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Abstract 

The objective of this work is t o  shed light on electron transport through sub-micron semi- 

conductor structures, where electronic state quantization, electron-electron interactions and 

electron-phonon interactions are important. We concentrate here on the most developed 

vertical quantum device, the double barrier resonant tunneling diode. In this work we an- 

alyze particle interactions in two structural limits: 1) large, and 2) small cross-sections, 

in which the treatments are fundamentally different. Large cross-section structures involve 

particle-interactions with many electrons and these effects can be described in the Keldysh 

formalism in a single-particle picture by effective potentials. We present model calcula- 

tions treating the phonon-peak a,nd electrical bistability in this limit. Small cross-section 

structures involve only a few particles, whose interactions cannot be described by effective 

potentials, due to  strong particle correlations. The single-particle picture breaks down and 

a full many-body description has t o  be used. We present high bias calculations for elec- 

tron transport through single quantum dots (artificial atoms) and an ana,lysis of the linear 

response conductance spectrum of two coupled quantum dots (artificial nnolecules). 

... 
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Chapter 1 

Introduction 

1.1 Significance 

The improvements of molecular beam epitaxy have reached a state where the deposition of 

material layers on an atomic length scale is possible.'-5 State-of-the-art x-ray and electron 

beam lithography allows horizontal patterning on a nanometer ~ c a l e . ~ ~ ~  These technologies 

have given rise t o  a new class of devices that  operate on quantum-meclianical principles. 

Some of the devices are close to  reaching commercial status but most of the structures are 

still in their infancy. The technology for constructing devices has improved much faster than 

the device modelling capabilities and consequently the understanding of electron transport 

in these so-called "mesoscopic structures" is a topic of current research. 

Vertical Devices 

Quantum phenomena are most evident when the electronic dephasing length* is large com- 

pared to  the confinement. Quantum Devices can be categorized into 2 general classes, 

vertical and horizontal, (Fig. 1.1) indicating the direction of current flow with respect t o  

the confinement. In vertical devices, electron transport occurs perpendicular to the epitax- 

ially grown layers. The critical length scale of such devices is determined by the epitaxial 

layer thickness, which is typically of the order of 10nm. In such structures quantum ef- 

fects occur a t  high bias and high temperature. Examples of devices in this class are single 

and multi-quantum well structures which have possible applications'-4~"23 as oscillators, 

detectors and switches. 

Lateral Devices 

In lateral devices, where electron transport occurs in the epitaxially grown plane the crit- 

ical dimensions are determined by lithography. The feature sizes feasible today are of the 

order of lOOnm which is a factor of 10 to 100 larger than the vertical epitaxial layer spac- 
ing. Interesting quantum effects such as conductance fluctuations, quantized conductance, 

Coulomb blockade and Aharanov-Bohm oscillations are mainly observed a t  liquid Helium 

temperatures and biases less than kBT/q.5-7 Lateral devices are still in their infancy due 

'The dephasing length is, roughly speaking, the length over which an electron propagates without any 

inelastic scattering with other particles. 
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2 Introduction 

to  these temperature and bias constraints and are of little practical significance. However, 

it is expected that  quantum effects will arise a t  higher temperatures and larger bias as the 

feature sizes continue t o  decrease. 

Figure 1.1 Structural comparison of vertical and horizontal quantum devices. (a) Example of a vertical 

structure. Current flow is along the direction of film growth and perpendicular to the film 

layers. (b) Vertical cut through the layers of a typical GaAs/AIGaAs structure with a corre- 

sponding conduction band profile. (c) Example of a horizontal structure. Electron transport 

is within one layer. (d) Vertical cut through the layers of a typical horizontal structure with a 

corresponding conduction band profile. By modulation doping a high mobility inversion layer 

is formed. 

O-Dimensional Devices 

R e ~ e n t l ~ ~ ~ - ~ '  vertical structures with finite cross-sections have been experimentally investi- 

gated, where electrons are confined in all three dimensions. Since the electrons do not have 

any translational degree of freedom, these structures are called zero-dimensional. Single elec- 

tron tunneling, single electron-electron Coulomb interactions and O-dimensional states have 

been 0 b s e r v e d . ~ 7 ~ ~ " ~  With further advances in lithography, and in particular, the promise 

of STM lithography,33 we envision semiconductor structures engineered on a nanometer 

scale in both the  lateral and the vertical dimensions operating under high bias conditions. 

It can be expected that  electron-electron interactions will play a more significant role, as 

they do in quantum chemistry34 of atoms and molecules and many-body effects will become 

more important. This motivates our present modelling effort. 
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1.2 The Problem 3 

1.2 The Problem 

1.2.1 Semi-Classical Transport 

Electron transport in commercial semiconductor devices is usually modelled within the 

framework of drift diffusion. Electrons are assumed to  scatter frequently with impurities, 

lattice vibrations and with each other. A constant driving force is needed to  overcome the 

resistance due t o  scattering in order to  transport the electron gas through a device.35 As 

device structures become smaller, hot electron effects become important. Electrons scatter 

less frequently and may transverse a significant part of the device ballistically. Modelling of 

electron transport in this regime is usually undertaken using semi-classical Boltzmann type 

equations.36 Sophisticated device sir nu la tor^^^ accounting for many scattering mechanisms 

have been built and are already in use in many industry laboratories. 

1.2.2 Coherent Transport 

If the electron confinement shrinks under the length scales at  which elec.trons scatter and 

lose their phase memory, the electron transport cannot be understood in semi-classical mod- 

els anymore, but has t o  be described within a coherent quantum mechanical framework. 

Qualitatively, much of the transport phenomena in mesoscopic systems can be understood 

in terms of a single-particle picture, neglecting electron-electron interactions and inelas- 

tic processes in the device. Coherent transmission coefficients can be calculated from the 

Schrodinger equation and the flow of electrons can be treated as a scattering problem.38-41 

The single-particle picture employed in the treatment of coherent quantum transport ne- 

glecting phase breaking processes is a very intuitive one and can already be found in graduate 

level text books.42 

We can therefore state that  the two limits, 1) coherent single-electron, and 2) totally 

incoherent many electron transport are in principle well understood. Transport in the realm 

of mesoscopic devices, where electrons move coherently, where they may be correlated t o  

other electrons and where they interact elastically or inelastically with impurities or the 

lattice is the challenge in our research area. 

1.2.3 Transport in Interacting Systems 

Importance of Electron-Phonon Interactions 

Even in very pure materials inelastic scattering effects with the surrounding lattice occur 

for high energy electrons in a high bias device.43 The lattice acts like a resonator, that  

can absorb (emit) energy from (to) the electrons. These electron-phonon interactions are 

present in every semiconductor (even a t  zero temperature) and are particularly strong in 

polar materials that  are based on ionic b ~ n d i n g . ~ ~ ? ~ ~  For quantum devices operating in 

the high bias regime, inelastic scattering can play a crucial role in determining the correct 

transport physics. 

A very clear demonstration of the importance of inelastic scattering on resonant tun- 

neling is the appearance of the phonon-peak43146-55 in the valley current of double-barrier 

- - 
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4 Introduction 

resonant tunneling diodes (DBRTD). The current is scattering enhanced over the non- 

resonant transmission due t o  electron-phonon interactions and a satellite peak past the 

main peak occurs in the current-voltage-characteristic (I-V-characteristic). Phonon peak 

currents as high as main resonance currents have been ~ b s e r v e d . ~ '  

We will be treating the problem of the phonon-peak on two levels. We first present 
numerical results using our simulator QUEST56 in Chapter 2. In Chapter 3 we present a 

simple analytical model explaining the relative amplitude of the phonon peak t o  the main 

peak as a function of asymmetry in the structure. We will be deriving these results from 

a simple rate-equation based model and from the Green-function formalism of Keldysh, 

Kadanoff and Baym (KKB) .5744 

Importance of Electron-Electron Interactions 

Electron-electron interactions have been found to  be important in DBRTD 7s as well. Large 

cross-section DBRTD's have a quantized density of states in one dimension and electrons 

have two degrees of freedom in the plane of the grown film.42*65 Many electrons can therefore 

be accommodated in this resonant state and charge can be accumulated. Effects due t o  

charge accumulation can generally treated in a macroscopic charging mode1766-68 where the 

quantum mechanical problem is treated in a single-particle picture and the influences due 

to other electrons are treated with "effective" potentials in the Hamiltonian. It is well 

understood that  Coulomb charging shifts up the conduction band as well as the resonance 

level .66-68 

The charge accumulation in the structure causes an intrinsic b i ~ t a b i l i t ~ , ~ ~  which leads t o  

a hysteresis in the I-V-characteristic. This hysteresis has been observed46*47-55 in large cross 

section devices. We present numerical results of the bistability of asymmetric DBRTD's 

using our recently released simulator  QUEST^^ in Chapter 2. We show, how a locad charging 

potential introduces the bistability and represents experimental results correctly. 

1.2.4 Strongly Correlated Transport 

In small cross-section DBRTD's electronic states are quantized in three dimensions and elec- 

trons do not have a single degree of translational freedom (OD-structures). These so-called 

quantum dots can be filled with only few  electron^^^^^^ and transport can be considered to  

be determined by two physical effects: 1) the electronic state quantization t o  zero degrees of 

translational freedom, and 2) correlations of electrons due to  charge interaction. Quantum 

dots have been called artificial atoms,7 since the states in the quantum dots are determined 

by 1) the tight potential confinement and 2) the filling of the states with electrons. 

Single electron tunneling and single electron charging effects have been observed in 

small cross-section DBRTD's .~~-~ '  The filling of a particular state by an electron in a 

quantum box of small size may change the spectrum of the other available stakes in the 

box significantly34 and prohibit other electrons from tunnelling into the box (Coulomb 

~ l o c k a d e ~ ' - ~ ~ ) .  The single electron Coulomb interaction may also give rise to  a spin splitting 

of the resonance  level^.^^'^^ Evidence of the simultaneous importance of Coulomb blockade 

effects and inelastic processes in nanostructures has been recently reported.74t75 
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1.3 Objective and Outline 5 

Electron-electron interactions can be treated in terms of "effective" potentials for large 

cross-section DBRTD7s, because a very large number of electrons interact with each other 

and a single electron "feels" an average potential due t o  all other e lect ro~~s around it. This 

effective potential treatment breaks down if only few particles interact with each other, since 

they become strongly correlated. In Chapter 4 we work out a simple example showing how 

the "effective" potential point of view breaks down and we motivate the full many-body 

treatment in Chapters 5 and 6. 

Chapter 5 treats electron transport through an artificial atom (quantum dot) a t  high bias 

including effects due to  electron-electron correlation, subbands in the leads, and inelastic 

scattering. Chapter 6 treats linear response transport problems through coupled quantum 

dots, which could be considered artificial molecules. 

1.3 Objective and Outline 

The work presented in this report can be divided into two parts: 

1. Large cross-section DBRTD's, where the treatment of electron transport is in a single- 

particle picture including interactions via "effective potentials" (Chapters 2 and 3) ,  

and 

2. Small cross-section DBRTD's, where the treatment of electron transport is in a full 

many-body picture (Chapters 5 and 6). 

Chapter 2 presents work we have performed with our recently released software package 

QUEST.56 We start  out with a brief explanation of the transport equation that  is solved 

in QUEST. The mathematical details of the central quantities, the transmission coefficient, 

T, the occupation, f ,  and the scattering rate, $, have been deferred to  Appendix A. A 
simple calculation clarifying the "vertical flow" due to  inelastic scattering is deferred to 

Appendix B. The results we have obtained with QUEST with respect to  electron-phonon 

and electron-electron interactions deal with the phonon peak, Section 2.3, and electrical 

bistability, Section 2.4, in DBRTD's. In Section 2.5 we present simulation results that  go 

beyond the 1D results presented in the previous sections. 

Chapter 3 presents an analytical model for the phonon peak in resonant tunneling diodes 

based on a simple, intuitive rate equation picture. The simple results are supported by a 

rigourous derivation using a non-equilibrium Green-function approach. The work presented 

in Chapters 2 and 3 was performed in collaboration with Dr. Roger Lakt?.56f7641 

Chapter 4 discusses the fundamental limitations of effective potentials or self-energies t o  

represent particle interactions in a single-particle picture, if only few particles are involved. 

If particles are strongly correlated, a full many-body approach has to be taken t o  calculate 
single-electron transport through small systems. This Chapter motivate:; the work that  is 

described in Chapters 5 and 6. 

Chapter 5 models high bias transport through quantum dots where electron charge cor- 

relation, inelastic scattering and the subbands in the leads have a strong influence. Starting 

from a rate equation model for sequential electron tunneling proposed by ~ e e n a k k e r ~ '  we 

- -  
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6 Introduction 

include in a high bias calculation effects due t o  discrete subbands in the leads and inelastic 

scattering within a single quantum dot. We show in three independent analytical exam- 

ples how single-electron charge interaction, inelastic scattering, and non-adiabatic subband 

mixing can significantly enhance the valley current in finite cross-section double barrier 

structures significantly by opening new conduction channels. Numerical calculations of the 

high bias I-V-characteristics for a system of up to  26 electrons are presented. Symmetric 

structures with weak charge accumulation still show additional fine structure due to  single- 

electron charging with little changes due to  inelastic scattering. Asymmetric structures are 

shown to  be a possible tool to  estimate intra-dot relaxation times via high bias transport 

measurements. The work in Chapter 5 has been performed in collaboration with Dr. Roger 

Lake and Dr. Garnett ~ r ~ a n t . ~ ~ ~ ~  

In Chapter 6 we investigate the linear response conductance through a pair of coupled 

quantum dots. The conductance spectrum under ideal conditions is shown to consist of two 

sets of twin peaks, whose locations and amplitudes are determined by the inter-dot coupling 

and the intra-dot charging. We will show that  the qualitative features of the spectrum 

survive against experimental non-idealities such as detuning of the individual dots, inter- 

dot charging, multiple lateral states, and inelastic scattering. This work was performed in 

collaboration with Guanlong Chen.87188 An analysis of the linear response conductance of 

finite chains of quantum dots, whose mathematical and numerical treatment is similar to  

the work presented in Chapter 6 has been performed in collaboration with Guanlong Chen 

as we11 

Suggestions for future work are documented in Chapter 7, divided up along the line of 

this report into large cross-section DBRTD's and small cross-section DBRTD's. We suggest 

possible expansions of the simulator  QUEST^^ t o  include a transverse momentum coordinate 

for the proper modelling of inter-subband scattering mechanisms and more realistic phonon 

modes. For our work with small cross-section DBRTD's we suggest further invc?stigations 

into electron transport through single quantum dots including a better calculation of the 

many-body states and a investigation of transport through coupled quantum dolts a t  high 

bias. We also suggest to  connect the many-body approach to  a single particle Green's 

function approach, to  compare the two approaches and possibly to find an easier recipe to  

calculate conductance through a highly correlated electron system. 
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Chapter 2 

Numerical Study: QUEST 

2.1 Introduction 

Our research group has developed and released two device simulators for the modelling of 

vertical devices in high bias a t  arbitrary temperature, SEQUAL
gO 

and QUEST56~91 and 

one simulator for lateral devices a t  low bias and zero temperature, S Q U I I L I D - ~ D . ~ ~  They 

have proven to  be excellent tools in the understanding of electron transport in Mesoscopic 

 structure^.^^-^^ In view of eminent device applications1~2*8-23 of vertical :structures a t  high 

temperature operation we have shifted our major interest to  the modelling of these. QUEST 

and SEQUAL treat vertical structures as one-dimensional, where the material parameters 

may vary only along one, the material growth axis. SEQUAL was developed by Dr. Michael 

~ c ~ e n n a n ~ '  and is based on the calculation of transmission coefficients assuming perfectly 

coherent electron transport. The body of the next generation program, QUEST,56 was 

developed by Dr. Roger ~ a k e ' l ~ ~ ~  for the simulation of electron transport through vertical 

heterostructures including inelastic scattering based on the Green function formalism by 

Keldysh, Kadanoff and Baym ( K K B ) . ~ ~ - ~ ~  I included a numerically stal:)le, self-consistent 

charge interaction potential and electron-phonon scattering rates into QUEST and released 
it for public use.56t76777~91 QUEST has served us as a numerical tool in the analysis of several 

transport problems including electron-electron and electron-phonon interactions and we try 
t o  document its versatility and some of its limitations in this chapter. 

In Section 2.2 we briefly introduce the transport equation which is evaluated in QUEST. 

Numerical results dealing with the problem of the phonon-peak in double-barrier resonant 

tunneling diodes will be given in Section 2.3. A very intuitive analytical model has emerged 

from these numerical results in the course of this numerical work and is presented in detail 

in Chapter 3. 

In Section 2.4 we include simulations of the bistability of asymmet:ric DBRTD's due 

to  charge accumulation. These calculation have exposed the limitations of a single-particle 

Hamiltonian in a system of highly correlated electrons to  our research group and have lead us 

to work presented in Chapters 5 and 6. We will elaborate on these fundamental limitations 

of the single-particle picture employed in Chapter 4. In Section 2.5 we will use QUEST to 
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8 Numerical Study: QUEST 

indicate the influence of multiple and infinite transverse modes on electron transport which 

will be compared against the results in Chapter 5. 

2.2 Formalism 

2.2.1 Multi-Probe-Formula 

Most of the work of our research group has been inspired64 by the Landauer approach38r39 

which calculates the current through structures as a function of transmission c.oefficients 

and applied biases. The Biittiker40 formula, in particular, has found widespread use. It 

relates the currents, I*, a t  the probes, i, to  the electro-chemical potential, p j ,  a t  the probes, 

The transmission coefficients Tij are assumed** to  connect the "probes", i and j ,  coher- 

ently a t  one energy. The equation can then be interpreted term by term as follows: 

1. A particular chemical potential, p;, causes current to flow in lead, i ,  by transmission 

into the other leads, j .  

2. The chemical potentials, p j ,  in the other leads, j ,  cause a back-injected current into 

lead, i. 

The phases of the electrons become randomized in the ideal contacts while the tr;~nsmission 

from contact t o  contact is perfectly coherent. This picture is very intuitive and the transmis- 

sion coefficients, Tij, may be calculated in a straight forward manner from a single-electron 

Schrodinger equation. Although quite successful in explaining many experimental observa- 

tions (see for example References [98-loo]), Eq. (2.1) is restricted to  linear r e ~ ~ o n s e ' ~ ' ~ ' ~ ~  

and there were several other questions unanswered: 

How are phase breaking processes included? 

How can harmonic g e n e r a t i ~ n ' ~ ~ , ~ ~ ~  and large signal r e ~ ~ o n s e ' ~ ~ ~ ' ~ ~  be included? 

2.2.2 Continuous-Probe-Formula 

In the spirit of these questions ~ a t t a ~ ~  has derived a continuous probe model, where the 

fundamental quantities are calculated based on a quantum kinetic approach. The current 

equation may now be written as 

I (< E) = - dr'l T (T, TI; E )  (f (F; E) - f (?I; )) . 
h ' J 

If each point, r', in the device with associated energy, El is assumed to  be a terminal, we 

can then interpret the new Eq. (2.2) in a similar fashion as Eq. (2.1). The transmission 

.. The transmission coefficient matrix is symmetric, Ti, = T,;, if there is no magnetic field in the device. 
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2.2 Formalism 9 

coefficient, T(F, F1; E ) ,  connects transmission paths a t  the same energy from one "terminal", 

(r'; E ) ,  t o  the next "terminal" ,(TI; E ) .  The transmission between these new coordinates, 

(r'; E )  and (r"; E ) ,  is assumed t o  be coherent and once again the particles suffer phase 

breaking processes a t  these coordinates. In effect, every transmission path is delimited by 

phase breaking events (see Fig. 2.1). 

This approach is good for the description of transport a t  high bias! including elastic 

phase breaking processes. In effect all energies are decoupled as visualized in Fig. 2.1. 
Eq. (2.2) may now be solved given the boundary conditions 

I(r';E) = 0 , {fl E Device 

f (r'; E )  = f ~ e r m i - ~ i r a c  {fl E Contact 

f - f (r'; E) I, 
Figure 2.1 Coherent transport a t  one energy. Outflow from coordinate (r'; E ) ,  back-flow from coordinate 

(r";  E) .  All energies are decoupled. 

2.2.3 Inclusion of Inelastic Scattering 

Inelastic processes couple different energy channels (Fig. 2.2). Each coordinate, (TI; E ) ,  

which receives particles from another coordinate, (r'; E ) ,  may be coupled to  reservoirs a t  

another energy a t  the same spatial coordinate, r", (local scattering). If', for example, all 

particles a t  (TI; E )  are t o  be scattered away to  other energies (TI; E l )  and (r"; E" ),  we 

do  not have particles available t o  cause back-flow from (TI; E )  into (I:; E). The prod- 

uct of the  occupation and the ratio of particle in-scattering and particle out-scattering 

{f ( i t ;  E )  q} IOUt-SCat te  T1,E 
determines the effective occupation that  is available for back- 

flow from (TI; E )  into (r'; E) .  We call this component the effective occupation, f,(F1; E ) ,  

which takes care of the coupling of the occupation a t  one spatial coordinate, (TI; E ) ,  t o  other 

energies, (r"; E t ) ,  (see Fig. 2.2). We now write the transport equation including inelastic 

processes as  

- - 5 J d P  T(T, ?I; E )  (f(r'; E) - f,(F1; E) )  . 
h (2.4) 

The  effective occupation, f,, can be more formally defined as the ratio of the hole- 

out-scattering (electron in-scattering) and the total scattering (sum of hole and electron 
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10 Numer ica l  S tudy :  Q U E S T  

out-scattering) 

The hole out-scattering rates, h, the electron out-scattering rate, h;, and the 

transmission coefficient, T(F, F'; E ) ,  can be calculated from a microscopic model based 

on a non-equilibrium perturbative field theory approach by Keldysh, Kadanoff and Baym 

( K K B ) ~ ~ ~ ~  in a single-electron picture, where particle interactions are included by appro- 

priate self-energies. The KKB formalism treats electrons and holes (the empty electron 

states) in one band on equal footing. Both carriers will have separate scattering rates as- 

sociated with them. As in the usual valence and conduction band theory electrons tend t o  

fall down in energy and holes tend to  float up in energy. 

Figure 2.2 Inclusion of  inelastic scattering. Outflow from coordinate (r'; E ) ,  back-flow from coordinate 

( r" ;  E) .  The effective occupation available for back-flow at (7'; E )  depends on other energies 

E' a t  the same site F ' .  Different energy channels are now coupled, however, coherent 

transport is at one energy. 

It is shown in Appendix A how the transmission coefficient, T(F,Fr"; E) ,  is related t o  

the impulse response function of a single-electron Hamiltonian that  includes the local in- 

teractions of the electron with the surrounding phonon bath via appropriate self-energies, 

which are in turn related to  the scattering rates, $ and $. We will now consider optical 

phonons, which are assumed to  have one particular eigen-energy, hwo. If we consider low 

temperatures, where IcBT <<liwo, we can assume the Bose-Einstein factor t o  be negligible, 

N = = O .  This means that  all thermal phonons are frozen out and only sponta- 
ex.(+) -1 

neous emission of phonons can occur. Our prescription for the calculation of the scattering 
rates in one dimension is then as follows (see Appendix A for details) 
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2.3 Electron-P honon Interactions: The P honon-Peak 11 

These two terms indicate the electron out-scattering rate, $, and the hole out-scattering 

rate (= electron in scattering rate), I, a t  their particular coordinates, (z . ,  E). The electron 
TP 

out-scattering rate a t  one particular energy, '- is proportional to  the density of states 
Tn(E) 

one optical phonon energy below, No(E-hwo), and the probability to find an available 

state a t  that  energy, (l- f (E-hwo)). Electrons "look down" in energy to  "find" an empty 

electron state. The hole out-scattering rate (electron in-scattering rate) a t  one particular 

energy, - is proportional to  the density of states one optical phonon energy above, 
TP(E) ' 

No(E+hwo), and the probability t o  find an occupied electron state, f (E+two). Holes 

"look up" in energy to find an empty hole state (i.e. an occupied electroll state). A simple 

calculation of energy dependent scattering rates, 5 and L, describing the "vertical flow7' 
TP 

of electrons and holes due to  optical phonon scattering can be found in Appendix B. 

QUEST solves numerically for the transmission coefficient, T, the occupation, f ,  and the 

scattering rate, $ = $- + $, self-consistently. The definition of the transmission coefficient, 

T, can be found In ~ ~ ~ e n d x  A Section A.3. The numerical algorithm for the self-consistent 

solution can be found in Reference [97]. 

2.3 Electron-Phonon Interactions: The Phonon-Peak 

A very clear demonstration of the importance of inelastic scattering on resonant tunneling is 

the appearance of the in the valley current of double-barrier resonant 

tunneling diodes (DBRTD) (Fig. 2.3). If the bias condition is such that  the resonance 
energy, E,, is one optical phonon energy, huO, below the energy of the incoming electrons, 

electrons can tunnel from the emitter into the well in the off-resonance condition, emit an 

optical phonon and thereby scatter down into the resonance state. The current is scattering 

enhanced over the non-resonant transmission through a double-barrier and a phonon peak 

occurs in the Current-Voltage-Characteristic past the main peak. The strength of the 

phonon peak seemed puzzling, since it did not scale in the same manner as the main peak 

in forward and reverse bias. In Fig. 2.3 we show our numerical results which reflect the 

different phonon peak to main peak ratios* in forward and reverse bias. 

The Effect of Asymmetry, An Open Question 

The phonon-peak problem and inelastic scattering in DBRTD's has been intensely theoret- 

ically i n v e ~ t i g a t e d . ~ ~ v ~ ~ ~ - ~ ~ ~  However the question, why the phonon peaks scale differently 
with respect to  the main peaks in forward and reverse bias had not been addressed yet.76177 

Essential in the occurrence of a scattering process is the availability of a, scattering mech- 

anism (electron-phonon interaction) and the availability of a final electron state. If a final 

state cannot be found for the scattering process, the scattering will be suppressed. This 

suggests that  the filling of the resonant state may have an influence on the scattering rate 

and therefore on the strength of the phonon peak. The asymmetry in the YDBRTD structure 

has been shown46j47155 to  be the cause for charge accumulation (i.e. filling of the resonance) 

'The difference of the main peaks (on a logarithmic scale) is about one order of magnitude, while the 

difference of the phonon peaks is more than two orders of magnitude. 
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12 Numerical Study: QUEST 

Figure 2.3 The phonon peak in DBRTD's. a) Conduction band (at forward bias) o f  a double-barrier 

resonance tunneling diode with bias such that the resonance is one phonon energy under the 

conduction band o f  the emitter. b) Current-Voltage Characteristic for forward and reverse 

bias neglecting charging effects. Left barrier is 220meV high, right barrier is 500imeV high. 

in one bias direction. Since the asymmetry of the structure leads to  different degrees of 

filling in forward and reverse bias a t  the main peak, we are lead to believe that  this is true 

also a t  the  phonon peak and that  the phonon peak strength is therefore also dependent on 

the asymmetry via the filling of the resonance. 

Effect of Asymmetry, Numerical Approach 

Using the  simulator we conducted the following numerical experiment in one di- 

mension. We simulated the I-V-characteristics of several structures where we only varied 

the collector barrier height (Fig. 2.4). The main peaks show an expected behii,vior with 

respect t o  the  collector barrier height, tha t  can be modelled with the well known formula 

r ~ r c  where rE (PC) is the  emitter (collector) transmission rate. The phonon-peak, how- 
F E + ~ c  
ever, behaves quite unexpectedly. It appears t o  be independent of the collec2:or barrier 

height in the forward bias direction, but dependent on the emitter barrier height in the 

reverse bias direction. As observed in experiments, we obtain a phonon peak that  is much 

stronger in forward bias than in reverse bias. These results leave us now with the following 

two questions: 

1. Why is the phonon-peak in forward bias independent of the collector barrier? 

2. Can we increase the collector barrier height ad infinitum and still carry current? 

We will answer these questions in detail in Chapter 3. Regarding question number two, 

we state here in passing, that  the phonon-peak current clearly has t o  be suppressed by 

extremely high barriers. This suppression is due to  the filling of the resonance due t o  lack of 

outflow t o  the  collector side. The filling of the resonance inhibits further scattering processes 

and the phonon-peak current will therefore be suppressed**. The Pauli-Exclusion Principle 

can therefore play a major role in the calculation of the scattering rate as the scattering 

rate is reduced if the final state is filled. A simple Fermi-Golden-Rule type c a l c ~ l a t i o n ~ ~ ~ ~ ~ ~ ~  

"See Appendix B for a simple example explaining the suppression of the scattering rates due to the filling 

of the resonance. 
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2.3 Electron-Phonon Interactions: The Phonon-Peak 13 

involving only the scattering mechanism (the matrix element of the interaction) and the 

density of final states may not be good enough in asymmetric DBRTD's. 

Eflect of Asymmetry, Analytical Approach 
In the course of this work we have been able to obtain analytical results for the off-resonant 

current and the filling of the resonance by collapsing the extended numerical problem into 

a 3 spatial node problem (emitter, well, and collector). These analytical results for the 

current and the filling of the resonance provide, for the first time, intuitive physical insight 

into the problem of one-dimensional transport through a resonant tunneling diode and will 

be presented in detail Chapter 3. 

Applied Voltage ( mV ) 

Figure 2.4 I-V-characteristic calculated for two different structures (see inset). Phonon-peak in forward 

bias remains unchanged and changes drastically in reverse bias. The  main-peak changes with 

asymmetry in forward and reverse bias. 
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2.4 Electron-Electron Interact ions: Electrical Bist ability 

The phonon peak was discovered somewhat by accident in the experimental studies of 

asymmetric structures in the search of proof of the predicted intrinsic b i ~ t a b i l i t ~ . . ~ ~ ~ ~ ~ ~ ~ ~  It 

is well u n d e r s t o ~ d ~ ~ ? ~ ~  that  Coulomb charging shifts up the conduction band as well as the 

resonance level. The charge accumulation in the structure causes an intrinsic b i ~ . t a b i l i t ~ , ~ ~  

which is exposed by a hysteresis in the Current-Voltage-Characteristic. This hysteresis has 

been in large cross section devices. Figure 2.5 depicts the mechanism of 

the bistability of the DBRTD. Without charging we assume the resonance of the density of 

states, which is centered in the double barrier structure (Fig. 2.5), t o  be linearly dependent 

on the applied bias. The thin dashed line in Figure 2.5b depicts the trace of the resonance 

(b) 
I I 

- - 

- 

.-- - -Up Sweep 

- - - - - No Charging 
I 

120 160 
Applied Voltage (mV) 

Figure 2.5 Locus of  the resonance in a DBRTD. (a) Lorentsian density of states in the central region. 

Applied bias pulls down the resonance state proportionally without charging. (13) Locus of  

the resonance. Linear relationship without charging (thin dashed line). Hysteresis in locus 

due t o  charging (thick dashed line=increasing bias, solid line=decreasing bias). 

peak as a function of applied bias, as almost lineart. The two horizontal lines indicate 

the conduction band edge and the Fermi-sea in the emitter. The resonance will s tart  to  

fill up, as it gets close t o  the Fermi sea of the emitter with increasing applied bias$. As 

the resonance fills up, negative charge accumulates and causes the conduction band in the 

center of the structure t o  float up. This charging pushes the resonance up in energ:y, opposes 

the lowering of the resonance and the resonance "floats" on top of the Fermi-sea, until the 

resonance is completely filled, thick dashed line in Figure 2.5b. Once the resonance is filled 

completely, it follows the increasing bias and is pulled down further. As the resonance 

crosses the conduction band edge of the emitter, the resonance cannot be filled from the 

 h he effective barrier lowering due to increasing bias (Figure 2.5a) changes the confinement of the resonant 
state and therefore changes the eigen-energy of the state. Since the barrier is relatively large in our simulation 

(500meV) we can neglect this effect here. 

t ~ h e  degree of the filling of the resonance depends on the rate of in-flow through the emitter barrier and 
the rate of out-flow through the collector barrier. The filling of the resonance is significant if the collector 

barrier is higherlthicker than the emitter barrier. 
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2.4 Electron-Electron Interactions: Electrical Bistability 15 

emitter anymore§, the resonance empties and falls down to the no charg:ing locus. As the 

bias is decreased from high bias, the resonance follows the bias linearly until it "touches" 

the the conduction band edge of the emitter. The resonance fills up due  to the inflow from 

the emitter and floats atop the Fermi-sea. 

This hysteresis in the locus of the resonance is exposed in the I-V-characteristic of 

the DBRTD as shown in Figure 2.6. Electron charging leaves the "cortduction channel" 

Figure 2.6 Electrical Bistability in the I-V-characteristic o f  an asymmetric D B R T D .  a) T w o  conduction 

band profiles o f  a double barrier resonance tunneling diode a t  two bistable currents at one 

applied bias. Dashed line for the up-sweep of  the applied voltage. Also shown is the calculated 

electron density for the two stable points. b) Current-voltage characteristic on a logarithmic 

scale from our simulation in a local charging model. 

(between the Fermi energy, EF, and the conduction band edge of the emitter, Ec) open 

for larger voltage range for increasing voltage sweeps than for decreasing voltage sweeps. 

Figure 2.6 considers two stable states of the locus of the resonance. One stable point is 

in the up-sweep of the applied voltage where the conduction band has floated up due to  

the charging (bulge in conduction band (dashed line) of quantum well), the other is in 

the down-sweep, where the conduction band drops off linearly. The charging has been 

calculated with a simplistic model7 of local charging only in the well, however it shows 

clearly the appearance of charge accumulation (continuous and dotted line in Fig. 2.6a) and 

hysteresis in the I-V-characteristic (Fig. 2.6b). 

Note that  there is no charging in the reverse direction or a t  the forward bias phonon peak. 

This indicates that  for this particular structure a very low degree of charge accumulation is 

present in the quantum well a t  any other bias point but the forward bias main peak. The 

degree of filling of the resonance a t  the phonon peak will be addressed again in Chapter 3. 

We show here, how a local electro-static potential proportional t o  the number of electrons 

in the quantum well modifies the high bias I-V-characteristic significantl,~. The problem is 

§ w e  do not include inelastic scattering, due to acoustic phonons in this simulation, which would couple 

the resonance to the incident energy. 

(IThe single-electron Hamiltonian contains a potential of the form V(z)= -q#,  where q is the elemental 

electron charge, n(z)  the electron-density and C(z) a "local capacitance". 
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treated in  QUEST^^ in one dimension for one lateral mode, the general behavior of large 

cross-section DBRTD1s, however, is well described. On a linear scale the I-V-~ha~racteristic 

appears to  have a ramplike growing peak.66 

2.5 Beyond 1-D 

2.5.1 Lateral Modes 

All simulations with QUEST presented so far are calculated for a single occupied lateral 

mode in one dimension. QUEST is laid out such that it can include several .transverse 

subbands depending on the choice of cross section and Fermi energy. The wave-function 

in the transverse direction, given hard wall boundary conditions, can be expressed as sine- 

waves in terms of the transverse coordinates, x and y, 

+(x,  y) cx sin(n,n:) x s in  (n,ir$) , 

where the quantum numbers, n, and n,, are positive definite. The length of the cross- 

section, d l  is in this example assumed to  be the same in the x and the y-direction. The 

corresponding eigen-energies in the transverse direction are 

QUEST assumes the structure t o  be homogeneous in the lateral dimensions and states with 

a particular set of lateral quantum numbers in the quantum well couple only to  subbands 

in the leads with the same set of quantum numbersll. The different lateral modes appear 

as independent channels through the structure. 

In the following we will present an example calculation for a DBRTD structure with 

multiple occupied lateral modes. The turn-on biases of the lateral modes are determined 

by the energetic spacing of the modes, A E a  &, as the localized states in the quantum 

well are pulled down one by one with increasing applied bias into the Fermi sea of the 

emitter. The turn-off biases, however, are the same for all modes since all states in the 

quantum dot are aligned with the bottoms of their corresponding subbands in the emitter 

a t  the same bias. Table 2.1 lists the lowest lateral quantum states, indexed by t,he lateral 

quantum numbers, n, and n,, and ordered by their corresponding eigen energy, which is 

proportional t o  the sum of the squares of the quantum numbers, n: + n;. In the particular 

simulation presented here, we have adjusted the Fermi energy such that the lowest four 

subbands are occupied in the leads. 

Figure 2.7 depicts results of two sets of simulations obtained56 with QUEST: 1) a single- 

moded, and 2) a multi-moded DBRTD. The particular device parameters can be found in 

Reference [56]. The turn-on and turn-offs have the general features described above. The 

lateral modes turn on one after the other, and they turn off all together. The four distinct 

l l~ee  Chapter 5 for a detailed discussion of this topic, including subband mixing 
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Table 2.1 Lowest transverse eigen modes listed by increasing transverse energy. Several o f  the eigen 

modes are degenerate. 

D States (n,,ny) I Degeneracy I n: + n% I occupied 1 
!I (1J)  1 2 I Yes 

turn-ons correspond to  the four occupied subbands listed in Table 2.1. Note that  the second 

current step is twice as large as the first one due to  the degeneracy of the ( 2 , l )  and (1 ,2)  

lateral states as indicated in Table 2.1. The fourth channel turns on only over a very small 

voltage range since the Fermi energy barely occupies the corresponding subband in the 

emitter. The current increases only slightly (-20%) within the energy wi~tdow of the Fermi 

sea in the emitter for the single-moded DBRTD. We attribute this small increase to  the 

increasing transmission rates through the emitter and collector barriers due t o  the effective 

barrier lowering by the applied bias. 

t o  the Fermi energy. 
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Figure 2.7 Comparison o f  current-voltage characteristics i n  the case o f  single-moded and mult i-moded 

double barrier structures. Current is normalized t o  the max imum value. The  f i rst  steps in  the 

mult i-moded and the single-moded structure are o f  the same height w i thou t  normalization t o  

the  peak current. Note tha t  the second current step for the many-moded structure is about 

twice as large as the first and the third current step. This  correspond:; t o  the  degeneracy 

listed in  Table 2.1. The for th  step barely turns on  since the for th  eigen-energy is already close 
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2.5.2 Infinite Cross-Section 

QUEST can account for large transverse dimensions by assuming an infinite cross section 

with perfect translational invariance in the transverse directions. The wave-functions in 

the transverse dimensions become plane waves and the treatment of transverse energy co- 

ordinate becomes mathematically and numerically treatable.91y97 We will nour compare 

the simulation with QUEST for an infinite cross-section DBRTD to  the high bias I-V- 

characteristic of a single-moded and a multi-moded DBRTD of finite cross-section. 

The three current voltage characteristics are depicted in Figure 2.8. They are normalized 

to  their maximum current density. Note that  the currents for the multi-moded and the 

infinite cross section structure are really scaled down. The first step in the multi-moded 

structure is really as big as the first step in the single-moded structure. The conductance 

along a one-dimensional structure is quantized** for each electron channel through the 

structure. The conductance only depends on the number of modestt that  are active in 

the current transport. Increasing the number of transverse modes therefore increases the 

conductance. The assumption of plane wave states in the transverse direction effectively 

places transverse modes infinitely small. Figure 2.8 shows nicely how the increase (of number 

of nodes modifies the shape of the expected I-V-characteristic. The current steps due t o  

'one mode 

'many modes 

I infinite csection 

' ' 0  0.05 0.1 0.15 0'2 

Applied Voltage (V) 

Figure 2.8 Comparison o f  current-voltage-characteristics of double barrier structures in the case o f  a 

single-moded, multi-moded and infinite cross section structure. T h e  currents are normalized 

t o  their maximum value. T h e  characteristics o f  the single-moded and multi-moded structure 

are repeated here for convenience f rom Figure 2.7. 

adding transverse modes are smeared out in the limit of transverse plane wa.ves. The 

step-like I-V-characteristic turns into a ramp-like I-V. We can understand this feature in 

the picture of infinitesimally closely spaced eigen energies (plane waves) whose momentum 
has to be matched by the electrons coming in from the Fermi-sea of the emitter. The 

number of electrons with transverse momentum, k ,  increases with the wave-vector, k, in the 

"The barriers in our transport problem are very large so that the conductance through a single mode is 

much smaller than the conductance quantum of e 2 / t i .  

ttThe number of electrons in an electron waveguide is limited unlike the number of photons in an electro- 

magnetic waveguide since electrons are fermions that obey the Pauli-exclusion principle. 
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lead as E(k)  = $, while the density of states in the quantum well is two dimensional (w 

O ( E  - ER)) due t o  the infinite cross section. The deeper the resonance "dips" into the Fermi- 

sea of the emitter, the more modes can be occupied and the current keeps increasing until 

the resonance drops under the conduction band of the emitter and transverse momentum 

conservation cannot be satisfied anymore. 

The comparison between the finite and infinite cross section becomes even more inter- 

esting, if we look a t  the coherent and incoherent current components (see Figure 2.9). The 

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

Applied Voltage (V) Applied Voltage (V) 

Figure 2.9 Comparison of current contributions for the single-moded and the infinite cross section case 

on a logarithmic scale. The dominance of the coherent over the incoherent contribution at 

resonance bias is the same for both cases. The incoherent contribution becomes negligible in 

the valley current in the single-moded case. The valley current of the infinite cross section 

structure, however, is carried by the incoherent contribution. 

coherent current contribution accounts for all the electrons that are transmitted from the 

emitter t o  the collector without a single phase breaking event. The incoht, >rent current con- 

tribution accounts for the electrons, whose phase was broken inside the device on their way 

from the emitter to  the collector. In this example we had chosen56 the elastic phase breaking 

rate such that  the coherent and the incoherent current contributions to  be of about the same 

order of magnitude a t  the main resonance peak for both, the single-moded and the infinitely 

moded, simulations. However, the distribution between coherent and incoherent currents 

is different in the two cases for the valley current. The valley current in the finite cross 

section device is mainly carried by the coherent current contribution, since the density of 

states in quantum well decreases rapidly. On the contrary, the valley current in the infinite 

cross section device is carried mostly by the incoherent current contribution. Elastic phase 

breaking events that  randomize the  momentum^^ are still possible in a, large (constant) 
two-dimensional density of states which does not exhibit a sharp cutoff. We will elaborate 

on the different effects of isotropic scattering in finite and infinite cross-section DBRTD7s 

in Chapter 7, where we suggest improvements of QUEST'S treatment of phase-breaking 

processes. 

$$We have a local scattering potential here, which causes the scattering to be isotropic in k-space. 
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2.6 Conclusions 

The released software package QUEST56 has helped our research group significantly t o  

analyze transport problems in large cross-section D B R T D ' s . ~ ~ ~ '  We have implemented into 

the  simulator important mechanisms like electron-electron, electron-phonon interactions 

and modelled experimental results successfully. QUEST may prove t o  be a useful design 

tool for quantum devices, since it can be applied t o  many different vertical structures like 

multi-quantum wells and superlattices. 

The fundamental limitations of QUEST with respect t o  electron-electron correlations in 

its single-particle description will be discussed in Chapter 4. These limitations have lead 

our research group to  the  work in Chapters 5 and 6 in which we use a full many-body model 

for electron transport. 
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Chapter 3 

Analytical Study: The Phonon 
Peak 

3.1 The PhysicalPicture 

Inelastic scattering is of great interest from both basic and applied point of view for the 

understanding of electron transport through resonant tunneling A very clear 

demonstration of the importance of inelastic scattering is the appearance of the phonon- 

peak46-55 in the valley current of double-barrier resonant tunneling diodes (DBRTD). If 

the bias condition is such that  the resonance energy, E,, is one optica,l phonon energy, 

hwo, below the energy of the incoming electrons, electrons can tunnel from the emitter 

into the well in the off-resonance condition, emit an optical phonon and ;scatter down into 

the resonant state. The current is scattering enhanced over the non-resonant transmission 

through a double-barrier and a "phonon peak" occurs in the current-voltage characteristic. 

The ratio of the phonon peak current to  the main resonant peak current is enhanced by 

barrier asymmetry. Recently,51 a phonon peak as large as the main peak was found. The 

fact that  an off-resonant, inelastic channel carries as much current a s  the main resonant 

channel is surprising and has motivated our recent study of this phenotnenon.76y77 Here 

we present the simple, intuitive, rate equation picture that  emerges from that  work which 

summarizes the physics governing the ratio of the main peak current to the phonon peak 

current (see Fig. 3.1). We discuss the low temperature limit where we assume all relevant 

initial states in the emitter to  be occupied (fE = 1) and all relevant final states in the 

collector to  be empty (fc = 0). This parameter range corresponds t o  11-lost experimental 

conditions. 

A brief derivation of the current and occupation expressions based on a rate equa- 
tion approach is given in Section 3.2. The full derivation based on a calculation on a 

one-dimensional tight-binding lattice can be found in Ref. [77]. The simple rate equation 

picture is supported by a rigourous treatment of transport based on the non-equilibrium 

Green function formalism a t  arbitrary temperatures and the derivations can be found in 

Section 3.3. 
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22 Analytical Study: The Phonon Peak 

Figure 3.1 T h e  phonon peak i n  DBRTD's :  T h e  physical picture. Rate equations corresponding t o  

the (a) main peak and the (b) phonon peak i n  resonant tunneling diodes assuming low 

temperature ( ~ B T < <  hwo) and high bias ( f ~  = 1, fc = O ) .  The superscripts, r and i ,  indicate 

t h a t  the quanti ty is t o  be evaluated a t  the resonant energy, E,, and a t  the incident energy, 

Ei = E,+hwo, respectively. TE(C) is h t imes the tunneling rate through the emitter (collector) 

barrier and fE(q is the Fermi-factor in  the emitter (collector) contact.  f" is the occupation 

o f  the resonance in  the well. A l l  the quantities for the main peak are evaluated a t  the resonant 

energy. 

Before we discuss the analytical results for the phonon peak, we remind the reader of the 

well known results a t  the main peak. The amplitude of the main resonant curren.t through 

a DBRTD is 

where rE(C) is the transmission rate of the emitter (collector) barrier (Fig 3.la).. For very 

asymmetric structures, where the emitter is much more transparent than the collector, 

rE >> rC, the current decreases with the decreasing collector barrier transmission rate 

Imain ( 2 e / h ) r ~ .  
In a sequential picture the emitter current is proportional to  the entry rate through the 

emitter barrier, rE, multiplied by the probability of finding an empty resonant stake, (1- f ) .  

The collector current is proportional to  the probability of finding a filled resonant state, f ,  

times the out-flow rate into the collector, rc. The filling of the resonance is given by the 

ratio of the in-flow, rE, to  the sum of in- and out-flow, rE+rC, The resonance starts to  fill 

as the rate of out-flow, rc, becomes smaller than the in-flow, rE, and the current through 

the whole structure becomes limited by the availability of an unoccupied resonant state. 

Figure 3.2 shows the filling of the resonance and the amplitude of the main-peak (m.p.) 

as a function of rE/rC. The current through the structure starts to roll off as the filling 
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of the resonance becomes significant a t  rE = rc. The current a t  the phonon peak bias 

C1 

" 10-1 

+ 2 g 10- 

10 

rE/rC or G/C 
Figure 3.2 Current, I (a),  and occupation o f  the resonance, fr (b) a t  the main peak and the phonon 

peak assuming low temperature and high bias. rE(I'&) is fixed a t  l m e V  and g = 0.01. 

Abbreviations m.p. and p.p.  stand for main peak and phonon peak, respectively. 

is intuitively assumed to exhibit the same behavior with respect t o  the collector barrier 

transmission rate. However, experiments 4 6 9 4 7 1 5 1 1 5 5  indicate that  the ratio of the phonon- 

peak to  main-peak current increases as the asymmetry of structures is increased. 

The intuitive idea of sequential tunneling, where an electron hops from the emitter into 

the resonance and then out again into the collector proves t o  be very useful for the discussion 

of the phonon-peak as well. However, now an electron has t o  enter the structure through the 

emitter barrier and emit a phonon to  hop into the resonance. Given some small probability, 

g << 1, to  emit a phonon§, we can model the total rate of entry into the resonance as grb, 
where the superscript, i ,  indicates the incident energy label (see Fig. 3.lb:I. The arguments 

for the current a t  this bias are now very similar to  the ones presented ;tt the main peak 

(Fig. 3.lb). The flow through the emitter barrier is proportional to  the effective rate of 

tunneling, g r b ,  and the availability of the resonant state, (1- f r ) ,  where the superscript, 

r, indicates the resonance energy. The out-flow through the collector depends on the filling 

of the resonance, f r ,  and the rate of out-flow through the collector barrier, rb. We can 

now see how all the expressions for the main peak can be symbolically transferred into the 

phonon-peak case by a substitution of rE by g r b .  

The additional phonon emission process needed t o  tunnel into the resonance reduces the 

overall rate of in-flow into the resonance, which corresponds t o  an effectively more opaque 

emitter barrier. The collector barrier has to  be even more opaque than this new effective 

§ w e  can here consider the probability g to be some empirical amplitude. The relation of g to a electron- 

phonon interaction Hamiltonian has been derived in Ref. 1761. 
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emitter barrier in order for the resonance t o  fill. Structures have therefore to  be much 

more asymmetric t o  fill the resonance a t  phonon-peak bias than t o  fill it a t  main-peak bias. 

Figure 3.2 compares the filling of the resonance a t  phonon peak (p.p.) bias to  the filling of 

the resonance a t  main peak (m.p.) bias as a function of asymmetry ( r E / r c ) .  As long as 

the filling of the resonance is insignificant we can see that the phonon-peak currerit appears 

independent of the asymmetry for a wide range of parameters, whereas the resonance a t  

main peak is already filled and the current decreases with increased asymmetry. At the 

phonon peak bias the resonance starts to  fill (value 112 in Fig. 3.2b) a t  about I?b 5 g r b ,  

and the two current peak amplitudes are about the same. 

Our analysis predicts that very asymmetric structures can have a phonon-peak current 

which is as big as the main-peak current. These structures would also exhibit a significant 

filling of the resonance a t  the phonon-peak bias as shown by T ~ r l e y . ~ l  

3.2 Rate Equation Approach 

In the following section we will briefly sketch the idea of the rate equation model whose 

derivation starting from a tight binding model can be found in detail in Ref. [77]. We are 

interested in the occupation of a central resonant state (Fig. 3.3) and the inelastic current 

flow through this resonant state. We treat the single resonant state in the quantum well 

as weakly coupled t o  the emitter and the collector leads. The tunneling rates through the 

emitter and collector barrier are energy dependent as indicated with indices for incident and 

resonant energy, i and r ,  respectively. The number of thermally available phonons, N ,  is 

determined by Bose-Einstein statistics. The small, dimensionless quantity, g,  determines the 

electron-phonon coupling strength. Every transition "up" in energy, i.e. from the resonance 

emitter, collector, 
inc. Energy inc. Energy 

P g ( ~ + l )  r; fL(1-fr)- 

Figure 3.3 Rate-equation set-up for the phonon-peak problem. Superscripts i and r stand for incident 

and resonant energy, respectively. T h e  electron-phonon interaction strength is indicated by g ,  

the number o f  available phonons by N and the tunneling rates through the emitter (collector) 

barrier by r E ( q .  

energy, r ,  to  the incident energy, i, requires the absorption of a phonon and is therefore 

proportional t o  the number of available phonons, N. A transition "down" in energy, i.e. 

from the incident energy, i,  t o  the resonant energy, r ,  is allowed by spontaneous emission 

and stimulated emission of a phonon and the rate of such processes is proportional to  (N+l). 
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Within this model we denote the in-flow rate, r;,, and out-flow rate, ro.,t, to  the resonant 

state as 

Assuming steady state with equal in-flow and out-flow, rin = rout, and solving for the 

occupation a t  the resonance, f', results in 

The inelastic current is given by the net flow through either the emitter or the collector 

barrier. For the net flow through the emitter barrier we denote (including a factor of 2 for 

spin degeneracy) 

Substituting Eq. 3.3 into Eq. 3.4 results in two distinct current contributions. 

The first current contribution is due t o  one-phonon processes in two di-Kerent directions; 

electron transport from 1) the emitter t o  the collector, and 2) the collector t o  the emitter. 

In the first direction, with the positive contribution, an electron is injected1 from the emitter 
. . 

at  the incident energy (rb fh )  , emits spontaneously or stimulated a phonon (g ( N  + I)) ,  and 

is transmitted to  the collector at the resonance energy (r& (1 - f;)). In the second direction 

an electron is injected from the collector a t  the resonance energy (I'b f;), absorbs a phonon 

(gN) and is transmitted to the emitter a t  the "incident" energy (rb (1- fh)) .  

The second current contribution in Eq. (3.5) is of second order in the electron-phonon 

interaction strength, g, and describes two-phonon-interaction processes, where one phonon is 

emitted and one phonon absorbed and the initial and final energy of the tra,nsmitted electron 

is a t  the incident energy, i .  The current flow can be in both directions: 1) from the emitter 

t o  the collector with a positive sign, and 2) from the collector to  the emitter, with a negative 

sign. Note that  the occupation factor ( f i  - f&) can be formed into fi (1 -- f&) - f& (1 - f;) 

which indicates the transport direction more clearly. 

Starting from these general high temperature expressions, we can now consider the limit 

of zero temperature, where the thermally activated number of phonons is zero, N = O ,  and 

high bias with fk = 1, f; = 0, and f; = 0. Upon substitution of these parameters into 
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Eqs. (3.3) and (3.5) we obtain for the occupation of the resonance and the inelastic current 

contribution at  the phonon peak bias 

which correspond to  the equations at  phonon peak bias in Figure 3.lb. 

The current contribution for the main-peak can be calculated in a very similar rate equa- 

tion model, not involving any electron-phonon interaction and is left out here for brevity. 

It can be found in some detail in ref. [77]. Reference [77] derives the rate equation a p  

proach above more formally on a one-dimensional tight-binding lattice including the elec- 

tron phonon interaction on the central site. The basic physics is well described in Figure 3.3, 

however, and we do not include the formal tight binding notation here for brevity. In the 

next section we give the derivation for Eqs. (3.3) and (3.5) in the KKB formali:sm, which 

we discuss in detail in Chapter 2 and Appendix A. 

3.3 KKB Formalism Solution 

3.3.1 Discretization Scheme for the Analytical Calculation 

We have stated in Chapter 2 already that we solved numerically in one dimension the 

equation 

I ( z , E ) = -  d z f T ( z , z ' ; E )  ( f ( z , E ) - f , ( z ' , ~ ) )  . 
h 2e J (3.8) 

We now would like to simplify this extended coordinate equation to only three spatial 

coordinates: emitter, well, and collector. If can assume that the occupation factor, f ,  

which is the central parameter in our problem, to be constant in these device regions, under 

two conditions: the occupation, f 1) does not vary significantly within the three regions 

emitter,well, and collector, and 2) varies sharply in the barriers between these regions. We 

can then discretize the extended spatial problem into three spatial nodes: emitter, well, and 

collector, as depicted in Fig. 3.4. 

The transmission coefficients T (z, z '; E) occurring in the transport Eq. (3.8) are then to  be 

discretized according to 

and similarly TEW, TcW, and Tww. With the discretization we can obtain for the current 

per unit energy in the emitter 
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Figure 3.4 Set-up for the discretization scheme. 

The current Iw is zero in the well and the equivalent equation to  Eq. (3.10) in the well can 

be solved for the occupation in the well 

If we restrict our view now t o  only two energy levels separated by one optical phonon energy, 

we can visualize Eqs. (3.10) and (3.11) with Fig. 3.5. 

E 
incident 

[;; 
E 

resonance *-a 
f L T k w  f: 

.e 3.5 Two channels at incident and resonant energy are coupled by electron-.phonon interaction. 

Note that there is no transmission from the resonance energy back into the emitter. Coupling 

o f  the two energies is controlled by the effective occupation, f7. The superscripts, i and r ,  

stand for incident and resonance energy, respectively. 

We can now see more explicitly the coupling between the two energies, if we only consider 
electron-optical-phonon interactions. Fig. 3.5 shows the coherent transmission path via TEC 

and the sequential transmission path via Tbw + TEw. 
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3.3.2 Discretized Transmission Coefficients and Spectral Function 

In order t o  actually evaluate the transport equation (3.10) we need t o  calculate the trans- 

mission coefficients TEC etc. We have done this in two ways in Ref. [76]. We first calculated 

the transmission coefficients through a step-like double barrier structure in a c.ontinuous 

coordinate representation. The second approach is a calculation based on a tight-binding 

chain. We summarize the results here by stating the formulas relating the tra~nsmission 

coefficients t o  the spectral function in the well and the transmission rates thro.ugh single 

barriers 

with r = rE+rC+& , $ = :+$, and rE(C) = hu TE(C)l where u = $ is the attempt 

frequency in the well depending on the velocity in the well, v, and the well widt.h, d. The 

spectral function in the well can be found to  be 

in the continuous coordinate representation where 8=QE+Qc+2kd is the total :round trip 

phase shift including the phase shifts due t o  reflection a t  the boundaries, QE and Qc. We 

also evaluated the spectral function, A, in a tight binding model and obtained 

The scattering rates, & and 1, which are necessary to  evaluate the effective occupation, 
,P 

f,, in the  transport Eq. (3.10), can now be calculated using the local density of states in the 

well, No= &A, and Eq (2.6). The phonon peak problem can now be solved analytically. 
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3.3.3 Analytical Solution of the Phonon Peak Problem 

In this section we will show a derivation of the resonance occupation and inelastic current a t  

the phonon peak bias including optical phonons that  have some spectral spread, A ,  similar 

t o  the treatment that  is included in our simulator QUEST.56 This assump1,ion does not have 

t o  made t o  obtain the correct expressions, however, we include this particular derivation 

here t o  connect up to  the treatment in QUEST56 with an analytical exannple. 

Substituting Eqs. (3.12) into Eq. (3.11) we obtain for the occupations in the well a t  the 

incident and resonance energy 

To include a finite spectral spread in the optical phonon dispersion we modify 

Eqs. (A.29) in Appendix A. l  to  include a spectral average over the rectangular line shape 

of width A to  

We can now evaluate the set of Eqs. (3.16) for the incident (index i) and resonant (index r )  

energy, neglecting contributions a t  other energies. We assume that  the occupation factors, 

f ,  are constant in these energy ranges. Using 

we obtain four equa-tions for the electron and hole-out-scattering rakes a t  two different 

energies. 
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We now use the relation N o ( E )  = A ( E )  /27r between the spectral function and the density of 

states, and we assume that  hwo>>l?i in Eq. (3 .14) .  We define the phonon coupling constant, 

g ,  in terms of the constant U 2  and the optical phonon energy, tiwo 

Upon substitution of Eqs. (3 .15)  into Eqs. (3 .18)  and using r"ri+rL+h+h 7; T; we obtain 

four coupled equations for the four scattering rates 

These four scattering rates can be solved for with an analytical software pa,ckage like 

MAPLE or MATHEMATICA. Substitution of these rates into Eq. (3 .15b)  results in 

Eq. ( 3 . 3 ) .  The incoherent current contribution F T ~ ~  ( f E -  f&) in Eq. (3.10:) must be 

integrated in energy over the width of the inelastic channel, 4, to  obtain Eq. ( 3 . 5 ) .  

3.4 Why bother about the KKB formalism? 

We have shown in the  previous two Sections 3.2 and 3.3 tha t  two very different a.pproaches 

lead to  identical central results of the phonon-peak problem. We need t o  ask ourselves, 

why they give the same results, and why we should be still interested in the much more 

complicated KKB formalism. One difference between the two treatments is tha t  the coupling 

to  the leads is treated exactly in the KKB formalism, while the coupling to  leads is treated 
in first order perturbation theory in the rate equation approach. Since the coupling of the 

central resonance is weak in this problem, we find that  a treatment of tunneling to first order 

perturbation sufficient. Another difference between the two approaches is the treatment of 

the scattering. Both approaches are only valid for weak scattering and treat the scattering 

in first order perturbation theory. However, the KKB formalism treats the scattering in 
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the self-consistent first Born-approximation,97 which results in a spreading of the resonance 

state due t o  the electron-phonon interaction. The two approaches give the same results in 

the phonon-peak problem because the optical phonon energy, hwo, is much larger than the 

resonance width in the quantum well, rE+rc+&. The renormalization of the density of 

states due t o  scattering in the KKB formalism is much smaller than this energy scale and 

therefore not important. 

The treatment of acoustic phonon scattering in a device where the phonon energy may 

be comparable to  the natural line-width of the resonance state would have a strong influence 

on the line shape of the density of states, No(E) .  A treatment using a pure rate equation 

approach would not include the spreading of the density of states duel to  the electron- 

phonon interaction and the results would become quite different from the KKB results. 

The device simulator QUESTs6 is based on a continuous coordinate representation of the 

device structure and allows to estimate the energetic spread of quantum resonances including 

electron-phonon interactions and may prove to be useful design tool in this respect. 

3.5 Comparison between Numerical and Analytical Results 

We have already introduced our numerical experiment regarding the phonon peak strength 

in asymmetric DBRTD's in Section 2.3. For convenience we include Fig. 2.4 again a t  this 

point as Figure 3.6. The surprising result of this simulation was the constance of the phonon 

~ppi ied Voltage ( m~ ) 

Figure 3.6 I-V-characteristic calculated for two different structures (see inset). Phonon-peak in forward 

bias remains unchanged and changes drastically in reverse bias. 

peak in forward bias regardless of the collector barrier height. 

From Eq. (3.7) we can see that  there is a range of parameters where gI'b << I'L which 

leaves the current a t  the phonon peak independent of the collector barrier height I= FgI'b. 
This parameter range also corresponds to a negligible filling of the resonance as argued in 

Section 3.1. We have summarized the major results of Ref. [76] with respect to  the numerical 

experiment in Figure 3.7 and the analytical expressions in Figure 3.1. 

Fig. 3.7a shows the dependence of the phonon peak and the main peak a t  their cor- 

responding biases. The phonon peak is clearly independent of the collector transmission 
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for a wide range of parameters, whereas the main peak shows a strong dependence. In 

forward and reverse bias we will have two different ratios of rE/rc since emitter and col- 

lector are inverted. If we now read off the  difference in main and phonon peak current a t  

Figure 3.7 Comparison o f  numerical and analytical results. (a) The  magnitude o f  the current, and (b) 
the  occupation o f  the well, a t  the bias corresponding t o  the main peak current and the 

bias corresponding t o  the phonon peak current. The  data points correspond t o  collector 

barrier heights (see inset o f  Fig. 3.6) o f  Vc E {220,300, 400,500,600,700,1000)meV wi th  

an emitter barrier height o f  220meV. 

log(rE/rc) = 1 and -1 we see that  forward and reverse bias result in different ratios of the 

phonon peak t o  the main peak. 

Fig. 3.7b shows the occupation of the  resonances at the phonon peak and the main peak 

biases. Clearly much more asymmetry is needed t o  fill up the resonance a t  phonon peak 

bias than a t  main peak bias. 

In Fig. 3.8 we show the scattering times and escape times t o  the collector from the 

resonance involved in our numerical experiments. The scattering times a t  incident and 

Figure 3 .8  Self-consistent calculation o f  scattering times. Numerical and analytical results for the phase  

breaking t imes a t  incident and resonance energy, r@(E,) and r@(E,), are compared t o  the 

collector leakage t ime, '-- When the collector leakage t ime becomes larger than the 
rc(Er) ' 

in-scattering t ime a t  the resonance energy, the resonance fills up  and the out-scattering t ime 

a t  the incident increases. 
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resonant energy are clearly shown t o  be different due to  the large difference in the density 

of states a t  resonance and off-resonance (see Fig. 3.4). Once the escape time through the 

collector from the resonance becomes comparable t o  the in-scattering time a t  resonance, the 

resonance starts  t o  fill up and the scattering time a t  the incident energy hecomes increased 

(scattering is reduced). Figs. 3.7 and 3.8 show a good agreement of our extended numerical 

calculation with the analytical model and indicate the interplay between the filling of the 

resonance and the scattering time. This dependence of the scattering rate on the filling of 

the resonance is also documented in a simple example in Appendix B. 

3.6 Conclusions 

We have modelled analytically the phonon peak problem in DBRTD's and obtain an in- 

tuitive physical picture. We are able t o  identify device regimes in which the off-resonant 

phonon peak current can be as big as the main resonant current as observed by ~ u r l e ~ . ~ '  

The analytical results compare well to  the numerical approach using the simulator 

QUEST. This agreement provides a good check for the analytical results, which are much 

easier and less time consuming to  evaluate numerically. The available computation time 

may now be used t o  include more sophisticated scattering mechanisms as suggested in 

Chapter 7. 
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Chapter 4 

Limitations of the Single-Particle 
Picture 

QUEST can simulate electron-electron charging with a local Hartree-like potential in a 

single-particle framework, which describes the bistability in large cross section DBRTD's 

properly. We will show now in a simple analytic example, that  this usage of an "effective" 

potential due t o  surrounding electrons cannot explain the phenomenon of Cloulomb blockade. 
We will here consider a model problem where a single resonant state is charged up due to  

strong coupling t o  one lead and very weak coupling t o  the other lead in a double barrier 

structure. This model corresponds t o  a very asymmetric structure (see Fig. 4.la) where we 

may assume the  resonant state always t o  be filled by the strongly coupled lead. We assume 

that  the tunneling to  the weakly coupled lead is negligible and we are therefore left with a 

capacitor problem, where a single resonance is fed from one lead (Fig. 4.:llb). 

Capacitor - 
Problem 

Figure 4.1  Set-up for the calculation o f  the charging of a single leaky resonance. a) Potential profile of a 

asymmetric double barrier resonance diode. b) Model capacitor problerr~ o f  charging a finite 

width resonance. 
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3 6 Limitations of the Single-Particle Picture 

We assume the resonance t o  be described by a normalized Lorentzian density of states 

where I' is the  half width a t  half maximum and Eo the resonance energy. We will assume 

zero temperature in our calculation, which will result in a sharp cut-off in the filling of the 

lead and resonance state. 

If we neglect charging effects, we may write down a linear dependence between the 

applied bias and the resonance energy 

where we assume that  the  emitter lead is fixed in energy and an applied bias pulls the 

resonance down into the  well. The threshold voltage, Vth, is the necessary applied voltage 

t o  place the center of the resonance right on the Fermi-level, which is set t o  1:)e a t  zero 

energy. The geometry dependent constant, y ,  determines the fractional voltage drop across 

the left barrier and q is the elemental electronic charge. Assuming that  the Fermi sea is 

very wide compared t o  the  width of the resonance, we calculate the filling of the resonance 

as 
0 1 

n(Eo) = / N ( E )  d E  = "r 2 d E = - + - a r c t a n  -- 
-00 

( )  (4.3) 
2 lr 

Using Eqs. (4.2) and (4.3) with E O = E ;  we obtain the filling as a function of applied bias 

Results of Eq. (4.4) are plotted in Fig. 4.2a for various resonance widths, r, with Kh = 0, 

y = 112. We see the expected result: the sharper the resonance, the sharper the turn-on 

of the charge accumulation in the well. The differential change of charge with applied bias 

can be calculated as 

For an infinitesimally small resonance width, we obtain an infinitely sharp (step-wise) turn- 

on of the number of electrons in the quantum dot. 

Given the filling of the  resonance we may now associate a Hartree-like potenliial due to  

the accumulated charge 
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The accumulation of negative charge in the well will now raise the potential in the well 

and push the resonance higher. We therefore write down a new equation for the resonance 

energy, Eo 

EO = 47 (Kh - Vapp) - 0 JV(E0) , (4.7) 

where a is a unit-less geometry dependent constant of order 1. We therefore obtain (using 

Eqs. 4.4 and 4.6) an implicit equation for the resonance energy, Eo, of the form 

0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 

Applied Voltage (mV) Applied Voltage (mV) 

Figure 4.2 Number o f  electrons in the resonance versus applied bias. The parameters are K h  = 0, 
y = 112: a) without charging. b) with charging, a= 1, aq/C= ImeV. 

Before we solve for the electron density, n(VaPp), with a given set of parameters aq/C,  

I', y ,  and Vth numerically, we ask ourselves the question under which bias condition the 

resonance is exactly half filled in the interacting picture. Eq. (4.8) can be solved for the 

necessary applied voltage, Vapp, exactly 

The threshold to  obtain half filling of the resonance is raised from Kh by $&. 

The questions that  are naturally raised now are: 

Is the shift in threshold voltage a signature of Coulomb blockade ? 

Do we still get a sharp turn-on of charge accumulation in the well, tha t  is merely 

shifted by the charging energy ? 

The sharpness of the turn-on can be analyzed by examining the slope of the electron density, 

n ,  versus the applied bias,VaPp, which can be calculated analytically to  be: 
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where we have at half filling (Eo=O) 

It is crucial to  see here that  the slope becomes finite even for infinitesimally small resonance 

widths! In Fig. 4.2b we present a numerical evaluation of n(Vapp) for several resonance 

widths, I?, and = 0, Y = 1/2, a = 1, and a/C= 1mV. The charging of the resonance 

clearly stretches out the voltage axis in comparison to  Fig. 4.2a. 

If we now consider the very weak coupling of the resonance to  the collector as indicated 

in Fig. 4.1 the total current through the structure may be assumed to  be proportional t o  

the accumulated charge in the well and the tunnel rate through the right barrier 

Since the current is now directly proportional t o  the accumulated charge in the well we can 

think of Figs. 4.2a and 4.2b as plots of current versus applied bias. Again we can see that  

turning on an "effective" Hartree potential interaction in the well based on a relative filling 

of the resonance state,  stretches out the voltage axis in the current turn-on region and it 

therefore converts the current steps into ramps. 

Single-electron tunneling and single-electron charging effects have been observed for 

small cross-section D B R T D ' S . ~ ~ ~ ~ '  The filling of a particular state by a single electron 

in a quantum box of small size may change the spectrum of the other available states in 

the box significantly34 and prohibit other electrons from tunnelling into the box (Coulomb 

~ l o c k a d e ~ ' ~ ~ ~ ) .  The single-electron Coulomb interaction may also give rise t o  a spin splitting 

of the resonance  level^.^^^^^ Experimental I-V-characteristics exhibit a step-like structure 

(Coulomb Staircase) determined by the states in the device and not a ramp-like structure. 

We therefore conclude here that  calculating a Hartree potential from a partially filled, 

finite width resonance cannot explain the phenomenon of Coulomb blockade! We attribute 

this failure t o  the existence of fractional numbers of electrons in the quantum well due t o  

our time average point of view. Given weak coupling to the leads, an electron either is, or is 

not in the quantum dot and the energy necessary to add an electron into the quantum dot is 

fixed. An average electro-static potential based on an average filling of the resonance, does 

not contain information about the necessary energy to add an electron into the quantum 

dot. Chapter 5 treats Coulomb charge correlation between electrons on a many-body footing 

where the occupation of each possible electron configuration is calculated and it presents a 

proper modelling of the Coulomb staircase. Chapter 6 treats the effects of Coulomb charge 

correlation for a system of coupled quantum dots. 
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Chapter 5 

Strongly Correlated Transport: 
High Bias 

5.1 Introduction 

Large cross section double barrier resonant tunneling diodes (DBRTD's) have been ex- 

t e n ~ i v e l ~ l - ~  studied and the quantization of the single-particle electronic state in the film 

growth direction has been shown to  be crucial in the understanding of this quantum de- 

vice. Charge a c c ~ m u l a t i o n ~ ~ 1 ~ ~ 9 ~ ~ * "  and inelastic s ~ a t t e r i n ~ ~ ~ ~ ~ ~ " ~  ha ve also been shown to 

modify the device behavior significantly. These interactions have been successfully treated 

with effective potentials in a single-particle picture. 

In small cross section resonant tunneling diodes electrons are confined in all three dimen- 

sions. This confinement of few electrons in all three dimensions has a two-fold consequence: 

1) the single-electron spectrum will be discrete, and 2) the usual effective potential treat- 

ment of electron-electron interactions becomes invalid and it is necessary to go beyond the 

single-particle picture in order to account for electronic correlations. Single-electron corre- 

lations effects are in very asymmetric structures in a bia.s direction where 

the collector barrier is thicker and/or higher than the emitter barrier. This configuration 

corresponds to the one in which intrinsic bistability due to charge accunlulation has been 

observed in large cross section D B R T D ' S . ~ ~ ~ ~ ~ ~ ~ ~  There is no charge accumulation a t  all 

in the other bias direction,24 and a very rich resonance spectrum can be observed. Nomi- 

nally symmetric quantum dots (emitter and collector barrier heights are equal in flatband 

condition) are expected to  have little charge accumulation in either bias direction because 

the  applied bias effectively lowers the collector barrier height relative to  the emitter barrier 

height and the rate of out-flow to  the collector is larger than the rate of in-flow into the 

quantum dot from the emitter. The transport is expected to  be most,ly determined by 

the single-particle states and indeed a rich spectrum of resonance energies has been found 

e ~ ~ e r i m e n t a l l y . ~ ' - ~ ~  

~ e e n a k k e r ~ '  and ~ v e r i n ~ '  have put forward similar rate equation models that  include 

single-electron charge correlation and 0-D-states in the quantum dot. Their two approaches 
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differ only in the  treatment of inelastic scattering in the quantum dot. Two extreme limits 

are treated: 1)  no inelastic ~ca t t e r ing ,~ '  and 2) strong inelastic ~ c a t t e r i n ~ . " ~ ~ '  The inelastic 

scattering rate, llr, needs to be compared to the tunneling rates through the barriers, 

which may vary from 10' to  1013 11s depending on the height and thickness of the barriers. 

Estimates of electron-phonon scattering rates in quantum dots have been e s t i m i ~ t e d ' ~ ~  t o  

vary over the same wide range of values. 

High bias current-voltage characteristics have only been calculated by Averin in the 

model of very strong inelastic scattering." With a thorough analysis of the differences 

between the limits of llr = 0 and llr >> I'L(R) and the introduction of a finite T, we will 

try to  shed light on the effects of fast and slow electron phonon interaction in the quantum 

dots on the high bias I-V-characteristic. 

Lateral confinement does not only alter the single-particle electronic states of the quan- 

tum dot,  but also quantizes the contact states into waveguide-like subbands. The lateral 

confinement is determined by the charge depletion width a t  the lateral boundaries. The 

charge depletion, and hence, the lateral confinement, and the lateral energy quantization 

change with the  changing doping level along the growth axis of the structure. The role of 

the transverse subbands in the  leads on high bias transport has been analyzed theoretically 

for symmetric quantum dots using the assumption of negligible charge accumulation with a 

single-particle transmission coefficient approach.32>'28-131 It has been found by comparison 

t o  experimental results30~1321133 that  effects due to  subbands in the emitter leading to  the 

quantum dot are significant in high bias I-V-characteristics. In particular it was shown that  

non-adiabatic transport processes which couple lead subbands to  quantum dot states of dif- 

ferent lateral quantum numbers, cause additional resonance features in the valley current 
region.128-130, 132 

The treatments including single-electron charging, and elastic and inelastic scatter- 

ing69y70 do not consider effects due to subband mixing. The treatments of subband mix- 

ing12'-130 do not include single-electron charging and inelastic scattering. With this work we 

extend ~ e e n a k k e r ' s ~ '  many-body rate equation approach t o  include non-adiabatic coupling 

t o  discrete subbands in the leads and finite lifetime inelastic scattering in the quantum, and 

we address the  following questions: 

1. Can coulomb charge correlation play a role in nominally symmetric structures? Why 

is there no experimental evidence of single electron charging effects in such structures? 

2. Is subband mixing important in very asymmetric structures as well as in symmetric 

structures? One may argue that  this may not be the case, since the thick collector 

barrier governs the transport through an asymmetric structure and modifications due 

t o  coupling a t  the emitter will be negligible. 

3. How important is the inelastic scattering in high bias transport through quantum 

dots? Can high bias I-V-characteristics be used to  indicate whether there is a slow 

or a fast electron relaxation in the dot? 

We first present the many body rate equation approach and simplify it for the case of 

two states in the quantum dot. Using this simplification we present analytical examples that  
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illustrate separately the importance of electron charge correlation, inelastic scattering in the 

quantum dot,  and discrete emitter subbands on the high bias current voltage characteristic. 

We also discuss analytically the competition of an enhanced current due to single-electron 

interactions against electron relaxation in the quantum dot on the I-V-staircase. Finally 

we include a more sophisticated model of subband mixing and evaluate numerically the 

transport properties through two different quantum dots, symmetric and asymmetric, and 

address the questions stated above. 

5.2 The Rate-Equation Model 

We are interested in modelling high bias transport through a central confined system with 

interacting electrons. The states in a quantum dot (see Fig. 5.1) may be is complicated su- 

perposition of single-electron s t a t e ~ . ' ~ ~ - l ~ O  We are following Beenakker70 in the modelling 

of high bias transport using rate-equations. The complicated many-body state in the quan- 

tum dot are coupled t o  adjacent leads via sequential single-electron tunneling. We construct 

the many-body spectrum using a constant charging energy. The limitaticlns of this Ansatz 

are discussed in the Appendix. We denote the many-body states in a co'nfiguration space 

notation7' of the form {n;) = in1 ,  722, n3,.  . .) where the elements n j  can take on values 

of 0 and 1 indicating the occupancy of a particular orbital. The complicated task in this 

problem is to  solve for the non-equilibrium occupation probabilities of all many-body states 

in the quantum dot. 

Figure 5 .1  Conduction band profile of  a quantum dot with applied bias. q is the fractional voltage drop 

over the left barrier. Quantum dot states are due to  confinement in all three dimensions. 

Subbands in leads are due to  lateral confinement. 

To illustrate the rate-equation setup in the configuration space notation we consider 

a system of two single-particle states (Fig. 5.2). There are four possible configurations of 

electrons in the quantum dot: (0, O),  (1,  O), {0,1) and {1,1). The respective eigen-energies 

E{nlrn2) of these four states are 0, El, E2 and El+E2+U, where U indicateis the modification 

of the eigen-energy due t o  electron-electron charge interaction. Figure 5.2a depicts the eigen- 

energy spectrum of the this simple many body system and its associated transition energies. 

The transitions between these many-body states are due to the tunneling to  the adjacent 

leads as indicated in Figure 5.2b. The empty dot state (0, 0) in Fig. 5.2b, for example, is 
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(a) E{n 1.112) f %ns (b) 

Figure 5.2 Interacting 2-particle system. (a) Eigen-energy spectrum and transition energies. (b) Con- 

figurations i n l ,  n 2 )  ordered vertically by their corresponding eigen-energy in (a) .  Coupling 

between configurations depends on transition rates, r, availability o f  initial (f),  final (1- f )  
states and the necessary transition energy (subscripts 1..  .4). llr indicates the intra dot  

relaxation between configurations of  constant number of  particles. 

coupled t o  the  state {1,0) via a transition through the left or the right barrier into state 

n l  (0,O + 1,O). The rate rl fl of this transition is determined by the barrier properties 
and the coupling of the single-particle state El t o  the lead subbands ( r l )  and the condition 

that  there is an electron available ( f l )  with the necessary transition energy in the left or 

right lead. For legibility we have abbreviated this process to rl fl = I'f'ff + fp. The 

reverse process of {1,0)+{0,0) depends on the the tunneling rate, rl, and the probability 

of finding an empty state in the leads, (1-f). Using the same abbreviated notation as above 

we denote r l ( l -  f l )  = rf(1- f f )  + I'f(1- f p ) .  All other transitions with changing numbers 

of electrons are similar, where we have indexed r's and f 's  by their appropriate transition 

energies El, Ez, E3 = El + U, and E4 = E2 + U. This picture described here is identical t o  

the one used by ~ e e n a k k e r ~ '  to  model linear response except for the inclusion of inelastic 

scattering.75 We extend this model now to include a finite relaxation rate, llr, connecting 

states of constant number of electrons in the quantum dot: { 1 , O )  H { O , 1 )  and solve it for 

high bias. 

Each configuration {nl , n2) has an associated steady state occupation probability, P({n;)), 

which is a function of the coupling to  the leads and the quantum dot relaxation time. The 

equations that  we solve do not provide more physical insight than Figure 5.2 and their 

discussion has been deferred to  Appendix C.2. Effects due t o  non-adiabatic transport (sub- 

band mixing) enter our treatment via the tunneling rates, r, and the detailed discussion 

concerning the non-adiabatic coupling of lead subbands to  quantum dot states is deferred 

to  the next section. 

Complexity of the Problem: The system of equations can be cast into matrix: form and 

solved numerically. The solution of the rate equations becomes exponentially complex, since 
27' different occupation configurations exist for the maximum number of p single-particle 

states in the quantum dot, resulting in a set of 2P coupled equations (2p  x 2p matrix). The 
problem simplifies dramatically if the quantum dot is assumed to  be close to or in local 
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equilibrium. ~ e e n a k k e r ~ '  has solved these coupled equations in the limit of linear response 

for the analysis of periodic conductance oscillations. 

In high bias, however, the electron distribution is driven far away from its equilibrium 

value. Averin6' has considered the case of rapid thermalization in the quantum dot, where 

the total number of electrons in the dot a t  high bias can be far away from its equilibrium 

value, however the electron distribution in the subset of constant number of electrons, N, 

is given by its equilibrium value. This assumption of rapid thermalization in the quantum 

dot simplifies the necessary calculations significantly since only the non-equilibrium number 

of electrons in the dot  needs to be calculated. The problem reduces from :!p to  p unknowns. 

The rate equations for the non-equilibrium number of electrons in the quantum dot are 

given in Appendix C.3. We do not make this assumption of rapid thermalization and solve 

for the probability of relaxation of all configurations and therefore treat the problem more 

generally. We can show with our analytical results with finite relaxation time T,  how the 

limit of r-+O converges to  the thermalization result by Averin. For the numerical treatment 
we only consider the two limiting cases of l/r >>I? and 1 / ~  = 0. 

In order to provide insight into the effects of the different interaction and transport 

processes (charging, inelastic scattering, and non-adiabatic subband mixing) we will first 

discuss in Section 5.3 a simplified model problem with two states, and then will present our 

numerical model and numerical results in Sections 5.4 and 5.5, respectively. 

5.3 Analytical Results for a 2-State System 

In this section we present our analytical results describing high bias transport through 

simple Zs ta te  systems. The processes we discuss consider can be divided into two groups: 

1) Electron-charge interactions and inelastic scattering are intra-quantum dot many-body 

properties. 

2) Non-adiabatic transport due to  subband mixing is determined by the coupling of the 

quantum dot to  the adjacent leads. 

We will divide up our analytical discussion along these lines and discuss intra-dot many- 

body effects in Section 5.3.1 first and then motivate effects due non-adiabatic transport in 

the following Section 5.3.2. 

5.3.1 Coulomb Charge Interaction and Inelastic Scattering in the Quan- 
tum Dot 

We now consider effects due to  electron charge interaction and inelastic scattering in the 

quantum dot in the Gedankenexperiment depicted in Figure 5.3a and compare them to  the 

simple single-particle result. We consider 3D t o  OD adiabatic sequential tunneling through 

a system of two single-particle non-spin-degenerate transverse states. For the simplicity of 

this example we assume the I D  subbands in the leads to  be infinitely closely spaced due t o  

weak confinement in the leads. Like ~ v e r i n , ~ '  we assume that  lateral states in the quantum 

dot are only coupled to  subbands in the leads with the same lateral quantum number. 
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Therefore every state in the quantum dot has only one corresponding subband in the lead 

and we only need t o  consider two lead subbands. The Fermi energy in the leads is assumed 

t o  be larger than the energy difference between the two single-particle states (EF:> E2-El). 
For simplicity we assume here that  the coupling rates, r, are energy and state independent 

for energies above the emitter conduction band edge. The current expressions that  we state 

in the next four sections are all derived in Appendix C.5. 

Sequential Tunneling Through a Non-Interacting System 

For a simple reference we repeat here the well known single-particle picture of high bias 

transport. Transitions from the emitter into the quantum dot will occur, if an electron in 

the emitter lead can provide the necessary transition energy. An electron with energy EF a t  

the  Fermi-energy in the emitter will gain an energy a V  ((r=e(l-q), see Fig. 5.1) by hopping 

into the the  dot due t o  the applied bias across the emitter barrier. EF+aV is the maximum 

energy a single electron can provide for a transition. Given the two single-particle quantum 

states with two distinct excitation energies El and E2, we expect two distinct current turn- 

ons in the high bias I-V-Characteristic a t  biases of (rV&TF=E1 and aV&TF=E2 (Fig.5.3a,b). 

Each of the independent channels carries a current of I,,,, = rr.r 
erL&. 

A bias of (rV = El will pull state number 1 under the conduction band edge of the 

emitter turning off channel number 1 and leaving only channel number 2 conducting. Bias 

voltages beyond this point we will call "valley current" bias. The total current I,,,, 

through the structure is carried by one channel until the second state is pulled under the 

emitter conduction band edge a t  a bias of (cuV=E2). Figure 5.3b shows the expected I-V- 

characteristic with the current normalised by I,,,, =em for a symmetric ( rR=rL)  and 

asymmetric (rR= 50 x r L )  structure. The current response is the same for both structures 

due t o  the normalisation by I,,,, 

Relaxation Effects on the Valley Current 

One well known mechanism which can enhance the valley current of the quantum dot is 

inelastic scattering. In Figure 5 . 3 ~  we plot the expected I-V-characteristic in the 2-state 

case for inclusion of strong inelastic scattering (T= 0) in the quantum dot without any charge 

interaction. Comparing to  Figure 5.3b we can see that  the "valley-current" is increased for 

both, the  symmetric and asymmetric structure. This region of valley-current is where the 

lowest single-particle state is pulled under the conduction band of the emitter (Fig. 5 . 3 ~ ) .  

An electron tha t  has tunnelled into the {0,1) configuration can, if it stays in the quantum 

dot long enough, relax into a { l , O )  configuration (Fig. 5.2b). Electron relaxation, opens up 

a new conduction channel a t  this bias and current is increased. 

The analytic current expression for this bias region is quite lengthy and does not provide 
physical insight. However, the limiting cases for very small and very large scattering rates 

given E2 - E1>>kBT, show nicely how the current in this voltage region is increased. For 

a long relaxation time, (small rate llr), we obtain the single channel result increased by a 
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Figure 5, 

Valley 
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. 3  Analytic 2-state example. (a) conduction band set-up for 2 lateral non-degenerate states 

above the Fermi energies in the leads. (b)-(e) depict high bias I-V-characteristics for dif- 

ferent models: (b) single-particle, non-interacting. (c) single-particle, inelastic scattering, 

(d) charge-interaction, no inelastic scattering, (e) charge-interaction and inelastic scattering. 

Inserts c l  and d l ,  d2 indicate the origin the enhanced valley current. 
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some small inelastic contribution 

The result for the limit of strong inelastic scattering is 

The expression is not intuitive, however, the limit rR>>rL a t  an infinite relaxation rate 
r ~ > > r ~  r r results in I ( r  = 0) + 2erLk: =21n0,,. This is the result for two channels through an 

asymmetric structure. 

The well known conclusion of this subsection is that  current flow can be significantly 

enhanced in the valley current region in the presence of intra-dot inelastic scattering. The 

increase in the current flow will depend on the particular relaxation rates between quantum 

states and rate of coupling into and out of the quantum dot. 

Electron-Charge Interaction 

Single charge interactions modify the single-particle transition energies of a quantum dot 

significantly (see Fig. 5.2a). The energy of a two electron state is raised by the charging 

energy, U .  For simplicity we assume here the charging energy to be larger than the single- 

particle energy spacing, U > E2 - El. Given four distinct transition energies (see Fig. 5.2a) 

El, Ez,  E I W ,  and E M  we expect four distinct channel turn-ons in the I-V-characteristic 

a t  biases of aV+EF=El, aV+EF=E2, aV+EF=E1+U, and aV+EF=E2+U. Figure 5.3d 

shows the I-V-characteristics for a symmetric and asymmetric structure. The symmetric 

structure shows 4 characteristic turn-ons a t  the expected energies, however the asymmetric 

structure shows only two characteristic turn-ons. We will explain the difference in the 

rise-part of the I-V-characteristic of these two structures in Section 5.3.1. 

In this section we will concentrate on one particular transition in the valley current 

region, where the first single-particle level, El, is pulled under the conduction band edge 

of the emitter (Fig. 5.3d). Configuration {0,1} effectively lifts single-electron level 1 above 

single-electron level 2 (the transition energy is El + U > E2) and another channel for con- 

duction due t o  electron charge interaction is opened (Fig. 5.3d2). The availability of this 

channel depends on the filling of the quantum dot with electrons. An opaque collector 

barrier in an asymmetric structure causes charge t o  accumulate in the quantum dot and 

the valley current will be increased due to  electron charge interactions (Fig 5.3d). 

We can calculate an analytical expression (see Appendix C.5) for this case which in- 

dicates an enhanced current compared to  the no-charging-interaction case. The analytical 

expression for this bias situation reads 
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In the limit of opaque collector barriers (rR>>rL) we obtain the result of 2 independent 

channels tha t  are opened by the electron-electron charge interaction. Figure 5.3d shows the 

enhanced current in the valley current region for an asymmetric and syrr~metric structure. 

with rR = 50rL  and rR = rL, respectively. Also indicated in this figure are the relevant 

transition energies. A full discussion on the rise part of the I-V-charactelistic especially as 

t o  why there is no feature in the I-V-characteristic a t  E2 and EI+U for the asymmetric 

structure, will be given in Section 5.3.1. 

We have assumed in the previous paragraphs that  the charging energy is larger than 

the single-particle energy spacing, U > E2 - El. If the charging energy, Cr, is less than the 

energy difference of the two single-particle states the turn-ons and turn--offs of particular 

transitions will be altered. The second channel, that  has been opened by the single-electron 

charging, will be shut down a t  a corresponding bias of aV+EF = E1+U .which is less than 
aV+ EF = E2+EF indicated in Figure 5.3d. This situation can be also visualised by a 

figure similar t o  Fig. 5.3d2 where the transition energy of the {O, 1) state is not above the 

conduction band of the emitter. 

Conclusion: The valley current of a multi-state quantum dot is enhanced due to  

single-electron charge interactions. The current is increased even in the limit of symmetric 

structures (rR = rL). Eq. 5.3 evaluated for rR = rL = r results in zer compared t o  the 

single channel value of eF:::L I m = r L = r  = $er. The current does not quite double t o  two 

channels, but the single-particle charge interaction has increased the current flow by 60%. 

Electron Charge Interaction and Relaxation Effects on the I-V--Staircase 

In the  previous Sections 5.3.1 and 5.3.1 we discussed electron charge interaction and electron 

relaxation independently of each other. We will now put both together artd will discuss the 

current expressions for each of the relevant voltage regions in detail. Figure 5.3e shows 

the corresponding I-V-characteristic including electron charge interactioln and very strong 

inelastic scattering. Note that  the I-V-characteristic for the asymmetric structure appears 
t o  be unchanged compared t o  Figure 5.3d. However the symmetric structure looses one turn- 

on feature a t  El+U due t o  the inclusion of strong inelastic scattering. We will now walk 

through the I-V-characteristic transition energy by transition energy and try t o  provide 

physical insight into the transport processes. We will explain how 

1) single-electron charge interactions introduce new features in the I-V--Staircase a t  each 

transition energy, and 

2) how inelastic scattering and structural asymmetry tend t o  wipe some features out. 

El Transition: In a bias range corresponding t o  El 5 aV+EF < E2 only the  {0,0)+, 

{I, 0) transition is allowed. The current is transported through a single channel resulting 

in: 

E2 Transition: Two transitions {O, 0)+{1,0) and {0,0)+{0,1) are allowed t o  fill the 

empty dot from the right in a bias range E2 5 aV+ EF < E1+U. Given, the filling of the 
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dot with one electron, only one transition t o  the left (back to  the {0,0) state) is allowed. 

This corresponds to  2 entry channels from the right and 1 exit channel t o  the left and the 

current is72 

This result is independent of the presence of inelastic scattering, since inelastic scattering 

does not modify the number of available entry and exit channels into and out of the quantum 

dot. 

The current is suppressed from the no-charging result, U = 0, of 21n0,, due to  single 

electron charge interaction, even in symmetric structures. The current is increased, however, 

from the  single channel result 11, in the previous voltage region by a fraction of = 
rr, With increasing asymmetry of rR>>rL this additional current step is wiped out. 

2 r f l ~  ' 
Phys~cally the equivalence of II and I2 in the of rR>>rL limit is determined by the number 

of channels through the most impeding barrier. The left barrier is the most impeding one 

here and the number of channels through it is one for both bias points. 

El + U Transition: The { O , ~ ) H  {1,1) transition becomes available for biases in the 

range of El + U 5 crV+ EF < E2 + U and the state {1,1) can only be achieved by this 

particular transition. This additional transition will increase the availability of c:hannels of 

conduction through the quantum dot and the current can be calculated t o  be: 

in the limit of a small relaxation rate, 1/7. 

A finite relaxation rate reduces the current in this bias (-C?). A relaxation process 

{0,1)+{1,0) in the quantum dot decreases the population of the excited { O , l )  state, which 

is the initial s tate of the {0,1)+{1,1) transition, which in turn has increased the number 

of transport channels through the structure. The { O , l )  state will not be populated a t  all 

in the limit of very large relaxation rates where the tunneling into the dot from the right 

is slower than the relaxation in the dot. The additional transport channel is therefore shut 

down by the  inelastic scattering in the dot and the current (13,d) remains the same as in 

the previous bias region where two entry channels and one exit channel were available (I2 in 

Eq. (5.5)). Figure 5.3e shows how the additional current step is wiped out by the inclusion 

of inelastic scattering. 

This additional step will also vanish in very asymmetric structures, where rR2+rL,  since 

the number of exit channels determines the current flow in this limit. We therefore have 

11eIze13eerL as shown in Figure 5.3d in the bias region El _ < a V + E F <  E2+U.  

E2 + U Transition: Applied voltages corresponding t o  an transition energ,y range of 

E2+ U 5 (YV + EF < El + EF allow for all four transitions depicted in Figure 5.2a to  occur. 
This implies that  each formerly single-particle level can now be filled independently of the 

filling of the other level. This corresponds t o  the availability of two independent conduction 

channels just as discussed in Section 5.3.1. The current through the structure is then again: 

- 
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This result is independent of the inclusion of inelastic scattering because inelastic scattering 

does not reduce the number of transport channels in this bias range. 

Valley Current Region: The transport behavior in the valley current region of E1+EF 5 
a V + E F  < E2+EF has been discussed a t  length in Sections 5.3.1 and 5.3.1. The current 

expression in the presence of electron charge interaction for this voltage region does not 

depend explicitly on the relaxation rate in the quantum dot and is given by Eq. (5.3). 

Conclusion: The conclusion we draw from this sub-section is that  single-electron charge 

interactions can modify the high bias response even for symmetric structures and introduce 

new features. Single electron charge correlation modifies the transition energy spectrum of 

the quantum dot. These new transition energies allow for new transport channels into the 

quantum dot. However, if the overall transport is limited by the collector barrier, charge 

will accumulate and the number of entry channels into the quantum dot becomes irrelevant. 

Charge accumulation will therefore wipe out effects due t o  additional tr,ansport channels. 

Electron relaxation in the quantum dot tends to  wipe out features that are due t o  filling of 

excited energy levels and couples lower lying levels that  are elastically delcoupled from the 

emitter. 

5.3.2 Non-Adiabatic Transport - Effects of Quantized Emitter Subbands 

So far we have assumed that every subband in the lead is only coupled to  states in the 

quantum dot with the same lateral quantum number. The lateral confinement in the leads 

was assumed t o  be negligible, such that the subbands are almost degenerate (Fig. 5.3a). 

However, lateral confinement is clearly present in the leads as well as in the quantum dot. 

The lateral energy spectra in the leads and the quantum dot are only the same if the 

lateral confinement is the same in the regions and the assumption of a'diabatic coupling 

of the lead subbands to  the quantum dot states is only valid under this; condition. This 

is the model Averin6' has used. However, the electro-static transverse confining potential 

is generally position dependent, due to  spatially depending doping, which causes subband 

mixing between the lead subbands and quantum dot states of different lateral quantum 

numbers. This can be thought of as confinement induced elastic scattering, which couples 

different lateral quantum numbers. This process introduces new features in the high bias 

 characteristic.^^^-^^^ 
In the next sub-section we will only consider effects due to  subband mixing. We will not 

include effects due to  inelastic scattering or electron charge interaction. We consider a very 

simple 2-state example, where we motivate the expected effects due to  subband mixing. 

The complete model proposed by ~ r ~ a n t ~ ~ ~ - ~ ~ ~  adapted for the use of rate equations will 

be explained in detail in Section 5.4. 

We consider a model-system with 2 quantum states 1 and 2 with corresponding subbands 

a and b in the leads (see Fig. 5.4). We assume that the doping in the structure is such that 

only the lowest subband (a) is occupied with electrons. The treatment in the adiabatic limit 

allows only for coupling of states with the same lateral quantum numbers, i.e. only a w l  

and W2 transitions are allowed. Since subband b is not occupied with electrons, there will 

only be transport through state 1 indicated in Figure 5.4b. 

Purdue University Gerhard Klimeck 



50 Strongly Correlated Transport: High Bias 

Figure 5.4 Adiabatic versus non-adiabatic transport. (a) Example conduction band profile w i th  2 non- 

degenerate, non-interacting lateral quantum levels. Energy spl i t t ing is AE. Only the lowest 

subband is occupied in  the leads. (b) Current due t o  adiabatic transport through correspond- 

i ng  lateral states a+ 1. (c) Contribution due t o  coupling between different lateral quantum 

numbers a + 2. (d) Sum o f  the two  current contributions in  (b) and (c) New features are 

introduced i n  the rise part o f  the I-V-characteristic and the valley current. Voltage region o f  

current f low is extended. 

Inhomogeneity in t he  lateral confinement will introduce some coupling between subband 

a and s t a t e  2. Figure 5 . 4 ~  depicts the  additional current contribution due to the  a + 
2 transition. T h e  magnitude of t he  current contribution is determined by the  strength 

of t he  matr ix element between subband a and s ta te  2. The  scattering matrix elements 

describing t h e  coupling between all the  s tates  of the  system needs t o  be unitary fix reasons 

of current conservation. This implies t ha t  allowing for a a+2 transition with some particular 

amplitude, lowers t he  amplitude of the a+l transition from its adiabatic value. 

T h e  a+2 transition will be offset from the  a+l transition by the  energy A E  = Ea-El .  

This has two consequences on the  overall current through the  structure: 

1) New resonance phenomena are introduced on the rise part  of the I-V-characteristic 

(Fig. 5.4d). 

2)  T h e  bias region of current flow is increased and another mechanism for t he  generation 

of valley current has been introduced. 
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5.4 Numerical Approach 

There are two key ingredients in the numerical evaluation of the rate eqluation model pre- 

sented in Fig. 5.2, Section 5.2, extended to  many quantum states: 1) the calculation of the 

coupling rates of the single-electron states in the quantum dot to  the quantized emitter 

subbands, and 2) the numerically efficient setup of the rate equations. The second step is 

linked to  the first one by the following argument. The subband mixing enters into the rate 

equation model via the coupling rates, I?, into the quantum dot. The selection of states 

to  obtain unitary subband mixing scattering matrices determines the number of quantum 

states that  we consider in the quantum dot. After the selection of quantum states is done, 

we can consider their symmetry and simplify the problem t o  ease the numerical evaluation. 

In the next two sections we will pick up these two issues one by one. 

5.4.1 Subband Mixing - The Model 

We use the theory of multichannel quantum dot tunneling which was developed and em- 

ployed previously by Bryant t o  study resonant tunneling through single dots with abrupt 

 connection^,^^^-^^^ through dots with tapered connections,130 and through coupled quan- 

tum dots.l4l We assume that  the quantum dot nanostructure is a cylinder which is divided 

into separate regions for the emitter, the barrier between the emitter and the dot, the dot, 

the other barrier, and the collector. We assume that the lateral confinement potential in 

each region is parabolic. In each region the electron effective mass, lateral confinement 

potential, and the conduction band edge are locally constant. However, these parameters 
can change from region to  region. To calculate the transmission coefficient; for single barrier 

tunneling into (out of) the quantum dot, we propagate an electron incident from the emit- 

ter (collector) through the connection, across the barrier and into the dot. Wave function 

boundary conditions are satisfied a t  each interface between adjacent regions. Details are 

given in Refs. [I281 and [130]. 

Mode-mixing is determined by how the lateral confinement potential changes where the 

leads connect to the dot. In previous work, Bryant considered abrupt connections128-1307141 

in which the lateral confinement potential changes a t  the leadlbarrier interfaces, and tapered 

connections,130 in which the lateral confinement potential changes smoothly as the lead 

connects to  the dot. Mode-mixing is qualitatively the same for both models. Here, we 

assume that  the connections are abrupt to  simplify the calculations. The overlaps 

between lateral states, 4j,q(x, y), on adjacent sides of an interface, j = 1  (left) or j = r 

(right), determine which lateral modes mix a t  an interface and how strong the mixing will 

be. If confinement is the same on both sides of the interface, then ( 1 ,  nz(r, q)  = Smtq and 

tunneling is a single-channel process. Lateral mode-mixing at the interface is possible, when 

the confinement is different in two adjacent regions. 
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When the quantum structure is cylindrically symmetric, as in a vertical quantum dot 

structure with parabolic confining potentials, the lateral modes in different regions can mix 

only if the modes have the same lateral (x and y) parity. There are four independent sets 

of coupled channels (Fig. 5.5a) with evenleven, oddleven, even/odd and oddlodd parity. 

We include the ground states (0, O) ,  (1, O), (0, l ) ,  and ( 1 , l )  of each of these groups and the 

first 3 excited states for the first three parity groups. We have to leave out the (3, I) ,  (1,3),  

and (3,3) states due t o  numerical limitations (see Section 5.4.2). The resulting single- 

particle spectrum is depicted in Figure 5.5b. Note that  each of these indicated states is spin 

degenerate. 

For our simple model the overlap matrix for x (y) motion is 2x2.  To conserve probability, 

the matrix must be unitary.128 A real, unitary 2 x 2 matrix has the form 

where Jyl = (1 - p2)lI2. If we specify Px and PY for the x and y overlaps, the total 

overlap matrix for the four coupled modes can be determined. For cylindrical structures 

px = Py = P. Thus a single parameter determines the overlap matrix for a particular 
interface. 

The strength P for the lateral mode coupling is determined by the overlap between lateral 

states in adjacent regions. If the confining potentials are parabolic, then the overlaps can 

Figure 5.5 Parities and eigen-energies o f  included lateral states. (a)  Subset of 16 lateral states (n,, ng) 
composed o f  4 allowed quantum numbers in each dimension. Only states with the same x 

and y parity can couple t o  each other as indicated with dashes. States (3,1), (1,3:), and (3,3) 
are excluded in our calculation for reasons of  numerical complexity. (b) Lateral single-particle 

eigen-energy spectrum. Each quantum state (n,, ng) is doubly spin degenerate. Grouping 

in curly brackets { ); indicates equivalent coupling t o  the leads; i.e. states in one group are 

equally likely occupied. 

be determined analytically. Even if the confining potential is not exactly para.bolic, the 

parabolic approximation should give a good qualitative estimate for the overlaps if the 

correct effective masses and lateral level spacings are used to  model the parabolic potentials. 

Estimates of p have been made for abrupt  constriction^'^^ for parameters appropriate 

for the quantum dot nanostructures, p > 0.6. In these calculations, we use P as a parameter, 
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which we adjust in this range t o  test the effects of mode-mixing. 

5.4.2 Implementation of Rate Equations 

The rate equations as they were put forward by Beenakker70 use a configuration space 

notation that  indicates the occupation or vacancy of a Slater determinant by a 1 and a 0, 

respectively. Figure 5.5b indicates the structure of the single-electron quantum states that  

we are simulating. Altogether we are considering 13 spin degenerate states. The number of 

all possible configurations of these 26 quantum numbers in terms of an occupation number 

notation is 226 E 6.7 x lo7. The setup for a solution for all of the occupation probabilities 

would therefore result in a matrix of dimension 226x226. However many of the lateral states 

are degenerate in energy and have equivalent coupling t o  the leads. This degeneracy can 

be used t o  reduce the number of equations that need t o  be solved. 

To illustrate this degeneracy of states let us consider single-particle, lateral states 

characterized by two lateral quantum numbers, n,(y), and one spin index, a, denoted as 

(n,, n,, a). The 4 single particle states (1,O, f ) ,  (1,0,  J), (0,1,  f ) ,  and (0,1,  J),  for example, 

are energetically degenerate (Fig. 5.5b). Figure 5.5a indicates the coupling of ( 1 , O ,  a) to  

(3,0,  a ) ,  (1,2, a) and (3,2,  a ) .  Similarly the degenerate state ( O , 1 ,  P) is coupled t o  (0,3, P), 
(2,1,  p )  and (2,3, p). Note now that  these groups of coupled states {(3,0, a ) ;  (0,3, P)), 
{(1,2, a ) ;  (2,1, p ) )  and {(3,2, a )  ; (2,3, p ) )  are also degenerate in energy. Given the equiv- 

alent coupling of the (1,0, a )  and (0,1, P) states to  other states and their degeneracy, we 

compound these four single-particle states into one 4-fold degenerate state. This procedure 

leads t o  five 4-fold degenerate and three 2-fold degenerate states as indicat,ed in Figure 5.5b. 

The dimension of the resulting configuration space is 55x33=84375. We can solve a system 

of equations of this dimension using iterative methods if we can provide a "good" guess for 

the solution. We defer the report of the rate equations, which utilize the the degeneracies 

as discussed above to  Appendix C. 

Purdue University Gerhard Klimeck 



54 Strongly Correlated Transport: High Bias 

5.5 Numerical Results 

In this section we present our results obtained for a multi-electron quantum dot system 

under high bias. We consider two example systems here: a symmetric and an asymmet- 

ric structure in which we analyze the effects of non-adiabatic transport, electron-electron 

charging and inelastic scattering. 

5.5.1 Example Device 

The example device we consider here is an undoped double barrier resonant tunneling 

structure (FIG. 5.6) which is sandwiched between lightly doped spacer layers and heavily 

doped contact layers. The transverse confinement changes in the longitudinal dimension 

due t o  the change of doping and the associated charge depletion along the growth axis of the 

diode. The single-particle energy spacing in the quantum dot, barriers and leads is assumed 

t o  be 15meV, 16meV and lOmeV, respectively. A Fermi energy of 38meV populates the 

three lowest subbands in the leads. The conduction band floats up in the central region 

of the device due t o  the lack of doping Vfloat = 50meV. The well region is assumed t o  be 

InxGal-xAs with a conduction band offset of 50meV and thickness of 6081 similar t o  the 

Reed3' structure. We have estimated the energy quantization in the longitudinal direction 

t o  be 6OmeV and 245meV for the first two states with our Green's function simulator 

Figure 5.6 Conduction band profile for numerical simulation. Subband energy spacing in the leads is 

lOmeV and single-particle state energy spacing in the quantum dot  is 15meV. The Fermi 

energy in  the leads is 38meV (3 subbands are occupied). The conduction band in  the quan- 

t u m  dot  and barriers is raised by Eflo,t = 50meV due t o  charge depletion. The quantum 

dot  is assumed t o  be In,Gal,As with a conduction band offset o f  E o f f  = 50meV. The 

thicknesses o f  the spacer layers and the quantum well are 50A and 60A , respectively. The 

longitudinal energy quantization, E,, is 6OmeV. The temperature is T=O.SI< corresponding 

t o  kBT = 0.08meV. Barrier thicknesses and Al-fractions vary for the simulated symmetric 

and asymmetric structures. 
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 QUEST.^^ Since the energy separation of these two longitudinal states is much larger 

than the assumed lateral state quantization we will neglect the second longitudinal state 

completely and consider only the lowest longitudinal quantum number state. 

We assume that the single-particle state separations A E  = 15meV, are larger than 

the charging energy, U = 1.5meV. This allows us to  use the simple charge interaction 

model (see Appendix C.4 for a discussion on charging models). Barrier thicknesses and 

Al-fractions45 are chosen such that the single-particle levels can be assumed to be sharp 

with A E ,  U>>kBT>>hI'. This condition needs to be satisfied to use rate equations in the 

sequential tunneling picture. 

5.5.2 Inelastic Scattering, Charging, and Subband Mixing treated inde- 
pendently 

Before we put the effects due to inelastic versus elastic, charging versus no-charging, and adi- 

abatic versus non-adiabatic transport together in two complex examples, we again present 

consequences of these three transport phenomena independently in this complicated elec- 

tronic system. We will find that all the effects that we discussed in length in the analytic 

section 5.3 can be found in the numerical results. We consider an asymmetric structure 

with leftlright barrier thicknesses of 1058+/808+ and an Al-fraction of 0.3510.30 for these 

examples. 

We use the simulation for elastic, adiabatic, no charge-interaction transport as base- 

line (thin line in Fig. 5.7) for comparison against the independent inclusions of inelastic 

scattering (Fig 5.7a), charge interaction (Fig. 5.7b) and subband mixing (Fig. 5 .7~ ) .  The 

arrows marked "x-y" in Fig 5.7a indicate the voltage ranges over which subband "x" in 

the emitter can conduct adiabatically into quantum state "y" in the quantum dot. Note 

that due to (1) the different energy separations of the subbands in the leads (10meV) and 

the single-electron states in the quantum dot (15meV) and (2) the finite Fermi energy in 

the leads, the "3-3" transition is turning on when the "1-1" transition is already turned 

of@. As in our discussion in the analytical section we define the valley current region as the 

voltage region extending past the turn-off of the first transition (see arrow in Fig. 5.7a). 

The introduction of inelastic scattering (solid line in Fig 5.7a) shows an increased current 

due to  coupling of lower lying, elastically decoupled channels. The turn-off of the "1-1" 

transition, for example introduces a decrease in the current in the elastic calculation (thin 

line), however, electrons tunneling into the quantum dot in a "2-2" transition can relax 
down to level one in the quantum dot. Level one is therefore filled from the top via an 

inelastic channel. The current is increased due to this additional channel and the turn-off 

feature of the "1-1" transition is wiped out. 

Fig 5.7b shows the effects of electron-electron charging in the elastic limit. The spin 

degeneracy of the single-electron states is broken by the charge interaction (arrow 1) and 

the turn-on of higher single-electron states is impeded (arrow 2) by the presence of two 

§Section 2.5.1 treated adiabatic transport including several lateral modes. All modes turn off at  the same 

bias in this limit (see Fig. 2.7) 
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Figure 5.7 Effects due t o  (a) inelastic scattering, (b) electron charging, and (c) subband mix ing are 

compared independently o f  each other t o  the elastic, adiabatic, single-particle result i n  an 

asymmetr ic structure. (a) Inelastic transport. Arrows labelled "x-x" indicate the regions 

o f  allowed adiabatic, elastic subband-to-quantum-state transitions where the numbers "x" 

correspond t o  the lateral state groups as indicated i n  Fig. 5.5. Electron relaxation wipes o u t  

features and increases the current in  the "valley current" region where channel 1 has shut 

o f f  already. (b) Single-electron charging. Spin degeneracy is broken (arrow a), turn-on o f  

second single-particle level is impeded (arrow b). Current is increased i n  the "valley current" 

region (arrow c). Underlying single-particle spectrum cannot be identified. (c) !\on-adiabatic 

transport.  Subband mix ing  increases voltage-region o f  current flow. Unitar i ty condit ion o n  

scattering mat r i x  causes reduced current flow through direct channels (arrow a). Notat ion o f  

the  new coupl ing channels is the same as i n  (a). 

Purdue University Gerhard Klimeck 



5.5 Numerical Results 57 

electrons in the quantum dot. The valley current is increased as discussed in Section 5.3.1. 

'The increased region of current flow due t o  subband mixing is depicted in Fig 5 . 7 ~  

(solid line) and compared to  the adiabatic result (dashed line). A weak: subband mixing 
with ,f3 = 0.95 introduces a dramatic change in the overall I-V-characiteristic (Note the 

change in the voltage scale.). The valley current is strongly enhanced. Arrow 1 indicates 

the reduced current of the I-V-characteristic due t o  subband mixing. Current conservation 

dem.ands that  the scattering matrix, which couples subbands and quantum. states in the dot, 

t o  b'e unitary. Opening new scattering channels reduces the strength of the direct channels 

(arrow 1). 

[n the  following two sections we will put the three transport phenomena (1) elastic versus 

inelastic transport, (2) non-interacting versus interacting transport and (3) adiabatic versus 

non adiabatic transport together piece by piece and explain their general effects on symmet- 

ric and asymmetric structures. For the symmetric structure we start  from ~ r ~ a n t ' s ' ~ ~ - ' ~ O  

analysis of non-adiabatic transport in symmetric structures. We will show how the inclusion 

of charge interaction can change the high bias response of symmetric structures significantly. 

For the asymmetric structure we start  from ~ v e r i n ' s ~ '  analysis of adiabatic, thermalized 

transport through a charge interacting quantum dot and show how the  inclusion of non- 

adiabatic transport phenomena and the exclusion of inelastic scattering in the quantum dot 

will alter the high bias I-V-characteristic dramatically. 

5.5.3 Symmetric Structure 

Is there single-electron charging? Single-particle quantum states in resonant tunneling 

diodes have first been observed by ~ e e d ~ '  in a symmetric structure and evidence for single- 

electron charging effects has not been found. The supporting argument for the missing 

effects due to single electron charging is that  the collector barrier is effectively lowered by 

the  applied bias and that  there is no charge accumulation to  introduce effects due electron- 

electron interaction. However, the effect of the effective collector barrier lowering can be 

decreased if the barrier heights are raised. If then collector and emitter barrier transmission 

rates are of the  same order of magnitude an average filling of a quantum state is 112. This 

will modify the excitation spectrum of the quantum dot and will leave an observable effect 

in the high bias I-V-characteristic. Another requirement6't70 which is necessary for the 

observation of single electron charging effects has also not been satisfied in the symmetric 

Reed structure. The energetic spread of the quantum states due t o  the coupling t o  the 

leacls can be estimated to  be of the order of several meV, which is about the same order 

of magnitude as the charging energies involved with single electron charging. We therefore 

cannot expect to  observe single electron charging effects. By the choice of thick barriers we 

can ensure, tha t  we can satisfy the condition A E ,  U>kBT>>fir for all possible transitions 

into and out of the quantum dot. 

We analyze here the double barrier structure depicted in Fig. 5.6 with barrier thicknesses 

of 80A and Al-fractions of 0.35. Fig. 5.8a depicts an I-V-characteristic that  Bryant128-130 

could have obtained in his analysis of coherent, elastic transport through double barrier 

structures. Even weak subband mixing (,f3=0.93) modifies the overall I[-V-characteristic 
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58 Strongly Correlated Transport: High Bias 

significantly. Calculated modifications of this high bias characteristic due single-electron 

charge interactions are depicted in Figure 5.8b using a charging energy of U = =  1.5meV. 

There are clearly additional steps of the energy scale of 2U introduced due to  single-electron 

charging. A. slightly increased valley current due to  electron charge interaction is visible as 

well. 

Does Inelastic scattering play a role in symmetric structures? Figure 5 . 8 ~  compares the 

simulations for perfectly elastic (l/r=O) and perfectly inelastic (llr >> r) transport in the 

presence of electron charge interaction and subband mixing. The solid line from Fig. 5.8b 

is now dashed. The relative amplitudes of some current peaks (arrow 1) have changed 

Applied Voltage (mV) Applied Voltage (mV) 

3 
O 100 150 200 250 

Applied Voltage (mV) 

Figure 5.8 1.-V-characteristic for a symmetric structure. Start with Bryant's "picture" (Ref. [128-1301) 

c f  coherent transport with and without subband mixing. We extend this picture t o  include 

single-electron charging and inelastic scattering. (a) adiabatic versus non-adiabatic transport. 

\foltage region o f  current flow is extended due t o  subband mixing ,B=0.93 (thick line). (b) 

Include charging: Thick line f rom (a) is now thin. Electron-electron charging dots introduce 

new features in the I-V-characteristic even for symmetric structures. (c) Include strong 

illelastic scattering: Thick line from (b) is now thin. Electron relaxation in the quantum dot  

h~as only small effects on the I-V-characteristic. Current is increased on the tur~i-of f  side o f  

the peaks (arrow 1) and reduced on the turn on side (arrow 2). 
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due to  the opening of new channels in the valley current (see Section 5.3.1). Current is 

slightly reduced due to  inelastic scattering on the rise part of the I-V-characteristic (arrow 

2) as discussed in Section 5.3.1. However, effects due to inelastic scattering in the quantum 

dot in the case of symmetric structures appear to be small. The two calculations for the 

extreme cases of l/r=O and l/r>>I' do give slightly different results but. an experimental 

determination of relaxation times by high bias I-V-characteristics seems infeasible. 

Conclusion: Our analysis shows that  single electron charging will have effects on 

the high bias I-V-characteristic of symmetric double structures, provided the barriers are 

thick/high enough. In the limit of strong confinement where A E  > U we expect the I- 

V-characteristic to  be dominated by the single-particle spectrum. Superimposed on this 
spectrum we expect fine structure due to single electron charge correlations. Devices built 

in tlhis parameter range would allow the clear separation of charging and quantum effects. 

5.5.4 Asymmetric Structure 

~ v e r i n "  has assumed adiabatic coupling from I D  subbands in the leads to OD states in 

the quantum dot for the lowest longitudinal energy level in his high bias transport analysis. 

He assumed that  the electrons are in the quantum dot long enough to suffer an inelastic 

scattering process and calculated the canonical ensemble average. We start our analysis for 

asymmetric structures from this picture. However note that  in our case we assume that  

the Fermi-energy in the same order of magnitude as the charging energy and the single- 

electron state separation (Fig. 5.6). This assumption allows us to analyze the  effects of 

subband mixing and corresponds to doping levels similar to the structure by ~ e e d ~ '  in 

which subband mixing is indeed important. Another difference in our analysis is that  we 

keep the energy dependence of the collector barrier transmission rates, which makes the 

collector barrier more leaky a t  higher biases and reduces the charge accumulation. 

The double barrier structure analyzed here is depicted in Fig. 5.6 with collector, emitter 

barriers thicknesses of 1 0 5 4  80A and AE-fractions of 0.35, 0.30, respectively. Figure 5.9a 

corn,pares the effects due to single electron charging to  the no-charging case. New steps 

reflecting the charging energy scale U have been introduced. The spin-deg;eneracy is broken 
(arrow 1) and the current has been impeded from single-particle turn-ons (arrow 2) on 

the  rise part of the I-V-characteristic and the valley current (cornparme to  Fig. 5.7a) is 

increased. The underlying single-particle spectrum cannot be identified in the high bias 

I-V-characteristic anymore, even though U = 1 . 5 m e V a A E  = l5meV. 

Is subband mixing important in asymmetric structures? Figure 5.9b shows the result 

of a,n inclusion of weak subband mixing (thick line) with P = 0.95 and compares it to to  

the formerly thick line of Figure 5.9a. The bias region of current flow is extended (note 

the change of scales) and the I-V-characteristic is dominated by the steps introduced by 

the  electron-electron charge interaction. Note that the single electron spectrum current 

peaks (Fig. 5 . 7 ~ )  cannot be found in this result a t  all. Subband mixirig changes the I- 
V-characteristic of asymmetric structures dramatically when the Fermi-energy, EF, is of 

the same order of magnitude as the quantum dot energy scales: Charging energy, U ,  and 

single-electron spectrum, A E .  
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Does inelastic scattering play a role in  asymmetric structures? Inelastic ;scattering 
effectively couples lower lying quantum levels, that  are not coupled elastically t o  the emitter 

lead in the valley current region. This issue has been discussed in detail in Chapters 2 and 

3 in the context of the phonon-peak. The exclusion of inelastic scattering in the quantum 

-no charge, no mix, inelastic 
I 

60 - W/ charge, no mix, inelastic 

charge, mix, inelastic 

' 100 150 200 250 
Applied Voltage (mV) 

Voltage (mV) 

- W/ charge, wl mix, elastic 

3400 w 

" 100 150 200 250 
Applied Voltage ( mV) 

Figure 5.9 1.-V-characteristic for an asymmetric structure. Start with Averin's "picture" Ref. [69] of 

inelastic, adiabatic transport with and without single-electron charging and show effects due t o  

i~nclusion o f  subband mixing and exclusion o f  inelastic scattering. (a) Single-electron charging: 

Single-electron charging (thick line) introduces fine structure in the I-V-characteristic, breaks 

the spin degeneracy (arrow 1) and impedes current flow (arrow 1) at higher level turn-ons . 
(b) Include non-adiabatic transport: Thick line in (a) is now thin. Subband mixing increases 

the region o f  current flow. Features due t o  single-electron charging (=2xU==3meV are 

dominant. Single-particle spectrum (see Fig. 5 . 7 ~ )  cannot be identified. (c) Exclude inelastic 

scattering. Thick line in (b) is now thin. Fine structure due t o  the single-particle spectrum 

is exposed (see Fig. 5 . 7 ~ ) .  

dot (Fig. 5 . 9 ~ )  exhibits structure due t o  the single electron spectrum in the valley current 

region. Current is significantly reduced in this region. The two limits of l/r >> r (inelastic) 

and l/r=O (elastic) give dramatically different results in asymmetric structures. The reverse 

bias measurement of an asymmetric structure will exhibit the single-particle spectrum since 

- -  - -  - 
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there is no charge a c c ~ m u l a t i o n . ~ ~  If single particle-features can still be found in the forward 

bias direction (this is the bias direction we considered here all along), we have an indication 

that  the relaxation in the quantum dot is not very fast. If all the single particle features 

disappear, we have an indication, that  the relaxation rate is large. 

5.6 Conclusions 

We have presented analytical and numerical results which explain the roles of inelastic 

scattering, single electron-charge interaction and non-adiabatic coupling to the leads in a 

OD quantum dot. In the analytical work we have shown how all three of these effects increase 

the valley current of the I-V-characteristic compared to  the non-interacting, non-adiabatic, 

single-particle analysis. We have analyzed numerically devices where the Fermi energy is 

comparable t o  the lateral state spacing. Non-adiabatic transport increases the voltage range 

of transport through symmetric and asymmetric structures. In symmetric structures effects 

due to  single-electron charging have not been observed experimentally. However we show 

that  additional steps in the I-V-characteristic should be observable even in the case of weak 

charge accumulation, provided the barriers are thick and/or high enough. The inclusion of 

inelastic scattering within the quantum dot does not introduce significant changes in the 

predicted I-V-characteristic of a symmetric quantum dot. Transport through asymmetric 

structures is shown to  be dominated by charge accumulation in one bias direction. The 

treatment of inelastic scattering in the quantum dot modifies the predictions of high bias 

transport dramatically. Inelastic scattering effectively couples all lower lying levels to the 

emitter lead, as long as there is a t  least one (high level) entry channel. Weak inelastic 

scattering exposes the underlying single-particle spectrum in the valley current region and 

an experiment in this parameter range may give insight into the strength of the inelastic 

scattering in the quantum dot. Non-adiabatic transport appears t o  be very significant for 

asymmetric structures as well as for symmetric structures, if the Fermi energy is of the same 

order of magnitude as the quantum dot characteristic energies of Coulomb charging energy 

and single electron spectrum. 

Overall we have tied two approaches together in our analysis: (1) non-adiabatic trans- 

port analysis in the elastic, no charge interaction limit, and (2) inelastic, charge interaction 

analysis in the adiabatic limit. 
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Chapter 6 

Strongly Correlated Transport: 
Linear Response 

6.1 Introduction 

Single quantum dots have been widely studied and a fairly clear understanding of the trans- 

port through these artificial atoms has emerged.7 Coupled quantum dots could be consid- 

ered as artificial molecules and their study could open up new physics in which electron 

charging and electron coherence play a significant role. Most studies of coupled quantum 

dots include only ~ h a r g i n g . ' ~ ~ - ' ~ ~  Few s t u d i e ~ ~ ~ ~ ? ~ ~ '  have been performed on coupled quan- 

tum dots in which coherence and charge quantization are considered simultaneously. 

The purpose of this chapter is to  calculate the conductance spectrum including coherence 

and charging. Our approach is very similar t o  that  developed by ~eena l ike r~ '  and ~ e i r ~ l  

for single dots. The main difference is that  we calculate the exact many-body states of the 

"molecule" rather than a single "atom". We start with the ideal case of ((1) identical dots, 

(2) no inter-dot charging, and (3) a single spin-degenerate lateral state in each dot. We then 

examine the effects of non-idealities, that  are inevitable in an experiment. Due t o  numerical 

limitations, our method can be applied t o  a maximum of 12 single-particle states which is 

not sufficient t o  describe present day lateral structures. However, improved lithographic 

techniques will eventually allow lateral structures with fewer electrons. Using present day 

technology vertical structures can be fabricated having very few  electron^.^^^^^^^'^^' Such 

structures typically do not have a gate e l e c t r ~ d e ' ~ ~ ~ ' ~ ~  which is necessary for linear response 

measurements. However, using shadow evaporation a sidewall gate coulci be fabricated as 

shown in Figure 6.1. 

A system of two coupled quantum dots with one doubly spin-degenerate single-particle 

state in each dot (2 x 2 single-particle states) will exhibit four conductance peaks." These 

peaks coincide with the fluctuation of the equilibrium number of electrons in the quantum 

dot as transitions 0 -+ 1, 1 -+ 2, 2 -+ 3, and 3 -+ 4 occur. These transitions of electron 

numbers in the quantum dot are expected t o  occur a t  characteristic Fermj energies that  are 
determined by the transition energies of the many-body states in the quantum dot. The 
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64 Strongly Correlated Transport: Linear Response 

Figure 6.1 Proposed experimental set-up for a side-wall-gated small cross-section vertical triple barrier 

structure. Inset shows the simplified conduction band in the central region in the growth 

direction. Fermi-energy and lateral confinement can be changed with the gate voltage, Vg. 

coupling strength t between the quantum dots and the charging interaction energy U in a 

single quantum dot determine the separation between the four conductance peaks. Here 

we show that  that  the expected double set of twin peaks in the conductance determined by 

the characteristic energies t and U survives against experimental non-idealities such as: (1) 

detuning of the bare energy levels of the quantum dots due to  variations in confinement, 

(2) inter-dot charging, (3) excited lateral states, and (4) inelastic scattering. 

6.2 Model 

We consider a system described by a Hamiltonian with four terms: the coupled quantum 

dot (HD), the charge interaction in the coupled quantum dot (Hc), the leads 1(HL), and 

the coupling of the leads t o  the quantum dot (HT). 
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The variables k and i symbolize states in the leads and the i th quantum dot, respectively. 

a and p are spin indices, and m, and n are lateral quantum numbers. U;;,,, represents the 

intra-dot, lateral state dependent repulsion in dot i. The inter-dot repulsion and inter-dot 

coupling between the two quantum dots are represented by W,,, and t,, respectively. The 

tunneling matrix element vkrn (v&) connects dot 1 (2) t o  the left (right) lead. We assume 

the lateral confinement t o  be homogeneous and do not consider effects due t o  subband 

mixings2 and energy dependence of coupling. 

We assume the coupled quantum dots t o  be weakly coupled t o  the leads, such that  HT 
can be treated t o  first order in perturbation for single particle transitions. We evaluate the 

Hamiltonians HD and Hc describing the decoupled "molecule" in the subset of constant 

numbers of electrons via direct diagonalization151~152 in the basis of Slater determinants. In 

Appendix D we give an analytic example of the direct diagonalization scheme. We treat the 
coupled quantum dot as a single coherent system and use a conductance f o r m ~ l a ~ ~ i ~ ~  which 

was developed for single quantum dots. However, the transition rates are more complicated 

in our case, since the spatial structure of the interacting eigen-states is more complicated: 

where I'kij indicate transitions from the i th n-particle state to  the jth ( n-  1)-particle state 

via transitions through the left barrier. An example calculation of the transition elements 

can be found in Appendix D. P,": indicates the equilibrium occupation of the initial state 

(n ,  i) with eigen-energy En,; calculated with 

where p is the chemical potential in the leads. The electronic states in the leads are 

assumed t o  be 1-D subbands filled =cording t o  Fermi-Dirac statistics and (1 - f )  indicates 

the probability t o  find an empty state in the lead, which satisfies the energy conservation 

requirement for the (n, i) + (n-  1, j) transition. We assume the temperature t o  be high 

enough, such that  we can neglect the Kondo effect due t o  correlations of electrons in the 

leads with electrons in the central system. 
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6.3 Results 

6.3.1 Ideal Case 

We star t  with the ideal case of a system consisting only of a single lateral, doubly spin 

degenerate state in each quantum dot. The conduction band we assume for our analysis is 

depicted in the insert of Figure 6.1. We assume the inter-dot charging to  be zero (W=O) 

Figure 6.2 Conductance, G, (solid line) calculated for a system of  coupled, symmetric quantum dots. 

Conductance peaks are grouped by charging energy, U ,  and the inter-dot coupling energy, t. 

Transitions in the tota l  number o f  electrons, N ,  (dashed line) in the quantum dot coincide 

with the conductance peaks. 

and assume the single-particle ground state in the two dots to  be aligned with each other 

(el = €2 = e). The one-particle ground state of the coupled system is the bonding state 

with eigen-energy El=€-t. Throughout this work we consider the case where the charging 

energy, U, is larger than the inter-dot coupling, t. Consequently electrons tend to distribute 

themselves throughout the structure to  avoid the on-site charging energy and the two- 

particle ground state has an eigen-energy of E2=2e+0(t2). The third electron has to "pay" 

charging energy in one of the quantum dots and the ground state of the three-particle ground 

state is E3=3#-t. The fourth electron fills up the given orbitals and the eigen-energy of 

the four-particle many-body ground state is E4=4e+2U. Single-particle transitions which 

alter the number of electrons in the quantum dot can therefore occur a t  four particular 

Fermi-energies: e-t, e+t, #-t, and #+t. 

We have calculated the conductance spectrum for energy independent tunneling matrix 

elements v,",'~ with a single particle single barrier transition rate l?=lpeV assuming that  

e=30meV, t=lmeV,  and U=5meV. The resulting conductance, G (solid line), i,s depicted 

in Fig. 6.2 with the corresponding average number of electrons in the quantum dot, (N) 

(dashed line), as a function of Fermi-energy. Note that  the conductance peaks occur when- 

ever the number of particles changes. There are 4 conductance peaks corresponding to  the 

filling of the quantum dot system with 4 electrons. We obtain two sets of twin peaks where 

the 'twins' are separated by the inter-dot coupling energy t and the sets are separated by 

the intra-dot repulsion, U. The upper two peaks are the energetic mirror image of the lower 
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two taken a t  mid gap which is due t o  electron-hole symmetry in the problem. Note that  

the  second peak is smaller than the first peak not due t o  an energy dependent tunneling 

rate, but due t o  the spatial and energetic structure of the many-body states in the dot (see 

Appendix D). 

6.3.2 Detuning 

Non-uniformities in the lateral or the longitudinal confinement of the quantum dots will 

lead to  some detuning A of the single electronic ground states between the two dots (insert 

in Fig. 6.3). Figure 6.3 compares the calculated conductance for the coupled quantum dot 

system we discussed above for three different detunings (a) A = 0, (b;i A = U, and (c) 

A=2U.  The conductance G is plotted on the same linear scale in all three plots. Note that  

the first and fourth peak decrease in amplitude while the second and third peak are roughly 

unchanged in (a) and (b). Not only do  the amplitudes of the four peaks change, but also 

their locations, indicative of changes in the excitation spectrum of the coupled quantum 

dots. 

Figure 6.4 analyzes the conductance peak spectrum (a) and amplitudes (b) separately 

as a function of detuning, A. The amplitudes of peaks one and four (dashed lines) are 

equal as well as the amplitudes of peaks two and three (solid line). As the single-particle 

eigen-energy of the decoupled dots is raised in the second quantum dot, the first electron 

tends t o  localize in the first dot of the coupled system and the localization increases with 

detuning. The eigen-energy of the composite single-particle ground state changes (Fig. 6.4a) 

from El=€-t=29meV ( A  = 0) t o  El=e=30mel7 ( A  = m). As a result of the decreasing 

probability of finding the electron in the right well, the amplitude of the first conductance 

peak (Fig. 6.4b) decreases rapidly with detuning (a 5). For a symmetric structure without 

detuning we have equal probability to  find an electron in the left or  the right quantum dot 

((nl)=0.5 in Fig. 6.3a). Figure 6.3b shows the average number of electrons in quantum 

dot 1 ( (n l ) )  a t  a detuning of A=5meV as a function of the Fermi-energy. The average of 

NN 1 past the  first conductance peak indicates the localization of the first electron in the left 

quantum dot. 

Formally we denote the many-body states in a occupation number notation of the form 

Inl+, nl4, n2+, na4), where the index 1 (2) refers to the left (right) dot and T, 4 are spin 

indices. Using this notation we find that  the one particle ground-state is twc~fold degenerate 

with one up-spin and one down-spin state. We denote them neglecting the normalization 

as I$1+) = 11,0,O, 0) - aJO, O,1,0) and = 10,1,0,O) - a I O , O ,  0, l ) ,  where a a i. The 
probability to find an electron in dot two and the coupling to  the right lead by transitions 

into state 10,0,0,O) is proportional to a2. 

Intuitively one expects the second conductance peak to  exhibit the sa.me behavior with 
detuning as the first peak. Given small detuning, A << U, the 2-particle ground state is 

given§ by NN 11,0,0,1) + 10,1,1,0), neglecting normalization. Transitions through the 

§The states )1,0,1,0) and (0,1,0, I) are not included in the 2-particle ground state since they are not 

coupled to any other state in the set of six Slater determinants by the inter-dot coupling, t .  They are therefore 
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left barrier (e.g. ( $ l t l ~ 1 1 ( $ 2 )  =a,  where cl+ is the  up-spin destruction operator in dot  I.) 
are limited by the  localization an electron in dot  1 and the weak leakage t o  dot  2. This 

is one possible current contribution t o  the second conductance peak. The  intra-dot charge 

@I), (a) A=O 

2.0 (b) A=U F 

Figure 6.3 Conductance spectra G, (solid line) for different degrees o f  detuning, A, o f  the 2'lad quantum 

d o t  against the l S t  quantum d o t  (inset). (a)-(c) show G on the same scale for h=0,  A=U. 
and A=2U i n  arbitrary units. Dashed line shows the average number o f  electrons i n  the 1'' 

quantum d o t  ( (nl) ) .  

interaction introduces a resonance feature (at  A = U) t ha t  allows for a second transport 

process through the  quantum dot  a t  even higher detuning. The  argument is as follows. 

two degenerate eigen-states of the coupled system with eigen-energy €1 +cz.  The basis state 10,0,1,1) is left 

out in this argument here because has an energy of 2€+2A+U as diagonal entry in the N = 2 Hamiltonian 

which is significantly higher in energy than the diagonal element 2e+U of basis state Il ,1,0,0) and its 

contribution to the ground state is negligible. 
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When A = U we have a degeneracy of the three** basis states I1,0,0, I ) ,  10,1,1,0) and 

I l ,1 ,0 ,  O), which make up the ground state. The basis state ~ 1 , 1 , 0 , 0 )  call couple well with 

Detuning A (meV) 

Figure 6.4  Conductance peak spectrum (a) and amplitudes (b) as a function o f  detuning, A.  (a) A=0 
shows 2 sets of twin peaks a t  EF -29, 30 and 35, 36meV for ~~=3Oni!eV, U=5meV, and 

t=lmeV. Anti-crossing is visible a t  A = U = 5 m e V .  (b) Dashed lines correspond t o  the lSt 

and 4th peak in (a). Solid lines correspond t o  the 2nd and 3'd peak in (a). Inter-dot coupling 

t is a parameter. 2nd and 3'd peak are almost independent o f  detuning A if the inter-dot 

coupling, t ,  is large enough. 

the 1-particle ground states l$l+) = ~ 1 , 0 , 0 , 0 )  and e ~ 0 , 1 , 0 , 0 )  via transitions through 

the left barrier. The basis states (1 ,0 ,0 ,1 )  and (0 ,1 ,1 ,0 )  are well coupled to  ($1+) and 

by transitions through the right barrier. The 2-particle ground state is therefore 

well coupled t o  the 1-particle ground state via transitions through the left and the right 

barrier and the second conductance peak is large. Figure 6.3b indicates a,n average number 

of electrons in the first quantum dot of 1.5 in the case of equal detuning and intra-dot 

charging. A=U is the transition region where the "energetic payment" to  reside in a higher 

single-particle level in dot  2 or the charging energy against the first electron in dot  1 are 

equal. This means that  the second electron is actually 50% of the time in the first quantum 

dot "next" t o  the localized first electron. 

Increased detuning where A > U will tend to  localize both electrons in quantum dot 1 

see footnote on page 67 
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and the ground state will consist mostly of basis state 11,1,0,0). Figure 6 . 3 ~  indicates an 

average number of electrons of ~2 out of 2 electrons total in quantum dot 1 past the second 

conductance peak. The conductance will then decrease rapidly with A since no electrons 

are in quantum dot 2 t o  be coupled to the right similar to  the behavior of the first peak 

amplitude. 

The region of intermediate detuning where the detuning is smaller than the intra-dot 

charging energy (0 < A < U) is determined by a "competition7' between the two transport 

processes discussed above. The first process is dependent on the leakage cr cx i of the 

l-particle state into dot 2. The second process is dependent on the mixing of the Il,l, 0,O) 

basis state into the 2-particle ground state. The 2-particle ground state is a spin 0 state 

and can be denoted as $$ I&) = I l , O ,  0 , 1 ) + ~ 0 , 1 , 1 , 0 ) + ~ ( 1 , 1 , 0 ,  O) ,  neglecting normalization, 

where p a &A for A << U. Transition contributions due to  a m  i (localization of the first 

electron) decrease with detuning and contributions due to  P = & (mixing of Il,l, 0,O)) 

increase with detuning. Both contributions are proportional to  the inter-dot coupling t .  

and the amplitude of the second conductance peak appears to be almost independent of 

detuning if the strength of the inter-dot coupling is strong enough (Fig. 6.4b). 

The third and fourth conductance peak can be most easily understood by the for- 

mal electron-hole-symmetry in our notation. Every "electron" Slater determinant (e.g. 

I l , O ,  0,O)) has a complementary "hole" Slater determinant (e.g. ) O , 1 , 1 ,  1)). The same 

arguments that  we have given for the first two conductance peaks in terms of electron lo- 

calization can be extended to arguments following hole localization. We can explain the 

first conductance peak with the transition of the first electron into the system from the 

10,0,0,0) state, similarly we can explain the fourth conductance peak with the transition 

of the first hole into the system from the Il,l, 1,l)  state. Conductance peak one and four 

have therefore the same amplitude as functions of A (see Fig. 6.4). Indeed we find the 

amplitudes of peak two and three to  be the same functions of A. 
It is interesting t o  note that  the conductance peaks coincide with fluctuations in the total 

number of particles in the quantum dot. Given the discrete energy spectrum of this system, 

the total number of particles always increases by one (see Fig. 6.2) with the same slope a t  

every step (assuming small temperatures) independent of the detuning of the quantum dots (v is the same for all transitions.). The conductance amplitude however is dependent on 

the spatial structure of the composite many-body eigen-states and depends on the detuning. 

Figure 6.4a shows the spectrum of the excitation energies of the coupled quantum dot 

as a function of detuning. An anti-crossing of the second and third excitation is visible 

a t  a detuning of A = U where the localization of 1 electron changes to  the localization 

of 2 electrons in one quantum dot. We can see (Fig. 6.4b) how conductance peak 1 (4) 

decreases rapidly with A due to  localization of the first electron (last hole) and peak 2 (3) 

decreases after localization of 2 electrons (holes). Although the relative amplitude and the 

spectrum of the conductance peaks change with detuning we still expect the double set of 

twin peaks t o  be observable. It is important to design the experimental structure such that  

the coupling between the two quantum dots is strong enough to compensate for detunings 

tisee footnote on page 67 
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which are inevitable due t o  inhomogeneities in the confinement. 

6.3.3 Inter-Dot Charging 

Another physical process that  may distort the double set of twin peaks iri the conductance 

spectrum is inter-dot charging. With significant charge interaction14' it seems reasonable 

that  a strongly localized wave function in one quantum dot causes a non negligible potential 

in the neighboring quantum dot. Figure 6.5 shows the conductance peak spectrum (a) and 

amplitude (b) calculated a s  a function of inter-dot charging for the ideal structure discussed 

above. We have scanned the value of inter-dot charging from OmeV up to  the value of intra- 

dot  charging of U=5meV. Neither the locus nor the amplitude of the first conductance peak 

change since the addition and extraction of the first electron into and out of the system 

does not involve any inter-dot charging energy. 

Figure 6.5 Conductance peak spectrum (a) and amplitude (b) as a function o f  inter-dot charging, W. 
(a) lSt peak is unchanged, 4th peak changes linearly with inter-dot charging. (b) Dashed 

line corresponds t o  peaks 1 and 4 in (a).  Peaks 2 and 3 (solid line) increase until all four 

peaks have the same amplitude a t  W=U where inter-dot and intra-dot charging energy are 

the same. 

The locus of the second conductance peak becomes separated (almost) linearly from 

the first conductance peak as the inter-dot charging is increased linearly since the eigen- 

energies of the dominant** Slater determinants 1110, 0 , l )  and ~ 0 , 1 , 1 , 0 )  are 2c+W. The two 

Slater determinants Il,1, 0,O) and 10,0,1,1) have eigen-energies of 2c+U. The strength of 

their mixture into the 2-particle ground state increases with the decrease in U- W .  Since 

11,1,0,0) and ~ 0 , 0 , 1 , 1 )  are the states that  allow for transport through the structure, as 

discussed above for the state )1 ,1 ,0 ,0) ,  we expect the conductance to  increase with an 

increased mixture of these basis states into the ground state. 

The spatial separation of charges into different quantum dots (Il,O, 0,1),10, I l l ,  0)) is 

energetically not preferable anymore once the limit of W = U is reached. Indeed the degen- 

eracies of the  coupled dot eigen-state develop such that  the first and the second conductance 

iiSee footnote on page 67 
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peak have the same amplitude in this limit. The loci of the third and fourth conductance 
peaks separate themselves from the previous peak with the same proportionality t o  inter- 

dot  charging. The amplitude of the third and fourth conductance peak can be explained in 

the same fashion as the first and second peak by electron-hole symmetryT. 

Notice tha t  the double set of twin peaks is preserved even when inter-dot charging 

is included in the model. However, note that  the separation of the c~nducta~nce peaks 

does contain some information about the inter-dot charging energy. The energy difference 

between the first two and the last two peaks cannot be identified with the inter-dot coupling, 

t .  Similarly the  separation between the two sets of peaks cannot be identified with the intra- 

dot charging energy, U .  

6.3.4 Multiple Lateral States 

We now consider the influence of multiple lateral states on the conductance spectrum of 

the coupled quantum dots. The lateral confinement determines the single-particle energy 

quantization in the  lateral dimensions. Strong confinements resulting in level separations of 

A E  = 30~50meV have been o b s e r ~ e d . ~ ~ ! ~ ~ ~  These values are larger than the o b ~ e r v e d ~ ~ ~ ~ ~  

single-electron charging energies which are of the order of 0.5-5meV. If the lateral energy 

quantization, A E ,  is comparable to  the charging energies, U ,  and the coupling t ,  we expect 

the excited lateral states to  be mixed into the ground states of the coupled system. This 

would destroy the appearance of a double set of twin peaks in the conductance spectrum 

discussed above. 

We have included the first two degenerate excited lateral states corresponding to  a 

harmonic confinement potential. We have excluded any higher excited lateral states and 

considered only the diagonal elements of charge interaction Hamiltonian as indicated 

in Eq. 6.1. We have included the exchange interaction in that  an electron does not "feel" the 

potential due to  itself. We have calculated Hartree-type charging energies for a, Coulomb 

and a screened Coulomb i n t e r a c t i ~ n ~ ~ ~ ' ~ ~ ~ ~ ~ ~  and have found a strong dependence on the 

choice of screening length. We defer a discussion of these calculations and the inclusion of 

off-diagonal elements t o  a later publication and use only order of magnitude estimates for 

the charging energies in this calculation. 

Figure 6.6a shows the calculated conductance with a lateral energy quantization of 

A = 15meV. All intra-dot charging energies are taken to  be U = 5meV independent of 
the lateral quantum number. The other parameters are still the same as in the previous 

discussions. The conductance spectrum shows two well separated groups of peaks due to  
the decoupled system ground states and the decoupled system excited states. There is 

no mixing of the excited states Slater determinants into the the lower group due t o  the 

large lateral energy quantization. The two groups could be calculated separat,ely as the 

conductance spectrum of a coupled dot with one and a coupled dot with two lateral states. 

n~eference [89] shows how inter-dot charging breaks the electron-hole symmetry in a finite chain of 

quantum dots, due to localization of charge in the center of the chain, away from the two outermost quantum 

dots. The electron-hole symmetry is not broken here because only two equivalent dots are involx'ed. See also 

Section 7.2.3 for a brief discussion of a finite chain of quantum dots. 
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Planes A and B in Figure 6.6a indicate the internal symmetries of the  upper and lower 

30 40 50 60 70 
Fermi Energy (meV) 

" 30 35 40 45 50 
Fermi Energy (meV) 

Figure 6.6 Inclusion o f  higher lateral modes. Conductance vs. Fermi energy including the first excited 

lateral modes. (kBT=0.05neV, t= lmeV.)  Planes o f  symmetry are indicated by vertical lines 

and labelled A, B ,  and C. (a) AE=15meV,  state independent intra-dot charging U=5meV. 

Set due t o  lateral ground state (plane A) is well separated from higher lateral states (plane B). 
Each set has i ts own symmetry plane. (b) AE=5meV,  U{o,o~+o,o~=lJtl,oM1,01=5meV. 

U~o,o~l ,o l=3meV, and Utl,o~+o,l~=lmeV. The two groups are still separated. Symmetry 

o f  upper group is broken and only the lower group has still the same peak symmetry ( A ) .  (c) 

AE=2meV,  same charging parameters as in (b). Lateral ground states and higher states are 

mixed. Only one plane o f  symmetry in the middle o f  the spectrum (C). 

group. T h e  double set of twin peaks appears t o  survive given the strong confinement. 
We now reduce the  lateral energy quantization, AE ,  t o  5meV and make the charging 

energies lateral s t a t e  dependent. This  s ta te  dependence can be understiood as follows in 

terms of single-particle, single quantum well harmonic oscillator quantum numbers {n,, n,). 
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With the three different lateral states (0, O), (1, O),  and ( 0 , l )  included in this calcula- 

tion we have four distinct, direct charging energies U { o , o ~ o , o ) ,  U ~ o , o x l , o ~ = U ~ o , o x o , l ~ ,  

~ { l , o ~ l , o ) = ~ { o , l ~ o , l ) ~  and U{llO~O,l) .  U{0,0~0,0)  and U{l,oxl,o) involve the overlap of 
identical single-particle wave-functions and tend to  be the largest ones in the group of four. 

Since the ( 1 , O )  wave-function is spatially spread out more than the {0,0) wave-function 

we have U ~ l , o x l , o ~ ~ U ~ o , o x o , o ~ .  The other two charging energies involve the overlap of 

different orbitals and the corresponding charging energies are reduced compared t o  the first 

two. In addition U{l,oxo,l) includes the overlap of two wave-functions of different parity 

and we generally have ~ { o , o ~ o , o } 2 ~ { l , o ~ l , o ) > ~ { o , o ~ l , o ) > ~ { l , o ~ o , l ) ~  

Figure 6.6b shows the calculated conductance spectrum for a decreased lateral energy 

quantization of 5meV. The charging energies are taken to  be state dependent with values 

of U{o,o~o,o)=5meV, U{l,oxl,0)=5meV, U{0,0~1,0)=3meV, and U { l , 0 ~ 0 , 1 ) = ~ ~ ~ ~ .  The 
two groups of the conductance spectrum have moved closer together in energy but appear 

distinguishable separated by about U~o,oxl,o~=3meV. The lower group due to  the lateral 

ground states appears to  be unchanged (symmetry plane A) whereas the relative amplitude 

and location of the conductance peaks of the second group (due to  the excited lateral states) 

has changed due t o  the changed charging parameters. The upper group appears t,o be split 

into two groups by U~l ,ox l ,o~=5meV and the grouping in these subgroups appears t o  be 

determined by t=lmeV and U~l ,oMo, l~=lmeV.  Note that  the conductance peak spectrum 

of the upper group is not symmetric t o  its central gap anymore, due t o  mixing of the states 

in the two groups. Overall we can see how the state dependent charging energy starts  to  

correlate the excited lateral states and changes the transition energies and conductance 

peak amplitudes. The lower group consisting of the double set of twin peaks still survives, 

as long as  the  lateral quantization energy, A E  is larger than the charging energies. 

The resulting conductance peak spectrum in the case of further reduction of the lateral 

mode spacing to  A E  = 2meV is depicted in Fig. 6 . 6 ~ .  The charging energies, Lr, are now 

comparable t o  the single electron lateral quantization energy, A E .  Excited and ground 

state Slater determinants are now mixed into the single and two-particle ground states of 

the coupled system. The two conductance peak groups have merged together. The charg- 

ing energies U~o,oxo,o~= U{l,oxl,o)=5meV seem to split the conductance spec:trum into 

two mirror images (symmetry plane C). If the lateral energy quantization, AE:, becomes 

comparable t o  the charging energies, U, in the system we can see that  the conductance spec- 

trum which is indicative for the excitation spectra of the system for the lowest many-body 

states become severely modified due to  electron charge correlations. This effect is evident 

without the inclusion of off-diagonal charge interaction elements into the Hamiltonian. In 

the example of Figure 6 . 6 ~  we have a lateral quantization energy of AE=2mel/  which is 

smaller than some of the charging energies. In this case we expect even higher lateral modes 

((1, I), (2, O), etc.) t o  be mixed into the ground state of the many-body system. 

In practice, the confinement not only affects the lateral s tate quantization, but also the 

charging energies between the different lateral states (due t o  the different spatial spread of 

the wave-function). The expected changes in the charging energies with changing confine- 

ment will depend strongly on the strength of the screening of the Coulomb interaction. In 
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the case of strong screening we only find relatively small changes in the charging energies. 

We therefore have not included this effect into our calculations here. 

6.3.5 Inelastic Scattering 

We can account for strong inelastic scattering by using the following expression for G instead 

of Ea. 6.2: 

where 

This formula is essentially the same as that derived by Beenakker70 for single quantum 

dots. The main difference is that the coupling terms, rL(R), have been modified to  account 

for the nature of the electronic-states in coupled quantum dots. The effect of inelastic 

scattering in linear response is to thermally average all transitions through the left and the 

right barrier (Eq. (6.5a)) for the subset of constant number of electrons, l a ,  in the quantum 

dot. Feq (En,; In) is the canonical distribution function indicating the conditional probability 

of state (n, i) being occupied, given n electrons in the system. 

The two conductance formulas in Eqs. (6.2) and (6.4) give the same7(' result under two 

independent conditions if 1) rf;ij/rZj = const, Q(nij) ,  or 2) ksT << En,eccited - En,ground. 

For the non-idealities we have considered in this paper condition one is only violated in the 

case of detuning. Detuning introduces an asymmetry into the eigen-sta,tes of the system 

such that the ratio of left lead to  right lead coupling becomes state dependent. We find that 

the amplitudes of the conductance peaks do change due to inclusion of inelastic scattering, 

however, the general shape of the conductance peaks does not change in the case of kBT z t .  

The features due to  inter-dot coupling t ,  will be thermally broadened and cannot be resolved 
in this limit. Since we are interested in resolving features of energy scale t ,  we require 

temperatures with kBT<<t and Eqs. (6.2) and (6.4) will give the same results (condition 2 

from above). 

6.4 Conclusions 

We have presented calculations of conductance spectra for two strongly coupled quantum 
dots that are weakly coupled to the adjoining leads. The conductance spectrum due to  
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the first four electrons is determined by intra-dot charging, U, and inter-dot coupling, t .  
We analyze the effect of experimental non-idealities such as quantum dot detuning, inter- 

dot  charging, excited lateral states and inelastic scattering on the conductance spectrum. 

We find that  the spectrum is altered due t o  the first three effects, but the qualitative 

features persist. We suggest that  the inter-dot coupling be made sufficiently strong, such 

that  detuning due t o  variations in confinement does not decrease the amplitudes of the 

conductance peaks significantly. We show that  strong confinement will ensure that  excited 

lateral states should not change the symmetry of the ideal conductance peak structure 

of 2 sets of twin peaks. The conductance peak spectrum will contain information about 

the characteristic energies like intra- and inter-dot charging energies U and W.,  inter-dot 

coupling, t ,  detuning, A, and lateral mode spacing, A E .  Inelastic scattering does not 

significantly alter the low-temperature conductance peak spectrum. The location of the 

conductance peaks coincides with transitions in the total number of electrons in the quantum 

dot. However, the peak amplitude is strongly dependent on the spatial properties of the 

many-body states in the quantum dots and varies from one peak t o  another although 

is the same for every transition. 
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Chapter 7 

Suggestions for Future Work 

Following the division of this report into two parts according t o  1) large cross-section 

DBRTD's (Chapters 2 and 3),  and 2) small cross-section DBRTD's (Chapters 5 and 6) we 

divide up our suggestions for future work along these lines. Large cross section DBRTD's 

have been studied over a significant time now and have the potential for several possible 

applications1*2*8-23 in the near future as oscillators, detectors, or switches. For an actual 

device design a modelling tool, which contains more sophisticated scattering mechanisms 

than implemented in is necessary. We will suggest and m0tivat.e further work on 

a next generation device simulator in Section 7.1. Small cross-section DHRTD's (quantum 

dots or artificial atoms) have only been studied for a comparatively short time. Possible de- 

vice concepts, device modelling and device design are still in their infancy. We will present 

several suggestions with regard t o  the modelling of small cross-section vertical quantum 

structures in Section 7.2. 

7.1 Large Cross Section Structures 

7.1.1 Anisotropic Scattering 

Our previous work on the phonon peak problem was limited to  purely one dimensional 

structures for two reasons: 1) numerical computing time, and 2) model limitations. The 

extension of the purely one-dimensional device to  a large cross-section device assuming 

translational invariance and perfectly isotropic scattering has been implemented in the sim- 

ulator  QUEST.^^ The necessary CPU-time increases from 112 hour to  24 hours§ for the 

calculation of a single point on a Current-Voltage-Characteristic. This increased consump 

tion of CPU-time is due t o  the integration over all transverse momentum vectors a t  every 

spatially simulated point in the one-dimensional structure. An example simulation using 

the perfectly isotropic optical phonon scattering in large cross-section devices is given in 

Fig. 7.1. The perfectly isotropic scattering actually leads to  phonon step instead of a phonon 

§we have run QUEST on an IBM RISC 560 and an HP Apollo 730 workstation. 
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peak indicating the serious limitations of the model. This phonon step is due t,o the 2D- 

density of states in the quantum well, which does not turn off sharply and the isotropic 

randomization of momentum due t o  the isotropic scattering. 

Applied Voltage (mV) 

Figure 7.1 Limitations o f  the isotropic scattering model. Comparison o f  a purely one-dimensional cal- 

culation (thin line) and a three-dimensional calculation (thick line) with perfectly isotropic 

scattering. Perfect isotropy results in a phonon-step, rather than a phonon-peak. 

We suggest t o  apply the knowledge how t o  treat a one-dimensional structure with very 

few spatial nodes to  the understanding of large cross-section structures. This simplification 

would save significant computation time for the spatial coordinate resolution, which could be 

utilized t o  include more sophisticated scattering mechanisms into the model. The scattering 

model employed in the large cross-section structures implemented so far, assumes perfectly 

isotropic scattering and does not keep track of the transverse momentum quantum number 

in the large cross-section structure. We suggest to  keep track of the total energ:y and the 

transverse momentum of the electron in the quantum well as good quantum numbers. The 

use of this basis set allows us to: 

monitor the filling of states with respect to longitudinal and transverse energy sepa- 

rately, 

analyze anisotropic scattering effects using more realistic for the electron- 

phonon-interaction in quantum confined devices. 

The suggested scheme provides a framework for investigations on questions raised by ex- 

perimentalists157~158 related t o  different phonon modes and hot electrons. 

Phonon Modes and Scattering Rates 

Experimental results in large cross-section GaAs-AlGaAs DBRTD's48t49*51753154 show that  

that  the phonon-spectrum in a DBRTD is different from that  in Bulk GaAs. This can 

be understood as follows: The changing material parameters create an electro-dynamic 

environment for the atoms and electrons different from the bulk. Elastic and dielectric 

parameters change abruptly a t  the interfaces. Confined and interface phonon modes have 

been ~ a l c u l a t e d ' ~ ~ - ~ ~ ~  and the experiments49~51~53~54 are compatible with the theory of new 

phonon modes. The phonon-modes have been predicted t o  be anisotropic. Scattering Rates 
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for large cross-section structures have been calculated for DBRTD1s using bulk and/or con- 

finedlinterface phonons in a Fermi-Golden-Rule type approaches.36~51~5'1~1071108~123~124~155 

These works have not considered the filling of the resonance states, which was shown to  be 

essential in the understanding of purely-one-dimensional scattering processes in asymmet- 

ric DBRTD's. This omission has been realized and there is an expressed interest 1 5 7 7  15' by 

experimentalists to obtain expressions/estimates for the degree of filling of the resonance. 

Mathematical Implementation of Anisotropic Scattering 

We will now introduce the scheme we suggest to solve the anisotropic scattering model. 

We will assume an infinitely large homogeneous cross-section (x-y-plane) and keep the 

scattering in the z-direction local. The final result of the new scheme will be, that  we 

have the  transverse momentum coordinates, k, and k,, everywhere in a 3-tupel of the form 

(k,, k,, E ) ,  where we used to  have just one coordinate, the total energy, E:. The calculation 
h of the scattering rates, and A ,  involves now a summation over all transverse moments, 

T~ 

k, and k,, since all transverse moments may be coupled by a matrix elenlent 17,- now. The 

matrix elements of the electron phonon interactions in an infinite cross section quantum well 

have been calculated theore t i~a1 ly . l~~  We obtain as final prescription for the  calculation of 

the scattering rates 

h ' 2 " / F / ~ ~ i - s l q l - L ~ O ( z ;  dk, ' kxr kyl E-b6-p~) 

rn(z; kx,ky,E) 

and 

h 
- -2" 1, d ~ , '  / T ~ r - r , ~ i l - r ~ o ( z ;  d ~ , '  kxl kyl 

~ p ( z ;  kx, ky1 E )  

The Green's function equation that  we need to  solve for looks like: 

These equations and the corresponding transport equation can be solved in much the 

same way as  the 1-D problems by discretization into three spatial nodes: emitter, well and 

collector. The transverse momentum dependence, k, and Icy, can then be solved numerically. 
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7.1.2 Inter-Subband Scattering 

In studying DBRTD's we are usually concerned with the tunneling processes through the 

first resonance which may create a negative differential resistance a t  a high enough bias. 

But a DBRTD may support a second resonance state if the barriers are sufficiently high and 

the well width not too thin. We can therefore have a second resonance current phenomenon 

in high bias. It is important t o  realize that  the processes occurring in the tunneling of 

electrons in these two resonance conditions are very different. Inelastic scattering processes 

can be neglected in the case of tunneling through the first resonance since t h t  .re are no 

scattering states available with lower energy t o  which electrons can scatter, if t.he energy 

range of the incident electrons is small. If this energy range is large, intra-band scattering 

processes may modify the electron distribution in the band.g1 Elastic scattering processes 

a t  the resonance energy have been shown to  increase the resonance width without having 

an effect on the total current, if the range of incident electron energies is large compared t o  

the resonance 

The situation is different for tunneling through the second resonance, where inelastic 

processes cannot be neglected in any case, since final scattering states with lower energy may 

be available. Fig. 7.2 depicts a comparison of these two situations. The parabolas symbolize 

the two-dimensional character of the states in the quantum well indicating the total energy 

of an electron including the quantized energy in the z-direction (vertical offset,) and the 

transverse energy (parabola). If the two subbands are separated by more than one optical 

phonon energy quantum, transverse momentum transfer is needed for an inter-subband 

transition. 

Figure 7.2 Importance o f  inter-subband scattering. Tota l  energy o f  a single electron in two  subbands. 

Parabolas indicate transverse energy. a) Bias for transmission through first longitudinal reso- 

nance. b) Bias for transmission through second longitudinal resonance. Arrows wi th  vertical 

components indicate possible phonon scattering processes. 

Tunneling through a second resonance and the filling of the lower resonance has been 

observed experimentally.47~50~160-163 In one particular experiment,163 the upper resonance 

was reported t o  be empty and the sequential current through the structure was estimated 
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to  be 50% of the total current. This again raises the question about the importance of the 

scattering processes in the structure, the availability of states and the effect of a finite cross- 

section. While in the phonon peak problem a one dimensional treatment rnay be j u ~ t i f i e d , ~ ~  

a one-dimensional treatment for the inter-subband scattering seems to lack some important 

physics*. 

So far we concerned ourselves with the electron-phonon interaction in single quantum 

well structures. We have indicated the interest in the understanding of the effect of scat- 

tering on the total current through the structure and the filling of the resonance states. We 

will now extend our view onto multiple quantum well structures which we suggest to  be 

solved. 

7.1.3 Tunneling through Triple-Barrier Structures 

It is possible, as discussed in Chapter 6, to  create several sets of barriers and wells in the 

growth process and create more that one quantum well in the structure. The growth of many 

sets of wells and barriers in series leads to  a ~ u~ e r l a t t i c e . ' -~  These struc,tures have shown 

many potential device applications'-3~'8~21~22 and are an active topic of current research. 

The DBRTD and the superlattice are two limits that bound the range of possible vertical 

device designs. The next logical extension from the Double-Barrier-Resonant-Tunneling- 

Diode is the Triple-Barrier-Resonant-Tunneling-Diode (TBRTD) (Fig. 7.3a) . 

-0  100 200 300 
Voltage (mV) 

Figure 7 . 3  Experimental results o f  transport through a triple barrier structure. a) Typical conduction 

band profile o f  a triple barrier structure. b) Measured I-V-characteristic for different tem- 

peratures. The  combinations x-y indicate the tunneling from state x in well number 1 t o  

state y in well number 2. Figures are taken from Reference [I681 (T. Nakagawa, T .  Fujita, 

Y. Matsumoto, T .  Kojima, and K .  Ohta. Appl. Phys. Lett., 51(6):445--447, 1987.). 

The TBRTD has been predicted165 and to  have two enhanced performance 

'If we assume some "effective" phonon interaction that couples the two subbands in one dimension the 

problem can be solved analyt i~al ly . '~~ 
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features over the DBRTD: 

1. the  transmission peaks become more sharply defined, 

2. the  Peak-TeValley-Ratio is enhanced. 

These improvements are exciting for device engineers, since they increase the range of the 

output signal in the  negative differential resistance region in analog devices and allows more 

reliable switching in digital devices. 

The basic functionality of the TBRTD (Fig. 7.3) may be understood in a quite similar 

way t o  the DBRTD. In terms of our coherent picture, where we think of the 'I'BRTD as 

the series combination of two bandpass filters. This implies that  two device performance 

features may be enhanced. The coherent off-resonance transmission will be strongly reduced 

since 3 barriers are now in series.16' This should reduce the availability of scattering states 

off-resonance which create the undesired valley current. It also implies that  the main peak in 

the I-V-characteristic becomes more sharply defined. These effects have been ana.lyzed the- 
oretically in a calculation of transmission  coefficient^'^^ and observed e ~ ~ e r i m e n t a l l ~ . ' ~ ~ ~  167 

The possible improved device performance has prompted a whole series of work related 

to  high bias application in GaAs/AlGaAs, SiGe/Si and InAs/GaSb structures involving 

electron, hole and inter-band tunneling processes.166-'68~170-179 

The analogy of two bandpass filters in series is only of marginal usefulness in the analysis 

of the transmission coefficient and we will mention only in passing that  the cross coupling 

between the  wells may modify the states in both wells. See also Chapter 6 for a calculation 

of the eigen-states in a triple barrier structure. The well spectra have been studied theoret- 

i ~ a l l ~ ' ~ ~  and very extensively experimentally using photoluminescence spectroscopy180-1s4 

with respect t o  well and middle barrier thickness. 

Inelastic processes in TBRTD have been shown t o  be important168~18s-188 and a very 
nice example168 is given in Fig. 7.3. Resonant tunneling is shown t o  occur through several 

alignment combinations of states in the first and the second well. Note that  the current 

flow indicated in Fig. 7.3a involves transport through a higher resonant statt:. This is 

similar t o  the problem addressed in the previous section and raises the same questions with 

respect to  inelastic scattering processes to  lower levels. Furthermore, notice that  Fig. 7.3a 

indicates the  potential drop across the device drops only over the second well indicating 

charge accumulation in the first well. These two issues again raise the question: How full 

is full? We suggest t o  analyze these structures with respect t o  the filling of the resonance 

states and the sequential currents through the structure. 
We suggest t o  tackle the problem with a l -D approach first. As in Ref. [76] we are 

thinking about a l -D tight-binding chain where we now consider two special central sites 
rather than just a single one. We will not elaborate on this approach further, however we 

just indicate the  similarity of the tight-binding phonon peak approach with the tight-binding 

triple barrier approach with Fig. (7.4). 
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Figure 7.4 Comparison o f  two tight-binding chains. (a) one central site - phonon peak problem. (b) two 

central sites - triple barrier problem. 

7.2 Small Cross-Section Structures 

Chapters 5 and 6 deal with small cross-section resonance tunneling structures in which 

electron-electron and electron-phonon interactions strongly influence the t,ransport. We will 

present several suggestions for future investigations in this direction of work. Technically 

speaking we can say that  the hard problems in Chapter 5, such as the calculation of the 

occupation of all many-body states and non-adiabatic coupling to  the leads, are the easy 

ones in Chapter 6, where assumption of near equilibrium and adiabatic transport were 

made. Vice versa the hard problems in Chapter 6, such as the calcula1;ion of the many- 

body spectrum and the coupling of the superposition states t o  the leads, are the  easy ones 

in Chapter 5, where the assumption of a constant charging model was made. If we relax the 

simplifying assumptions in both problems several questions will be answered with respect 

t o  transport through artificial atoms and molecules. These suggestions will be given in 

Sections 7.2.1 and 7.2.2. 

7.2.1 High Bias Transport through Single Quantum Dots 

The hard job in the calculations of Chapter 5 were the solution for the occupation of all 

many-body states in the quantum dot and their coupling to the leads. The easier job was 

the construction of the many-body states using a simple constant charging model using 

the single-particle states which did not mix any of the orthogonal basis states. Different 

 calculation^^^^-^^^ have been performed for many-body eigen-states in single quantum dots 

including more sophisticated charge interaction models as discussed in Section C.4 in Ap- 

pendix C. The rate-equation approach that  we use t o  determine the occupation of "every" 

possible many-body state in the limited set of states can be extended t o  more complicated 

many-body states. The determination of the "correct" many-body states is independent 
of the calculation of the occupation of these states. The coupling to  the leads can be 

treated similarly to  the treatment in Chapter 6, as long as the new many-body states can 
be represented in a limited, single-particle basis set. The tunneling rates, which lateral 
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quantum number dependent, can then be projected onto these new superposition states in 

terms of first order perturbation theory. The extension of the present model to include 

a better calculation of the many-body states in the single quantum dot would eliminate 

the  model limitation that  we discuss in Section C.4. The somewhat artificial distinction 

between charging and quantum effects would be eliminated. 

7.2.2 High Bias Transport through Multiple Quantum Dots 

The hard job in Chapter 6 was the calculation of the many-body eigen-states and their 

coupling t o  the leads. The bias applied to  the structure was assumed t o  be small enough 

such tha t  the occupation of the states in the artificial molecule could be assumed to  be in 

equilibrium with the weakly coupled leads, which in turn is easily calculated in the grand 

canonical ensemble. The structure and the occupation of the eigen-states in the coupled 

dot system will change, if the bias is increased significantly. Calculations of the many- 

body eigen-states of a coupled quantum dot system a t  high bias have been calculated in 

Reference [I891 including an extended, Coulomb-type potential, 5. However, transport a t  

high in the  coupled dot system has not been calculated yet. We suggest a calculation of the 

occupation of the many-body based on the rate-equation approach applied in Cha.pter 5 and 

an improved calculation of the charging energies as discussed in Chapter 6 in Section 6.3.4. 

7.2.3 Exact Many-Body Eigen-States and the Green's Function Formal- 
ism 

Chapter 6 calculates the exact many-body states of a coupled dot system and proposes a 

possible experiment of conductance spectroscopy of this artificial molecule. Our research 

group has also considered finite chains
sg of coherently coupled artificial atoms in which we 

try t o  connect up t o  the work that  has been performed on the infinite chain Hubbard Hamil- 

tonian.lg0~ lgl Sim ilarly to the work presented in Chapter 6 we have solved the conductance 

through this chain of quantum dots using rate-equations7' based on the exact eigen-states 

of the coupled system. 

Solutions of the  conductance problem in an infinite ~ u b b a r d ~ ~ ' ~ ~ ~ ~  chain a,nd and in 

a single-quantum dot71 have been obtained using a Green's function formalism in which 

the single-particle excitations of the complicated many body-state have been considered. 

The Green function formalism is quite powerful in that  methods e ~ i s t ~ ~ l ~ ~ l ~ ~ ~  t o  calculate 

the single-particle excitation spectrum without the calculation of the all many-body states. 

These methods do, however, have severe limitations in that  only small perturbations can be 

treated. The coherent coupling between the quantum dots and the intra-dot charging can 

be large, however, and the  usage of mathematical methods like Wick's  heo or ern"^ which 

allow an easy calculation of the Green function cannot be applied. 

Since we can calculate the full many-body spectrum, we can can construct the exact 

Many-Body Green Function ( M B G F ) . ~ ~  From this MBGF we can, for example, obtain the 

density of states in the  device. We will show in the following paragraphs with two examples 

that  the  conductance is not strictly proportional to  the density of states of a coupled dot 
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system, but it is proportional to an off-diagonal element of the MBGF. The conductance 

formula in terms the MBGF is different in structure than the Conductance formula which 

we used in our calculations in Chapter 6 and Reference [89]. The beauty (and the curse) of 

the Green's function formalism is that it projects the many-body states into a single-particle 

picture of single- particle excitations. Conductance is then treated with with the following 

point of view: 

1) if a particle is injected at  one site, i, of the coupled system, what is the probability 

extract an electron at  another site, j, or 

2) if an electron is extracted at  one site, i, (a hole is created) of the coupled system, what 

is the probability to inject an electron into the vacant hole a t  another site, j. 

The formalism we envision is depicted in Fig. 7.5. The basic element of the envisioned 

conductance calculation is the exact M B G F ~ ~  

where Iak ,~ )  is the kth exact eigen-state of the coupled system in the subset of N particlest. 
The site and spin dependent electron creation and destruction operators rtre indicated with 

a!, and ail,, respectively. The equilibrium occupation of the state indexed with {k, N} is 

calculated with Eq. 6.3 and depends on the Fermi-energy in the leads, EF. The conductance 

Figure 7.5 Proposed structure o f  a conductance formula based on Green's functions. The  single-electron 

channel extends f rom subband m i n  the emitter t o  site i i n  the artif icial molecule, extraction 

o f  an electron on  site j i n  the artif icial molecule and transmission in to  subband n i n  the 

collector lead. The  injection a t  site i and extraction a t  site j is treated b:y the Green function 

cR(il j ) .  

formula we envision is now dependent on the overall coupling from mode m in one lead to  

mode n in the other lead by some weak coupling t (see Fig. 7.5). 

+see Chapter 6 and Appendix D for details. 
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For out numerical evaluation of the Green's function we have included a small imaginary 

part, q, in the denominators of Eq. 7.3a to  account for the finite lifetime of the excitations 

due to  the coupling to the leads. We define the density of states as the trace over all sites 

and we will show that  the conductance as calculated with Eq. 6.2 is not proportional to  

this density of states of the coupled system in two examples. However, one quantity, 

GLR(E, EF) = IG(i=le ftsite, j = rightsitell I 2 (7.7) 

derived from Eq. (7.3) will be shown to  be proportional to the conductance calculated with 

Eq. (6.2). The physical differences between the three quantities conductance (Eq. (6.2)), G ,  

density of states (Eq. (7.6)), No and connecting Green's function (Eq. (7.7)), GLR, become 

apparent if some asymmetry in the eigen-states of the coupled system is introdu

c

ed. In the 

following we will consider two examples indicating these physical differences: 

1) A double dot system with detuning, as discussed in Section 6.3.2. 

2) A finite chain of quantum dots with and without inter-dot charging as discussed in 

Reference [89]. 

Double Dot System with Detuning 

We have discussed the conductance spectrum and amplitude of a double dot system given 

an inter-dot detuning of the singleparticle eigen-energy in Section 6.3.2 in detail. We 

will now revisit this example and compare the calculated spectrum (see Fig. 6.4) to  the 

spectrum of the density of states, No(EF, EF), as defined by Eq. 7.6, and the Green's 

function GLR, as defined by Eq. 7.7, evaluated a t  the Fermi energy (Fig. 7.6). The density 

of states does exhibit four peaks, since four electrons can be added to the quantum dot, 

as a function of Fermi energy. The locus of the density of states peaks corresponds to  the 

locus of the conductance peaks (Fig. 7.6a), Their amplitudes (Fig 7.6c), however, do not 

correspond to the calculated conductance peaks (Fig. 7.6b). The density of states only 

includes information about the presence of four quantum states in the double dot system. 

These states may be filled from the left of the right lead, however this filling of the states does 

not reveal any information about the conductance through the system. We have discussed 

the uniform height of the steps (Fig. 6.2) in the number of electrons as a function of Fermi 

energy in detail in Section 6.3.2 and pointed out the non-uniformity of the conductance 

peak amplitudes. The density of states will always have four peaks, indicating electronic 

states for four electrons in the quantum dot system, the amplitude of the corresponding 

conductance peaks however is not proportional to the density of states. The off-diagonal 

Green's function quantity, GLR in Figure 7.6dI however appears to  present the general 

behavior of the conductance with detuning properly. It includes the injection of a,n electron 

a t  one end of the chain and the extraction of an electron a t  the other end of the chain, 

which effectively transports an electron1 through the chain. 

$ A  similar argument can be made for holes. 
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I I I I I I 

0 2 4 6 8 10 
Detuning A(meV) Detuning A(meV) 

2 4 6 8 
Detuning A(meV) 

10 "0 2 4 6 8 10 
Detuning A(meV) 

Figure 7.6 Two  coherently coupled quantum dots under the influence o f  detuning (see Section 6.3.2). 

The model parameters are 6 = SOmeV, U = 5meV, and t = 0.5meV. Conductance peak 

spectrum (a) and amplitudes (b) as a function o f  detuning, A, calculated wi th Eq. (6.2). 

(c) Amplitude o f  density o f  states (Eq. (7.6)), No, evaluated a t  the Fermi energy, E F ,  as 

a function o f  detuning, A. (d) Amplitude o f  connecting Green's function (Eq. (7.7)), GLR, 

evaluated at the Fermi energy, EF,  as a function o f  detuning, A. 
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Finite Chain of Quantum Dots 

In Reference [89] we evaluate the linear response conductance through a finite chain of 

coherently coupled quantum dots. We show that two bands develop in the conductance 
spectrum, separated by the intra-dot charging energy, U ,  as more and more quantum dots 

are added§. For convenience we show here in Figure 7.7 an example calculation for 5 
quantum dots with similar parametersn as we have used in Chapter 6. 

We elaborate in Reference [89] that the introduction of an inter-dot charging, W,  modi- 

fies the symmetry of electrons and holes in the many-body states significantly. With a small 

inter-dot charging, W = lmeV, electrons "prefer" to be on the left-most or right-most site 

in the quantum dot chain, since these two sites only involve charge interaction with one 

neighboring site, whereas all interior sites involve a charge interaction with two sites (a left 

and a right neighbors). This effect becomes stronger as the quantum dot fills up more and 

., 
26 28 30 32 34 36 3 8 40 

Fermi Energy (meV) 

Figure 7.7 Conductance spectrum for a finite chain o f  5 quantum dots. Conductance is normalized t o  

the peak value for three different temperatures, kBT = 0.01,0.05,0.30meV. Two bands 

separated by the intra-dot charging energy, U ,  form (compare to Fig 6.2). 

more, i.e. when the Fermi energy is raised. The probability to find a hole on an outer-most 

site becomes smaller and smaller as the number of electrons in the quantum dot increases. 

The conductance peaks therefore decrease with an increased number of electrons in the dot. 

The symmetry of the conductance spectrum in Figure 7.7 is broken and inter-dot charging 

modifies the conductance spectrum significantly (Fig 7.8a). Figure 7.8b depicts the density 

of states, No, evaluated at Fermi energy for a temperature of kBT =O.OlmeV. The density 

of states, No, does not exhibit the same asymmetry of the conductance peaks depicted in 

Figure 7.8a. The connecting Green's function, GLR, however, does exhibit the same asym- 

metry as the conductance. The arguments for the failure of the density of states to  describe 

§We consider quantum dot chains consisting of 2 . . . 6  quantum dots. 

"Intra-dot charging, U = 5meV, inter-dot coupling, t = ImeV, and single particle eigen-energy of each 

site, e=SOmeV. 
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32 34 36 
Fermi Energy (meV) 

Figure 7.8 Conductance spectrum, density o f  states and connecting Green's function for a f~n i t e  chain of 

5 quantum dots including inter-dot charging. (a) Conductance is normalized t o  the peak value 

for three different temperatures, ksT = 0.01,0.05,0.30meV. (b) Density o f  states a t  the 

Fermi energy does not exhibit the asymmetry in the conductance peaks (kBT=O.OlmeV). 

(c) Connecting Green's function, GLR, evaluated at the Fermi energy exhibits the correct 

proportionality (kBT=o.o lmeV) .  
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the conductance peak amplitudes are the same here as the ones presented in the previous 

subsection. 

Conclusions for the Green's Function Model 

Given these brief example calculations of the density of states, No, in the coupled quantum 

dot system we can conclude that  the the density of states is not the quantity we are interested 

in with respect t o  the conductance through the coupled system. Usage of the connecting 

Green's function, GLR, appears to describe the transport physics of the coupled clot system 

similarly as the rate-equation formalism used in Chapter 6 and Reference [89]. We suggest 

here t o  analyze the scheme to  calculate conductance using this Green's function formalism 

further t o  possibly connect it t o  some easier single-particle approach, which is not based on 

perturbation. 

Note that  this new Green's function approach takes the average of the occupation of the 

many body states into account in a different order than the rate equation approach used 

in Chapter 6 and Reference [89]. Cryptically denoting this state average as ( ) we state 

here briefly tha t  I(GR)12 # ( ( G R 2 )  which may be comparable t o  the inclusion of inelastic 

scattering in Section 6.3.5. 

-- - 
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Appendix A 

KIeldysh Formalism 

A.l  Introduction 

The following sections are meant to  provide a brief overview of the Green's lfunction approach 

taken in our research group. We will show, how the dephasing of electrons and holes in 

the conduction band can be derived from a microscopic scattering model. The particle 

propagation a t  one energy will be described by Greens functions that  are the solutions to  

an  effective mass single-electron Hamiltonian which includes the electron-phonon interaction 

by a self-energy. The inclusion of many-body effects into the single-partic1.e picture is based 

on a perturbation treatment, which means that  this perturbation has .to be weak. The 

perturbation treatment breaks down if particle correlations become stron!g, as for example 

in the case of single electron-electron correlations. For a more detailed discussion we refer 

the reader t o  References [64,91,92]. 

A.2 Green's Functions 

The formalism that  is the basis of our approach has been developed by ~ e l d ~ s h ~ ~  and 

Kadanoff and Baym5' less than 30 years ago. The two-time electron correlation function, 

G < ,  is the central quantity in this formulation 

where B(6, t l )  is the electron field operator. It is common to transform t o  relative time 

cooi.dinates, T = (tl  +t2) /2 and t = ( t l  - t2 ) ,  and Fourier transform with respect to  the new 

time difference coordinate, t ,  t o  obtain G <  (6, F2; E, T).  G<(Fl, F2; El T )  can be related t o  

the density matrix, p ( G , G ,  T ) ,  by setting t l  = t 2  in G <  which is equivalent t o  

In steady-state it is assumed that  there is no variation with the variable T = ( t l+t2) /2 

and we will neglect this coordinate from now on. Similar t o  approaches based on density 
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106 Keldvsh Aormalism 

matrices, the correlation function, G < ,  has the role of a distribution function from which 

macroscopic quantities may be calculated. From G <  we can easily obtain the electron 

density ancl current density per unit energy by the following relations 

The total electron and current density are obtained by integration over the energy coordinate 

of their respective densities 

n ( 3  = d E  n(F, E) , I (A.4a) 

The correlation function, G < ,  is based on a microscopic model that  involves several 

Green's f u n ~ t i o n s ~ ~ ~ ~ ~ ~ ~ ~  as solutions t o  several microscopic Hamiltonians. To obtain G <  

we need t o  solve 

where the retarded and advanced Green's functions, GR and GA,  are related by 

The retarded Green's function, G ~ ,  is based on a single-electron Hamiltonian involving the 

appropriate self-energy to incorporate the effects of the other Hamiltonians 

GR is the inipulse response of a single-electron Hamiltonian that incorporates the interaction 

with other particles via the self-energy, CR. The retarded Green's function, GR, is the causal 

response, the advanced Green's function, GA,  is the anti-causal impulse response. G<(>) 

has the role of an ensemble or distribution function that  is based on a convolutio~n with an 

appropriate ensemble self-energy. 

After this brief interpretation of the electron Green's functions, we now need .to provide 

some more insight in the meaning of the self-energies, zR and c<(>). zR can be written as 

the sum of a Hermitian and anti-Hermitian contribution 

The anti-Hermitian contribution is due to  self-energies, c<(>), that  are nonzero. This anti- 

Hermitian c.ontribution causes the system not to  conserve particles for every energy anymore 
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A.3 Microscopic Model 107 

(dissipation). The  anti-Hermitian part of the retarded self-energy can be written terms of 

c<(>) as 

r (F, F I ;  E )  = -i (c< (F, F I ;  E)  - C> (F, F E ) )  . (A.9) 

The  Hermitian contribution contains the Hilbert transform of the anti-Hermitian part and 

con.tributions due t o  self-energies with c<(>) = 0 (which do  not have an  anti-Hermitian 

con-tribution) . 

In all current work we have neglected this real part of the retarded self-energy, a, and 

hav'e only worked with the imaginary part,  r, which allows for transitions between energies. 

c<(>) is determined by the type of interaction considered. The  specification of c<(>) closes 

the  set of equations (A.5) - (A.lO) and the  closed set needs t o  be solved self-consistently. 

A.3 Microscopic Model 

~ a t t a "  has introduced three Hamiltonians into his model. The  single--electron effective 

m a s  Hamiltonian 

describes electrons within one band, where the potential, V ( 3 ,  includes potential drops 

across the device and band discontinuities. Dephasing processes are due t o  a reservoir of 

independent oscillators assumed to  be in thermal equilibrium 

which interacts with the  the electrons through a 6-potential in space 

T h e  sum over phonon modes, Em, can be turned into an  integral with the assumption of a 

contiinuum of modes characterized by a density of oscillator modes 

[n the current implementation of QUEST56 we implemented two different spectra of 

oscillator modes, Jo 

Expressions for c<(>) have been derived using the Hamiltonians in Eqs. (lA.12) and (A.13) 

with the  following assumptions: 
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108 Keldysh Formalism 

T h e  phonon reservoir is in local equilibrium and the oscillator coordinates can be 

traced out.  

Only one phonon scattering processes are allowed, this corresponds t o  the  first Born- 

approximation, but i t  is carried out  self-consistently t o  all orders 

and 

(A. 16a) 

where dq is the  electron out-scattering rate, is the  hole out-scattering rate  and 
1 1 

T P ( ~ , E )  
- - -- 1 ( )  , +- is the total dephasing rate. So far we have just s tated the locality 

T P ( ~ , E )  

in space of c<(>) which is due t o  the local interaction Hamiltonian H'. We sti.11 need t o  

express the  newly introduced scattering times in terms of oscillator densities. To bring the 

equations tha t  we actually solve into a final form, we introduce the following quantities 

which are the  electron density, hole density and local density of s tates  all per unit area, 

respectively-. Furthermore we define the non-equilibrium occupation factor, f (r'; E ) ,  as 

which reduces t o  the  Fermi-Dirac factor in equilibrium. 

The  final equations for the one electron Green's function, GR ,  coupled t o  a bath of 

independent oscillators may now be written down as 

(A. 19c) 
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where F ( 5  h )  is a given function depending on the oscillator strength and spectrum 

u2 JO(< f iw) and the average number N(w) of phonons available with energy hw given 

by 13ose-Einstein statistics 
1 

N (w)  = 
I 

& 7 

e k ~ T  - 1 

Inserting Eq. (A.19d) into Eq. (A.19~)  results in a homogeneous integral equation for the 

occilpation factor 

which generally cannot be solved analytically. But this scheme lends itself nicely t o  an 

iterative solution procedure where initial guesses for the scattering rates, l/rP and l/rn, 

and for the occupation, f ,  will get refined from iteration t o  iteration. Al.so note that  that  

Eq. (A.19a) for the retarded Green's function is now of the form OGR = S and all energies 

are decoupled in the operator 0. An equation of such structure is relatively easy to  solve. 

An implementation on a tight-binding lattice couples only next neighbors, which results in 

a sparse matrix problem. A nonlocal potential in space would couple more than the next 

neighbors in the discretization grid and would result in a much more massive problem t o  

be solved. 

Since we have found a way t o  calculate the single-electron Green's function self-con- 

sistently with the self-energies, c<(>), we can now evaluate G<(>) (r', r"; E )  from Eq. (A.5) 

and use this expression with Eq. (A.3b) t o  obtain a current density. This density needs t o  

be integrated across the cross-section of the structure. In the contacts where the current 

is z~ero a t  infinity this surface integral can be converted into a volume integral and the 

resudting current per unit energy, per unit volume is 

which can be be cast into the form of Eq. (2.4) by using Eq. (2.5) and defining the trans- 

mission coefficient as 

h2 IGR(F,P;  
T ( f ,  f I ;  E )  = 

E) I 2  
(A.24) 

T+ (r'; E )  T+ ( c  I ;  E )  . 
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We have therefore obtained a transfer function T(F, F'; E) in terms of a microscopic model. 

The expression for the current was derived for any point .' in the contact. Using 
Eq. (A.19c;i one can show that I(r'; E) = 0 V {fl E Device. This corresponds t o  the current 

boundary condition given in Eq. (2.3). This boundary condition is being substituted by a 

condition on the Green's function in the contacts. The Green's functions in the contacts 

need to decay with a dephasing length such that  the current density is zero a t  infinity and 

the surface integral over the contact can be closed and transformed into a volume integral. 

The solutic~n to an open-ended one dimensional wire Green's function is known and we 

extend G~ from the numerical nodes analytically to  infinity using the phase-breaking time 

obtained in the numerical nodes. Therefore, our model includes phase-breaking throughout 

the whole clevice and the contacts region. 

The boundary condition on the occupancy, f ,  is an assumed Fermi-Dirac distribution 

function in the contacts with well defined chemical potentials as already discu~ssed with 

Eq. (2.3). 

In summary we can state that  we have a formalism based on a microscopic Hamiltonian 

model for which we can solve for the non-equilibrium occupancy, f (r'; E), in the device and 

and the current, I(r'; E ) ,  in the contacts self-consistently with Eqs. (A.19) and (A.23). 

A.4 Optical Phonons 

We are now a t  the stage where we can consider a particular oscillator spect:rum for a 

particular scattering mechanism. We will here consider an Einstein spectrum of optical 

phonons which we model using Eqs. (A.21) and (A.15) as 

where we have simplified o2 = U2 * Jo(F). Using U instead of 0 from now on one can 

simplify Eq. (A.26) further to  

F(r'; hw) = u2 {N6(hw-hwO) + ( N + l )  6(hw+hw0)) , (A.27) 

with 1 

With this delta 6-function spectrum in Eq. (A.27) we can simplify Eqs. (A.19d) and (A.19e) 

by integrating out the energy dependence 

h 
= 2 r u 2  { (N + I.) NO (5, E - h O )  (1 - f (?, E - b 0 ) )  

~n (r'; E) 

+ N No(.', EE+fiwo) ( l - f (F ,  EE+fiwo))> , (A.29a) 
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The optical phonon energy in bulk GaAs is about 36meV. For T = 77K and T = 41< we 

have kBT = 6.6meV and kBT = 0.34meV, respectively. Using Eq. (A.28:1 we can calculate 

N a: 4.4 x and N = 4.6 x respectively. If we are in the regime where lcBT << hwo 

we can assume N=O and Eqs. (A.29a) and (A.29b) simplify t o  

Eqs. (A.29) and (A.30) define the scattering rates that we have been using for the problem 

of the phonon peak in Chapters 2, and 3 and in Appendix B. 
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Appendix B 

Slcattering Rates: A Simple 

E'xample 

We have discussed in Chapter 2 Section 2.2.3 how the scattering rates, :$ and ' connect 
. n T~ 

different energy coordinates a t  one spatial coordinate. We will try to make this connection 

clea,rer using the phonon peak example. We assume here to  have a L,orentzian shaped 
density of states (Fig. B.l) with some electrons injected one optical phonon energy above 

the resonance. We further assume that all the states right under the peak of the Lorentzian 

are about filled (99%). 

Figure B . l  Set-up for example calculation of  scattering rates. Lorentzian shaped density of  states in the 

well filled up in the bottom from the collector (right) side and filled with some electrons from 

the emitter (left) side. 

Empty Resonant State 

Let us first consider the case where the main resonance is empty (Fig. 13.2a). Using only 

the information about the occupation, f ,  and the density of states, No, we can evaluate 

the scattering rates, $ and $ using Eq. 2.6 (see Fig B.2b). We can now see that the 

electron out-scattering, &, has a peaked feature one phonon energy above the resonance 

(at  the incident energy, E=+hwo) and how the hole out-scattering rate. I, has a peaked 
7~ 
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114 Scattering Rates: A Simple Example 

feature one phonon energy below the resonance. Note that  the electron out-scattering rate, 

is the dominant scattering contribution by the relation of the total phase-breaking 
Tn ' 
rate, ' = '+-I-, a t  the injection energy, E = +hwo. This means that  at the incident 

Tn Tp 

energy electrons only leave (to lower energies). At the resonance energy, E = 0 the opposite 

scattering rate, the hole-out-scattering rate, -L, is the dominant contribution and holes 
7~ 

leave this energy (electrons are incident a t  this energy). This means that  electrons are 
transportecl downward in energy from the incident energy t o  the resonance energy. 

The first intuitive question that  appeared t o  the author a t  this point was: "Why are 

the electron out-scattering rate a t  the incident energy and the electron in-scattering a t  the 

resonance different from each other?" The answer t o  this is tha t  not the rates have t o  

be equal, but the electron in- and out-scattering fluxes. Figure B.2c depicts the electron 

out-scattering flux**, E, and the hole out-scattering flux, 2. It can be seen now, that  
7~ 

the hole-out-scattering flux is identical to  the electron-out-scattering flux shifted downward 

in energy by one optical phonon energy. That  means that  all the injected electrons really 

arrive exaclily one optical phonon energy below a t  the resonance. 

Filled Resonant State: 

Now that  we have a more vivid picture of vertical flow, let us consider the efiect of the 

filling of the resonance. Fig. B.2d is identical to  Fig. B.2a except for the 99% filling of the 

resonance. The newly calculated electron out-scattering rate, k, a t  the injection energy in 

Fig. B.2e is clearly strongly reduced (see the comparing arrow between Fig. B.2b and B.2e. 

Since the number of injected electrons did not change (the occupation, f, was unchanged a t  

the injection energy E =+hw0), the total downward electron flux has to  be reduced due t o  

the reduced scattering rate. This can be seen in Fig. B.2f as compared to  Fig. B.2c. 

With this lengthy example we have shown here: 

a how the electron and hole out-scattering rates depend on energy, 

a how the electron and hole out-scattering rates take care of the "vertical" energy flow 

of electron upon interaction with optical phonons, 

a how the total particle flux between the different energies is conserved, 

a how the Pauli-Exclusion-Principle is built into our scattering rate calculation. 

Approximaikions for the Eflective Occupation, f, 

The scattering related quantity that  appears explicitly in our transport equation (2.4) is the 
1 - 

effective oc~zupation, f,. It is defined as f, = ZL (c.f. Eq. (2.5)) and provides a relative 
rn  rp 

measure of the electron in-scattering rate with respect to the total electron scattering rate. 

We have plotted the effective occupation, f,, in Fig. B.3 for the two different cases of filling 

discussed in Fig. B.2. We can see that  effective occupation, f,, is negligible coinpared t o  

the occupal;ion, f ,  a t  the incident energy which means that  there is no back-flow from the 
well into the emitter at the incident energy. At the resonance we see that  th,e effective 

occupation, f,, is approximately 1 which implies that  there is a large electron in-scattering 

"See Eqs. A.17~  and A.18 for the relations between the density of states, No, the occupation, f ,  the 

electron dens~ty, n, and the hole density, p. 
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a 0 tlo, hao 0 t l t o o  
Energy Energy 

Figure B.2 Example for the energy dependence o f  the scattering rates, $ and I. a) Lorentzian Density 
TP 

o f  States, No,  centered a t  zero energy, E = 0 and occupation, f ,  ernpty resonance. b) 
Scattering rates, $ and 1, as calculated f r om  Eqs. (2.6) .  c) Scattering fluxes, 2 and $. 

TP 

d) Same as a) but  ful l  resonance (99%). e) Same as b), bu t  based on d). f) Same as c), 

bu t  based on  d). 
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a t  this energy and that  "back-scattering" from the device region (the resonance) t o  other 

probes (the collector) can be strong. Reference [76] assumes explicitly for the effective 

occupation, f, (E; = +hwO) = 0 and f,(E, = 0) = 1 for a significant simplification of analytic 

calculations explicitly neglecting back-flow into the emitter from the resonance. 

-1 0 I I I 

-%a0 O ho, 
Energy 

-1 
ha, 0 ha, 

Energy 

Figure B.3 Occupation, f ,  and effective occupation, f,, based on the example in  Fig. B.2. a) and b) 

c:orrespond t o  Fig. B.2a and B.2d, respectively. 
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Appendix C 

RJate Equations for high Bias 
Tkansport in Coulomb Blockade 

C. 1 Introduction 

In this appendix we will first lay out the general rate equations used in the numerical 

simulations and discuss the origin and the limitation of the constant charging model. We 

then specialize the rate-equations for the 2 state case in which we derive analytical current 

expressions for transport through double barrier structures. 

C .  2 General Rat e-Equat ions for the N-Part icle! Case 

In Section 5.2, Figure 5.2 we have laid out the general idea of the configuration space and the 

coupling between the configurations. This approach has been put forward by ~ e e n a k k e r ~ '  

for the treatment of Coulomb blockade problems. In Section 5.4.1 we discussed the single- 

electron spectrum that  we are considering in this work and argued in Section 5.4.2 how the 

multiple degeneracy of the quantum states should be exploited to  reduce the number of 

possible state configurations whose occupations need to  be solved for. Beenakker's model is 
laid out  for non-degenerate states and has t o  be extended to  take care of multiple degeneracy. 

Furthermore we extend his model t o  include a finite intra-dot relaxation time. 

We denote the eigen-energies of the quantum states as Ep and their corresponding 

degseneracies with d,, where p = 1 , 2 , .  . .. The single-electron charging energy is assumed6' 

t o  be - 

where N is the total number of electrons in the quantum dot and C is the electro-static 

charge coupling of the quantum dot to  the reservoirs. Beenakker assumed a charging en- 

erg:, of the  form U(N) = NZ$ which is a good approximation for the case large N. 

Purdue University 11 7 Gerhard Klimeck 
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We assume here tha t  the first electron does not have a charging energy against the reser- 

voirs." The coupling t o  the leads is assumed t o  be weak enough such that  the single- 

electron states in the quantum dot are considered to be sharp compared to  the temperature 

(kBT >> h r  = h ( r R + r L +  l l r ) )  and to  the single-electron energy spectrum ancl charging 

energies (A.E, U>> h r )  . 
Energy-Balance: The transport trough the quantum dot is assumed to  be based 

on sequential single-electron hopping into and out of the quantum dot via the connected 

reservoirs. The energy of each electron before and after the transition must be conserved. 

The conserved energy includes the single-particle energy, the charging energy against the 

other electrons in the quantum dot and the electrestatic potential energy due to  the applied 

bias across the structure (Fig. 5.1). Beenakker has denoted four energy balance equations 

for four electron tunneling processes: 

1) into the quantum dot, being initially on the Left (index : i ,  L),  

2) out of the  quantum dot, being finally on the Left (index : f ,  L),  

3) into the quantum dot, being initially on the Right (index : i, R), and 

4) out of the quantum dot, being finally on the Right (index : f ,  R). 

The energy balance equations corresponding t o  these processes are 

where N is the number of electrons in the dot before the tunneling event and q is the fraction 

of the applied voltage that  drops over the left barrier (Fig. 5.1). Ep is the single particle 

eigen-energy of the quantum level p. 

Occupation number notation: The ~ s ~ a l ~ ~ ? ~ ~  notation for many-electron Slater deter- 

minants is formulated in terms of Fermi-particle destruction and creation operato'rs. Given, 

for example, two spin-degenerate quantum states, the Slater determinants are u.sually de- 

noted as In:,?, rill, n2t, nzl), where the n; can take on only values 0 and 1. For this particular 

example with a maximum of 4 fermions in a limited basis set of 4 states we have 24 = 16 

possible Slitter determinants. Here we are interested in the average popu1atio:n of these 

Slater determinant states, given that  they are weakly coupled to  two leads. The system of 

equations to  be solved is of dimension 16 x 16. Several of these 16 states are equ.ally occu- 

pied, for example I l ,0 ,0 ,0 )  and 10,1,0, 0), if the coupling to the leads is spin ind.ependent. 

Figure C . l  depicts all 16 states and groups them according to  equal occupation probability. 

Instead of the 16 unknowns, only 9 unknowns have to be calculated. We introduce a new 
notation for these 9 groups, in which we simply count the number of electrons in -the degen- 

erate subgr.oup, as indicated in the example in Figure C.1. The 9 possible configurations 

are now deiscribed by 2 numbers {ml , mz), where m l  = n l t + n l l  and m2 = n2t+n21. Each 

"state" m l  and m2 is two-fold degenerate and its index can take on values 0 ,  1 and 2. 

Including also lateral s tate degeneracies as well as  the spin degeneracies we have discussed 
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Figure C . l  Example of  a compression of  non-degenerate to degenerate state notation. Orbitals (nl, nz) 

and (n3, n4) are each assumed to be degenerate in energy and coupling to the leads. The 

new configuration (ml, mz )  has ml = nl + 722 and ma = n3 + n4 with the configuration 

degeneracy, cd, as indicated above the arrows. 16 configurations were converted to 9. We 

use this scheme to convert the 226=6.7x106 non-degenerate configurations for 26 electrons 

(Fig. 5.5) to 8 . 4 ~  l o 4  configurations in the degenerate notation. 

above, that our system consists of five 4-fold and three 2-fold degenerate states. We denote 

each "state" m, to  have the degeneracy d, and the index m, can take on, values (0 . .  .dp). 

While the reduction from 16 to  9 configurations does not appear significant, larger systems 

show a dramatic reduction. As discussed above we reduce our system from 226 = 67,108,864 
Ngroup to  (dp+l) = 55 x 33 = 84,375, which is a reduction by a factor of about 800. To keep 

track of the multiple degeneracies we have introduced the configuration degeneracy, cd, 

as indicated in Fig. C.1. The configuration degeneracy, cd, takes on values of 1,2 and 4, 

depending on the configuration {ml, m2) in the example in Fig. C.1. Formally, the con- 

figuration degeneracy, cd{ml, m2, . . . , mNgro,p), can be defined as a product over binomial 
d ' 

coelficients dpCmp = e. 

where we use short form {mk) = {ml, m2, . . . , m,, . . . , m ~ ~ ~ , , ~ )  and m, E ( 0 .  . . d,). 

Current: Given the probability of occupation of each configuration P({mk)) and a 

Fer mi-Dirac distribution in the reservoirs of (E)= [1 + e x p ( w ) ]  -' the current through 

the left barrier (which equals the current through the right barrier) is given by 

where mp is the number of electrons in group p, NgrozLp is the number 'of quantum levels 
considered (8 on our case, see Fig. 5.5), dp is degeneracy of each single 1c:vel and cd({mk)) 

Purdue University Gerhard Klimeck 



120 titate Equations for high Bias Transport in Coulomb Blockade Regime 

indicates the  configuration degeneracy. r and f carry four indices indicating the energy 

dependence of the transition as indicated in Eq. ( C . 2 ) .  The index p  on r is al:jo used t o  

keep track of the lateral mode dependent, i.e. s tate dependent, coupling t o  the subbands 

in the leads. 

Rate-Equations: The set of rate-equations that  needs to  be solved including the de- 
generacy read 

NgrOup (dp  + 1) equations for the same number of un- The set of equations (C .5 )  contains flp=l 
knowns. However, one of the equations is a linear combination of the others and the system 

is under-determined by one equation. The normalization of the probabilities to  1 closes the 

system 

C cd( {mk) )  P ( { m l , ) )  = 1 

Equation (C.6) is equivalent t o  Eq. (2.12) in reference7' except for the phenomenological 

intra quantum dot relaxation and the  degenerate state notation. The canonical probability 

distribution P o ( { n ; ) )  depends on the free energy of the internal degrees of freed'om with a 

fixed number of electrons in the quantum dot and the probability to  have that  particular 

number 

cd ( { m k ) )  exp (""I ~ B T  Epmp , 
Po({mk>)  = C t l  E P ~ P  

P ( N )  . (C.7) 

c { ~ ~ }  cd( {ok) )  exp ( ~ C , T  ) 6 ~ , x ~ ~ ~  

The probability P ( N )  represents the probability t o  have a total number N electrons in the  

quantum dot regardless of electron configuration. It is the sum of all configurations with 

the total number of N electrons 
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The introduction of the relaxation rate couples all configurations with the same total number 

of electrons N with each other, since Po({mk)) depends now on all configurations with N 

Initial Guess: In order t o  solve this large system of equations iteratjively, we need to  

find a "good" guess for the solution. We obtain our guess for the most lilsely configuration 

by looking a t  the diagonal elements of the probability matrix C.5. The diagonal elements 

indicate the leakage of the corresponding configuration t o  other configurations. The config- 

ura1;ion with the smallest leakage rate t o  other configurations is the most stable one and will 

be the most likely one t o  occur. We use this physical argument to  justif!{ our initial guess 

of probability distribution and achieve satisfactory convergence in the iterative procedure. 

C .3  Strong Inelastic Scattering 

~ e e n a k k e r ~ '  has given equations for the non-equilibrium number of electrons in the quantum 

dot similar to  A ~ e r i n . ~ ~  We continue to  use the same notation and extend Beenakker's7' 

equ,ation (5.1) to multiple degeneracy. The modified equation reads now 

where Feq (EpI N ) ,  the equilibrium probability to  find state p occupied, given that  N electrons 

are in the quantum dot, is defined as 

The set of N Equations (C.9) for N + l  unknowns is closed by the norma,lization condition 

After solving for P ( N )  with Eqs. (C.9) and (C. l l )  we use Eq. (C.7) to  determine P({mk)) = 

Po({mk)) and evaluate the current through the structure using Eq. (C.4:). 

C.4 Constant Charging Interaction 

Several calculations of the many-body eigen energies of quantum dots have been per- 

f ~ r r n e d . ' ~ ~ - l ~ O  The critical ingredient in these calculations is the form of the electron- 

electron interaction potential. The cited references differ in their choices of this potential. 
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122 Rate Equations for high Bias Transport in Coulomb Blockade Regime 

Many-body spectra using the u n - ~ c r e e n e d l ~ ~ ~ ' ~ ~  Coulomb potential, -, wen? analyzed 
3 

first and strong spatial electron-electron correlations were found in the case of compara- 

ble interaction energy and single-electron quantum state spacing. The many-body ground 

state has significant contributions of excited single-particle states indicating that  electrons 

arrange themselves spatially to reduce the charging energy in this limit. Johinson et a1 

i n t r ~ d u c e d ' ~ ~ ? ~ ~ ~  a modified interaction potential of parabolic form. The problen? becomes 

exactly solvable and its results have been shown to  be comparable138 to  the Coulomb poten- 

tial interaction in the limit of strong confinement. H a ~ s l e r ' ~ ~  has used a screened interaction 

potential of the form 1 and pointed out the limitations of the state indepen- 
((IF,-?, 1 2 t ~ 2 ) l ' ~  

dent charging model. 

The purpose of this section is t o  relate the state independent charging eneirgy to  the 

microscopic calculations. Starting from there we argue similar t o  a discussion in Ref. [134] 

that  the simple charging model may give reasonable results for structures in which the 

single particle quantization energy is the dominant energy scale. Figure C.2 depicts the 

-Coulomb 
Screened Coulomb 
Harmonic 
Constant 

Figure C.2 Electron-electron charge interaction potentials V ( r ) .  Screened and un-screened Coulomb, 

harmonic, and constant potential. 

forms of the three investigated electron-electron potentials: un-screened Coulomb, screened 

Coulomb, and parabolic potential. If the region of confinement is small and screening by 

spatially closely located ground planes is reasonable to  assume, then a constant interaction 

potential as indicated by a horizontal line in Figure C.2 may be a reasonable assumption. 

Starting with the definitions of one- and two-electron integrals over spin and spatial 

orbitals in S ~ a b o ~ ~  on pg. 68 we substitute the two-electron operator r;' by a spatially 

independent constant U and calculate the N-particle Hamiltonian matrix on the basis set 
of N-particle Slater determinants. The choice of orthonormal single particle basis set for 

the generation of the N-particle Slater determinants and the spatially independent electron- 

electron int,eraction potential allows an easy analytic calculation of the Hamilton'ian matrix 

elements. The Hamiltonian matrix turns out t o  be diagonal and with an expression for a 

N-particle 1Slater determinant denoted in configuration space as {n;} = i n l ,  na, . . . , np} we 
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obtain for the diagonal elements 

where E; is the single-particle eigen-energy of the ith spin orbital. This approach allows a 

natural derivation of the charging energy expression (Eq. (C.l)) which we are using in this 

work. The charging energy of single electrons against image charges in surrounding ground 

planes is not considered here. 

For our numerical simulations we chose the device parameters such that  the single- 

particle energy separation, A E ,  is larger than the charging energy, U. This is the parameter 

region in which the constant charging interaction model is still valid.134 111 general we could 

implement a given many-body spectrum with all its ground states and excitations into the 

rate equation approach used here. However we feel that  a t  this stage detailed calculations of 

state spectra may not improve our discussion on general phenomena discussed in this report. 

Also we feel tha t  the confinement potentials and interaction potentials are not well enough 

known t o  justify detailed device calculations. Only to  allow for a simpl'ified discussion of 

the general charging phenomena in the case of a two-electron system we assume that  the 

charging energy, U, is larger than the single-particle separation, A E ,  in the analytic section 

of the paper. 

C.5 Rate Equations for 2 States 

In Section C.2 we have laid out the model equations for an arbitrary number of states. We 

will now specialize these equations for the case of 2 single-particle non-degenerate states. 

The set of kinetic equations (C.5) for two states represented by {nl, 712) corresponding to 

the single-particle energies {El, E2) reduces to  four equations. Eq. (C., 13), for example, 

motlels the time evolution of the probability distribution Plgo (P({nl, p 2 ) )  was shortened 

t o  l'n,,,,), where we have denoted the energy and state dependence of the Fermi factors, f ,  
and transition rates, l?, according t o  Figure 5.2 via indices 1.. .4 

PlIa decreases in time due to evolution to  {1,1) and {0,O) configuratioris ("-" sign). Plro 
increases in time due to  transitions from states {1,1) and {0,0) ("+" sign). Relaxation 

tries t o  bring the non-equilibrium distribution of constant N back to  equilibrium. The other 

Purdue University Gerhard Klimeck 



124 Rate Equations for high Bias Transport in Coulomb Blockade Regime 

three equations for the time development of  PO,^,  PO,^, and Pltl are very similar. For the 

solution of P,,,,, one of the four equations is redundant and the system is closed by the 

normalization condition 

1 = po,o + P1,o +  PO,^ + Pl,l (C .14) 

We simplify the kinetic equations like Eq. (C.13) further for the double barrier structure 

depicted in Figure 5.3a. The single-particle state energies are assumed t o  be above the 

Fermi-sea in the left and the right. The quantum dot is therefore empty in flat band 

condition (E l  - EF>> kBT). To simplify the analytical work we assume that  the bias is 

applied such tha t  the conduction band on the left side is pulled under the conduction band 

on the righi; side (Fig. 5.1). We therefore assume fL,l=fL,2=fL,3=fL,4=0 such that  electrons 

can always tunnel to  the left (collector), but there is no electron flow back from the left. 

The energy- balance equations for tunneling through the right barrier include the critical 

excitation energies that  we discussed in Section C.2. We have abbreviated the corresponding 

Fermi func1;ions as  

fi = ~ R . I =  f = f (~{,f) = f ( E l  - (1 - 7) e v )  , (C. 15a) 

f 2  = fR,2=f(~i$)=f(~tF)=f(E2-(l-l))eV) , (C.15b) 

ftR - f3 = f R ,3= f ( ~ ; : ; ) = f (~ 1 ,2 ) - f (E l+U - (1 -7 ) eV )  (C .15~)  

f 4  = f ~ , 4 = f ( ~ ~ ~ ) = f ( ~ ~ ~ ~ ) = f ( ~ 2 + ~ - ( 1 - 7 ) e ~ )  , (C. 15d) 

where U =  U(2)-U(1) with Eq. (C.l) .  

We have made the same simplification in notation with respect to the rig;ht barrier 

transmission rate r R ( E )  = rR x @(E) .  All energies are measured against the riglnt/emitter 

conduction band. For electron energies smaller than zero we assume a zero transmission rate, 

since tunneling under the emitter conduction band edge is not allowed. We further simplify 

the transmission rate through the left barrier rL to  be completely energy independent, 

r L ( E ) = r L .  

Some other simplifications can be introduced with respect to  inelastic ~cat t~er ing.  In- 

elastic scattering couples only states {1,0) and {0,1) (Fig. 5.2). Using Eq. (C.7) for Pllo;,, 

we have for the relaxation contribution in Eq. (C.13) 

ex -El kBT 
where we have defined dl = ezd-EII&)k!.d-LIkBTl and d2 = 1 -dl. Note thxt the limit 

E2 -El >> kBT results in dl + 1 and d2 + 0 indicating the thermal occupation probability 
of El and E2, respectively, given N = 1. With all these simplifications we can nww contract 
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the rate-equations for PoVo, Po,1 and Eq. (C.14) into a matrix form 

Eq. (C.17) needs to be solved for all P,,,,, such that the current 

can be calculated. Eq. (C.18) shows nicely how the current through the quantum dot scales 

directly with the filling N in the limit of energy independent barrier transmission. We have 

obtained a general solution for the current in Eq. (C.18) in terms of f,:? I?;, T ,  and rL. 
However it is quite lengthy and does not give any particular physical insight. 

Section 5.2 discussed the transition energies in a 2 state system and Section 5.3.1 iden- 

tified the voltage regions in which these transition energies can be excited by tunneling 

trough the right barrier. The applied voltage enters the system of equations (C.17) via the 

the occupation factors, f; and ri, defined in Eqs. (C.15). We consider kBT to  be small 
and treat the occupation factors f; and the transition rate r; as step functions. f; = 1 for 

ene:rgies under the Fermi-energy of the emitter, r; = rR for energies above the conduction 

band edge of the emitter, and both quantities are zero otherwise. In the case of no charge 

interaction, U=O, we start with the the values of f and r in each voltage region noted in 

Tatlle C.1. Note that E3 = El +U = El and E4 = E2 +U = E2 implies that f3 = f l  , f4 = f 2 ,  

r3 == rl ,  and r4 = r2 (see Eqs. (C.15)). The bottom line of Table C.l indicates the labels 

for the analytical current expressions obtained with the corresponding c.oefficients. Using 

the notation r, = 1/r the three currents are 

Notme that only the valley current I3 is dependent on inelastic scattering (I?, and d2). 

Eq. (C.19~) has been series expanded in $ = I?, to  yield Eq. (5.1) in the low tempera- 

ture limit where E2-El >> kBT yields d2+0. An expansion for small scattering times T = & 
yields Eq. (5.2). 

Table C.2 contains the occupation coefficients, f ,  and the right barrier transmission 

rates, rR, for the bias regions the correspond to different transitions in the case of large 

charging energy, U > E2-El. The last line indicates the labels for the corresponding current 
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Equations l(C.20). The currents are 

Table C . l  O1ccupation factors, f, and transmission rates, rR, in the no-charging case, U := 0, for the 

relevant bias ranges. Entries for Ii correspond to Eqs. (C.19). 

Note that only I l  and I3 are explicitly dependent on inelastic scattering (I?, and d2). The 

perturbation due to  relaxation on current Il is vanishing with d2+0. Current I:, has been 

series expanded in r = to yield Eq. (5.5) for the limit of strong inelastic scattering. 

For the limit of small inelastic scattering a series expansion in r, = $ Eq. (5.6) has been 

obtained. 

~ V + E F  

fl =f3 
f2=f4 
r1 =r3 

r2 =r4 
I 

Table C.2  O'ccupation factors, f, and transmission rates, rR, for the limit U > E2-E2 .  Entries for Ii 
correspond to Eqs. (C.20). 

a V + E F : 0 , ~ 1 1  I [EI~EzI I [Ez,El+Ul I [El+U,Ez+U] I [Ez+U,Ei+EF] I [Ei+EF,E2+EF] I [I- F 
l-2 

7 
r~ 
rl? 

- 0 1  I1 I I2 4 1 0 1  
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Appendix D 

A-nalytical Treatment of the 
C!oupled Quantum Dot System 

D.l  Introduction 

We now consider the mathematical analysis of the coupled dot system consisting of one 

doubly spin-degenerate state in each quantum dot. We are solving the Hamiltonian in 

Eq. (6.1) exactly in the terms HD+Hc. The coupling to  the leads is assumed to  be weak 

enough such that  it can be treated in first-order perturbation theory. Tlhe temperature is 

assumed to  be high enough such that  correlations of electrons in the quantum dot system 

and lead electrons can be neglected. We denote the electronic states in the quantum dot 

as Sllater determinants without any k-state notation of the adjoining leads. The notation 

for -the many-particle Slater determinants is Inlt, rill, nzt, nZl) where the subscript l (2)  is 

the label of the left (right) quantum dot, respectively and and 4 are spin-indices in a 

limited set of basis states. The next highest lateral states are assumed t o  be separated in 

their decoupled eigen-energy, such that  they do not need t o  be includedl in this analysis. 

Given these 4 occupation numbers we have 24 = 16 possible configurations. The number 

of particles in the central quantum system, can only change by tunneling processes from 

the leads. These processes are assumed t o  be weak and we only treat the inner quantum- 

dot system described by HD+Hc exactly in the sub-set of constant numbers of electrons 

N =: const. The dimensions in terms of basis states of these sub-sets are D E {1,4 ,6 ,4 ,1)  

for .N E { O , l ,  2,3,4). 

D. 2 The Sub-Set Hamiltonians 

The basis Set for N = 1 sub-set of states consists of 4 states: 11,0,0, 0)1, 10,1,0, O)Z,  

10,0,1, 0)3, and 10,0,0, 1)4. The order given by the subscripts is the one in which the 
Haniiltonian matrix is formatted as well. The basis state I l , O ,  0, 0)11 for example will have 

a diagonal element (1 ,0 ,0 ,  O(HD+Hc I l , O ,  0, 0)l = t l  = H:,~, where the superscript 1 indi- 
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cates the AT= 1 sub-set here. The single particle eigen-energies of the states in the the two 

quantum dots are and €2. The inter-dot coupling Hamiltonian, Hc, couples only states 

with the sa:me spin in the neighboring dots. The I l ,0 ,0 ,  0)1 state is therefore coupled only t o  

the )0 ,0 ,  1,0)3 state. The corresponding matrix element is l(l,O,O,O~HD+Hc(O.O, 1,0)3= 

t = H;,~. With these two examples, we can see how the Hamiltonian of the N =- 1 sub-set 

takes on the following form 

O t O  

€1 0 ; ) , 

0 €2 

O t O € 2  

The basis set for N = 2 sub-set of states consists of 11, 1,0 ,0)1 ,~1,0 ,  1,0)2, 11,0,0, 1)3, 

10, 1 ,1 ,  0)4, l o l l ,  0, 1)s, and 10,0,1, and the Hamiltonian can be denoted in a similar 
matrix form as the N = l  case, but with dimension 6x6 

where Ul ([I2) is the intra-dot charging energy in dot 1 (2) and W is the inter-dot charging 

energy. Note that  the states I l , O ,  1,0)2 and 10,1,0, 1)5 are decoupleds from the ot,her states 

since all the up- and the down-spin states are occupied in these basis states. These two 

states will t,herefore be eigen-states of the coupled system as well. 

The basis states for the N = 3 sub-set are: ~ 1 , 1 , 1 , 0 ) 1 ,  11,1,0,1)2, 11,0,1.,1)3, and 

l o l l ,  1, resulting in a Hamiltonian 

The N -= 0 sub-set Hamiltonian, eigen-value, and eigen-state are trivial with HO= (0), 

Ey = 0, and ($7) = 10,0,0, O), respectively, since there is only one state in this basis set. 

The N = 4  sub-set Hamiltonian, eigen-value, and eigen-state are similarly trivial with H4= 

( 2 ~ 1 + 2 € 2 + 1 ~ ~ + + ~ + 4 W ) ,  E f = 2 € 1 + 2 ~ ~ + U l + U 2 + 4 ~ ,  and I$;)= Il,l, 1 , l ) .  

S H , ~ , , + ~  = rf$z,z = O  and = ~ $ 5 , 5  =0. 
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D.3 The Sub-Set Eigen-Values and Eigen-Vectors 

The eigen-values and eigen-vectors of the Hamiltonian matrices Hi can be evaluated an- 

alytically using software tools like MAPLE or MATHEMATICA. The general expressions 

of these new eigen vectors are quite lengthy and do not lend significant insight into the 

physics. The simplified ideal system of identical quantum dots with €1 = t 2  = 6, U1 = U2 and 

no inter-dot charging, W = 0, provides physical insight into the coupled system eigen-vectors 

and eigen-values. 

The N = 1 system is of dimension 4 x 4 and will be described by a bonding and anti- 

bonding state which is doubly degenerate. The bonding states have the eigen-energy El
1 = 

E; == 6 - t with the corresponding two eigen-vectors 

Note that  the states are not mixed in spin components. The spin of I$;) and I&.) are 

purely up-spin and purely down-spin, respectively. The anti-bonding states have a higher 

eigen-energy of E; = El = c+t with the eigen-states 

'The eigen-values and eigen-vectors of the N = 2 system H2 are somewhat more com- 

p1ic;~ted. The ground state is non-degenerate with energy E; = 26 - ; (A-  U),  where 

A = d m  and has an eigen-vector of 

Purdue University Gerhard Klimeck 



130 Analytical Treatment of the Coupled Quantum Dot System 

Note that  the ground state consists of two groups of states. The first group with coefficients 

7 

consists of basis states that  have one electron in each quantum dot ( (1 ,0 ,0 ,  and 

l o l l ,  1, 0)4). Their strength in the ground state depends only weakly on the inter-dot cou- 

pling, t .  These states do not have to  "pay" the charging energy, U .  The corresponding 

diagonal elements in H2 and H42,4 in Eq. (D.2)) are 2c. However, note that  the 

total spin of these states is 0, consisting of one up-spin and one down-spin electron and 

they are not coupled to  each other. In order to  "utilize" the inter-dot coupling;, t ,  states 

that  "link" these two states, have to be mixed into the ground state. These links are: 

11,0,0,1)3~+ )1,1,0,0),  H 10,1,1,0), and 11,0,0,1)3 H 10,0,1,1)6 H 10,1,1,0)4. However 

these "linkn-states have t o  "pay" the charging energy, U, and are first order in {f 

The lowest excited states in the sub-set N = 2 are grouped into a triplet of energy 

Ei = E: = I?: = 2~ with the corresponding states 
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Two states, I$;) and I$:), are decoupled from the other basis states as mentioned in 

Section D.2 with Eq. (D.2) and they have a total spin o f f  1. The third s-tate in this triplet 

is a superposition of states )1 ,0 ,0 ,  and 10,1,1, O), with a total spin of' 0. 
The fifth eigen vector of the coupled system with N = 2 has an eigen-value of Eg = 2t+U 

wit11 

It consists only of basis states with two electrons in each quantum dot with diagonal elements 

2 t t . U .  

The sixth eigen state, I$;), in the H2 Hamiltonian is the anti-bonding state t o  the 

ground state, I$;), with eigen-energy ~ ; = 2 t + i  (A+U). The eigen vector is 

The coefficients t o  basis states 11,1,0, O), and 10,0,1, are large with small inter-dot 

coupling, t (Eq. D.7a). The coefficients t o  the basis states I l , O ,  0 , l )  and 10,1,1,0) are small 

in ir (Eq. D.7b). 

The N = 3  subse t  Hamiltonian H~ is identical in structure as the H1 for the case of pa- 

rameters discussed here. We therefore state only the eigen-values of 

E; == E; =3t+U- t  and E:= ~ : = 3 t + U + t .  The bonding and anti-bonding structure of 

the eigen-states I$;) is identical t o  the structure of the I$:) states. 

The N = 0 ( N  = 4) subset  Hamiltonian H0 (H,) is trivial since it consists only of one 

basis state 10,0,0,0) (11,1,1,1)). The eigen-value is E ~ = O  ( ~ : = 2 t + 2 ~ ) .  
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D.4 Coupling to the Leads 

After the spatially complicated eigen-states I$;) have been calculated for the decoupled 

Hamiltonians, Hn, we will now calculate transition rates between these sub-sets in first- 

order perturbation. For convenience we repeat here the Tunneling Hamiltonian stated in 

Eq. (6.1) 

HT,RJ= C ( V ~ C ~ ~ C ~ ~  + c.c.) (D.l le)  
k€R 

In our notation of basis states Inlt, n1&, n2+, n2&) of the quantum dot systenn we have 

not included any quantum numbers k indicating lead states. We separate the coupling to 

the left andl the right lead and up- and down-spin and keep the sum over all k-states. We 

define rLj,'h as the transition rate from n-particle state i ,  (I$r)), to  the ( n-  11)-particle 

state j ,  (Iqr-l)), through the left barrier as: 

We treat the up-spin and the down-spin transition independently and assume that  the 

coupling elements, v:, are spin independent. The expression for the transmission rates 

through the right barrier is equivalent to  the ones through the left barrier with a substitution 

of superscripts L by R and index 1 by 2 in Eq. (D.12). 

The eigen-states I$;) and involved in this expression are a linear superposition of 

t the basis states Inl+, rill, n2+, n2&) in which the creation and destruction operators cl+, cl+, 

t t t 
C ~ J ,  ell, c2+, cat, c~J . ,  and c2& are defined. In order to  evaluate matrix elements of the sort 

($;-llcl~l$~) we need t o  express the states I$?) and I$;-1) in terms of these basis states. 

Before we state the general procedure in matrix notation we will consider two simple 

examples of the calculation of matrix elements for transitions between ground states. We 

consider first a N = 0+ 1 transition from state I$:) t o  I$:) via transitions through the left 

barrier, i.e. via cl+ and c l ~ .  
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We therefore obtain for the transition rate through the left barrier 

By symmetry we can obtain for the second degenerate N = 1 ground state I+;) the same 

transition rate 
1 

r k ~  fx ( I ( + : I C I ~ I + ; ) ~ ~  + I ( + P I c ~ J / $ ; ) ~ ~ )  = (D.14) 

The values for the right barrier transmission rates are the same by symmetry. Note here 

that  the the operator c l t  connects only state 1l10,0,O) to  state 10,O1OlO). The three other 

basis states ( O , l 1  0, O), ~O,Oll,O)land ) O 1 O l  0 , l )  do not connect t o  /O,Ol0,0) via clt.  So c l t  

connects 1 out of 4  basis states in the N = 1 set to  the one basis state of the N = O  set. 

For the transitions between the N = 1 and N = 2 ground states the equations become 

a little bit more messy. We can calculate the c l ~  and c l t  matrix elements for I+:) to  I+;) 

transitions as 

For the left barrier transition rate we therefore obtain: 
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By symme1,ry of the ground states we can show that  all possible transitions between the 2 

fold degenerate 1-particle ground state and the non-degenerate 2-particle ground state have 

the same v. 1 ue. 

The operator cl4 connects only few basis states in the N = n + n-  1 transition. For 

the case of a N = 2 + 1 transitions, for example, we have (1,0,0,  01c141 1,1,0,13) = 1 but 

(0,1,0,  Olc14(1, 1 ,0 ,0 )  = 0. With 6 elements in the N = 2 sub-set and 4 elements in the 
N = 1 we can build a 4 x 6 matrix representation of cl4, and similarly for the other three 

destruction operators c l t ,  ~ 2 4 ,  and cat. The corresponding 4 destruction operators c t 
1(2)t(4) 

can be represented with a 6 x 4 matrix. 

Given the vector representation of the eigen-states I@) as [ t / ~ r ] ~ , , ~  with dimension 

D, x 1 we can evaluate the matrix element now as 

This matrix representation can be readily implemented numerically. We have implemented 

this procedure for coupled quantum dots (see chapter 6) including lateral modes and chains 

of quantum dots.89 A sparse matrix notation was used to  facilitate vectorized product 

execution fs~r the evaluation of the coupling elements, r. 
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