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Abstract. Over the recent years, electronic surface states have been used

for a detailed spectroscopic study of the electron–phonon (e–ph) interaction,

both experimentally and theoretically. This review discusses the basic physics

of e–ph coupling and how information can be obtained from angle-resolved

photoemission experiments and first principles calculations. Several recent

results for clean and adsorbate-covered surfaces, quantum wells and free-

standing monolayers are also discussed.
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1. Introduction

Many-body effects and their interplay are at the heart of some of the most interesting problems

in current condensed matter physics, and frequently the simultaneous presence of different

effects is found in complex materials. The electron–phonon (e–ph) interaction is one such effect

that limits the lifetime of excited electrons (or holes) and has long been studied because of

its role in many phenomena, from electrical conductivity to electronic heat capacity and BCS-

type superconductivity. Several experimental techniques such as tunneling spectroscopy or heat

capacity measurements have provided information on the e–ph coupling strength averaged over

the bulk Fermi surface of metals [44].

More recently, interest in the e–ph coupling has been revived for several reasons. E–ph

interaction is a prominent member of the family of many-body interactions that are found in

complex materials like the high-temperature cuprate superconductors. In fact, e–ph coupling

has been proposed to be an important ingredient for high-temperature superconductivity [72]

but at present spectroscopic evidence merely exist for a strong electron–boson coupling that is

not necessarily caused by the e–ph interaction [3].

Experimentally, recent advances in angle-resolved photoemission (ARPES) have opened

the opportunity for a study of many-body effects in unprecedented detail. Most importantly,

studies are not confined to averages over the Fermi surface but detailed information about the

energy and k dependence of the interaction has come in reach. This permits us, for instance, to

establish the symmetry of the superconducting gap in novel superconductors [4, 26].

The e–ph interaction stands out as a fundamental many-body process that can be tested

by both experimental and theoretical methods. Much has been learned by studying the e–ph

coupling on carefully chosen electronic surface states, for which good arguments can be made

for the e–ph interaction to be the only many-body effect giving rise to a bosonic spectroscopic

signature. Surface states have also played an important role because they have, as do the states

in the cuprates, a merely two-dimensional (2D) dispersion, an essential prerequisite for the

analysis of ARPES data.
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Figure 1. (a) Renormalization of the electronic dispersion close to the Fermi

energy (schematic). The dashed line is the bare dispersion ǫ(k); the solid line

is the renormalized dispersion E(k) for a low temperature (blue) and a higher

temperature (red). Inset: real and imaginary parts of the complex self-energy

for the e–ph coupling, 6′ and 6′′ for a low temperature (blue) and a higher

temperature (red). (b) Spectral functionA(ω, Ek, T ) at a low temperature showing

the sharpening of the quasi-particle peak near EF. The arrows indicate how 6′

and 6′′ correspond to the renormalization of the dispersion and the finite width

of the peak, respectively. The inset bar gives the color scale.

In the most simple picture, the e–ph coupling changes the dispersion and the lifetime of the

electronic states in a material. This situation is illustrated in figure 1(a). Very close to the Fermi

level, within a typical phonon energy h̄ωD, the dispersion is renormalized such that it is flatter

at the Fermi energy. Consequently, the effective mass of the electrons at the Fermi level and the

density of states (DOS) are increased [44]. The increase of the effective mass is described by

the e–ph mass enhancement parameter λ such that m∗ = m0(1 + λ), where m∗ and m0 are the

effective masses with and without e–ph interaction, respectively.

The effect of the e–ph coupling on the dispersion and lifetime of the states can be expressed

by the complex self-energy 6, where the real part 6′ renormalizes the dispersion and the states

acquire a finite lifetime τ through the imaginary part 6′′. In this context, both 6′′ = h̄/2τ and

the inverse lifetime Ŵ = h̄/τ are frequently used. All the closely related quantities 6′, 6′′, Ŵ

and τ can be obtained from the spectral function A(ω, Ek, T ), which is defined later on in this

paper, but for now can be taken to be proportional to the photoemission intensity in ARPES.

Figure 1(b) shows a plot of the spectral function at low temperature and indicates how 6′ and

6′′ (or Ŵ) give rise to a renormalization and broadening, respectively.

Typical results for 6′ and 6′′ (calculated in the Debye model) are given in the inset of

figure 1(a). 6′ is small except for energies very close to the Fermi level. 6′′ is changing

rapidly close to the Fermi level and is constant at higher energies. 6′ vanishes exactly at EF

such that the Fermi surface is not affected by the interaction. 6′′ only vanishes at EF for zero

temperature. Both are related by a Hilbert transformation, i.e. from a spectroscopic point of

view it is sufficient to determine either 6′ or 6′′.
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The lifetime τ , inverse lifetime Ŵ or the imaginary part of the self-energy 6′′ are all

essentially the same quantity, describing the decay of excited electrons or holes. In this paper,

we are primarily interested in a decay that involves e–ph coupling but we briefly discuss other

scattering mechanisms as well, since they will eventually contribute to the total Ŵ, and since we

have to single out the e–ph contribution. In paramagnetic metals, Ŵ has three contributions,

e–ph, electron–electron (e–e) scattering and electron–defect (e–df) interactions [18]. These

contributions are additive such that

Ŵ = h̄/τ = Ŵe–df + Ŵe–e + Ŵe–ph. (1)

Ŵe–df takes into account elastic scattering processes by defects that limit the mean-free path

of a carrier. Ŵe–df is usually not strongly energy or temperature dependent and thus acts as a mere

offset to Ŵ. Notice, however, that while the defect scattering strength might not be temperature

dependent, the number of defects is: defects can be thermally excited at elevated temperatures

and this can contribute to an increase of Ŵe–df [62, 106]. Often the defect scattering can be

suppressed in experiments such as scanning tunneling spectroscopy measurements [30, 67, 70]

or time-resolved two-photon-photoemission [30, 54, 116]. It can also be strongly reduced in

photoemission spectroscopy studies [30, 96].

Ŵe–e, the contribution from the predominantly inelastic e–e scattering, includes

several decay channels related to charge-density, spin-density, singlet-pair and triplet-pair

fluctuations [30]. Ŵe–e is energy-dependent: it increases for higher binding energies because the

phase space for inelastic e–e scattering is extended. The temperature dependence of Ŵe–e, on the

other hand, is usually very small, in sharp contrast to Ŵe–ph, which increases at high temperatures

because of the increased probability of phonon excitations. At sufficiently low temperatures, in

the absence of defects and for large excitation energies, the e–e scattering is the most important

process that limits the excitation lifetime. However, close to the Fermi level and in particular for

high temperatures, Ŵe–e can become smaller than Ŵe–ph [18, 19, 30, 34, 48, 49, 108].

An important result from these considerations is that in many situations, the e–ph

contribution is the only one to Ŵ, see equation (1), with a significant temperature dependence

and this can be exploited to single out the e–ph part from the other contributions experimentally.

In the following sections, we discuss how the e–ph interaction can be described

theoretically, how information about it can be extracted from experimental data, and we discuss

a few selected cases. We do not attempt to present a complete overview on the current status

of the field but rather focus on some historically and didactically valuable examples. Particular

emphasis will be put on cases for which both experimental data and ab initio calculations are

available.

2. Calculation of the e–ph coupling strength

A basic quantity of the e–ph interaction is the e–ph matrix that gives the probability of electron

scattering from an initial electron state (i) with momentum k to a final electron state (f) by a

phonon with momentum q and mode index ν:

gi,f(k, q, ν) =
√

1

2Mωq,ν

〈9ki| ε̂q,ν · δV SCF
q,ν | 9k+qf〉. (2)

Here, M is the atomic mass, 9ki and 9k+qf are the electronic wavefunctions for the initial and

final states, respectively. δV SCF
q,ν gives the gradient of the self-consistent potential with respect to
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Figure 2. Phonon-mediated interband scattering from a filled circle (final state

of the hole) to the open circle (initial state of the hole) by phonon emission and

phonon absorption. Figure adapted from [49].

the atomic displacements induced by the phonon mode (q, ν) with frequency ωq,ν and phonon

polarization vector ε̂q,ν . Such phonon-mediated interband scattering is shown schematically in

figure 2.

The effectiveness of phonons with energy h̄ω to scatter electrons is expressed in terms

of the Eliashberg coupling function, α2 F(ω). If the initial electron energy ǫi and momentum

k are fixed, the corresponding state-dependent Eliashberg function gives the e–ph coupling

between the initial state and all other final states (ǫf), which differ in energy by h̄ω due to

phonon emission (E) or absorption (A) processes:

α2 FE(A)(ǫi, k; ω) =
∑

q,ν,f

δ(ǫi − ǫf ∓ ωq,ν)|gi,f(k, q, ν)|2δ(ω − ωq,ν). (3)

The ‘−’ and ‘+’ signs in the delta function with electron energies correspond to a phonon

emission and absorption, respectively. The sum is carried out over final electron states (f) and

all phonon modes (q, ν). As one can see from equation (3), α2 F(ω) is nothing else than the

phonon DOS weighted by the e–ph coupling.

Figure 3 shows an example of the Eliashberg function. It was calculated for a hole state in

the Ŵ̄ symmetry point on the Cu(111) surface state [34]. The figure also shows the calculated

phonon dispersion, in which the surface-localized Rayleigh mode is clearly identified as split-

off below the bulk continuum around the M̄ point. This mode contributes significantly to the

Eliashberg function. Its contribution has been singled out by the dashed line in α2 F(ω).

While the e–ph mass enhancement parameter’s original definition is related to the overall

mass enhancement at the Fermi surface, a more spectroscopic interpretation of λ is to view it

as a dimensionless parameter measuring the coupling strength for a hole of given energy ǫi and

momentum k.

λ(ǫi, k) =
∫ ωmax

0

α2 FE(ǫi, k; ω) + α2 FA(ǫi, k; ω)

ω
dω. (4)

Here, ωmax is the maximum phonon frequency.
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Figure 3. Example of a calculated Eliashberg function. (a) The phonon

dispersion from a 31-layer slab calculation in the Ŵ̄M̄-direction of the surface

Brillouin zone of Cu(111). The Rayleigh mode is marked in red. (b) The

Eliashberg function of the hole state at the Ŵ̄ point (solid line) and the

contribution from the Rayleigh mode to the Eliashberg function (dashed red

line). From [34].

Very often the energy change of the scattered electron due to the absorption or emission of

a phonon is neglected because the phonon energies are much smaller than the electronic energy

scale. While the typical phonon energy lies in the range of meV, the energies of electrons are

of the order of eV. Thus, e–ph scattering changes mainly the direction of the electron motion

(momentum), while the energy change is negligible. Therefore, one can assume that the initial

and final electron energies coincide:

δ(ǫi − ǫf ∓ ωq,ν) ≈ δ(ǫi − ǫf). (5)

When this so-called quasielastic assumption is applied, the state-dependent Eliashberg function

and e–ph coupling parameter are

α2 F(ǫi, k; ω) =
∑

q,ν,f

δ(ǫi − ǫf)|gi,f(k, q, ν)|2δ(ω − ωq,ν) (6)

and

λ(ǫi, k) = 2

∫ ωmax

0

α2 F(ǫi, k; ω)

ω
dω. (7)

This approximation allows us to use the same Eliashberg function for both emission and

absorption processes.

One can average α2 F(ǫi, k; ω) over electron momentum k to obtain the energy-resolved

spectral function. The latter is defined by the sum over all possible initial electron states with the

same energy [2]. In particular, when the energies of initial and final electronic states coincide

with the Fermi energy (ǫi = ǫf = EF), we obtain the spectral function and the e–ph coupling
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parameter λ (following (7)) as the Fermi surface-averaged quantities:

α2 F(EF; ω) = 1

N (EF)

∑

q,ν

δ(ω − ωq,ν)
∑

k,i,f

|gi,f(k, q, ν)|2δ(ǫi − EF)δ(ǫf − EF). (8)

Here N (EF) is the electron DOS per atom and per spin at EF.

The e–ph interaction introduces a shift in the dispersion of electronic states and changes

their lifetime. The phonon-induced lifetime broadening of a hole (electron) state can be obtained

from the imaginary part of the e–ph self-energy, 6′′, while the real part, 6′, allows us to

evaluate the shift in electronic energies. Both parts of the complex e–ph self-energy are fully

determined by the Eliashberg function. The imaginary part of the e–ph self-energy is related to

the Eliashberg function through the integral over all the scattering events that conserve energy

and momentum [44]:

Ŵe–ph(ǫi, k, T ) = 26′′(ǫi, k; T )

= 2π

∫ ωmax

0

{α2 FE(ǫi, k; ω)[1 + n(ω) − f (ǫi − ω)]

+ α2 FA(ǫi, k; ω)[n(ω) + f (ǫi + ω)]} dω. (9)

Here, f and n are the Fermi and Bose distribution functions, respectively. Note that the

temperature dependence of Ŵe–ph is introduced exclusively by the Fermi and Bose distribution

functions. The term in the first square bracket represents the phonon emission and the term in

the second square bracket is associated with phonon absorption processes.

In the quasielastic approximation, the contribution of phonons to a hole (electron) state

linewidth is written as [44]:

Ŵe–ph(ǫi, k, T ) = 26′′(ǫi, k; T )

= 2π

∫ ωmax

0

α2 F(ǫi, k; ω)[1 − f (ǫi − ω) + f (ǫi + ω) + 2n(ω)] dω. (10)

Let us obtain the behavior of the e–ph linewidth in the limiting cases, T → 0 and T ≫
ωmax. Note that at T → 0, the Bose distribution function n(ω) → 0. Then, in the quasielastic

approximation, we have

T → 0, Ŵe–ph(ǫi, k) = 2π

∫ ωmax

0

α2 F(ǫi, k; ω) dω. (11)

At T = 0, only phonon emission occurs. Since no electrons can scatter into a hole at the Fermi

level, the linewidth for holes at EF is equal to zero. Then, Ŵe–ph(ǫi, k) increases monotonically

up to a maximum value at ω = ωD (the maximum phonon energy) as more and more phonon

modes become available (see the inset in figure 1(a)). As the temperature increases, the linewidth

increases for all electronic energies. This temperature dependence of the linewidth has often

been used to extract the e–ph coupling parameter λ for electronic states with energies much

larger than the maximum phonon energy.

At elevated temperatures, when kBT is higher than the maximum phonon energy, the

T-dependence of Ŵe–ph(ǫi, k) becomes linear with a slope determined by the e–ph coupling

parameter λ [44]:

Ŵe–ph(ǫi, k) = 2πλ(ǫi, k)kBT (12)

and λ can be derived from measurements of the lifetime broadening as a function of temperature.
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The real part of the self-energy, 6′, allows us to evaluate the renormalization of the

electronic energy bands due to the interaction with the phonons (figure 1(a)). One can obtain

the renormalized band dispersion, E(k):

E(k) = ǫ(k) + 6′(k, E). (13)

Here, ǫ(k) is the bare dispersion without e–ph coupling and 6′(k, E) is the real part of the

self-energy:

6′(E, T ) =
∫ ∞

−∞
dν

∫ ωmax

0

dω′α2 F(E, ω′)
2ω′

ν2 − ω′2 f (ν + E). (14)

The technique commonly used to determine the mass enhancement factor λ at the Fermi energy

is to evaluate the slope of the 6′ at EF because of the identity between the partial derivative of

6′ at the Fermi energy and λ(EF):

λ = ∂6′

∂ E
|EF,T =0 K. (15)

The theoretical evaluation of the e–ph interaction generally requires the knowledge of

the low-energy electronic excitation spectrum, the complete vibrational spectrum, and the

self-consistent response of the electronic system to lattice vibrations. A model approach for

evaluating the e–ph interaction in surface states has been proposed in [33, 34, 49]. The model

combines three independent approximations: (i) one-electron wavefunctions and energies are

calculated with a 1D potential [21, 22]; (ii) phonon frequencies and polarizations are obtained

either from one-parameter force-constant model [28] or from an embedded atom model [13];

(iii) the gradient of the one-electron potential is represented by the Ashcroft pseudopotential [5]

screened within the Thomas–Fermi approximation. A restriction of this model is that it can only

be applied to s − pz surface electronic states on simple and noble metal surfaces.

All quantities that determine the e–ph coupling can also be obtained from ab initio

calculations. An advantage of this approach is that all the three ingredients of the e–ph

coupling matrix are precisely evaluated on the same footing irrespective of the surface state

symmetry. First attempts to evaluate λ focused on calculating only the electronic contribution,

while phonon frequencies and polarization vectors were either taken from experimental data or

calculated using empirical force constant model. As for the self-consistent adjustment of the

one-electron potential to the phonon distortion, it was approximated by neglecting changes in

the potential everywhere except within the atomic sphere of the displaced atom [44]. These non-

self-consistent calculations appeared to be adequate for many transition metals. However, these

approximations are not justified in general, especially for anisotropic or low-DOS materials, as

was shown by Winter [118] using linear-response theory for the screening.

Accurate phonon frequencies and polarization vectors, as well as the self-consistent

screening can be calculated within the frozen-phonon approach using supercells. In this case,

the phonons and electrons are treated with the same total energy formalism and the e–ph

coupling is evaluated without any approximation of the crystal potential, which is allowed to

adjust self-consistently to the phonon distortion [23, 25, 79]. A good estimation of the average

coupling strength λ requires a large number of phonon vectors q sampled in the Brillouin zone.

In the frozen-phonon approach, however, only phonon wavevectors that are commensurate

with the lattice and that correspond to reasonably sized supercells can be considered. That

makes it difficult to evaluate accurately the average values such as the coupling strength λ,

the phonon DOS F(ω), and the e–ph spectral function α2 F(ω). Another technique that can
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be employed for calculating the self-consistent change in the potential is the perturbative

approach [27] applicable for any q. But the perturbative approach has several drawbacks: (i)

the slowly convergence of the sum over excited states requires their preliminary calculation

by diagonalizing matrices of very large dimension and (ii) the self-consistency realized in this

method by inverting the dielectric matrix of the crystal is a rather time-consuming problem.

To date, the most efficient method for calculating lattice dynamical properties of solids

is linear-response technique based on the solid-state Sternheimer theory [10, 121]. In this

approach atomic displacements are treated as perturbations and the electronic response to the

perturbation is calculated self-consistently. This technique has been shown to be particularly

efficient because it is not limited to commensurate phonon wave vectors q. Moreover, it does

not require the knowledge of all unperturbed electronic states as the perturbative approach. It has

been implemented with different basis sets for representing electronic wave functions [80, 101].

3. Experimental determination of the e–ph coupling strength

ARPES is a unique experimental tool providing direct access to band structure and many-body

effects in solids in general and to the e–ph interaction in particular. It is a firmly established

experimental technique and many reviews are available, describing both its theoretical and

experimental fundamentals (see for example [29, 60, 63, 65, 71, 85]).

In the following, we focus on the essential points for the study of e–ph coupling in surfaces

states. We are mainly concerned with ARPES from nearly 2D states using a spectrometer with

infinitely high energy and k-resolution. We also note that the photoelectron wavevector parallel

to the surface Ek‖ is conserved in the photoemission process and as we only treat quasi-2D states,

this 2D wavevector is the only one of interest here. For brevity, we denote it as Ek.

In this case, and under certain additional assumptions, the photoemission intensity is

proportional to the hole spectral function of the sample times the Fermi distribution. The

spectral function A, in turn, is used to describe the electronic structure of a solid in the

presence of many-body effects. A can be viewed as the probability of finding an electron with

energy h̄ω and momentum Ek at a given temperature T . The spectral function is determined

by the unrenormalized dispersion ǫ(Ek) and the self-energy 6. It is usually assumed that 6 is

independent of Ek. Then A has the form

A(ω, Ek, T ) = π−1|6′′(ω, T )|
[h̄ω − ǫ(Ek) − 6′(ω, T )]2 + 6′′(ω, T )2

. (16)

A plot of a typical spectral function for the case of strong e–ph coupling is given in

figure 1(b). Under the given assumption that A(ω, Ek, T ) is proportional to the photoemission

intensity, and taking into account that the measured kinetic energy of the photoelectron Ekin is

merely the binding energy shifted by photon energy and work function, the remaining task is

to extract 6 from the measured A(ω, Ek, T ) and hereby gain the desired information about the

e–ph coupling strength.

The methods that have been applied to extract the self-energy from photoemission data

are closely related to the traditional measuring modes of ARPES, energy distribution curves

(EDCs) and momentum distribution curves (MDCs). An EDC is the photoemission intensity as

a function of kinetic energy for a fixed photon energy and a fixed emission angle. An MDC on

the other hand is the photoemission intensity as a function of Ek at constant photon and kinetic

energies. It is tempting to directly relate EDCs to energy profiles of the spectral function. We
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have to bear in mind, however, that an EDC is taken at a constant emission angle, which in

general means that Ek is not constant over the EDC energy range. As a consequence, an EDC

generally corresponds to a fairly complicated cut through the spectral function. However, under

certain conditions, for example for normal emission or for a very small energy range, an EDC is

taken at approximately constant Ek. In addition, in a modern ARPES set-up, the photoemission

intensity can be measured for so many values (ω, Ek) that any cut through the spectral function

can be extracted.

Even when care has been taken to account for the energy dependence of Ek in the

experiment, it is not straightforward to compare an EDC to an energy profile calculated

from (16). Such a profile has a fairly complicated form as a consequence of the energy-

dependence of 6. The expression is simplified considerably, when we assume that 6′(ω, T ) = 0

and that 6′′(ω, T ) does not depend on ω. We can see from the inset in figure 1 that these

conditions are fulfilled in the case of e–ph interaction for peaks with a sufficiently large binding

energy. With these assumptions we obtain

A(ω, Ek, T ) = π−1|6′′(T )|
[h̄ω − ǫ(Ek)]2 + 6′′(T )2

, (17)

which is a Lorentzian with the maximum at ǫ(Ek) and a full-width at half-maximum (FWHM)

of 2|6′′(T )|. However, care is necessary when an EDC linewidth is identified with 2|6′′(T )|
because of the above-mentioned problem that an EDC is strictly measured at a constant emission

angle, not at a constant Ek [46, 73, 109]. Furthermore, this approach cannot be applied close to

the Fermi energy, the range that is most relevant for transport properties.

The photoemission intensity in the low binding energy regime is more aptly analyzed in

terms of MDCs because these are readily represented by (16). The maximum of an MDC is

reached when h̄ω − ǫ(Ek) − 6′(ω, T ) = 0, and the renormalized and bare-particle dispersions

are related according to (13). The expression for the spectral function, equation (16), takes on a

particularly simple form in the case of a linear dispersion. We consider only one direction in Ek
space and write ǫ(k) = vk such that the origin of the co-ordinates is at the Fermi level crossing.

Then it is easy to show that (16) is a Lorentzian line in Ek for a given ω with the maximum at

kmax = (1/v)(h̄ω − 6′(ω)) (18)

and

FWHM = 2|6′′(ω)/v|. (19)

In short, 6′′(ω) can be related to the MDC width and, in the case of strong renormalization,

6′(ω) can be related to the MDC maximum. We note, however, that either approach relies on

knowing the unrenormalized dispersion ǫ(Ek). The key problem is that this dispersion is not

known. This is a familiar situation for high temperature superconductors for which a strong

band renormalization is found. Different solutions have been employed to solve this problem.

One is to extrapolate ǫ(Ek) from states at higher binding energy where the renormalization

is negligible [114]. Another is to take ǫ(Ek) from a calculation of the band structure, which

does not incorporate the many body effects. A third is to obtain ǫ(Ek) from a measurement

of the dispersion at elevated temperatures where the renormalization due to e–ph coupling is

negligible [65]. Finally, ǫ(Ek) and the self-energy can be determined by a self-consistent fitting

procedure [68]. The latter approach relies on the fact that for a given ǫ(Ek), 6′ and 6′′ can be

evaluated and subsequently compared using the Kramers–Kronig transformation.
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Figure 4. Temperature-dependent linewidth of the Cu(111) surface state at Ŵ̄.

Data points are taken from [87]. The solid line is the e–ph contribution to the

linewidth calculated within a 3D Debye model and assuming λ = 0.14. The

dashed line is a rigid displacement of the solid line in order to take e–e and

e–df scattering into account.

A finite experimental energy resolution gives rise to a further complication when we try to

extract the self-energy from photoemission data close to the Fermi energy. A non-negligible

resolution affects the measured dispersion such that kF is shifted towards the direction of

occupied states [65]. kF does therefore not coincide with the observed MDC maximum at EF,

even though any renormalization vanishes at the Fermi energy. Even if we knew ǫ(Ek), 6′ could

therefore only be determined reliably close to the Fermi energy, if the resolution were either

negligible or properly accounted for.

We see that under certain conditions it is possible to determine the real or imaginary part

of the self-energy from the spectral function measured by ARPES. The next task in the analysis

is to relate this to the e–ph coupling strength. The most fundamental quantity for describing

the e–ph interaction is the Eliashberg function α2 F , which cannot directly be extracted from

the experiment. It is, however, closely related to the 6 through equations (10) and (14). The

difficulty is that there is no trivial inversion to these equations and that the e–ph coupling effects

in 6 are temperature-dependent, whereas α2 F is not. In the following, we briefly discuss and

illustrate different approaches that have been proposed to extract information about the e–ph

coupling from photoemission data.

A simple approach that is used frequently (for example see [8, 9, 42, 56,

64, 74, 86, 87, 93, 111]) is to measure the temperature-dependent EDC linewidth of a state

far away from EF. In this case, we have seen from (17) that the linewidth is 2|6′′(T )|. Figure 4

shows the linewidth of the Cu(111) surface state at the Ŵ̄ point at a binding energy of 434 meV,

as well as a calculation for the expected Ŵe–ph from (10), using a value of λ = 0.14. The data

points are taken from the work by McDougall et al [87]. Evidently, the agreement between the

calculation and the data points is very good if the latter are rigidly shifted to higher energy.

This is expected according to (1) because the measured linewidth does not only contain the

e–ph contribution but also the e–e and e–df contributions, which are assumed to be independent
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of temperature. In their original paper, McDougall et al fitted the data points with a line, i.e.

using (12) plus an offset, rather than the full expression given in (10). While this simplification

is formally only justified for temperatures much higher than the Debye temperature 2D (343 K

for Cu), it is, in practice, already quite useful for temperatures similar to 2D, as evident from

the figure.

If the (surface) Debye temperature is too high for (12) to be a good approximation, this

simple approach of data analysis becomes problematic. In order to extract information about

the e–ph coupling from temperature-dependent data, it is then necessary to use (9) but this

requires a model for the Eliashberg function α2 F . Frequently one employs a simple model for

α2 F , such as the 3D Debye model with

α2 F(ω) = λ

(

ω

ωD

)2

, ω < ωD (20)

and

α2 F(ω) = 0, ω > ωD,

which has also been used to calculate the solid curve in figure 4. Alternative models are an

Einstein model or a 2D Debye model [30, 49]. Unfortunately, this introduces a certain degree

of arbitrariness and it requires the precise knowledge of the surface Debye temperature.

In addition to the method that relies on the EDC linewidth and (17), several other

approaches were introduced to obtain the self-energy from the renormalized dispersion. A good

illustration of the different possibilities is given in figure 5, which shows surface state dispersion

for a Mo(110) surface state, the imaginary part of the self-energy and the real part of the e–ph

self-energy. The dispersion, as determined from MDCs, shows a clear kink close to the EF

which is caused by e–ph coupling. 6′ was determined according to (13) from these data and the

dispersion interpolated from higher binding energies, assuming that the position of the Fermi

level crossing is not affected by the e–ph interaction.

The figure also shows the 6′′ that was determined from the EDC peak width, an approach

that only works if the coupling is not too strong and the Fermi cut-off is taken into account. Close

to EF, 6′′ shows the typical signature of e–ph coupling with a strong change in a small energy

window, which is schematically shown in figure 1. The dashed line shows a model calculation

for the e–ph part of 6′′ and the dotted line shows the Kramers–Kronig transformation of this,

which is in good agreement with 6′. The calculated 6′′ that stems from a calculated bulk α2 F

and (9) agrees well with the data; and the surface Debye temperature is similar to the bulk value,

suggesting a similar mass enhancement parameter λ. Interestingly, the measured 6′′ shows an

increase at higher binding energies which cannot be accounted for by e–ph interaction. This is

ascribed to e–e interaction. 6′′ is also 26 meV higher than the calculated value, which is ascribed

to e–df scattering.

Figure 6 illustrates the case of stronger coupling that is found on the Be(0001) surface.

Apart from the strong coupling, beryllium is a favorable material for the observation of e–ph

coupling because of the high phonon energies and Debye temperature, which permit detailed

observation of the effect without the need of an exceedingly high energy resolution. Figure 6

shows low-temperature high-resolution data from the work of Hengsberger et al [50, 51]. EDCs

from the Be(0001) surface are given as the dispersion approaches EF. Near the Fermi level

crossing the EDCs clearly deviate from the Lorentzian lineshape (17) because both conditions

for the validity of this equation (6′(ω, T ) = 0 and 6′′(ω, T ) = const.) are violated. This
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Figure 5. E–ph measured data for a Mo(110) surface state after Valla et al [114].

6′ and 6′′ are plotted as a function of binding energy. 6′′ was obtained from the

width of the quasiparticle peak. The dashed (dotted) line shows the calculated

e–ph contribution to 6′′ (6′). The dashed line is shifted up by 26 meV. The

inset shows the renormalized (points) and bare dispersion (dashed line) used to

extract 6′.

complicated lineshape is a direct confirmation of an old prediction [36]. In this case, a simple

analysis of temperature-dependent data to extract information about e–ph interaction would

clearly be aggravated by the complicated lineshape.

Instead, figures 6(b) and (c) show the determination of 6′ and how information about λ

is extracted from more recent data [17]. The renormalized dispersion E(k) is represented by

the solid line that tracks the maxima of the MDCs, according to (16). The bare dispersion ǫ(k)

is found from two conditions: (i) it has to cross EF at the same kF unless there is a significant

distortion of the band by a finite energy resolution and (ii) it must coincide with E(k) for high

binding energies as 6′(ω) approaches 0. In the present case, ǫ(k) is described by a second-order

polynomial. The resulting self-energy 6′(E) can now be determined using (13). Alternatively,

6′(ǫ) could be determined from a fit to the width of the state, as in figure 5 but the position of

a peak is generally more stable in noisy data than its width.

The resulting 6′(E) is given in figure 6(c). From this it is possible to extract λ in several

ways. The simplest is to use (15) and to extract λ from the slope of 6′ near EF. This is illustrated

by the short bold line near EF, which corresponds to a λ = 0.9. It is crucial to keep in mind the

conditions for this approach to be valid: the temperature must be very low compared to 2D

(fulfilled for Be) and the energy range used must be very small because only the slope at the

Fermi energy is of interest.
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the solid line tracks the MDC maxima, giving the renormalized dispersion E(k).

(c) Resulting 6′. The different lines are models to extract λ as described in the

text. From [39].

Alternatively, the entire 6′ can be fitted with a model self-energy, for example using a

Debye model (20) to calculate α2 F and then (14) to calculate 6′. In the Debye model, this

calculation contains two parameters λ and ωD as well as the sample temperature. Two such

calculations are shown in figure 6(c) for λ = 0.9 and h̄ωD = 80 meV as well as for λ = 0.9 and

h̄ωD = 60 meV. Roughly spoken, and at low temperature, λ gives the slope of the curve at EF

and ωD determines the maximum of the curve. In the present case, it is evident that the Debye

model is too simple to account for the detailed shape of 6′. No set of parameters can be found,

which results in a satisfactory overall fit.

Recently, a different approach to e–ph data analysis has been proposed, which potentially

solves several of the problems mentioned above. The experimentally determined self-energy

6′ or 6′′ is not analyzed using a model for α2 F combined with (14) or (10). Rather, α2 F(ω)

is directly obtained from 6′ using an integral inversion of (14) based on a maximum entropy

approach [104, 112]. This method directly yields α2 F(ω), i.e. the most fundamental property for

the description of e–ph interaction, and it has the potential to provide interesting fine structure

in this function. For its reliable application very high quality data are needed.

4. Some examples

In this section, we present some results for the e–ph coupling at surfaces. We mainly discuss

simple and noble metal surface states for which both experimental data and ab initio calculations

are available. For noble metal surfaces, we also include a brief discussion of the e–ph interaction

in image potential states. In the end of the section, we also present a few other examples,

such as the e–ph coupling in semimetals, adsorbate systems, quantum wells and free-standing

monolayers (MLs).
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Table 1. E–ph coupling parameter λ and linewidth (in meV) for surface

electronic states.

E λ λ Ŵe–ph

(eV) calc. expt. T = 0 K ŴExpt.

Al(001)

Ŵ̄ −2.8 [94] 0.51 [106] Consistent w. 0.51 [62] 35 [106] 267 [62]

0.23 [33] 18 [33]

26 [90]

X̄ −4.55 [78] 0.78 [106] 50 [106]

Be(0001)

Ŵ̄ −2.78 [11] 0.38 [32] 1.15 [9] 281 [105]

0.87 [73]

Mg(0001)

Ŵ̄ −1.63 [103] 0.28 [77] 0.27 [64] 19 [77] 133 [64]

M̄ −0.95 [103] 0.38 [77] 20 [77]

Ag(111)

Ŵ̄ −0.04 [61] 0.12 [33] 0.12 [34] 3.7 [33] 6 [67]

7.2 [67] 6 ± 0.5 [96]

Cu(111)

Ŵ̄ −0.4 [41] 0.16 [33] 0.14 ± 0.02 [87] 7.3 [33] 24 [67]

0.11 [34] 21.7 [67] 23 ± 1 [96]

5.67 [90]

Au(111)

Ŵ̄ −0.5 [47] 0.11 [33] 0.34 ± 0.01 [74] 3.6 [33] 18 [67]

consistent w. 0.11 [62] 18.9 [67] 21 ± 1 [96]

An overview of both experimental and theoretical results for simple and noble metals is

given in table 1. Comparing the calculated and experimentally determined mass enhancement

parameters λ shows a very satisfactory agreement for this class of materials. Details of

experiments and calculations are discussed in the following.

4.1. Noble metal surfaces

The (111) surfaces of the noble metals Ag, Cu and Au all support a similar Shokley-type surface

state in the bulk L-gap of the metal. This surface state has long been an important model

system for the study of electronic structure and lineshapes by ARPES (see [96] for recent high-

resolution data as well as for a historic overview of the field). The surface state is well-localized

within a few layers of the surface and has a small binding energy such that the e–ph interaction

for these states should be strongly influenced by surface phonon modes. The e–ph coupling

turns out to be very similar for all three surfaces.

Results of a theoretical investigation of the phonon-mediated decay of surface states on

Ag(111), Cu(111) and Au(111) were presented in [33, 34, 115]. The electronic states were

defined using model potentials [20, 22], which reproduce the correct surface projected band gap

at the Ŵ̄ point and the surface state energies for the systems. The phonon modes were obtained

from a single force constant model, where the force constant was fitted to reproduce the elastic

constants and the maximum bulk phonon energy.
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Figure 7. (a) Lifetime broadening of the Cu(111) surface hole state as a function
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contribution to Ŵe–ph (dashed line) and photoemission data (diamonds). (b) The

same as in (a) for Ag(111). Figure after [34].

Figure 7 shows the result of such a calculation for Cu(111) and Ag(111) and the comparison

to experimental data, obtained from the linewidth of the state near EF [34]. The overall

agreement between calculation and experiment is very good. As expected because of the small

penetration and as shown in figure 3, the Rayleigh mode gives a very significant contribution

to α2 F and hence to Ŵe–ph for these surfaces. It is the dominant mechanism for hole decay at

small energies for which e–e scattering is insignificant. Note also that Ŵe–ph, or equivalently 6′′,
which results from this calculation shows considerable fine structure.

Another important result from the calculations is that the coupling strength λ is relatively

independent of the binding energy of the hole. Again, this is in good agreement with

experimental data that does not point towards any strong binding energy dependence of

λ [34, 74, 87].

It should be mentioned that an initial experimental study of the e–ph coupling on Au(111)

gave a value of λ = 0.33 in rather poor agreement with the calculated λ = 0.11 [33]. Later this

discrepancy was ascribed to the thermal excitation of defects at elevated temperature and the

experimental linewidth could be reconciled with λ = 0.11 [62]. This effect is discussed in more

detail in connection with e–ph interaction on Al(001) below.

The e–ph contribution to the lifetime broadening of image-potential states and the

respective e–ph coupling parameter λ were calculated for Ag(100) and Cu(100) [31]. It was

shown that the e–ph coupling in the first image-potential state on these surfaces is very weak,

λ ∼ 0.01, and Ŵe–ph amounts to only 1–5% of the total lifetime broadening value Ŵ. This weak

e–ph interaction was explained by a small penetration of the image-potential states into the

bulk [91, 100]. It was also found that both surface and bulk phonon modes are important to

correctly describe the phonon-mediated decay of image-potential states.

4.2. Be(0001)

The Be(0001) surface is a nearly ideal system to test the e–ph coupling of surfaces because the

Ŵ̄ surface state resides in a wide gap and contributes significantly to the total DOS at the Fermi

level. In fact, the bulk DOS of Be is not free-electron like due to the strongly covalent bonding

character in this metal but the surface DOS is, justifying the view of the surface state as a 2D

free electron gas which is de-coupled from the bulk [95].
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Several experimental studies and one ab initio calculation of the e–ph coupling on

Be(0001) have been published [9, 32, 50, 51, 73, 112]. The experimental values of λ spread

over an unsatisfactory large range between 0.7 and 1.18, even though some care has to be

exercised here because the lowest reported value by Tang et al might have been caused by

oxygen contamination of the sample [17] and not all values have been measured at EF or at the

same direction of EkF. The theoretical value of λ at EF was found to be 0.9, in good agreement

with the available data. In any event, the coupling is much stronger than in bulk Be for which

λ = 0.21–0.23 (theory [88, 107]).

4.3. Mg(0001) and Al(001)

The Ŵ̄ surface states of Mg(0001) and Al(001) have a rather different character from those of

the noble metal (111) surfaces and of Be(0001). Both reside in a narrow projected band gap and

penetrate deeply into the bulk. Thus, one would expect a certain similarity to actual bulk states,

both in their electronic character and in their e–ph interaction.

An ab initio study of the e–ph coupling and its contribution to the lifetime broadening of

the Ŵ̄ surface state on Al(001) was reported in [106]. As expected, the largest contribution to

the e–ph coupling comes from the scattering of excited electrons with bulk phonon modes. In

general, the surface phonons contribute less than 30% to the e–ph coupling. This fact was also

proved by model potential calculations [33], where it was shown that the interband scattering in

the Ŵ̄ surface state gives the most important contribution to the Eliashberg function.

Another important finding was that the low- and middle-energy phonons are more involved

in the scattering processes of electrons than the high-energy phonon modes, unlike in the case of

bulk Al and other simple metals such as Be and Mg, where the lower-energy part of the phonon

spectrum is strongly suppressed by e–ph matrix elements [12, 77, 80, 102, 107].

The calculated λ(Ŵ̄) = 0.51 ± 0.01 [106] is somewhat higher than the e–ph coupling

parameter averaged over momenta both at the Fermi level of bulk Al, λ(EF) = 0.43, and at

the Fermi energy of the Al(001) surface, λ(EF) = 0.45.

The obtained results also showed that both the e–ph coupling and the linewidth of excited

electrons experienced rather weak variation with the energy and momentum position of a hole

(electron) state in the surface energy band. In particular, the variation range of λ(ǫki
) does

not exceed 0.1. However, the strength of the e–ph coupling varies strongly from one surface

electronic band to another. For example, for the surface electronic bands at the Brillouin zone

boundary the values of λ(ǫki
) are twice as large than those obtained for excited electrons at the

Ŵ̄ surface band. On the other hand, the directional anisotropy in the e–ph coupling on Al(001)

is very weak.

Experimental results for this surface state at Ŵ̄ were presented in [62]. The temperature-

dependent linewidth of the state had been measured over a wide temperature range but the data

could not be accounted for using (10) or (12) plus a temperature-independent offset. Indeed,

a fit to the high temperature part of the data, in the range where (12) should be applicable,

resulted in λ = 0.84, in very poor agreement with the theory. This problem could be resolved by

taking into account the possibility of e–df scattering from thermally excited defects. While the

e–df scattering strength is still assumed to be temperature-independent, the number of defects is

not and there is an exponentially increasing probability of thermally excited defects at elevated

temperatures. With this assumption, a satisfactory fit to the data could be obtained, which was

consistent with the theoretical value for λ.
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At the center of the surface Brillouin zone, Ŵe–ph(Ŵ̄) = 35 mev at T = 0 and increases up

to 90 meV at room temperature. The calculated e–e contribution Ŵe–e = 131 meV [18] is much

bigger than the e–ph part at such excitation energies. However, at room temperature they become

comparable. The measured linewidth at Ŵ̄ extrapolated to 0 K is 267 meV [62] whereas the

calculated e–e and e–ph contributions taken together give only 166 meV. The large difference is

attributed to defect scattering.

The e–ph contribution to the linewidth of the surface hole state at Ŵ̄ has also been studied

using a model calculation [33]. Eiguren et al obtained λ(Ŵ̄) ≈ 0.23 and Ŵe–ph(Ŵ̄) ≈ 18 meV.

Both values are nearly half as large than those reported in [62, 106]. Such a difference can

be accounted for by using in the model calculation [33] the gradient of the one-electron

potential as the Ashcroft pseudopotential screened within the Thomas–Fermi approximation.

This approximation gives an accurate description of electronic structure of bulk Al at the Fermi

level but it is less accurate for electronic states far (2–6 eV) below EF. Thus, the value of λ

obtained in the model calculation for this surface state at the Fermi level comes up to 0.55 and

Ŵe–ph(EF) ≈ 37 meV [33].

The Ŵ̄ surface state on Mg(0001) is similar in character to the one on Al(001) in that it

penetrates very deeply into the bulk. The temperature-dependent linewdith of the state has been

analyzed along the same lines as discussed above and the results have been interpreted using

a 3D Debye model for α2 F . A problem in this interpretation was the unknown surface Debye

temperature 2D: a good fit to the data could be achieved for a wide range of λ values depending

on the choice of 2D. This is not surprising: both λ and 2D appear in the model α2 F (20) and

a change of one value can almost entirely be compensated by a corresponding change in the

other. The problem was resolved by defining an effective 2D based on experimental data on the

surface vibrations combined with a calculated probability density function of the surface state.

This resulted in a value of λ = 0.27.

A detailed ab initio study of the e–ph interaction and phonon-mediated contribution to the

linewidth of surface electronic states on Mg(0001) was reported in [77]. The results are very

similar to those obtained for Al(001): there is a strong interaction of electrons with bulk phonon

modes because the surface electronic states in both cases lie very close to bulk electronic bands.

λ was found to have a value of 0.28, in excellent agreement with the experimental data.

4.4. Semimetal surfaces

The surfaces of the semimetals Bi and Sb are in sharp contrast to the two above examples

because their surface states are placed in wide projected band gaps and their surface electronic

structure is very different from that of the bulk. Bulk Bi and Sb are typical for the group V

semimetals in having a very low DOS at the Fermi level. The presence of the surface states,

however, turns the surfaces into good metals. This has been found for Sb(111) [53, 110] and

all Bi surfaces studied so far (Bi(110) [1], Bi(111) [6, 52], Bi(100) [57] and Bi(114) [117],

for a review see [55]). The metallic character of the surface is closely related to the strong

spin–orbit splitting of the surface state bands [55, 69] and, interestingly, can also be understood

based on the similarity of Bi and the Bi0.9Sb0.1 alloy which can be classified as a topological

insulator and therefore has to support metallic surface or edge states [58, 59, 113]. Bi surfaces

therefore provide the opportunity to study the e–ph interaction for a nearly 2D electronic system

with strong spin–orbit splitting. The coupling strength near the Fermi level has been studied

experimentally for Bi(111) [7, 43] and Bi(110)[65]. For Bi(100) the coupling was studied for a

range of different binding energies.

New Journal of Physics 11 (2009) 125005 (http://www.njp.org/)

http://www.njp.org/


19

The e–ph coupling close to EF for the hole pocket near the Ŵ̄ point of Bi(111) has been

studied by two groups. Ast and Hüochst have analyzed the MDC linewidth as a function of

binding energy near EF [7] and Gayone et al have analyzed the temperature dependence of

the MDC linewidth of the same state, also near the Fermi level crossing [43]. The resulting

values for λ obtained by Ast and Höchst (0.6 or 2.3, depending of the choice of model) and

by Gayone et al (0.4) are quite different. This apparent contradiction was eventually solved by

Kirkegaard et al [65]. These authors have shown that the finite spectrometer energy resolution

needs to be taken into account in the type of analysis performed by Ast and Höchst. A simple

estimate shows that if this is done, the final value of λ is quite close to that obtained by

Gayone et al [65].

Kirkegaard et al have studied the e–ph coupling for two different surface states of Bi(110),

the hole pockets near Ŵ̄ and M̄ [65]. 6′′ was extracted from MDCs, both as a function of

temperature and energy. The resulting large and 2D data sets have been fitted to (10) using both

the Debye and the Einstein model for the Eliashberg function. Because of the large data set, the

problem of determining both λ and the Debye (or Einstein) energy could be solved in a satisfying

way. The resulting values of λ turned out to be the same in the Debye and Einstein models, a fact

that is not surprising because much of the data was taken at elevated temperatures (relative to

the Debye temperature), where the precise nature of the phonon spectrum becomes unimportant

(see equation (12)). The λ values obtained from this analysis are 0.19(3) and 0.27(2), near the

Ŵ̄ and M̄ points, respectively.

The e–ph interaction on Bi(100) was determined by Gayone et al by studying the EDC

linewidth of a surface state as a function of binding energy and temperature [42]. Keeping in

mind (17), this approach is only possible for binding energies much larger than a typical phonon

energy. For Bi this is not a problem because the maximum phonon energy is very small, only

13.8 meV [120]. The surface state used for the study was the state in the Ŵ̄ − K̄2 direction which

has two local extrema in the dispersion, a maximum at a binding energy of 330 meV and a

minimum at 70 meV [42, 57].

The final result of the analysis is λ as a function of binding energy as shown in figure 8. The

energy dependence of λ is very strong; it changes from 0.72 to 0.20 in an energy range of less

than 300 meV. From this it is evident that λ determined in this way cannot be interpreted as the

mass enhancement parameter at EF. A spectroscopic interpretation as a parameter measuring

the e–ph strength at a certain binding energy and Ek is more appropriate.

The strong energy dependence of λ was essentially explained by the transition from a

3D system at high binding energies (bulk plus surface) to a merely 2D system close to EF.

The Eliashberg function (6) is a sum over the different possibilities to fill a hole state with an

electron using a phonon to provide energy and momentum (see figure 2). If we assume that the

matrix element for the scattering process is only weakly energy dependent, the change of λ can

be understood from simple phase space arguments; at high binding energies there are many bulk

states available in which a hole can scatter with the help of a phonon. Close to the Fermi energy

the density of bulk states is very small. In order to illustrate the argument, figure 8 also shows

a plot of the calculated bulk DOS, scaled in an arbitrary way. For high binding energies, the

change in the bulk DOS mimics the change in λ, as expected from the simple argument above.

For small binding energies, the bulk DOS essentially vanishes but λ stays finite. The scattering

processes leading to e–ph interaction in this energy range are therefore most likely to involve

other surface states.
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Figure 8. E–ph coupling parameter λ as a function of the binding energy. The

dashed line between the data points connects the points as they lie on the Ŵ̄ − K̄2

line. Also shown is the bulk density of electronic states in Bi as a function of

binding energy as calculated using the tight binding parameters from Liu and

Allen [81]. After [42].

4.5. Overlayers and quantum well states (QWSs)

Most of the investigations have been performed for surface states formed on clean metal surfaces

while only few have been devoted to the study of an e–ph coupling parameter λ in QWSs formed

in ultrathin metal films on metal substrates [15, 16, 24, 35, 38, 48, 49, 83, 84, 89]. In particular,

in [37, 38] the calculation results of the e–ph interaction in QWS for an ML of Na on Cu(111)

have been presented. As was shown experimentally by using photoemission spectroscopy [15]

two-photon photoemission technique [40], and scanning tunneling spectroscopy [66], the Ŵ̄

QWS in this system is located just below the Fermi level, EF. The e–ph interaction in the 1 ML

Na/Cu(111) has been calculated by Hellsing et al [48] simulating the entire phonon spectrum

of the system by a single frequency (Einstein model) that corresponds to vertical vibrations of

the rigid Na ML. This may lead to overestimation of λ and Ŵe–ph despite the use of an accurate

one-electron potential and wavefunction of QWS. Simple estimates of λ and Ŵe–ph within 2D

and 3D Debye models significantly lowered these quantities [19]. The role of the whole phonon

spectrum of 1 ML Na/Cu(111) in the e–ph interaction in QWS of the 1 ML Na/Cu(111) system

has been studied by Eremeev et al [38], where it was conclude that the role of vertical Na

vibrations in λ and Ŵe–ph is rather small.
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The 1 ML Na/Cu(111) semi-infinite system was simulated using a slab model with

31 atomic layers of Cu(111) and Na atoms located on both sides of the Cu slab. Due

to the large number of atoms the following model was used. The model combines three

independent approximations to evaluate the e–ph coupling matrix elements: (i) one-electron

wave functions and energies are calculated using a 1D potential specially designed for

1 ML Na/Cu(111) [19]; (ii) phonon frequencies and polarizations for 1ML Na/Cu(111)

are obtained from an embedded atom model [13]; (iii) a gradient of the one-electron

potential is represented by the Ashcroft pseudopotential [5] screened within Thomas–Fermi

approximation.

It was shown that the largest contribution to the e–ph coupling comes from the interaction

of the QWS with horizontal (in-plane) vibrations of Na atoms and with vertical vibrations

of atoms of the top Cu substrate layer. That is very distinct from the results obtained by

using the Rayleigh like mode (Einstein mode) to simulate the entire phonon spectrum of

1 ML Na/Cu(111) [15, 48]. The calculation of λ gave λ = 0.14. This value is close to

λ = 0.16 obtained theoretically [33, 34] and λ = 0.14 ± 0.02 deduced from photoemission

measurements [85, 87] for the surface state on clean Cu(111). Despite this coincidence it

is worthy to note that λ in 1 ML Na/Cu(111) and λ in Cu(111) are formed by different

phonon modes (where Cu vertical vibrations (Rayleigh mode) provide 30–35% of the full

phonon-induced contribution to the surface state decay rate on Cu(111) [33, 34]), therefore,

the coincidence should be considered to a large extent as accidental. Nevertheless, at T=0 K,

Ŵe–ph = 5.4meV obtained for 1 ML Na/Cu(111) is smaller than Ŵe–ph = 7.3meV calculated for

Cu(111).

In contrast to the work on ultrathin films, a considerable number of studies deal with

the effect of increasing film thickness on e–ph coupling in quantum well systems. Luh et al

have determined the coupling strength as a function of film thickness in the Ag/Fe(100)

system [82]. The strength is determined in this case using the temperature dependent linewidth

of several QWSs. The experimentally observed enhancement of the coupling with decreasing

film thickness is attributed to the increased contribution of the quantum well interface. Later

work by the same authors on this system reveals that the e–ph coupling strength differs

dramatically between different QWSs [92]. The λ for the sp-band QWS in this system is about

0.5, i.e. 35 times larger than that derived from the d-band states. Mathias et al also observe a

linearly decreasing coupling strength with increasing film thickness in silver films grown on

copper [83]. They, however, find step-like coupling strength increases with film thickness that

occur when a new higher-order QWS is established.

In the studies of lead films on Si(111) [14, 45, 122] at low temperatures it was shown

that the superconducting energy gap and critical temperature Tc that depend on e–ph coupling

are closely related to the film thickness. It was also demonstrated that both the transition

temperature and the e–ph coupling strength oscillate in phase with the electronic DOS at the

Fermi energy as functions of the Pb film thickness.

4.6. H/W(110)

Another system that has been studied extensively with photoemission to reveal the effect

of the e–ph interaction on quasi-particle states is hydrogen adsorbed on W(110). Hydrogen

adsorption is known to induce surface states at the (110) surface of tungsten, and Rotenberg

et al have shown that one of these, an elliptical hole pocket around the S̄ point, shows significant
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Figure 9. Series of photoemission spectra of H and D covered W(110) from

Rotenberg et al [99]. Spectra are taken along paths crossing the Fermi contours

of state S1 (a and b), and S2 and B (c).

renormalization [99]. EDCs are split close to the Fermi energy at an energy scale comparable to

an adsorbate vibrational mode, see figure 9(a).

This renormalization can unequivocally be attributed to coupling with adsorbate vibrations

by a strong isotope effect. When the surface is covered with deuterium instead of hydrogen, the

surface electronic structure is largely unaltered. The energy scale on which the renormalization

takes place, however, is significantly reduced, as is indicated by the dotted lines in figure 9. This

result agrees well with the expectation that the energy of the involved vibrational mode should

be reduced by about
√

2. In addition, as we can see by comparing the spectra in figures 9(a) and

(b), the linewidth of the S1 feature is strongly reduced upon replacing H with D.

Later work by Rotenberg and Kevan shows a more detailed analysis of the H/W(110)

system [98], in which the coupling strength λ of the S1 state is determined at different positions

on its Fermi contour. The coupling strength is found to vary between zero and approximately

0.8. The strong variation in coupling strength of the S1 feature is attributed to variations in the

degree of surface localization of the state. The maximum value is a dramatic enhancement in

comparison to bulk W, with a λ of 0.2.

A direct evidence of the influence of e–ph coupling on adsorbate phonon mode dispersion

and line shape was obtained analyzing changes in broadband reflectivity measurements on

W(100)/H and Mo(100)/H as a function of coverage [97].

In summary, this work shows that the use of adsorbates provides us with a promising

route to tailor the low energy properties of surfaces, as the e–ph coupling can be tuned by

the introduction of particular modes.
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Figure 10. Eliashberg function α2 F(ω) averaged over momentum at EF (solid

line) and phonon DOS F(ω) (dashed line) for an ML of Mg(0001). In the inset

the phonon spectrum is shown.

4.7. E–ph interaction in free standing monolayers

In the theoretical studies of many metal surfaces [32]–[34], [77], the important role of surface

phonon modes in the e–ph coupling was emphasized. These vibrations are often softer than

the bulk ones and couple in a very efficient way to electrons, giving a strong contribution to the

e–ph scattering. In the limit case of a single layer, the smaller (by 6−9%) value of the optimized

lattice parameter [75, 76] results in stronger in-plane atomic interactions and, as a consequence,

a higher maximum phonon frequency compared to the bulk or surface value. However, unlike

the in-plane polarized phonon modes (L and Txy), the lowest transverse mode corresponding to

the motion of atoms along the normal to the ML plane (Tz) is softened noticeably, especially

toward the zone center where it is very shallow (see the inset in figure 10). Such a behavior

results from the broken bonds in this direction, because the dynamical properties of atoms

depend strongly on their bonding environment. As is shown for the alkaline earth metal MLs,

Be(0001) and Mg(0001) [75, 76], the contribution of such soft phonons to the e–ph coupling

is larger than that in the case of surfaces. In figure 10, the Eliashberg function averaged over

momenta at the Fermi energy, α2 F(ω), and the phonon DOS, F(ω), for an ML of Mg(0001)

are shown. Though the main features of α2 F(ω) are determined to a large extent by F(ω),

the two functions are different. Unlike bulk Mg [77] or the Mg(0001) surface [76] and the

Be(0001) ML, where low-energy and high-energy phonon modes participate equally in the

e–ph coupling, the phonon spectrum of the Mg(0001) ML is substantially suppressed by e–ph

matrix elements except for a prominent peak at low energies, 6–8 meV. The phonon modes

giving the predominant contribution to the coupling with electronic states correspond to the

previously mentioned perpendicular vibrations (Tz) with rather large wavevectors. A broad peak

in the phonon DOS related to the zone center shallow part of the transverse phonon mode is

completely suppressed and does not give any contribution to the e–ph scattering at all. For
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both MLs considered, the strength of the e–ph coupling averaged over momenta at the Fermi

energy is larger than the corresponding value in bulk or at the surface. In the Be(0001) ML

λ(EF) = 0.51, at the Be(0001) surface λ(EF) = 0.44 and both values are significantly larger

than λ = 0.21 evaluated at EF of bulk Be [107]. The same situation is observed for a Mg(0001)

ML, where λ(EF) = 0.58 is twice as large than λ(EF) in bulk Mg [77].

5. Conclusion

A brief conclusion from these examples is that the e–ph coupling strength for these simple

systems is now reasonably well understood. Ab initio calculations are of such a high quality that

they compare well with the available experimental data. From the experimental side, extracting

information on the e–ph interaction from the data is not straightforward and the choice of

approach depends on the properties of the system (coupling strength and Debye temperature).

The biggest challenge for the experiment is to provide data of sufficient quality to extract fine

structure in the self-energy, which can then be related to individual phonon modes contributing

to the e–ph coupling. Ideally, it would be possible to compare the fine structure in measured and

calculated Eliashberg functions.
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