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Abstract. The electron inelastic mean free path is of basic importance in 
theoretical and applied radiation physics and surface physics. It can be calculated 
using the dielectric function for the valence band and atomic generalized oscillatoi 
strengths for inner shells of a solid. Although the experimentally determined 
attenuation length is conceptually different from the theoretically calculated mean 
free path, they are frequently used interchangeably in a loosely defined manner. 
For electrons with energies below a few keV, elastic scattering plays an important 
role in connecting these two quantities. This work employed elastic scattering 
cross sections derived using the partial wave expansion method with a solid 
potential to evaluate the path length distribution of an electron transmitted through 
a solid film. Both the analytical multiple-scattering formulation and the numerical 
Monte Carlo simulation have been applied in this investigation. A comparison 
between electron inelastic mean free paths and attenuation lengths was made 

1. Introduction 

Reliable information on inelastic mean free paths 
(IMFPS) and attenuation lengths (ALS) of low-energy 
electrons in solids is important in quantitative surface 
and interface analyses. The IMFP represents the average 
path length that an electron travels between two suc- 
cessive inelastic interactions. It can be calculated using 
the dielectric function for the valence band and atomic 
generalized oscillator strengths for inner shells of a 
solid. The AL is the projected distance of the IMFP along 
the incident electron direction. It is usually determined 
by neglecting elastic scatterings in an experimental 
overlayer method (Powell 1986, 1987, 1988). Since 
accurate measurements of AL for low-energy electrons 
are fairly difficult, it is important to estimate the AL 

from the calculated IMFP. Although the AL and the IMFP 
are frequently used interchangeably, the difference 
between them may reach 30% (Jablonski er a/ 1988, 
Jablonski and Ebel 1988). 

There are several methods available for the esti- 
mation of electron elastic scattering cross sections. The 
main differences among these methods are  the quan- 
tum mechanical approach and the assumption about 
scattering potentials. One of the most convenient and 
frequently used methods is the screened Coulomb 
potential within the first Born approximation. This 
method has been modified to incorporate it  with real- 
istic scattering potentials. Green and Leckey (1976) 

8 To whom all correspondence should be addressed 

0022-37271921020262 + 07 $04.50 0 1992 IOP Publishing Ltd 

considered the distortion of charge density due to the 
lattice periodicity in the solid to modify the atomic 
Thomas-Fermi potential. Kwei (1984) took into 
account the solid state effect by considering a screened 
potential derived from the Hartree-Fock electron den- 
sity distribution with the Wigner-Seitz boundary con- 
dition. In quantitative surface analysis, the electron 
energy of interest is usually less than 2 keV where the 
Born approximation is no longer valid. In  this case, 
the phase shift analysis should be employed. Ichimura 
er a/ (1980) used a Thomas-Fermi atomic potential in 
the partial wave expansion method to calculate elastic 
sca!tering cross sectinns of e!ec!rons. !E this work, we 
rrnpluyed the scrrrned potential associated with the 
Hartree-Fock-Wigner-Seitz (HFWS) electron densities 
(Tucker er a/ 1969) in the phase shift analysis to cal- 
culate these cross sections for low-energy electrons. 
We evaluated phase shifts by the WKB approach which 
was quite simple and accurate. 

With calculated elastic differential cross sections, 
wc thcn applied both thc analytical multiple scattering 
formulation and the numerical Monte Carlo simulation 
to compute the path length distribution of an electron 
transmitted through a solid film. We found that the 
multiple scattering formulation is valid only for large 
film thicknesses where many small-angle scatterings 
occurred during electron transmission. For small thick- 
nesses, this formulation overestimates the path length 
distribution at large path lengths and significantly 
underestimates it at small path lengths as compared 
with the corresponding results of the Monte Carlo 



simulation. We further estimated the difference 
between the IMFP and the  AL. Our results have been 
compared with data given in other works. 

2. Theory 

2.1. Elastic scattering cross sections 

The Born approximation is valid for elastic scattering 
cross sections of electrons with energies above about 
15Z2eV (Bethe and Jackiw 1968). where Z is the 
atomic number of the medium. The differential cross 
section with respect to the scattering angle 6' is given 
by 

where q is the momentum transfer, dQ = 2n(sin @)dB 
is the differential solid angle in the  direction of the 
scattered electron, and F(9) is the atomic form factor. 
Note that all quantities and expressions in this paper 
are in atomic units unless otherwise specified. The elas- 
tic scattering form factor of the atom is given by 

F(9) = 1 d3x exp(iq. x ) n ( x )  (2) 

where n(x )  is the electron density distribution of the 
atom. For elastic scatterings, one may assume q =  
2k sin(6'/2), where k is the incident electron momen- 
tum. 

Using a screened Coulomb potential to account for 
the shielding of the nuclear charge by orbital electrons 
in the atom, the differential cross section becomes 

(3) 

where ra is the effective screening distance. Employing 
the Thomas-Fermi electron density distribution, it  is 
found that rs is roughly proportional to Z-'/' for mod- 
erately heavy atoms (Schiff 1968). For light atoms it  is 
more accurate to calculate F(9) by the self-consistent 
Hartree-Fock electron density distribution. Substi- 
tuting this distribution into equations (1) and (2), we 
obtain 

sin(O/2)r]n(r) dr/ 

(2 E )  'I2 sin(6'/2) ) ',/16E2 sin4( 8/2) (4) 

where E = k2/2 is the electron kinetic energy. The inte- 
gral term in equation (4) represents the screening of 
the nuclear charge by atomic electrons with the density 
distribution n(r). For a solid atom one may apply the 
HFWS electron density distribution and replace the 
upper limit in the integration by the Wigner-Seitz 
radius rws. 

For electron energies below the Born threshold, 
i.e. 15Z2eV, equation (1) becomes invalid. At these 
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energies, one should apply the phase shift analysis 
method. The differential scattering cross section is 
given by 

( 5 )  
where 6, is the Ith phase shift and P,(cos 0) is the 
Legendre polynomial of order I .  Given a suitable scat- 
tering potential, the phase shifts can be calculated by 
an integration of the radial wave equation. Since the 
WKB approach is quite simple and accurate (Jochain 
1975, Salvat et a/ 1985) in evaluating these phase shifts, 
we adopt it in this work. This approach gives the Ith 
phase shift as 

8 , ( k )  = ( I  + i)n/2 - kr,, 

dr{[kz - U'"(r)]'/? - k }  (6) + J  )/I 
where UP"1r) = I l I  + l)/r2 + Vfr) + r2/4. V(r) is the _ ,  I, ~, I . \ ,  

scattering potential, and ro is the largest zero of 
k 2  - UC"(r). 

\ I  

A suitable potential is required in equation (6) in 
order to calculate the phase shifts. This potential 
should give rise to the correct electron density dis- 
tribution in the solid. Applying the HFWS electron den- 
sity distribution for a solid atom, the potential may be 
given by 

V(r) = -Z/r + - 4 d 2 n ( r ' )  dr'  t JI,' 
Since the polarization effect is very small for electron 
energies above 100eV, we neglect the influence of the 
polarization potential in this work. 

2.2. Path length distribution 

The paths of an energetic electron in a solid may be 
simulated by the Monte Carlo method. This method 
selects a number from a collection of random numbers 
to determine the scattering point, using the calculated 
elastic mean free path. Another number from this col- 
lection determines, from the calculated differential 
cross section, the angular deflection caused by this scat- 
tering. These determinations continue in a computer 
until the incident electron emerges from the solid. 
Electron trajectories and path lengths are all recorded. 
The calculation is repeated over and over until a stat- 
istically reliable result has been reached. Since scat- 
tering events are independent, the electron trajectory 
may be described by a Poisson stochastic process. The 
step path length is therefore given by (Murata 1974, 
Salvat and Parallada 1984a) 

As = -Ac In(R) 

where R is the random number, kc is the elastic mean 
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free path given by (Salvat and Parallada 1984h, Shi- 
mizu et al 1976) 

and N is the number of target atoms per unit volume. 
To determine the angular deflection of the electron 
after each scattering, the elastic differential cross sec- 
tion is converted into a probability distribution function 
by dividing this cross section integrated up to a certain 
scattering angle by the total elastic cross section. A 
second random number is then picked for this deter- 
mination. 

An alternative way to estimate the path-length dis- 
tribution of an electron is to solve the Boltzmann trans- 
port equation. Yang (1951) derived this distribution 
using the multiple scattering approximation which 
assumed many small-angle scatterings contributing to 
the final deflection of the electron. He found that the 
probability distribution of the path-length might he 
expressed in terms of a dimensionless variable U as 

(10) 
where U = 2(s - r)/(s - r), s is the path length, I is the 
aeptn =t penexxion or the ibicinrs: uE ii!r .GK, ail85 
(s - f )  is the average increase in path-length over 
the depth of penetration. The path-length distribution 
F(r, s) may be calculated using the relation F(r, s) d s  = 
F ( u )  du. In this work, we computed this distribution 
using equation (10) with the parameter (s - f )  obtained 
from the Monte Carlo calculation. In addition, we 
applied the direct Monte Carlo simulation to compute 
the same distribution. By comparison, we found that 
the multiple scattering approximation was useful only 
for high-energy electrons and large penetration depths. 

. . .  

2.3. IMFP versus AI. 

The assumption of an equivalence for the measured A L  
and the calculated IMFP is an over simplification. As 
shown in figure 1, an electron with incident angle cr 
with respect to the surface normal passes through a 
solid film of thickness I .  Since elastic scatterings modify 
electron trajectories from straight paths, the total path- 
lengths s, a sum of segmental path-lengths or 
s, + s2 + s3 + . . . , is greater than the penetration depth 
1. To determine the AL.  the film thickness should not 
be more than a few IMFPS. Since the elastic mean free 
path is several times smaller than the IMFP (see figure 
5 later), plural scatterings or even multiple scatterings 
occur during the electron transmission. The AL is usu- 
ally determined by analysing the zero-energy loss peak 
of the transmited spectrum of a normal incident elec- 
tron. As shown in figure 1, the transmitted electron 
emerges from the film with a lateral displacement x 
and at an exit angle with respect to the surface 
normal. Since the occurrence of scattering events obeys 
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Figure 1. An electron with incident angle n (upper sketch) 
with respect to the surface normal passes through a solid 
film ot thickness t. After several elastic scatterings resulting 
in the total path length s = s1 + s2 + s3 + . . ., this electron 
emerges from the film. Another normally incident electron 
(lower) passes through the film with an exit angle p with 
respect to the suriace normal and with a lateral 
disDlacement x. 

the Poisson stochastic process, the ratio of the zero-loss 

intensity is described by exp(-s/Ai), where Ai  is the 
IMFP. The IMFP can be calculated using the dielectric 
function of the solid (Pines 1964, Tung and Ritchie 
1977, Ashley ef a1 1979, Tung et a1 1979). 

The relation between the IMFP and the AL is thus 
given by 

?r.?nrmisri?n e!ertrc?o IntPnsi!y !" ?he incident c!ectron 

where Ad is the AL. if we neglect elastic scatterings, i.e. 
substituting F(t,s)  = b(s - t/cos cr) into equation ( l l ) ,  
we obtain A ,  = A d  as i t  should be. Equation (11) reveals 
that the probability of an electron escaping with zero- 
energy Inss from the film drops to  e-' of its original 
value at f = Ad for cr = 0 and to zero for 01 = n/2. 

3. Results and discussion 

Figure 2 shows some representative results of the elas- 
tic scattering differential cross section as a function of 
scattering angle for electrons of several energies in 
aluminium, These cross sections were calculated using 
equations (5)-(7). It is seen that elastic scatterings are 
predominantly in the forward direction with enhanced 
small-angle scatterings for high-energy electrons. In 
figure 3 we plot the ratio of the elastic differential cross 
section calculated using the Born approximation (BN) 
to that using the phase shift method (Ps )  for electrons 
of several energies in aluminium. The broken curves 
represent results of the Thomas-Fermi screened Cou- 
lomb potential for the free atom. The full curves are 
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Figure 2. A plot of elastic scattering differential cross 
section for different energy electrons in aluminium as  a 
function of scattering angle. 
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Figure 3. The ratio 01 elastic differential cross section in 
aluminium calculated using the Born approximation with 
different potentials to that using the phase shift method. 
Broken curves represent results for the free atomic 
potential. Full curves correspond to those of t h e  solid 
atomic Dotential. 

those corresponding to the solid atom using the HFWS 
potential. It reveals that this ratio approaches unity at 
large scattering angles for high-energy electrons. At 
small angles the Born approximation overestimates the 
differential cross section to some degree depending on 
the electron energy. This overestimation is remarkable 
for electron energies helow the Born threshold. Elec- 
tron density distributions associated with t h e  screened 
Coulomb potential for both the free and the solid alu- 
minium atoms are plotted in figure 4. Again, the 
Thomas-Fermi and the HFWS potentials were employed 
for the free and the solid atoms respectively. Note 
that small-angle scatterings correspond to large impact 
parameters where the nuclear charge screening by 
atomic electrons is high. Since the electron density 
extends to infinite radius for free atoms but to Wigner- 
Seitz radius for solid atoms, the differential cross sec- 

16 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

r [a.".) 

Figure 4. The electron density distribution associated with 
free (broken curve) and solid (full curve) atomic potentials 
in aluminium. 

." 
0.2 0.5 0.8 1.1 1.4 1.7 2.0 

E (keW 

Figure 5. A plot 01 the various electron mean free paths in 
silicon as a function of electron energy. Here ,le and A, 
represent the inelastic, elastic and transport mean free 
paths, respectively. Data on A, taken from Tofterup (1985) 
are included for comparison. 

tion for small-angle scatterings is thus larger for free 
atoms than for solid atoms. 

In figure 5 we plot the various electron mean free 
paths in silicon as a function of incident electron 
energy. The inelastic mean free path Ai was calculated 
using experimental optical data fitted to the Lindhard 
dielectric function (Tanuma et al 1988). The elastic 
mean free path A, was computed using equations (5) -  
(7) and (9). The transport mean free path A,, defined 
by 

is a measure of the effectiveness of elastic scatterings 
in causing the deflection of electrons. It is seen from 
figure 5 that Ac is smaller than Ai for all electron ener- 
gies. The difference between ,le and A t  is due to  the 
cosine term in equation (12). The significant difference 
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Figure 6. The path-length distribution for electrons of 
1.5 keV passing through a silicon film of 200A. Histograms 
represent the Monte Carlo results. The full curve 
CorresDonds to the multiple scattering distribution 
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0 3 

8 0.6 
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Figure 7. The path-length distribution for electrons of 
1.5 keV passing through a silicon film of 7000 A.  
Histograms represent the Monte Carlo results. The full 
curve corresponds to the multiple scattering distribution 

shown indicates that elastic scatterings are  predomi- 
nantly in the forward direction. Data on A, taken from 
other work (Tofterup 1985) are included in figure 5 for 
comparison. 

A plot of the path-length distribution calculated 
using the multiple scattering formula of equation (10) 
and using the Monte Carlo method for an electron of 
1.5 keV energy passing through a silicon film of 200 8, 
thickness is shown in figure 6. A comparison of these 
results shows that the multiple scattering formula over- 
estimates the distribution at large path-lengths but sig- 
nificantly underestimates it at small path-lengths. This 
may be understood as due to the multiple scattering 
approximation which assumes the occurrence of many 
small-angle scatterings during the electron trans- 
mission. Since in this case the film thickness is only 
about ten times the elastic mean free path (see figure 
5 ) .  plural scatterings (i.e. less than about 100 scat- 
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Figure 8. The average increase in path-length over the 
depth of penetration for electrons passing through silicon 
films of several thicknesses. 

- ' - I  

2.5 
Aluminum 
t = m  A n 

x Id) 
Figure 9. Monte Carlo results of the distribution in lateral 
displacement of electrons emerging from an aluminium film 
of 500 A thickness. The full curve is the multiple scattering 
Gaussian peak. Broken curves are the single scattering 
tails at large displacements. 

terings) rather than multiple scatterings occur most 
often. The small number of scatterings results in small 
angular deflections and consequently small path- 
lengths. Indeed, the relative difference between the 
average path-length (220.88 A) and the penetration 
depth (ZOO.&) is only about 10%. A similar plot of this 
distribution for the 7000A silicon film is shown in 
figure 7. In this case the relative increase in the average 
path-length (17550 A) over the penetration depth 
(700A) reaches 150%. Thus, the path-length dis- 
tribution calculated using the multiple scattering for- 
mula agrees quite well with that using the Monte Carlo 
method. It is seen that this distribution is asymmetric 
with the most probable value much smaller than the 
mean value due to the predominance of small-angle 
scatterings. Further, the path-length distribution 
evolves from a delta function for zero film thickness 
(Tougaard and Sigmund 1982) to broader and broader 
distributions for increased thicknesses. I n  figure 8 we 
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Figure 10. Monte Carlo results of the angular distribution 
of electrons emerging from an aluminium film of 200A 
thickness. The full curve is the multiple scattering Gaussian 
peak. The broken curve is the single scattering tail at large 
exit angles. 
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200 eV 11 
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Figure 11. A plot of the relative difference between the 
IMFP and AL for electrons of several energies in silicon. 

plot the average increase in path-length over the depth 
of penetration for electrons passing through silicon 
films of different thicknesses. For a fixed electron 
energy, the increase is enhanced for larger thicknesses 
owing to the increased number of elastic scatterings. 
Similarly, this increase falls with increasing electron 
energy for a fixed thickness. 

Variations in the exit angle p and the lateral dis- 
placement x of electrons emerging from the film (see 
figure 1) are also of interest. According to the electron 
scattering theory in a thin film (Jackson 1975, Bethe 
and Ashkin 1953), these two distributions are strongly 
correlated. They exhibit structures consisting of two 
components, i.e. the multiple scattering Gaussian peak 
and the single or plural scattering tail. Figure 9 shows 
a plot of Monte Carlo results for the distribution in 
lateral displacement of electrons passing through an 
aluminium film of 500 8, thickness. For comparison we 
also plot the fitted multiple scattering Gaussian peak 

35, 

0 '  
0 5w 1Mo 1 3  

E (ev) 

Figure 12. A comparison of IMFP and AL for electrons in 
silicon. The full curve is the results of present calculation in 
AL. The broken curve is the data of Tanuma et a/ (1988) in 
IMFP. The points are experimental AL data of: circles, 
Zaporozhchenko et a/ (1979); triangles, Flitsch and Raider 
(1975). 

Aluminum 

25 I ,/ j 

0 I 
n iw 1wo 15w zoo0 

E (ev) 

Figure 13. A comparison of IMFP and AL for electrons in 
aluminium. The full curve is the results of present 
calculation in AL. The broken curve is the data of Ashley et 
a/ (1979) in IMFP. The points are experimental AL data of 
Tracy (1974). 

and the single scattering tail distributions. A plot of 
the angular distribution for electrons transmitted 
through an aluminium film of 200 8, thickness is shown 
in figure 10. Again. the small-angle scattering Gaussian 
peak and the wide-angle single scattering distribution 
are also included for comparison. It is seen that the 
transition from multiple to single scattering occurs at 
p - 0.4. At this point, the angular distribution divides 
itself into two roughly equal portions. This indicates 
that the contribution from multiple and single scat- 
tering is about the same. 
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By substituting the calculated path length dis- 
tributions into equation ( I l ) ,  we calculated attenuation 
lengths of electrons. A plot of the relative difference 
between the IMFP and the AL as a function of silicon 
film thickness for several electron energies is plotted 
in figure 11. It is seen that below about 200A this 
difference increases rapidly with the penetration depth 
and then begins to saturate at larger penetration 
depths. For a fixed penetration depth, this difference 
increases with decreasing electron energy. This is con- 
sistent with the results of the differential cross section 
shown in figure 2, where smaller electron energies 
exhibit larger cross sections for large scattering angles. 
The ratio of AL to IMFP for sufficiently large penetration 
depths agrees with the data of Jablonski (1987) who 
derived Aa/Ai as 0.753 and 0.926 for Auger electrons of 
92 eV and 1619 eV, respectively. 

Figures 12 and 13 show a comparison of IMFP and 
AL for electrons in silicon and aluminium, respectively. 
The IMFP values of Tanuma et a/ (1988) and Ashley et 
al (1979) were used in the computation of AL using 
equation (11). Experimental AL data for silicon (Zapo- 
rozhchenko et a1 1979, Flitsch and Raider 1975) and 
aluminium (Tracy 1974) are included for comparison. 
I t  is seen that the present calculated AL results are in 
good agreement with the measured data. 

4. Conciusion 

Elastic scatterings are responsible for the differences 
between IMFP and AI. and between electron path-length 
and penetration depth. In this work we have dealt with 
these differences by applying elastic differential cross 
sections to the multiple scattering formulation and to 
the Monte Carlo simulation. These cross sections have 
been evaluated using the partial wave expansion 
method with phase shifts calculated by the WKB 
approach and the HFWS electron density distribution. 
Our approach yielded good results to account for these 
differences. Calculations performed in this work indi- 
cated that these differences were dependent on riec- 
tron energy and penetration depth. 

The path length distribution, the angular dis- 
tribution and the distribution in lateral displacement of 
electrons emerging from a solid film showed that the 
multiple scattering approximation worked quite well 
for large pcnctration dcpths and high-cncrgy clcctrons. 
On the contrary, the single or plural scattering dom- 
inated the contribution to these distributions. Thc tran- 
sition from multiple scattering distributions to single 
scattering distributions occurred at different values of 

the angle and the lateral displacement, depending on 
the film thickness and the electron energy, 
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