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Photoemission data in which the signal from the first atomic layer is well resolved from that of the
bulk are used to determine accurately the kinetic-energy dependence of the inelastic-electron mean free

path in the alkali metals. At the higher kinetic energies, the data are in very good agreement with the

theory of Penn. Below about 10 eV, the mean free path in the heavier alkali metals drops markedly

below the theoretical values. This is attributed to electron decay processes involving the unoccupied d
bands.

INTRODUCTION

The electron inelastic mean free path (MFP) deter-
mines the sampling depth in photoelectron spectroscopy.
This is an important parameter in the interpretation of
vacuum ultraviolet and soft-x-ray photoemission spec-
troscopy data, because in many materials the MFP drops
to values close to the interatomic spacing for kinetic en-
ergies between 10 and 60 eV. In this region the photo-
emission signal comes from such a small number of near-
surface atomic layers that the signal from the first layer
alone may well dominate the response. Although a great
deal of effort, both empirical and theoretical, has been de-
voted to establishing the general nature of the MFP,
there is relatively little experimental information about
the MFP in the simplest of systems, the free-electron
metals (Al is a notable exception'). Theory shows
that in these metals the MFP is simply a function of the
conduction electron density and that it has a similar ener-

gy dependence in all materials.
Measurement of the MFP has generally been based on

the growth of overlayers of known thickness on a chemi-
cally distinct substrate. ' The MFP in the overlayer can
then be determined both from the thickness dependence
of the intensity of a substrate photoemission line, as well
as from the intensity of the overlayer emission. This
method suffers from well-known problems. It requires a
calibrated source of overlayer atoms, as well as
knowledge of the coverage-dependent sticking coefBcient.
More serious are the limitations imposed by the nature of
thin-film epitaxy itself. The method works mell only
when layerwise growth is assured, but this is usually the

exception rather than the rule. Pores and clusters often
defeat this approach, signaling their presence by devia-
tions either from exponential attenuation of the substrate
signal or from exponential growth of the overlayer signal
with coverage.

An alternative method, which has been applied to Au,
makes it possible to avoid the problems of epitaxy alto-
gether. It is applicable whenever the signals from one or
more of the outermost atomic layers can be resolved from
those of the deeper layers of a bulk solid. This approach
is predicated on the fact that the surface layer of atoms
generally has a distinct core-electron binding energy. It
is feasible provided that the surface-atom core-level shift
is larger than the core-electron linewidth. The fractional
intensity (area) of the bulk signal then suffices to deter-
mine the MFP, which is obtained in units of the layer
spacing of the solid in the direction of observation.

This alternative approach is straightforward and quan-
titative, provided that the areas of the bulk and surface
photopeaks can be accurately determined. This requires
knowing the line shapes of the individual components.
Earlier studies of surface-atom photoemission from met-
als ' have assumed that the line shapes of bulk and sur-
face peaks are identical, but recent work ' has shown
that, in fact, this not the case. In particular, the surface
component has a larger Gaussian width due to enhanced
vibrational broadening ' and a significantly larger singu-
larity index than the bulk due to greater contributions of
s-wave screening of the core hole. ' In some metals,
e.g., %', it has even been shown that the I.orentzian core-
hole lifetime width of the surface atoms is different.
This is, however, not a significant factor in the alkali met-
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FIG. 3. K. K 3p photoemission spectra from an annealed K sur-

face at 80 K, taken with a range of photon energies.
FIG. 4. Rb4p photoemission spectrom from as-deposited Rb

surfaces at 80 K, taken with a range of photon energies

havior, increasing in amplitude from 22 to 25 eV photon
energy, then briefly decreasing, and finally increasing
from 20 up to 65 eV.

In order to obtain quantitative information about the

escape depths, the data were analyzed by least-squares
fitting with a common lifetime width but distinct bulk
and surface singularity indices' in the Doniach-Sunjic
( ) line shape. ' The data for Na and K were fitted with
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bulk and surface spin-orbit doublets of identical spin-
orbit splitting. Values close to the free-ion spin-orbit
splitting of the p s configuration, appropriate for the ful-

ly screened final hole state, were obtained. For Na, the
natural widths of the 2@3/2 and 2p»2 components were
taken to be the same (this has been justified in Ref. 9 on
the basis of successful spin-orbit stripping); for K, in-

dependent values were required. The range of the fit was
limited to an interval sufficiently small to minimize con-
tributions from the surface plasmon at 4.2, 3.8, 2.7, and
2.5 eV in Li, Na, K, and Rb, respectively. The intensities
associated with the bulk and surface components were
determined from the areas under the Gaussian-broadened
DS lines, with a cutoff imposed by the range of the fit.
(Note that a cutoff is required since the DS lines are not
integrable to increasing binding energy. )

In order to interpret the resulting intensities, we con-
sider a (110) surface of a bcc single crystal viewed at a
normal takeoff angle. We denote the (110) layer spacing
by d. If the signal from the outermost layer is considered
unattenuated, then the signal from the nth layer is given

by e '" "" . Summing the contributions from all lay-
ers, we find that the fractional signal from the second and
deeper layers, fs, is

e
—d/k

This corresponds to the intensity of the signal identified
as "Bulk" in Figs. 1 —4. In Fig. 5 we have plotted A, , cal-
culated from this equation, for the fractional bulk intensi-
ties obtained from the analysis of the Li, Na, K, and Rb
spectra.

The Li and Na data conform to the general expecta-
tions regarding the kinetic-energy dependence of escape
depths in solids, ' having a shallow minium between 15
and 50 eV, rising rapidly at low kinetic energy, and more
gradually at high kinetic energy. Plotted as a solid line is

the theoretical MFP for the appropriate r„obtained by
interpolation in Fig. 4 of Ref. 5. The agreement is gen-
erally very good.

DISCUSSION

The most striking features in Fig. 5 are the oscillations
in the data for K and Rb. A possible explanation is

strong modulation by photoelectron diffraction, an effect
ignored in our analysis. The minimum in the MFP's do
occur close to the kinetic energies for electron wave-
lengths equal to the nearest-neighbor distances. The
weakness of this hypothesis, however, is that it fails to ac-
count for the absence of similar oscillations in Li and Na.
Also, if electrons in this energy range are strongly
diffracted by the crystal potential, there should be reper-
cussions in the band structure. This is what we now dis-
cuss.

The heavier alkali metals K, Rb, and Cs have unoccu-
pied d bands, and may be regarded as the leading ele-
ments of the 3d, 4d, and 5d transition-metal series.
Band-structure calculations display prominent peaks in
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FIG. 6. Escape depth in Cs, from Ref. 10, compared with the

theory of Ref. 5 (solid line). The dashed line is a guide to the
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CONCI. USION S

We have obtained electron mean free paths in the al-

kali metals from clean, (110)-oriented single-crystal sur-

faces. Our method, which relies not on overlayer growth
but on the resolved signal from the surface layer, pro-
vides highly reliable results. The data typically cover the

the density of states just above the Fermi level. ' We
therefore have a decay channel in which an electron can
emit a plasmon and drop into the d band. The maximum
energy for this is E, +A'co, where E, is the upper edge of
the d band and co is the bulk plasma frequency. We may
reasonably equate F., with the energies of the upper P4
levels in the calculated band structures, and these occur
at 6.8, 6.5, and 5.5 eV for K, Rb, and Cs, respectively.
Adding %co, we obtain for the respective maximum ener-

gies 11.2, 10.5, and 9.1 eV. It is seen in Fig. 5 that for K
and Rb these agree well with the energies below which
the MFP's deviate strongly from the Penn theory.
Another strength of this hypothesis is that it accounts
naturally for the absence of similar deviations in Li and
Na.

If our hypothesis involving unoccupied d bands is
correct, the effect should be even more pronounced in Cs.
Unfortunately, the available data for Cs are sparse. We
plot in Fig. 6 two values for the MFP in Cs obtained by
the analysis methods of this paper from data obtained re-
cently using He resonance radiation and polycrystalline
samples. ' Agreement with theory is excellent. Below 10
eV, some early estimates of the MFP in Cs have been re-

ported using an entirely different analysis method based
on absolute quantum yields. ' These estimates lie be-

tween 1 and 2 A, indicative of a major departure from an

extrapolation of Penn's theory to low energies. It would

be desirable to obtain more complete data on Cs using

synchrotron radiation and to apply the analysis methods
of this paper.
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range from 5 to 100-eV kinetic energy, including the
minimum of the escape-depth curve. This minimum is

O

generally near 4 A, a value so small that the signal from
the first atomic layer dominates the photoemission spec-
trum. Our results are relevant to the interpretation of
angle-integrated as well as angle-resolved vacuum-
ultraviolet and soft-x-ray photoemission studies.
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