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Lowlying excited states in a one-dimensional system which has a small energy gap (E [J) 

in the spectra of Ro, the one-electron Hamiltonian, are investigated. Plasmons and excitons 

are our main interests. These states are investigated in the framework of the tight-binding 

approximation. In usual one-dimensional systems, such as very long linear conjugated 

molecules, the plasmon levels sink into the level continuum given by excitation energies of 

one-pair states. However, it is shown that the plasma oscillations are stable when their 

energies are sufficiently larger than the energy gap. On the other hand, the plasma oscillations 

with sufficiently small momentum whose energies in case of Eg=O were smaller than the 

present energy gap seem to be dissolved away into the level continuum. 

A formulation to derive exciton solutions is given. The screening effect for the attractive 

force between the electron and the hole is investigated by means of the Gell-Mann and 

Brueckner technique and is found to grow larger as the energy gap becomes smaller. By 

this screening effect the possibility of getting the exciton-like bound state diminishes as 

Eg->O. As a collorary we have found that the potential energy of two electric charges zle 

and Z2e separated by a distance r in a three dimensional system with small energy gap 

becomes ZlZ2e2 exp( -ar) jr if r<{IBjABI, where lEI is a measure of the Fermi energy and 

AB is a measure of the gap, while it becomes zlz2e2jEr if r}>/BjABI, where E=ra-1 (IBI/(AB)2) 

X (e2/an). ' 

§ 1. Introduction 

In the previous paperl) (hereafter referred to as I) low-energy electronic states 

with small wave numbers in the very long linear conjugated molecules with equal 

bond lengths and equal bond angles are investigated by means of Tomonaga's 

sound wave method2
) within the framework of Pariser-Parr's 7r electron apprOXIma

tion. The formulation employed may be regarded as the tight-binding apprOXIma

tion for plasma waves. 

It has been an interesting problem to see whether very long linear conjugated 

molecules have alternating shorter and longer bonds even in their middle parts or 

they have equal bonds in the parts sufficiently far apart from the ends. Many 

physicists believe the existence of the alternation.3
) Accordingly, it will be inter

esting to investigate low energy electronic excitations in the molecule with alter

nating shorter and longer bonds. In order to simplify our problem, we here 

investigate the 7r electrons moving in an infinitely long molecular skelton with 
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682 T. Izuyama 

fixed alternating bonds shown in Fig. 1. Then the one-electron energy of these 7r 

electrons has a Brillouin gap. In case of an infinitely long molecule the difference 

between the longer bond length and the shorter one will be very small. Then 

the gap should be very small. Thus our problem is similar to that of electronic 

excitations in graphites or intrinsic semiconductors. Qualitative aspects of our 

discussions seem to prevail in such three dimensional systems, though from quanti

tative point of view we should modify our treatment in each case. We will call 

the long linear molecules with equal bonds the N-molecules and those with alter

nating bonds the S-molecules. 

Fig. 1 

§ 2 Review of the treatment for N-molecules 

As shown in I, the Hamiltonian for the 7r electron system of an N-molecule is 

given by 

(2·1) 

in the framework of Pariser-Parr's 7r electron approximation which has got a great 

success in the interpretation of optical spectra of organic molecules. In the above, 

ale is the destruction operator for the Bloch orbital 

(2,2) 

where CPR is the atomic orbital (or Wannier function) belonging to the R-th atom, 

k is given by 

27r 
k=--n 

N 

and () denotes the spm function it or fi. 
(2·2) may be stated as follows, 

(n=integer) , 

ak<T = N- 1
j2 2J exp ( - ikR) b Rn 

-1V/2<R~NI2 

(2·3) 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 683 

where be is the destruction operator for <PR' Further, J h the Fourier component 

of the interaction, is given by 

2e2 

N J k = ----. Ko (r I k I) 
a 

in our one-dimensional system, Ko being the modified Bessel function of the second 

kind, and r being some dimensionless constant introduced in r. In Pariser-Parr's 

7r electron approximation, the one-electron energy E (k) is given by 

E (k) =2B cosk (2·4) 

where B is the resonance integral between two adjacent carbon atoms. 

If the Tomonaga method of one-dimensional sound waves is applied to (2 -1), 

lowlying excited states with small momenta are described by a Boson assembly 

which consists of two different groups of Bosons. One of the groups is composed 

of plasmons, each of which has the following energy quantum 

(2·5) 

where k= (27r/N)n (~7r/2) is the wave vector of this Boson,n being an integer. 

Another group is described by Bosons corresponding to spin-density waves. The 

energy quantum of a Boson belonging to this group is given by 

(2 -5') 

Same answer can be obtained by Sawada's useful method. 4
) In this method 

only the interactions of the type shown in Fig. 2 are taken into account, the re

maining interactions being neglected. Then the Coulomb interaction is replaced by 

where 

rI]-0 H o=1t ~ In(n(-n 

(n= ~o (a;'+nob;'o+b_n'oa_n'_no) 
In' 1:;;1'11' 

jn'+nl>1'
ll

, 

Fig. 2 

In which b;a=ano (n~nF)' Further in the commutator 

[Ho, a;ab;a] and [He, bn<Ta1r"".] 

one may use the following commutation relation 
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684 T. Izuyama 

because the interaction diagrams are restricted as mentioned above. Then, one can 

find an excitation energy W given by 

1=2Jn L:n! 
[n![;;;;ng 

[n!+n[>nF 

1 

W - E (n' +n) + E (n') 

1 I 
------~--~---~--J .. 
W+E(n'+n)-E(n') 

(2·6) 

In the one-dimensional system, for sufficiently small n compared with nF " we may 

use 

E (n' +n) - E (n') = Inl E' (nlj,) (2·7) 

III the denominator of the above eigenvalue equation. Then we get Eq. (2·5). 

In Sawada's theory the plasma excitation connects with only the one pair 

excitation 1JIo~a*np+nb*nl,)J!o when the electron interaction is adiabatically switched off, 

where lFo represents the ground state when e=O and n is here assumed to be 

posItIve. There are also" scattering solutions" whose excitation energies are almost 

equal to E (n' +n) - E (n') and connect with those of one-pair excitations ljJ~o~a;!+nb~two 

(n' = ng- n + 1, np- n + 2, "', nF-1) when the interaction is adiabatically switched 

off. According to Tomonaga's theory, on the other hand, the one-pair excitations 

which connect with the plasmon state are not limited to Wo~a*np+nb*n_p7Jfo and are 

large in number. However, as mentioned in I, Tomonaga's proof to show the 

equivalence between the Boson Hamiltonian and the original Fermion Hamiltonian 

is not sufficient, though his theory as a whole is very ingenious and instructive. 

However, we must not jump to the conclusion that Tomonaga's result is incomplete, 

for there are no definite reason to show that the correspondence between one

pair states in the original Fermion system and the Boson states in Tomonaga's 

formulation is incomplete and, further, Sawada's method also contains a questionable 

point especially in one-dimensional systems. In our later discussions the difference 

between both theories is not important and we will not enter into this problem in 

more detail. 

If the above scattering states could really exist, Araki's interpretation5
), according 

to which the excitation of a plasmon state with the lowest momentum is assigned 

to the first absorption band of a Carotenoid, would be very questionable. One 

might think at first that such scattering states could not absorb light quanta because 

of the conservation laws of energies and momenta. However, light waves can be 

absorbed by end effects, and dimensions of actual molecules are much smaller than 

the wave length of the light to be absorbed, that is, the conservation of momenta 

is out of question. 

There are also low energy states of another type omitted in Tomonaga's theory, 

as mentioned by Nakajima6
): Configurations each of which is given by a; b;,lffo , n 

being slightly larger than ng and m being slightly larger than - n]i', will not give 

plasmons and would give low-energy scattering states whose energies are nearly equal 

to E (n) - E (m). These situations are illustrated in Fig. 3. These scattering states can 

absorb light quanta in actual molecules. Thus, a kind of energy-gap model in Kuhn's 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 685 

sense3
) or so is required, in order to explain the convergency of the first absorption 

wave-length of the conjugated molecules.1
) 

4IBI.----~---------___,_-------___:::::;;;;;;;iO"I"_r__r_I 

o 7l/2 

Fig. 3. Excitation energies of one-pair states in an N-molecule 

§ 3. The Hamiltonian of the 'It electrons in a long molecule 

with alternating honds 

In our n electron Hamiltonian of an S-molecule the resonance integral defined 

in I is not merely B but B+LlB or B-LlB, and further the Coulomb integral 

J(R1-R2) defined in I depends not only on R= IR1 -R2 1 but on Rl and R 2• Here 

we assume that these differences are not large. Adopting Pariser-Parr's n-electron 

approximation and neglecting the end effects as in I, we get the Hamiltonian 

H=Ho+Hl given by 

where 

J Ho=Hoo+LlHo 

1H1 =H}+LlHl' 

(3·1) 

and LlHl consists of the interaction between electric dipoles, each of which has 

dipole moment (-1)Re2.Lla·p(R). Hence LlHI is a short-range interaction as well 

as weak one. Therefore, we neglect this. 

We will express AHo in terms of at and ak' Hereafter, we will omit the 

spin suffix (J in order to save notations, unless it is necessary. Using (2·3), we 

get 
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686 T. Izuyama 

and 

Substituting these into (3 ·1), we obtain 

i1Ho=2ii1B 2J (sink)at+~ak+2i4B 2J (sink)aI_~ak. 
Ikl,lk+~I~~ Ikl,lk-~I~~ 

Therefore 

Ho=2B b (cosk) ak* ak 
-~<k~~ 

+2ii1B 2J (sink)at+~ak+2ii1B ~ (sink)at_~ak. (3·2) 
Ik!,lk+~I:;;~ Ikl,lk-~I:;;'" 

This IS easily diagonalized by means of the following transformation 

(3·3) 

(3·3') 

where nj2>k>O and 

_ IB sinkl r k - --- ---------------~--------. 
V B2 sin2 k + (i1B) 2 cos2 k 

(3· 4) 

Then (3·2) is written as 

Ho= 2J Ec(k)ac*(k)ac(k) + 2J Ef(k)af*(k)af(k), 
-''''/2<k~~/2 -~/2<k~~/2 

(3·5) 

where 

Ec(k) = -Ef(k) =2vB2sin2 k+ (i1B) 2 cos2 k. (3·6) 

Thus we have a Brillouin gap Eg =4i1B, where we have chosen i1B> o. These 

spectra of Ho are shown in Fig. 4. 

Now we will express the Co~lomb interaction 

H 1 = 2J JkPkP-lc 
"'>0 . 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 681' 

Energy 

Fig. 4 

: ir/2 
I 

I 
I 

I 
I 
I 
1 
I 
I 

'-.-J 

in terms of aj (k) and ac (k ) . The result is as follows, 

Pk= ~ A~+'C{a/(l+k)aj(l) +ac*(l+k)ac(l) 

where 

l>O 

+a/( -l)aj( -l-k) +a;( -l)ac ( -l-k)} 

+ ~.B~C-l{aj*(k-l)aj( -l) +ao*(k-l)ac ( -l)} 
ic>l>O 

+ 2j if~+ic{ac* (l+k) aj(l) +aj* (l+ k) ac(l) 
1>0 

+aj*( -l)ac ( -l-k) +ac*( -l)aj( -l-k)} 

+ ~ igf-l{aj*(k-l)ao( -l) +ac*(k--l)aj( -l)}, 
k>l>O 

A~+k ==~ { (1- rl+k) 1/2 (1- rz) 1/2 + (1 + rl+k) 1/2 (1 + rl) 1/2} 

Bf- l ==~ { (1 +rk-l) 112 (1- rz) 1/2 + (l-rk-z) 1/2 (1 +rlr/2} 

f~+k ==~ { (1 + rtH) 112 (1- rl) 1/2 - (1- rl+kr/2 (1 + rl) 1/2} 

gf-l ==~ { (1 +rk-Z) 1/2 (1 + rl) 1{2 - (1- rk-l) 1/2 (1- rz) 1/2} 

Here we adopt the following conventional notations, 

ac (k ) == a (k ) , 

aj(k) ==b* (k), 

(3·7) 

(3·8) 

b* (k) corresponding to the creation operator for a hole. Further, III order to 

simplify the notations in (3·7), we introduce the following quantities, 
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688 T. Izuyama 

\ ==A~+ic(l> 0), 

ci+"l B~I'(O> 1> -k), 

\ =A- l - k ( -k > I), 

where k> o. Then we have 

l
--'fi+ k (I > 0), 

e~+ic g~ill (0) I> - k), 

--f -l-k ( - k > I), 

where 

(k== ~ ei+k{a*(l+k)b*(l) +b(l+k)a(l)} 
I 

for k>O and 

(-k==("'*. 

For our later discussions we gIve values of eltk III Table I. 

Table I 

- -

k I ~JBjIBI ~JBjIBI 

(3·9) 

(3-10) 

(3·11) 

l j ~JBjIBI 
I 

~JBjIBI ~JBjIBI 
I 

~JBjIBI 

k-l I 

+ltlr IjV2 

I 

gt 1 

--- .-----~----- ~--.---- .. ---

ftr-k +/l~ 
k 'JB) 2 (TBT cosec2 l Ijv2 I AB ------ (cot(l+k) -cotl) 

21BI 

§ 4. Plasma oscillations 

Though our main purpose is to study the one-dimensional system, we will give 

some qualitative argument on the collective motions in a three-dimensional system. 

In general, if NJk is replaced by 4 Tfe2/ aP, our discussions on "the one-dimensional 

model seem to be in essential points the ones on a three-dimensional system. 

Excited states which may be interpreted as oscillating states of density waves 

might ordinarily be found even in insulators, if we seek such solutions among high 

energy states. However, many of them would be much 

different in character from the "usual" plasmon states in - V 
metals, and investigation of such high energy states is 

belyond our
ll 

task. Our I problhem is tNo asc1ertalin w( hethe)r __ _ 
p asma osci at ions simi ar to t ose in -mo ecu es Eg= 0 

exist in S-molecules (Eg > 0) or not. 

Now the plasmon states in N-molecules are given by 

the diagrams of Gell-Mann and Brueckner's type7
) as shown 

in Fig. 5 which we call a plasmon diagram. Therefore, as 

III § 2, we seek for solutions within the framework of 

the plasmon diagrams and investigate the solutions to see Fig. 5 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 689' 

whether much difference can be found between these solutions and those of N

molecules. Then, according to Sawada,4) we may replace the Coulomb interaction 

HI by 

where (k is given by (3 ·11) or 

(k= ~ e~+ic{z9*(l, l+k) +z9(l+k, l)}. 
l 

In the above 

() (l, k) = b (l) a (k ) . 

Then, in the framework of the plasmon diagrams, we get 

[Ho, z9*(l, l+k)J=JIe·e~+Ie·(Ie' 

where 

[Ho, z9(l+k, l) J= - J Ie · e~+ic. (Ie, 

[Ho, iJ* (l, l+ k) J=E(l, l+k) z9* (l, l+k), 

[Ho, z9 (l+k, l) J= - E(l, l+ k) (}(l+k, l), 

(4·1) 

(4·2) 

(4·3) 

From these, we get the following eigenvalue equation for excitation energy W: 

or 

1=4J ~ E(l, l+k) 1,(:?l~J~. 
ic l W 2 -E2(l, l+k) 

We seek for solutions of (4·4) for some extreme values of k. 

Case 1. Ikl ~ LIB/IBI 

In this case (4·4) may be approximated as 

(4·4') 

(4·4) 

We calculate E(l, l+k) Ifl i le l
2 up to the lowest order term with respect to k. 

Then we get 

E(l l+k)lf l +le
I
2=k2 B

2

iJB2 +O(P) (4.6) 
, l (ilB2 cos2 l + B2 sin2l) 3/2 • 

(Case I· 1) Three-dimensional system (I k I ~ ilB / I B I) ; 

4ne2 1 
.N· J Ie = ---------:--- ------. 

a k2 
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690 T. Izuyama 

At first we assume that the solution of (4·5) satisfies 

W>Max{E(l, l+k)}. 
I 

Now NJk·E(l, l+k) Ifl;kl2 in the numerator of (4·5) is extremely large only' 

when l~L1B/IBI and is practically zero when l;pL1B/IBI, as is easily shown from 

(4·6). Further, for l~L1B/IBI, 

W;pE(l, l+k). 

Then we get from (4· 5) 

W 2=8J!c ~ E(l, l+k) If~+icI2. 
1>0 

Substituting (4·6) into the above and replacing the sum by the integral, we obtain 

In case L1B~ IBI we get, as shown in the Appendix, 

T ll- {l- (L1;~ B) 2} cos2 l]'/2 ( ~ r 
o 

Therefore we obtain 

This is nothing but the excitation energy of a plasmon given by substituting 

NJ1c= (47re2/a)· (l/P) into (2·5), i.e. the plasmon energy in the" normal state" 

(Eg=O). For a very small k, the maximum value of E(l, l+k) is almost equal 

to 41BI, as shown in Fig. 7. Therefore, W p >4IBI has now been required. 

This means e2
/ a> IBI. If this condition is satisfied, the plasmon level lies separately 

from the level continuum given by E (l, l + k) . On the other hand, if e2
/ a < I B I, 

the plasmon level sinks into the level continuum. Even in this case, we cannot 

:say that the plasma oscillation disappears when the gap appears. In this case the 

dispersion relation is written as8
) 

where P means the principal value, 

and 

E=E(l, l+k) 

dl= S2 (E) dE. 

(4·7) 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 691 

Then we get again the plasma frequency which is nearly equal to the one in 

the "normal state" (Eg = 0). The electron excitations (f, I) ---'? (c, l+ k) in which 

E (l, I + k) 's are nearly equal to W should be treated separately. These excitations 

give the level width of our plasma oscillation. We estimate this width by means 

of the following formula, 

nr=_l __ !1T!_~:z= E(l, l+k) \ei+k12o(E(I, l+k) - W) 
N aP l 

which has been derived by Kanazawa9
) in the framework of the 

time-dependent perturbation illustrated by Fig. 6. In order that 

E(l, l+k) = W p 

is satisfied, III should be very large compared with LlB/IBI. Then 

we get 

E(l, l+k) le~+kI2=P·LlB/IBI·LlB/sin31. 

Therefore nr/Bee (LIB/B) 2. Consequently, if the gap is very small, 

the energy width of the plasmon level lying in the level continuum 

is very small. Fig. 6 

(Case I· 2) One-dimensional system (I k I ~ LIB/I B I ) 
In this case NJk = (2e2/a)Ko(rlkl), then the dispersion relation (4·7) is written 

as 

Now lim PKo(rlk/) =0. Therefore, W should be equal to E(l, l+k) =E, at which 
k~O 

the above integrand rapidly changes. Then, it is very doubtful whether this solution 

does· correspond to a real plasmon state. Indeed, one obtains the conclusion that 

there are no plasmons in the region of k satisfying LIB/I B I '? k, if one is allowed 

to use the "existence criterion" of Bohm and Pines mentioned below. This 

criterion is stated as follows: For any k, the plasma oscillation exists if 

I == Wd ((/)I J kP,cP-k I(/) < 1, but it does not exist if I> 1. In the above, (/) is a 

Slater determinant composed of a single particle state belonging to a degenerate 

Fermi sphere. In our case W k ~ Eg • Further, noting that we are now considering 

the the case of k ~ LIB/I B I, we get 

((/)IJkPkP-kl (/) =Jk(~?le~+kI2) 

~2J (~/~B)2X N (LIB )=_~(W(O»2/iJB=_1_(W(o»2/ 
- k 2 B 2n I B I 16 k 4 1c E

g
, 

where W(2)=v (4/n)k2IBINJk is the energy of a plasmon in the case of Eg=O. 

Then we obtain 
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692 T. Izuyama 

I~4(Eg/WiO»)2~1. 

Thus, the plasmon levels which exist in N-molecules under the energy gap com

pletely disappear in S-molecules and seem to be dissolved away into the level 

continuum above the gap. 

Case II. 7Z'/2~k~.dB/IBI 

In the dispersion formula 

we may use 

Therfore, we get 

41BI .. ' -

(=g':+/, if -k<Z<O. 
e~+k ~ 

l ~ 0, otherwise. 

. ' .. ' .- .-', :. 'L:v;l Co'nti~~u~', ...... '... .... . .. . 

in S-Molecules: . . < .. ....... .. 
. " ....... _" .. ." .. .. ...... :.. . ... . 

, .. 
.. . "," .... . .. ' 

. . .. .. 

. . ' 

.. ~ ...... .' , , 0' .... ' , 
' .. 

. ..... 
" , . " .. ". ," .. 

.' . .. .... . ." 

.. .. .. . .. ...... .. .. ' ... 

' . 

.. .. .. ... . 
21BI 

. . . .. .. .... .. ' ..... .. .. t' 

.. ~ .. 

oL-----------------------------------------------------~ 

----:)~ k 

Fig, 7. Excitation energies of one-pair states 

7':/2 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 693, 

We can find a solution satisfying 

W'~E(l, l+k) for -k<I<O. 

Further in the integrands, we may use 

E(l, l+k) =2IBlk. 

Then the above eigenvalue equation is nothing but the one in an N-molecule. 

This is true in the one-dimensional system as well as in the three-dimen

sional one .. Especially, in the former the plasmon level always lies in the level 

continuum (unless k 2 N J k > 4! B I) . The level width of this plasma oscillation is 

given by 

flT'=Jk ~ E(l, l+k) le~+kI20'(ECl, l+k) - W). 
l 

I should be very large compared with JB/IBI in order to satisfy E(l, l+k) = W. 

Then, 

d+k~ f~+kOC f:t (cot Cl+k) -cot!). 

Thus, flr is sufficiently small and hence stable plasma oscillations may exist In 

S-molecules when JB~ IBI. 

§ 5. Excitons 

As is well known, the plasma oscillations come from the high mobility of 

electrons which leads to the screening of the Coulomb interaction between electrons. 

If the mobility were very large, the attractive force between an electron and a 

hole will also be screened and the possibility that the electron-hole pair has a 

bound state will be diminished. Thus excitons and plasmons are mutually exclusive. 

The exciton solution is given by the diagrams shown in Fig. 8. In the usual 

derivation10
),1l),12) of the equation describing the hydrogen-like internal motion of an 

exciton, one implicitly adopts only these diagrams and neglects all the other ones. Thus 

Fig. 8 Fig. 9 Fig. 10 
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694 T. Izuyama 

we will call the diagrams shown in Fig. 8 the exciton diagrams. If the energy 

gap is very large as in case of insulators, the diagrams for an electron-hole 

pair which seem important at first sight are the exciton diagrams, exchange 

diagrams13
) (Fig. 9), and Macke's diagrams14

) (Fig. 10) (and of course, the ones 

given by mixing these diagrams). The remaining diagrams may be neglected, 

because they should be accompanied by "vacuum polarizations" which require a 

large energy in case of a large energy gap. The exchange diagrams will also 

playa minor role because they can be included in Er(k) or Ej(k). One neglects 

Macke's diagrams, because in the off-diagonal element (a* (l' + k) b* (l') ?[fa J HiJ b (l) a (l 

+k) IF,) the term t\---V is generally small compared with }----{. However, 

the reason why other diagrams than exciton ones may be neglected in actual insu

lators would not be very clear. Indeed, the polarization waves in Mott-Pines' 

sense15
) which can never be given by exciton diagrams might exist in insulators. 

At first we take only the exciton diagrams. Then 

Pk~ 2j C~+Ic{b(l+k)b*(l) +a*(l+k)a(l)}. 
t 

Further the Coulomb interaction 

may be replaced by 

Hi~ Hc= - 2j :E J.,.. C~+'" C~+"'{a* (A)b*(fl)b(fl+K)a(A+K) 
~>o A,fL 

+a* (A +K) b* (fl+K) b(fl) a(A)}. 

Introducing ?J (fl, A) =::=b (fl) a ( A), we rewrite this as 

Ho= - 2j 2J J.,.C~+"'C~+~?J*(fl, A)?J(fl+K, A+lc). 
~t-o AfL 

As we limit ourselves in the exciton diagrams, we may use the commutation 

relation 

[?J(A, fl), ?J*(A', fl')]=a~;vapp, 

in the evaluation of [He, ()*(h-k, h)]. Then we get 

[Ho, iJ*(h-k, h)]= - 2j J.,.C~=~_.,.C~_",?J*(h-k-K, h-K). 
"'t-o 

Eq. (5 ·1) together with 

[Ho, iJ*(h-k, h)J=E(h-k, h)iJ*(h-k, h) 

determines the motion of our electron-hole pair. 

Here we introduce the following quantity, 

-:(,* (k, R) =N-1
/

2 ~ exp (ihR) iJ* (h- k, h). 
h 

Then we have 

(5,1) 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 695 

[Ho, :1;,* (k, R) ]=N-l/2 ~ exp(ihR) {Ee(h) -Ej(h-k)} {)* (h- k, h) 
It 

=N-1 ~ ~ exp[ih(R-R') ]{Ee(h) -Ej(h-k)}:1;,* (k, R') 
It RI 

= ~ {X e(R--R') -exp[ik(R-R') JXj(R- R')}:I;,* (k, R') 
R' 

where 

Xo(R) =N-1 ~ exp (ikR)Ee(k) , etc. (5· 2) 
Ie 

Similarly we get 

[He, :1;,* (k, R)] 

= -N-1 ~ ~ 2J JIC exp[ih(R-R')] exp(iICR')C~=LxCLx :I;,*(k, R') 
x::j::O h R' 

= - ~ ~ JIC exp(iICR')C';:(R-R')· :I;,*(k, R'), 
X::j::O R' 

where 

N- 1 ~ exp (ihR) C~=Lx c~;-x -C: (R). (5· 3) 
h 

Introducing 

(5·4) 

which corresponds to a velocity dependent and non-local potential, we get 

[H, :I;,*(k, R)] 

= ~{Xe(R-R')-exp[ik(R-R')]Xj(R-R')- Vk(R', R)}:I;,*(k, R'). 
R' 

(5·5) 

Now, the energy eigen-state of our electron-hole pair will, in general, be 

written as 

Wen, k)=~l*(n, k)Wo, 

where Wo is the vacuum state and 

~* (n, k) = ~ ~c(n, R)·:I;,* (k, R). (5·6) 
R 

In the above n is a quantum number describing the internal motion of our pair. 

As HW=O, we get from HIJf(n, k) = WP'(n, k) the following equation, 

[l-I, ~1* (n, k) ] P'o= W~l* (n, k) Wo. 

Substituting (5·5) and (5·6) on the left side of the above equation, we get 

~ {Xc(R'-R) -exp[ik(R'-R)]Xj(R'-R) -- V,.,(R, R')} U/c(n, R') 
R' 

= WU/c(n, R). (5·7) 

According to Wannier,l°) we sometimes regard the point function U/c(n, R) 

defined at R=O, ± 1, "., ±N/2 as a continuous function of R in the range 

(-N/2, N/2). Then, from (5·2) we obtain10
) 
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696 T. Izuyama 

~Xc(R'-R)·Uic(n, R')=Ec(~-O-)Uic(n, R), 
Rf l oR 

and 

~ exp[ik(R'-R)]-Xj(R'-R). Ule(n, R') =Ej(-k+~ -~) Ule(n, R). 
Rf l oR 

Therefore, Eq. (5·7) becomes 

We here perform the following transformation,IO) 

Then, we get 

%·rk(n, R) -1 Vlc(R, R')rk(n, R')dR'= w·rk(n, R), (5·S) 

where 

(5· 9) 

As we are now concerned with the very low energy states, we here consider 

the case k~O. Further, we replace Ec(p) and Ej(p) by 

where 

Ec(P)~EcCP) = 211B+ 2!2* (P1a)21 

-Ej(P)~-Ej(P) =2L1B+-~-(p/a)2 , 
2m* 

fi2 [d
2 J [d

2 J B2-11B2 --= -Ec(p) = ~-----Ej(p) =2---
m*a2 _ dp2 p=O dp2 p=o LIB 

Then we obtain 

(5·10) 

(5·11) 

Omitting the kinetic energy due to the translational motion of the center of mass 

of the electron-hole pair, we get the following wave equation for the internal 

motion of our electron-hole pair, 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 697 

If dB ~ I B I, (5· 11) becomes 

m*=f~i~:=-} ( ~ ) . -(j~r) (';;) m, (5·13) 

where a H is the Bohr radius and m denotes the usual electron mass. Therefore 

dB ~ IBI means ~m* ~ m, for a',,-,aB and IBI ~ (e21 a). In this case, it is very 

difficult to localize the internal motion of our electron-hole pair, because of the 

uncertainty principle. Then, the bound state of this pair, if it could exist, should 

have a widely spreading orbital for the internal motion. Then, the long range 

part of the attracting force between the electron and the hole becomes important, 

while the short range part plays a less important role. Therefore, among the 

Fourier components of this potential, J/s with small Ie play important roles. 

One may think that such a widely spreading character of the internal motion 

is completely due to our" ad hoc" assumption (5 ·10). Indeed, E(P) gives an 

unreasonably high energy for the pair configuration rJ*(p-k, p) when Ipl ';j>dB/!BI 

(d. Fig. 11). Hence, the mixing of the configuration ()*(p-k, p) lJfo (with 

Ipl ';j>dBIIBI) might be undeservedly supressed. However, the mixing of such 

a ,configuration will actually be small, for J,,(with n/2';j>IC';j>dB/IBI) should be 

replaced by J" ( ~ J,,) , as shown in our later discussions, and then the matrix 

element between the above configuration and {}*(p-k, p)lJfo (with Ipl~dB/IBI) 

will become very small. Now, we will examine the potential Vk (R, R'). When 

k~O, we get 

C./(R-R') =--~- ~ IC~:_~12 exp[ih(R-R')]. 
Nit 

For small IC, C ~_" = 1. Then' we obtain 

C;'C(R-R') =o(R-R'). 

Therefore, for sufficiently large R, we get 

Vic(R, R') = 2J J,,·exp(iICR)o(R-R') 
~*o 

e2 

=----- ·o(R-R'). 
Ra 

This assures the existence of the bound 

state solution for Eq. (5 ·12). The dis

sociation energy of this bound state is 

roughly estimated as follows. 

i{(p) 

I 

: ' 
__________ -L __ 

~~ 

____ 

---~p 

o 4.dB/IBI 

Fig. 11 

W-E g ""'""'- 4
1

- _~ _~Bn2_ 2_= __ 1_dB(~2_IIBI)2= _~ E
g

' (~/IBI)2 
a B B2 a2 m 4 a 16 a 

(5 ·14) 
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698 T. Izuyama 

It should be noted that IBI is of the same order as that of e2
/ a, thoughlBI > e2

/ a. 

However, we must not jump to the conclusion that we can find an exciton level 

appreciably lower than the energy gap in an S-molecule. 

The reason why we have got such an exciton level is that we have taken 

into consideration only the exciton diagrams as shown in Fig. 8 or, in other 

words, we have completely neglected the screening effects for the long range 

Coulomb interaction between the electron and the hole. This interaction is not only 

but also 

.I. 0 >--~--< 

" · 0--;---< /. 
where r is some polarization diagram.16

) Actually, for a scattering process with 

momentum transfer IC, the effective interaction should be given by 

where the summation includes r=o. This J/C will be much smaller than J/C. 

Among various {"s plasmon diagrams will be most important in case of a 

small gap. At first we consider the simplest case as shown in Fig. 12. The 

contribution from these diagrams is estimated as follows, 

·,,/2 

_~N:} ~ 

-'1</2 

le~+1t 12 dp 

E(I-'-, P+IC) 
(5·15) 

This expreSSIOn IS not correct from the quantitative point of view, for in the 

energy denominator we have neglected the energy change induced by the intra

band transition of our electron-hole pair. For IC < LlB/ IBI, however, (5 ·15) IS a 

Fig. 12 
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Electron Interaction in Very Long Linear Conjugated Molecules. II 699 

sufficiently good approximation, for such an energy change is usually smaller 

than the polarization energy E(p, p.-+tc). For 7X'/2~tc~L1B/IBI, on the other 

hand, the use of (5 ·15) can never be justified from the quantitative point of view. 

However, from the qualitative point of view, our result seems to remain unchanged, 

even if we take into account such an energy change. It should be noted that by 

using (5 ·15) we have replaced the screening for the interaction between the electron 

and the hole by the one for the interaction between two motionless charges placed 

in our many-electron system. In other words, we have neglected the retardation 

corresponding to the time spent by the interaction in polarizing the many-electron 

system. Though we can take this retardation into account by means of Hubbard's 

method16
) or else, we here neglect this, for the result including the retardation 

will complicate our later discussions. Here we adopt a similar technique to the one 

adopted by Gell-Mann and Brueckner?), i.e. Feynman's path-integral method; we in

troduce the following function, 

",,/2 

Fy.(t) == i le~+Y.12·exp[-ltIE(p, p+IC)Jdp.. 

-'JC/2 

Then (5 ·15) IS written as 

NJ
2 r 

J(l)(tc) = ---;;~ J F/C(t)dt. 

-00 

This IS further expressed as 

J'" (/C) = - N;,~ I dt J dt,· J<'.(t,) a (t, -t). 

-00 -00 

N ext, we consider all plasmon diagrams 

shown in Fig. 13. Further, for our 

present qualitative arguments, we 

neglect all the other diagrams in the 

summation over r. Then we get 0
---0 

---0_____ ---

JIC= £J(n) (tc), 
n=O 

Fig. 13 

co 00 00 

An (tc) == i dt i dtl ··· i dtn· FIC (tl ) ... F/C (tn) . a(tl -+ ... -+tn-t). 

-co --co -00 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

2
/5

/6
8
1
/1

8
6
8
4
3
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



700 T. Izuyama 

Expanding the above a-function into the Fourier series, we get 

00 00 

An (IC) = 2
1;-1 du 1 dt [QIC (u) In exp ( - iut) = [QIC (0) In, 

-00 

where 

00 

QIC (u) -:=:.1 FIC (t) exp (itu) dt. 

Therefore 

j -J ~ C-1)n( NJIC )n[Q (o)]n-J 1 (5 16) 
IC- IC ~b -rr- ,IC - IC 1+ (NJ,jrr)Q" (0) , . 

where 

'10/2 00 

QIC(O) = 1 dfl i 
-",,/2 

(Case I) ,c~LlB/IBI· 

(5 -17) may be safely replaced by 

By means of (4 -6) and (3 -6), the above quantity is written as 

",,/2 

QIC (0) = 1C
2 
B2 (LIB) 21 [ (LIB) 2 COS2~: B2 sin2 fl J5/2 

o 

",,/2 

1C2 (LIB) 2 r dfl' 

=- IBY- J [1- {1~ (LiB/B)2} COS2/lJ5/2 • 
o 

This integral is evaluated in the Appendix, and is approximately equal to 

*(B/ LiB) 4. Using this, we obtain 

Then from (5 ·16) we obtain 

~ 1 
J =J . -~----------------------------

IC IC 1 +2 (NJ
ic

) • 1C21BI/3rr (LiB) 2 
• 

(5·18) 

(Case II) rr / a? IC ? LIB/I B I. 

(5·16) may be safely replaced by 
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Electron Interaction zn Very Long Linear Conjugated Molecules. II 701 

o 
(' dp 

Q" (0) = 2 \ ------. (d. Table I) 
J E(p, P+IC) 
-~ 

Using E(p, P+IC) =2IBIIC, we get 

Q,,(O) =l/IBI. 

Substituting the above into (5 ·16), we obtain 

~ 1 
J,,=J,,' . 

1 + NJICI7rIBI 
(5 ·19) 

In Case II, the screened interaction in the S-molecule is equal to the one in the 

N-molecule. Note that NJ,,> IBI, when IICI <{7r/2. Especially, in three dimensional 

systems (NJ,,= (II a) . 47re21 1C2), J/C is nothing but the Fourier coefficient of the 

potential e2
• exp ( - ar) I r. Then, the attractive potential between the electron and 

the hole separated by a distance r, a I B ! I .d B > r > a, is not - (e21 r) but 

- e2 . exp ( - a r) I r. In Case I (IC <{ .dB I I B I), the screening effect is weaker, though 

this effect grows stronger as .dB~O. Especially in three dimellsional systems 

J/C=JIC · 1 . . . Therefore, for r>(IBII.dB) a, the interaction becomes 
1 + (8/3) (e21 a) IEII LlB2 

-e2/Er, where E~8/3·e2Ia·IBI/.dB2. Though this dielectric constant is extremely 

larger than unity, the interaction _e21 Er assures the existence of the excitons. 

Namely, the exciton solution is certainly obtained whenever the energy gap may 

arise and be compatible with the plasmon solution. However, the dissociation energy 

of the exciton in a three-dimensional system is extremely small compared with the 

gap, i.e., (W - Egj Eg) tends rapidly to zero in proportion to E/ as Eg~O, for 

the dielectric constant is inversely proportional to Et Thus, the exciton cannot 

be observed if Eg is sufficiently small, for the exciton level should have the 

energy width.l1) 

In our one-dimensional system, however, Ji JIC for IC<{ .dBIIBI is not so small 

as in the three-dimensional case. It should be noted that lim JIC=JIC . Namely, 
~~o , 

the interaction reduces to the completely unscreened form e21 r, as r~ co. Accord-

ingly, the possibility of observing the exciton in our one-dimensional system 

is much larger than that in the three-dimensional one. However, (W - Egj Eg) 

will tend to zero as E (I ~O even in this one-dimensional. system because of the 

following reason. The classical distance of separation between the electron and 

the hole in their bound state whose dissociation energy is indicated by (5 ·14) is 

roughly equal to (IBII.dB)an . Then J,,'s with 1C",.,.dBIIBI should play important 

roles. The value of J"IJIC at ,c=.dBIIBI may be estimated by extrapolating the 

formula ( 5 . 17) or (5 . 18) . Both formulae gi ve about the same val ue for 

JICIJ/C(,c=.dBIIB/) , i.e. 7rIBIINJ/C. Note that NJ/C>IBI. Hence JiJ/C<{l even 

for 1C,......,.dB I I B I· Then the classical distance of separation should be much larger 

than (I B II LiB) aB , and so the dissociation energy W - Eg of this exciton, if it 

could exist, would be much smaller than Eg • 
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702 T. Izuyama 

There are some possibilities of obtaining a large energy gap3) in an S-molecule. 

Thus we could not reject the possibility that the lowest excited state corresponding 

to the first optical absorption would be the exciton state. 

§ 6. Summary and discussions 

One can never get the convergency, if one attributes its ongIn to the plasma 

oscillation of the one-dimensional electron gas in a long tube. Thus, a kind of 

energy-gap model in Kuhn's sense or the like is required, in order to explain the 

convergency. 

When the energy-gap Eg arises in the spectra of I-Io, the plasma oscillations 

whose energy quanta fica are sufficiently large compared with Eg remains stable 

even if their energies sink into the level-continuum of the pair excitation energies. 

On the other hand, the excited states which are represented in N-moleules by the 

plasmons with fica < Eg are much altered. The solution of Eq. (4·7) is always 

larger than Eg , and in' case Ikl ~L1B/IBI it is almost equal to the gap. Moreover, 

it is very qeustionable to regard the solution as the one corresponding to a real plasma 

oscillation. Indeed, one obtains the conclusion that there are no plasmons in the 

region of k satisfying Ikl ~L1B/IBI, if one is allowed to use the" existence criterion" 

of Bohm and Pines. It should be noted that the above conclusions are limited to 

the one-dimensional system. Indeed, the plasma oscillations in the three-dimensional 

system remain unchanged when the small energy-gap arises. 

Our discussions about the exciton are rather rough. Especially the use of 

(5 ·10) would be open to questions. However, we may reasonably conclude that 

the screening effect for the attractive force between the electron and the hole grows 

larger as the energy gap becomes smaller. By this screening effect the possibility 

of observing the exciton diminishes as Eg becomes smaller. Further, our very 

rough arguments give the conclusion that the excitation energy of the lowest 

exciton-like bound state, if it could exist, would be nearly equal to the gap. Then, 

such a state would not be observed, for the exciton level should have energy 

width. Thus the lowest excitation energy of our many electron system with small 

energy gap in the spectra of Ho seems to be practically equall to the gap. 
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Appendix 

At first we calculate 
[",/2 dp. _ . 

J a [i=-<i=- k 5~Os2pJ3/2 - = I In case k ~ 1. 
The integrand 
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IS overwhelmingly large only when 0 $ p ~ 1. Then we may use the following 

approximation, 
'1':/2 

I ~ .\-11- _(~os ~~~:~-sill J/2-

o 

'1':/2 3 3.5 
\ [cos p +-2- (l-k) cos

3 
P+-2. 4 (l-k) 2COS

5 
p+, .. J dp. 

'0 

U sing the well-known formula, 
'1':/2 

i cos
2n

+ 1 p dp =-(2~; 1')'~~~-~. -::3- , 
o 

we get 

I~l+ (l-k) + (1-k)2+ ... =-----~ 
1- (l--k) 

1 

k 
(''1':/2 dp 

Next we calculate \ _ . I' in case k ~ 1. By the same reason 
Jo [1-(1-k)cos2 pJ5/2 

as mentioned above the following technique may be used, 

'1':/2 

J 
COS3 pdp 

I' "-' -
= [1- (1- k) COS

2pJ5/2 
o 

'1':(2 5 5 7 J 
( [cos3 P + (1- k) cos5 P +-----~- (1- k) 2COS

7 p+... dp 
J 2 2·4 
o -

=---~-[1+2(1-k) +3(1-k)2+ ... J 
3 

2 

3 

1 

[1- (1-k)J2 
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