.. The fact
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that the CSD of Douysset et al. was measured for an Ar plasma with a different ECRIS and
hence different experimental conditions, such as partial gas pressures and/or magnetic field
strengths, is the probable cause for such a discrepancy. The greatest difference between the
CSD calculated in this work and the one obtained from the extracted ion currents correspond
to the Ar15+ ion, with a value of approximately 45%. For Ar12+ and Ar13+ the differences
are around 30% and for Ar11+ and Ar14+ the differences are less than 10%. For applications
in which the charge state distribution has to be known precisely, the CSD calculated from
the extracted ion currents cannot be reliably used, albeit being a very good way to get a
rough estimate.
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Chapter 9
Conclusions

9.1 Conclusions

It has been shown that the double-crystal spectrometer, coupled to an electron-cyclotron-
resonance ion-source can be used to perform very accurate, reference-free measurements which
provide energies and widths, tied to the definition of the meter, for X-ray standard purposes.
It is proven that the ECRIS has the necessary intensity to be used as a source of highly charged
ion X-ray radiation for measurements with a DCS. The development of a temperature control
system for both crystals lead to a 0.2 ◦C maximum variation of the surface temperature of
the crystals, although a final temperature uncertainty of 0.5 ◦C has been used to account
for low thermal contact and front-to-back temperature differences. This corresponds to a
0.0040 eV uncertainty or 1.29 ppm at 3.104 keV. We have measured the 1s2s 3S1 → 1s2 1S0
relativisticM1 transition and found an energy of 3104.1605(78) eV (2.5 ppm accuracy). This
value is the most accurate, reference-free measurement done for such a transition and is in
good agreement with recent QED predictions. With this experiment we have established the
first X-ray standard based on a narrow, symmetric line, that can be used to calibrate any
instrument in this energy range to our quoted accuracy, without the problems associated with
previous, X-ray tubes based standards. The use of a double-crystal spectrometer was made
possible thanks to the very intense emission of the M1 transition from the ECRIS plasma,
which is several orders of magnitude stronger than what can be obtained from an electron-
beam ion-trap or from other highly charged ions production devices. Such high precision
measurements can also enable direct tests of the QED theory in medium Z elements and can
provide new X-ray standards based on narrow transitions of highly charged ions.

With the use of such a narrow line as the relativistic M1 we were able to probe the
instrument response function as well as calculate the Doppler broadening of the ions inside
the plasma which we found to be 80.5(4.6) meV. From this information we were also able
to extract such parameters as the ionic temperature of the plasma and electronic densities,
which were in accordance with the latest measurements done at the SIMPA ECRIS [131, 189].
We have also measured indirectly the natural width of the diagram line 1s2p 1P1 → 1s2 1S0
in He-like Ar, and the obtained value of 79.08(10.40) meV is consistent with the theoretical
value of 70.4 meV.

From a wide scan containing several features from He-like to Be-like Ar ions we calculated
the charge state distribution of these ions inside the ECRIS plasma and compared them to
the ratios of extracted ion currents. The plasma diagnosis tool has proven to be an excellent
method of inferring the charge state information from the radiation emitted from the ECRIS
plasma.

With this ECRIS-DCS system we can now investigate core-excited ions with 3 and 4
electrons to study correlation and Auger shifts. Thanks to the well understood line shape
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of the double-crystal spectrometer, it will be possible to obtain the intrinsic width of these
transitions to a few percent accuracy. This will allow the study of radiative and Auger
contributions to the transition probability. In the future, with the use of higher performance
ECRIS (larger plasma and higher electronic densities), improvements in the temperature
controls and angle measurements accuracy of the double-crystal spectrometer [204], it will
be possible to obtain X-ray energies accuracy below 1 ppm and to perform measurements on
heavier elements.
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