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Electron-phonon effects in graphene and armchair„10,10… single-wall carbon nanotubes
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The electron-phonon interaction in low-dimensional tight-binding systems is discussed. A sheet of graphite,
which is two-dimensional, and an armchair single-wall carbon nanotube~SWNT!, which is quasi-one-
dimensional, are taken as examples. For the modulated hopping the matrix elements for both systems are
derived in the context of a two parameter model for the phonon vibrational spectrum. It is found that they~for
both structures! display a deformation type of potential, and are reduced by a factor of (12R), whereR
depends on the phonon parameters. It is also shown that the ordinary electron-phonon coupling displays a
deformation type of approximation for both systems. Next, a different type of interaction is considered—the
phonon modulated electron-electron interaction. It gives two contributions—random phase approximation with
one phonon line and exchange interaction with one phonon line. We find that for the two-dimensional~2D!
graphene and for the quasi-1D~10,10! SWNT, the modulated hopping and exchange coupling govern the
electron transport at room temperatures.
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I. INTRODUCTION

Carbon nanotubes are newly discoverd nanoparticl1

which have unique electrical and mechanical properties
carbon nanotube is a graphite sheet rolled into a cylinder
diameter is much smaller than its length. Every tube is ch
acterized by a chiral index (n,m), with n and m being two
integers, which specify the carbon nanotube uniquely. Th
electronic structure is either metallic or semiconducting
pending on (n,m).2 It is very important to describe the two
dimensional graphite properly and then apply the formali
to the quasi-one dimensional single-wall carbon nanot
~SWNT!.

A ~10,10! single-wall nanotube has a diameter of appro
mately 14 Å. Many calculations and experiments are
cused on this kind of SWNT’s.3,4 Therefore, we take an in
finitely long ~10,10! tube as an example for developin
further models. Some of the experiments4–6 are dealing with
ropes and bundles of SWNT’s. Several groups have
nounced measurements on the electrical resistivity of sin
wall nanotubes. They report that for single-rope samples
resistivity at T5300 K is in the range of 1023

21024V cm. The characteristic feature is thatdr/dT is
positive at or near room temperatures, which indicates
metallic nature of the system.

Reference 7 indicates that theI 2V characteristics are lin
ear atT5300 K with resistance typically of 1MV. Refer-
ence 8 reports that at very low temperatures the conduct
is quantized. This group also announced a resistance in
order of 1MV. According to their results, the resistance
T5300 K appears to scale with the overlap area with
electrodes. The experiments in Ref. 9 deal with multiw
carbon nanotubes. According to this report only the ou
layer contributes to the transport. The experiments indic
that even at room temperatures the conductance is quan
by one unit ofG052e2/h577.48mS. The nanotube behave
as a ballistic wire even atT5300 K. Therefore, there ar
two types of reported results in the literature. First, at ro
PRB 610163-1829/2000/61~16!/10651~13!/$15.00
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temperatures the resistivity is linear withT ~which is charac-
teristic for a metallic system!. Second, considering the re
sults from Ref. 9 one could say that the SWNT is a ballis
conductor even atT5300 K.

To explain the mechanism of electric transport in the
systems we turn towards the electron-phonon interact
which is the deciding factor in the context of the flow
electricity and heat.

To begin the investigation of the electron-phonon co
pling one needs to have proper phonon despersions. Se
II is devoted to the lattice dynamics of graphene and~10,10!
SWNT. A model with two parameters is proposed—the p
rameters are for the central force (a) and for the angle bend
ing (b) that involves a three-body force. It turns out, th
with this model, one can describe all of the features of
in-plane phonon spectrum for graphene with a suita
choice of the two parameters. The same choice fora andb
is used for the armchair tube.

In Sec. III, the electron-phonon interaction for graphene
derived. The electrons are described by a tight-binding w
function. The simplest interpretation is that the vibrating io
carry the electron orbitals with them as they move—this
the so-called rigid ion approximation. In tight-binding sy
tems, where the electrons are well localized, the rigid
approximation is a very reasonable approach. In graph
the Fermi surface is near theK points from the Brillouin
zone ~BZ!.10 Only phonons with long wavelengths are in
volved. Instead of calculating the potential one parametri
it by assuming that it is proportional to the relative distan
between nearest neighbors. We will assume that this is
for the carbon nanotube also. The interaction Hamiltonian
written for a solid with two atoms per unit cell. It turns ou
that the deformation constantD of the interaction is signifi-
cantly reduced by a factor that depends only on thea andb
parameters from the phonon model.

Besides the traditional modulated hopping two mo
terms are derived for the electron-phonon interaction. One
them is the linear electron-phonon coupling, that arises fr
10 651 ©2000 The American Physical Society
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the Coulomb interaction between the electrons and the i
The other one is the phonon modulated electron-electron
teraction and it was firstly introduced in Ref. 11. This type
interaction could be important for low-dimensional tigh
binding systems. The position of the atom, which is includ
in the Coulomb potential is modulated by the lattice vib
tions. Keeping only terms of first order in the ion displac
ments around equilibrium, one is able to obtain the form
the Hamiltonian.

In Sec. IV, the same derivation is given for the armch
~10,10! SWNT. The formalism developed for the modulat
hopping, the linear electron-phonon coupling and the pho
modulated electron-electron interaction is applied to
nanotube by imposing discrete boundary conditions in
appropriate direction.

Section V discusses the electron self-energy for the th
different types of electron-phonon coupling. For the phon
modulated electron-electron interaction two sets of Feynm
diagrams are found. One of them is the random phase
proximation with one phonon line. The other one is the e
change interaction with one phonon line. The contributio
from both types of diagrams are discussed for the tw
dimensional graphene and for the quasi-one-dimensio
~10,10! nanotube.

Section VI is devoted to some numerical estimates of
electron lifetime and the electrical conductivity for the she
of graphite and the individual~10,10! SWNT.

II. LATTICE DYNAMICS FOR GRAPHENE
AND „10,10… SWNT

A. The model

A model is suggested for the phonon spectrum of a tw
dimensional sheet of graphite. Since the structure and
bond lengths for an armchair~10,10! tube and graphene ar
very similar, one expects to obtain a very good approxim
tion for the phonon modes of SWNT from the graphe
spectrum. The measured and calculated spectrum for
dimensional~2D! graphite can be found in Ref. 12. Th
report uses the Born-von Karman lattice dynamical mo
and interactions up to fourth neighbors are included.

The purpose of this work is not to improve on this a
proach, but to give a simpler alternative for the phonon d
persions. For the transport properties of an armchair SW
one needs to incorporate the different modes and their po
izations, which is easy to do with the proposed model for
in-plain vibrations for graphene.

We assume that there are two types of forces between
atoms. One of them is a central force, which depends only
the distance between two neighboring atoms. The poten
which describes this force is given by

V5
a

2 (
i j 8

@~ui2uj !• r̂ i j #
2, ~1!

where ui , j are the displacements of the atoms from th
equilibrium positions,r̂ i , j is the unit vector between thos
two atoms, anda is a constant that characterizes the cen
force.
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The second type force is due to the bond-bending betw
the atoms. The three-body potential was proposed in Ref
for silicon. The model is described by

V5
b

2 (
i jk

~cosu i jk2cosu0!2, ~2!

whereu i jk is the angle-formed between thei 2 j bond and
the i 2k bond.u0 is the equilibrium angle and for the hex
agonal lattice is 120°.b is a characteristic constant for th
type of force.

The two parameters of this model are determined by
ting them to the well-known graphene spectrum from R
12.

In the graphite structure, the angle between two clos
bonds is

cosu i jk5
@r i j 1~ui2uj !#•@r ik1~ui2uk!#

ur i j 1~ui2uj !uur ik1~ui2uk!u
. ~3!

Since one is considering small displacements from equi
rium, the above expression can be expanded for smallui , j ,k .
After one does that, the result takes the form

cosu i jk5F2
1

2
2S r̂ i j

2
1 r̂ ikD •~ui2uj !

2S r ik

2
1 r̂ i j D •~ui2uk!G . ~4!

The constant2 1
2 is canceled by cosu05cos 120052 1

2 . The
microscopic equations due to the combined force from
two potentials can be written. This leads to the dynami
matrix

F u2X1 F A C

F* u2X2 C B

A* C* u2X1 F*

C* B* F u2X2

G ~5!

with elements

u5Mv2,

X15
3a

2
1

45b

8
1

9b

8
cosQya,

X25
3a

2
1

45b

8
2

3b

8
cosQya1

3b

2
cos

QxaA3

2
cos

Qya

2
,

F5
3A3b

8
i S sinQya22e2 i

QxaA3

2 sin
Qya

2 D ,

A5e2 i ~Qxa/2A3!Faei ~QxaA3/2!1S a

2
1

27b

4 D cos
Qya

2 G ,
C52S aA3

2
2

9A3b

4 D ie2 i ~Qxa/2A3!sin
Qya

2
,
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B5e2 ~Qxa/2A3!F9b

2
ei ~QxaA3/2!1S 3a

2
1

9b

4 D cos
Qya

2 G ,
wherea5A3aC2C . The distance between two carbon atom
is aC2C51.42 Å.

The goal is to solve for the normal modes for differe
symmetry points in the Brillouin zone of graphite since t
fourth-order equation that arises from the above matrix c
not be solved analytically in general. After one obtains si
plified expressions for the modes at different symme
points, one compares with the known phonon specrtum
graphite in order to find the best numbers for the mo
parametersa andb.

Simple results can be found at theG, K, andM points in
the Brillouin zone;

MvG,1,2
2 50,

MvG,3,4
2 53a1

27b

2
,

MvK,1
2 53a,

MvK,2
2 5

27b

2
,

MvK,3,4
2 5

3a

2
1

27b

8
,

MvM ,1
2 53a1

3b

2
,

MvM ,2
2 52a,

MvM ,3
2 5a1

27b

2
,

MvM ,4
2 56b.

Obviously, there are more constraints here than parame
But, nevertheless, all the characteristic features of the p
non spectrum for graphene are obtained. At theG point the
two lower modes start at zero frequency and the hig
modes start from the same nonzero value. At theK point,
two of the modes are degenerate—the longitudinal opt
and the longitudinal acoustic modes have a common
quency.

To find the best fit for the parametersa andb one has to
look at the problem of interest. Here we are interested in
longitudinal acoustic branch. A good approximation of t
LA branch can be obtained by choosinga58.98 N/m2 and
b50.4 N/m2. The graphene spectrum for these values
presented in Fig. 1. The lower branches are described
well while the upper branches are shifted upward althou
they retain the general features of the graphene spectru

B. Phonon spectrum for a„10,10… SWNT

To obtain the phonon dispersion relations and the po
ization vectors for a SWNT we explore the connection b
tween the structure of the tube and the carbon sheet and
s
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we take into account that the tube is essentially a o
dimensional system. The translational symmetry of the a
chair SWNT persists along the tube axis, but no long
around the circumference. The phonon wave vector is
crete in this direction and takes discrete values. For an a
chair tube

Qx5
m

N

2p

A3a
, ~6!

wherem50,1,...,N. We are interested in transport prope
ties where the acoustic modes are important. Only the lo
wave length modes and the polarization vectors around thG
point need to be determined. Results form50 are given on
Fig. 2. a andb have the same values as for graphene.

The terms from the dynamical matrix are expanded
small wave vectors;

X15
3a

2
1

27b

4
2

9

16
bQy

2a2, ~7!

X25
3a

2
1

27b

4
2

9

16
bQx

2a2, ~8!

FIG. 1. Phonon spectrum for graphene witha58.98 N/m2 and
b50.4 N/m2.

FIG. 2. Phonon spectrum form50 for the SWNT.
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F52
9

16
bQxQya

2, ~9!

A5
3a

2
1

27b

4
1 iQxa

A3

2 S a

2
2

9

4
b D , ~10!

C52 iQya
A3

2 S a

2
2

9

4
b D , ~11!

B5
3a

2
1

27b

4
2 iQxa

A3

2 S a

2
2

9

4
b D . ~12!

Add and subtract the microscopic equations to obtai
solution for (hA,x,y2hB,x,y) in terms of (hA,x,y1hB,x,y)

Mv2~hA,x1hB,x!52Qy
2a2Dr~hA,x1hB,x!

1 iQyaDi~hA,x2hB,x!

1QxQya
2Dr~hA,y1hB,y!

2 iQyaDi~ha,y2hB,y!, ~13!

Mv2~hA,x2hB,x!52 iQxaDi~hA,x1hB,x!

1~G2Qy
2a2Dr !~hA,x2hB,x!

1 iQyaDi~hA,y1hB,y!

1QxQya
2Dr~hA,y2hB,y!, ~14!

Mv2~hA,y1hB,y!5QxQya
2Dr~hA,x1hA,x!

2 iQyaDi~hA,x2hB,x!

2Qx
2a2Dr~hA,y1hB,y!

2 iQxaDi~hA,y2hB,y!, ~15!

Mv2~hA,y2hB,y!5 iQyaDi~hA,x1hB,x!1QxQya
2Dr~hA,x

2hB,x!2 iQxaDi~hA,y1hB,y!

1~G2Qx
2a2Dr !~hA,y2hB,y!, ~16!

Dr5
9

16
b, ~17!

Di5
A3

4 S a2
9

2
b D , ~18!

G53a1
27

2
b. ~19!

The subscriptsA andB correspond to the two atoms in the
unit cell. The acoustic modes are the ones in Eqs.~13! and
~15! and the optical modes are those in Eqs.~14! and ~16!.
They are coupled; although the acoustic modes are of inte
for us, we have to include the optical modes also.

At long wavelength only the terms of first order wav
vector are kept in the expressions for the optical mod
Thus, we are able to write
a

st

s.

~hA,x2hB,x!' i
R

4A3
@Qxa~hA,x1hB,x!

2Qya~hA,y1hB,y!#, ~20!

~hA,y2hB,y!'2 i
R

4A3
@Qxa~hA,y1hB,y!

1Qya~hA,x1hB,x!#, ~21!

R5
a29/2b

a19/2b
. ~22!

If one uses our fitted values for the force constants, one
estimate that the factorR'0.67.

The above derivations are for a two-dimensional layer
graphite. From here it is easy to derive the optical modes
a SWNT. SetQx50 and keepQy5Q continuous. Then, the
expressions become

~hA,x2hB,x!52 i
A3

12
RQa~hA,y1hB,y!, ~23!

~hA,y2hB,y!52 i
A3

12
RQa~hA,x1hB,x!. ~24!

These results are important in the determination of the ma
elements for the electron-phonon interaction as is shown
the following sections.

III. ELECTRON-PHONON INTERACTIONS
IN GRAPHENE

A. Modulated hopping in terms of the tight-binding
approximation

We are interested in electron-phonon coupling
graphene. The electron, that is responsible for the elec
conduction, in the plane is in apz state. Start with the Hamil-
tonian

H5H01Hmod,

H052J0 (
j ,d,s

~cj ,s
1 cj 1d,s1cj 1d,s

1 cj ,s!,

Hmod52J1 (
j ,d,s

d̂•~uj2vj 1d!~cj ,s
1 cj 1d,s1cj 1d,s

1 cj ,s!,

where d̂ is the unit vector connecting nearest neighbors
the hexagonal structure—see Fig. 3.s is a spin index.J0
52.6 eV is the nearest-neighbor integral for graphite.J1 can
be taken to beJ1;q0J0, where we useq052.2 Å21 as in
Ref. 14. Actually,J0 is higher for the nanotube.19 We keep
the same value for both systems in order to illustrate
model better.uj and vj are small displacements from th
equilibrium positions of the two ions in the unit cell. The
are expanded in terms of the phonon creation and annih
tion operators

un5(
Q

ĥneiQ•Rn
0
AQ , ~25!
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XQ5A \

2NMvQ

, ~26!

AQ5b2Q
1 1bQ , ~27!

vQ is the frequency of the phonons andĥn is the polarization
vector of the ion. Then the electron field operators are w
ten in terms of the creation and annihilation operators for
electrons

c5(
k

cl~k!ck,l , ~28!

wherec(k) is the tight-binding wave function andl is the
band index.15 Thus, the full expression for the Hamiltonian

Hint5 (
i j ,nn8

(
kk8Qd

q0J0A \

2NMvQ
d•~ĥneik•Rn

0
2ĥn8e

ik•R
n8
0

!

3@l i* ~k8!e2 i (k8•R
n8
0

2k•Rn
0)1l j~k!e2 i (k8•Rn

0
2k•R

n8
0

)#

3ck8,l i

1 ck,l j
~bQ1b2Q

1 !dk8,k1Q . ~29!

This is a general formula for the modulated hoppi
electron-phonon interaction of a solid with two atoms p
unit cell. For graphene all the vectors in the above formu
are two dimensional. Now, one can evaluate the matrix
ments for the electron-phonon coupling. The constantsl,
which control the processes between different energy ba
are also present.

B. Deformation potential approximation

The Fermi surface15 of the two-dimensional graphite ha
small circles around theK-points in the Brillouin zone. Be-
cause of the symmetry of the system it is only necessar
consider one of them, which we choose to bek0

5(2p/A3a,2p/3a). The excited electronic states are in t
vicinity of this point and they are located in a small wav
vector space. Only the long-wave limitQ→0 in the first
Brillouin zone is needed and only acoustic phonons are
portant; takevQ5sQ, with s being the sound velocity in the
layer. Then, it is possible to write the Hamiltonian of inte
action in the form

FIG. 3. Structure of a layer of graphite.
t-
e

r
s
-

s,

to

-

He2ph5D(
kQ
i j

XQuQuck1Q,l i

1 ck,l j8AQ . ~30!

For graphene we are interested in what happens around tK
point only, where the two bands cross the Fermi level. W

make an expansion around these points—k→k01 k̃, wherek̃
is a small vector. Therefore, we expect the deformation t
of approximation to be valid. One finds, that

E56vFuk̃u, ~31!

lA,B56e2 if(k), ~32!

where vF5J0A3a/2 and the phase factor isf(k)5(2p/3

1tan21k̃x / k̃y) and i , j 5A,B. For the matrix elements in the
same band (M11) and between the two bands (M12) we find

M kk8,115(
AB

2XQq0J0ei ~f82f/2!

3F ĥA•d̂cosS 2p

3
2k0•RAB2

Q•RAB

2
1

f1f8

2 D
3e2 i ~Q•RAB/2!2ĥB•d̂cosS 2p

3
1k0•RBA

1
Q•RBA

2
1

f1f8

2 De2 i ~Q•RBA/2!G , ~33!

M kk8,2252M kk8,11, ~34!

M kk8,125(
AB

2XQq0J0ei ~f82f/2!

3F ĥA•d̂sinS 2p

3
2k0•RAB2

Q•RAB

2
1

f1f8

2 D
3e2 i ~Q•RAB/2!2ĥB•d̂sinS 2p

3
1k0•RBA

1
Q•RBA

2
1

f1f8

2 De2 i ~Q•RBA/2!G , ~35!

M kk8,2152M kk8,12, ~36!

whereRAB5RA
02RB

0 . Further manipulations are possible—
take the limit for smallQ and expand around theK point.
Using the results about the calculated phonon spectrum
graphene in the previous section, one obtains
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M1152 iq0J0XQ

A3

4 F ~hAx1hBx!

3S Qxacos
f1f8

2
1Qyasin

f1f8

2 D1~hAy1hBy!

3S Qxasin
f1f8

2
2Qyacos

f1f8

2 D G~12R!, ~37!

M1252 iq0J0XQ

A3

4 F ~hAx1hBx!

3S Qxasin
f1f8

2
2Qyacos

f1f8

2 D1~hAy1hBy!

3S Qxacos
f1f8

2
1Qyasin

f1f8

2 D G~12R!. ~38!

The following conclusions can be made. First, the ma
elements for both transitions—intraband and interband—
in the deformation type form and they are reduced by a f
tor (12R), which depends on the parameters chosen to
scribe the oscillations of the ions. Our choice fora and b
gives thatR'0.67. Second, it is evident that not only th
longitudinal modes are important, but also the transve
modes give a similar contribution. Both types of polariz
tions are present inM11 and M12. The formulas~37! and
~38! disagree with the ones found in Ref. 14 by a factor
2R);0.33. Also the dependance ofuMQu2 on the phonon
wave vectorQ is clearly displayed in the present calculatio

C. Electron-phonon and phonon-modulated electron-electron
interactions

The model is a neutral tight-binding systems that has
atoms per unit cell. For graphite the ion cores haves-wave
symmetry and the electrons that are responsible for the
duction processpz-wave symmetry. Since this is a neutr
system the average number of conduction carriers on e
side is equal to the valence of the ions. We also assume
the rigid ion approximation is valid and the electrons can h
to the neighboring sites. The problem can be approached
more general way starting from the Hamiltonian

H5H01Hint , ~39!

H052J0(
j d

~Aj 1d
1 Bj1Bj 1d

1 Aj !1(
Q

vQaQ
1aQ , ~40!

Hint5
e2

2 (
nn8

E d3r 1d3r 2

ur12r2u
@r i~r12Rn!2re~r12Rn!cn

1cn#

3@r i~r22Rn8!2re~r22Rn8!cn8
1 cn8#, ~41!

wherer i andre are the ion and electron charge densities.
Aj andBj we denote the electron operators for the two io
in the unit cell. The formalism for a crystal with one ato
per unit cell was already developed in Ref. 11. Here,
perform the same calculation for a solid with two atoms p
unit cell. We want to expressHint in terms of collective
x
re
-

e-

e
-

.

o

n-

ch
at

p
a

y
s

e
r

coordinates. The first thing that needs to be done is to d
onalizeH0. This could be done by using Eq.~40! and apply-
ing the transformation

Ak5
1

A2
~ak1bk!, ~42!

B̃k5
1

A2
~ak2bk!, ~43!

with B̃k5eiu(k)Bk , whereu(k) is the phase factor ofei d•k.
Only nearest neighbors are taken into consideration.
small k around theK point in the BZu(k) coincides with
f(k) defined earlier in Eq.~32!. The next step is to take th
Fourier transformation of the Coulomb potential and of t
charge densities. According to Ref. 16 the wave function
the ions is given byc2s5uci ure2a i r /2. The normalization
condition gives thatuci u25a i

5/96p. Therefore, one can easil
find

r i~q!5E d3rr i~r !eiq•r5Za i
6

a i
22q2

~a i
21q2!4

, ~44!

whereZ is the number of electrons in the ion.
For the conduction electrons in graphite we take t

c2pz
5uceur•n̂e2aer /2—the free electrons are in 2pz atomic

orbitals.16 To proceed further adopt a coordinate system w
z axis along theq vector;

q̂• r̂5cosu,

q̂•n̂5cosu0 ,

r̂•n̂5cosu cosu01sinusinu0cosf.

Thus, the expression forre(q) is found to be

re~q!5
16puceu2ae

~q21ae
2!4

@~3cos2u021!~ae
225q2!

13sin2u0~ae
22q2!#. ~45!

u0 is the angle betweenq and the normal vector to the
graphene planen̂. The normalization of the used 2pz-wave
functions determines the constantuceu2. One finds uceu2

5ae
5/(32p) and the expression for the electron density tu

out to be

re~q!5
ae

6

~ae
21q2!3

. ~46!

Note that the angle betweenq and the normal vector to the
graphite plane isu0590°.

It is possible to obtain several terms from the Hamiltoni
from Eq.~41!. One of them is the traditional modulated ho
ping for which we find the same results for the matrix e
ments as in Eqs.~37! and~38! providing the expressions ar
expanded for smallk around theK point. Another term is the
electron-phonon interaction, which is written as
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He2p5
i

V (
Q

XQvQrT~Q!re~Q!

3Q•@~ ĥAei [u(k2Q)2u(k)]1h B̂!~ak1Q
1 ak1bk1Q

1 bk!

2~ ĥAei [u(k2Q)2u(k)]2ĥB!~ak1Q
1 bk

1bk1Q
1 ak!#AQ , ~47!

rT~Q!5r i~Q!2Zre~Q!. ~48!

The above formulas are investigated for longitudin
phonons—ĥA,B5ĥQ . In the limit of small wave vectorQ
we find that

D̃5vQrT~Q!re~Q!54pZe2F 3

ae
2

2
5

a i
2G . ~49!

Therefore, the matrix elements for the electron-phonon in
action are of the form of a deformation potential with a d
formation constantD̃. For transitions in the same band an
between bands up to a phase factor we find

M1152XQD̃Q'cosFu~k2Q!2u~k!

2 G , ~50!

M1252XQD̃Q'sinFu~k2Q!2u~k!

2 G , ~51!
th
t
w

l

r-
-

whereQ' is the phonon wave vector in the graphite plan
The last term is the phonon modulated electron-elect

coupling. This interaction is produced by multiplying th
terms that containre in Eq. ~41!. The expression is practi
cally the same as in Ref. 11. Its origin comes from the int
action of the electrons and phonons through the Coulo
potential, which is modulated by the lattice vibrations of t
solid. One finds that there are four possible combination

(
nn85A,B

rn~q1Q!rn8~2q!

5rA~q1Q!rA~2q!1rA~q1Q!rB~2q!

1rB~q1Q!rA~2q!1rB~q1Q!rB~2q!, ~52!

rA~q!5Ak1q
1 Ak , ~53!

rB~q!5ei [u(k2q)2u(k)]B̃k1q
1 B̃k . ~54!

In general, processes are possible between any combin
of four bands. To determine the matrix elements correc
one needs to put all phase factors that depend on the phy
structure of the solid. The complete expression forHe2ph2m
for the different transitions is given below;
He2ph2m52
4i

V (
kk8qQ

e2 ~u11u2!/2XQ~q•ĥQ!vqre
2~q!AQ

3F ~ak1q1Q
1 ak82q

1 akak81ak1q1Q
1 bk82q

1 akbk81bk1q1Q
1 bk82q

1 bkbk81bk1q1Q
1 ak82q

1 bkak8!cos
u1

2
cos

u2

2

2~ak1q1Q
1 ak82q

1 akbk81ak1q1Q
1 bk82q

1 akak81bk1q1Q
1 bk82q

1 bkak81bk1q1Q
1 ak82q

1 bkbk8!icos
u1

2
sin

u2

2

2~ak1q1Q
1 ak82q

1 bkak81bk1q1Q
1 ak82q

1 akak81bk1q1Q
1 bk82q

1 akbk81ak1q1Q
1 bk82q

1 bkbk8!isin
u1

2
cos

u2

2

2~ak1q1Q
1 ak82q

1 bkbk81ak1q1Q
1 bk82q

1 bkak81bk1q1Q
1 ak82q

1 akbk81bk1q1Q
1 bk82q

1 akak8!sin
u1

2
sin

u2

2 G ,
~55!
e to

er.
l

where

u15u~k1q1Q!2u~k!,

u25u~k82q!2u~k8!.

The matrix elements in general could be written as a part
is common to all processes and a part that depends on
phase factors. The term that appears in all transitions
denote as

uMq,Qu54Mq~q•ĥQ!XQ , ~56!
at
he
e

Mq5vqre
2~q!. ~57!

Having the expressions for the matrix elements one is abl
proceed with further calculations.

IV. ELECTRON-PHONON INTERACTIONS
IN A „10,10… SWNT

A. Deformation potential approximation
for the modulated hopping

The length of a SWNT is much larger than its diamet
Observed lengths of~10,10! armchair tubes are of severa
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mm and the diameter of an individual tube is approximat
14 Å. It is essentially a quasi-one dimensional system.4,17

The whole formalism of describing the carbon nanop
ticles was already developed in the previous section, wh
we discussed a two dimensional sheet of graphite. For
nanotube, the Fermi surface is collapsed into two symme
points K and K8 at 62p/3a, wherea is the length of the
primitive translational vector18—see Fig. 3.

In the circumferential directions only discrete wave ve
tors are allowed. The appropriate boundary conditions for
armchair tube are

kx5
m

N

2p

A3a
, ~58!

wherem50,2, . . . ,N21. Theky5k wave vector, which is
along the tube axis, is kept continuous. The energy dis
sion relations can be obtained in this way.19 The lowest
bands in all armchair tubes are nondegenerate and they
the Fermi level. Thus, an armchair tube is expected to b
metal—only infinitesimal excitations are needed to exc
carriers into the conduction band.19

Again we are interested in carrier excitations around thK
points in the Brillouin zone. Thus, for the expansionk5k0

1 k̃, wherek052p/3a and k̃ is small, one finds

E56vFk̃, ~59!

lA,B56e2 i ~2p/3!, ~60!

wherevF5J0A3a/2. As in graphene one obtains a lineark
dependence in the energy with the difference thatk is a one
dimensional vector (k̃ is renamed back tok).

The evaluation of the matrix elements is based on
matrix elements for graphene, given in Eqs.~33!–~36!. The
summations over nearest neighbors are done and the ex
sions simplify to

Mkk1Q,1152q0J0XQ

3H ~hAx2hBx!F11cos
Qa

4
cosS p

3
1

Qa

4 D G
1A3i ~hAy1hBy!sin

Qa

4
cosS p

3
1

Qa

4 D J ,

~61!

Mkk1Q,1252q0J0XQF i ~hAx1hBx!sin
Qa

4
sinS p

3
1

Qa

4 D
1A3~hAy2hBy!cos

Qa

4
sinS p

3
1

Qa

4 D G . ~62!

Further insight can be gained by using the deformation
tential approximation. Taking the limit of a small wave ve
tor k around theK point and a small phonon vectorQ the
matrix elements become

M1152q0J0XQF3

2
~hAx2hBx!1~hAy1hBy!i

A3

8
QaG ,

~63!
y

-
re
e

ic

-
n

r-

oss
a

e

e

es-

-

M1252q0J0XQF ~hAx1hBx!i
A3

8
Qa1

3

2
~hAy2hBy!G .

~64!

Next, use Eqs.~23! and ~24! to eliminate (hA,xy2hB,xy).
The final form for the matrix elements for the modulat
hopping is

M115q0J0XQ

A3

4
Qa~hAy1hBy!~12R!, ~65!

M125q0J0XQ

A3

4
Qa~hAx1hBx!~12R!. ~66!

The matrix elements are reduced by (12R), which depends
on the parametersa andb—the constants which characte
ize the phonon spectrum for the tube. Since (12R);0.33
then squaring the matrix element causes a significant re
tion of (12R)2;0.1. The same result was found fo
graphene. Again the modulated hopping is written in ter
of the deformation potential approximation.

Compare with the results from Ref. 20. Both calculatio
give similar results about the dependance on the pho
wave vectorQ. The major difference is that the matrix ele
ments here are shown to be reduced by a factor (12R),
because of the coupling between the acoustic and op
phonons.

B. Electron-phonon and phonon-modulated electron-electron
interactions

All the formulas developed previously for the two dime
sional graphite layer are expected to be valid here. The
pressions for the electron charge density and ion charge
sity are the same as for graphene.

Consider the electron-phonon interaction. The Ham
tonian has the same form as in Eq.~47!. The deformation
constantD̃ is also the one derived for graphene. The on
difference here is that the electron and phonon wave vec
are one dimensional. The phase factoru(k) is also involved
in the expression for the matrix elements. For a~10,10!
SWNT it was already derived that it is a constantu(k)
522p/3. Therefore,

M1152 iXQz
D̃Qz , ~67!

M12;Qz
2 . ~68!

Transitions between two different bands to first order of
phonon wave vector are not allowed in the armchair tu
The fact thatM12;Q2 is a consequence of the couplin
between acoustic and optical phonons and of the one dim
sionality of the system.

Consider the new contribution to the electron-phonon
teraction which is the phonon modulated electron-elect
interaction. We obtain the matrix elements from Eq.~55!.
For the tubeu150 andu250 because the phase factors a
constants. Therefore, only the first term survives and the
trix element up to a phase factor is given by the express

Mqz ,Qz
524iM qz

~q•ĥQ!XQz
. ~69!
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Different matrix elements are obtained corresponding to
ferent electron-phonon coupling processes. The express
for the different terms in the original Hamiltonian—Eq
~41!—is rather general and it can be applied to other tig
binding systems. The idea is that the effects of several c
tributions with different origin are comparable for low
dimensional systems and the evaluation of the trans
characteristics needs to be done carefully.

For small wave vectorsqz!a the bare Coulomb potentia
is a good approximation.

Notice that the above was done assuming that this is
sentially a one-dimensional system. But carbon nanotu
have finite diameters and are quasi-one dimensional.
Coulomb interaction for electrons on a cylinder with radiusR
is modified to21

MqQ5a8I L~qR!KL~qR!A \

2NMvQ
i ~q• ĵQ!. ~70!

I L(qR) andKL(qR) are the modified Bessel functions fro
first and second kind of the orderL—which stands for angu
lar momentum of the interaction. IfL50 then we are dealing
with a intraband transitions; ifL51 then the transitions ar
interband. But in this case transitions between bands do
take place and thereforeL is always zero.

V. ELECTRON SELF-ENERGY

A. Modulated hopping and linear electron-phonon interaction

The imaginary part of the electron self-energy is a ve
important quantity. It is closely related to the relaxation tim
of the electrons

2ImS~k!5
\

2t
. ~71!

Several transport properties depend on the self-energy. H
we will examine the impact of different types of interactio
on it.

The first effect is how the imaginary part of the se
energy depends on the electron-phonon interaction. The
sic diagram is given on Fig. 4. It has one phonon line rep
sented by a dashed line. This diagram represents two typ
the electron-phonon interaction—the modulated hopping
the linear electron-phonon coupling.

The expression for the self energy is well-known and
the high temperature limit is given by22

2ImS~k!52p~kBT!(
Q

uMQu2

\vQ
d~ek2ek1Q!. ~72!

Thus, we obtain that2ImS(k) is proportional to the tem-
peratureT, which is characteristic for a metallic system. T
matrix elements are already derived and they are of de
mation type with different deformation constants. Th

FIG. 4. Feynman diagram for first-order electron-phonon int
action.
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means that one needs to do the above integration once
then use the appropriate deformation constant.

Consider the quasi-one-dimensional armchair SWNT. U
ing the known energy dispersion—ek56vFuk2kFu we find

\

2t
5~kBT!

uCu2L0

2M E
2p/a

p/a

dQ
Q2

vQ
2

d~ek
i 2ek1Q

j !, ~73!

1

t
5

~kBT!

\

uCu2L0

2Ms2vF

, ~74!

where we usedvQ5sQ, with s being the speed of sound i
the graphite plane. The band indices arei , j 51,2 andL0 is
the length of the unit cell in 1D.C is the deformation con-
stant and it is eitherD or D̃ for the modulated hopping or th
linear electron-phonon coupling. A nonzero answer is o
tained only for the caseiÞ j , so only intraband transitions
give contributions to the self energy.

For graphene we perform the same integration. Thed
function is used to do the integration over the angular va
able. The result is

1

t
5

~kBT!

\

uCu2A0

4pMs2vF
2

ek , ~75!

whereA0 is the area of the unit cell andek is the energy of
the electron.

B. RPA with one phonon line for the phonon modulated
Coulomb interaction

Besides the contribution to the electron self energy fr
the modulated hopping and ordinary electron-phonon in
action, there is a contribution from the phonon modula
electron-electron interaction. It was already shown, that th
are two sets of Feynman diagrams that correspond to it.
of them is the random phase approximation with one pho
line—see Fig. 5. Using Lehmann representation it was
rived that in 2D and 3D, in general, the contribution to t
self-energy from the RPA could be neglected.11

Some analytical results for the RPA diagrams can be
tained for SWNT due to the one dimensionality of the sy
tem. The self energy for the RPA diagrams, after the su
mation overiQn is done, is

S~k!5
\

2NMb (
iqn

(
q,Q

~ ĥQ•Q!2

vQ

Mq
2Pq

eRPA

3F NQ1 f 9

iqn1 ikn1vQ2e9
1

11NQ2 f 9

iqn1 ikn2vQ2e9
G ,

~76!

where the following definitions are made

-
FIG. 5. Feynman diagram for the RPA with one phonon line
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Pq52E dk

~2p!

f k2 f k1q

iqn1ek2ek1q
,

eRPA512MqPq ,

NQ51/~ebvQ21!,

f 951/~ebek1q1Q11!.

Mq is the electron-electron interaction for the nanotube a
it is taken to be the Coulomb interaction in 1D.Pq is the
polarization factor for the bubble. It is only for excitations
the same band. This is obtained by considering the corr
tion function for the Green’s function, which needs to
evaluated in order to construct the Feynman diagrams. T
means that the two lines making the bubble belong to
same band. Using the fact thatf (2x)512 f (x) for the
Fermi distribution function one is able to arrive at

Pq52E dk

2p
~ f k2 f k1q!

2~ek2ek2q!

~ek2ek2q!22~ iqn!2
, ~77!

where

ek2ek2q5vFq. ~78!

In the limit for smallq one finds

Pq5
vFq2

p@~vFq!22~ iqn!2#
. ~79!

The polarization factor has poles at6vFq. The dielectric
function becomes

eRPA511
vFMqq2/p

~ iqn!22~vFq!2
. ~80!

To obtain the correct result for the electron self energy al
the frequency summations have to be done before ma
the continuationikn→ek1 id. The summation overiqn can
be easily performed in Eq.~76!

S~k!5
\vF

NMp (
qQ

~ ĥQ•Q!2

vQ

q2Mq
2

Mq8
•H FN~Mq8!1 f ~e92vQ!

ikn1Mq81vQ2e9

1
11N~Mq8!2 f ~e92vQ!

ikn2Mq81vQ2e9
G ~NQ1 f 9!

1FN~Mq8!1 f ~e91vQ!

ikn1Mq82vQ2e9
1

11N~Mq8!2 f ~e91vQ!

ikn2Mq82vQ2e9
G

3~11NQ2 f 9!J , ~81!

where

Mq8
25~vFq!2S 12

Mq

vF
D , ~82!

N~Mq8!51/~ebMq821!, ~83!
d

a-

is
e

f
g

f ~e96v!51/~eb(e96v)11!, ~84!

e95ek1q1Q . ~85!

Now, the imaginary part of the electron self energy can
found by substitutingikn→ek1d. One notes that two term
can be found in the high-temperature limit. One is prop
tional to T2 and the other one is linear withT.

The term proportional toT2 is

\

2t
5

2~kBT!2vFL0

NM (
qQ,i j

~ ĥQ•Q!2

vQ
2

q2Mq
2

Mq8
2

3@d~e i ,k2e j92Mq8!1d~ek,i2e j91Mq8!#. ~86!

Making use of thed function we obtain

1

t
5

16~kBT!2L0e4kF

p2\vF
2Ms2

3I , ~87!

I 5E
0

1 ln2x

12
2e2

vF
ln x

, ~88!

whereI 50.17. There are two terms proportional toT;

2ImS~k!15
vF~kBT!

2NM (
qQ

~hQ•Q!2

vQ
2

q2Mq
2

Mq8
d~e i ,k2e j9!

~89!

2ImS~k!25
\vF~kBT!

2NM (
qQ

~ ĥ•Q!2

vQ

q2Mq
2

Mq8
2

d~e i ,k2e j9!.

~90!

From here one can estimate that only2ImS2 survives and
for the lifetime we find

1

t
5uk2kFu

8~kBT!e4L0kF

p2MsvF
2

3I . ~91!

It follows that 1/t;vFuk2kFu. The above formula is ob-
tained only for transitions between the two bands. The in
band transitions give zero result.

C. Exchange self-energy

One can look beyond the RPA approximation by assu
ing that the effects from the exchange phonon modula
electron-electron interaction are not small.11 It comes from
the different ways of pairing of the electron operators. Th
are four diagrams that correspond to the excha
interaction—see Fig. 6. In the problem for graphene the p
ing has to be done for two different operators present in
expression—ak and bk . The exchange interaction up to
phase factor is written as
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Vexch52 (
k,q,Q

XQ~q•Q!vqre
2~q!F f ~ek1q1Q1 f ~ek2q!#

3Fcos
u~k1Q!2u~k!

2
~ak1Q

1 ak1bk1Q
1 bk!

1sin
u~k1Q!2u~k!

2
~ak1Q

1 bk1bk1Q
1 ak!G . ~92!

The Hamiltonian can be expressed in the following way

Vexch52 (
Q,nn8

U~k,Q!XQck1Q,n
1 ck,n8AQ , ~93!

where we define

U~k,Q! i i 5ĥQ•@~k1Q!S~k1Q!

2kS~k!#cos
u~k1Q!2u~k!

2
, ~94!

U~k,Q! ie5ĥQ•@~k1Q!S~k1Q!2kS~k!#

3sin
u~k1Q!2u~k!

2
, ~95!

S~k!5
1

k2 (
q

Mqf k2qk•q. ~96!

For small wave vectorsQ one is able to write

U~k,Q!'~ĥQ•Q!S~k!. ~97!

Now, the one-phonon self-energy is obtained

S~k!5
\S2~k!

2r (
Q

~ ĥQ•Q!2

vQ
F NQ1 f ~e8!

ikn2e81vQ

1
11NQ2 f ~e8!

ikn2e82vQ
G , ~98!

f ~e8!51/~ebe811!, ~99!

e85ek1Q . ~100!

FIG. 6. Feynman diagrams for the exchange interaction w
one phonon line.
In the high-temperature limit, neglecting the phonon ene
compared to the electron energy,

2ImS~k!52~kBT!S2~k!(
Q

~ ĥQ•Q!2

rvQ
2

d~ek2ek1Q!.

~101!

The result looks the same as the one derived for the mo
lated hopping and the linear electron-phonon coupling—
~72!. This is not a surprise since the exchange interact
was written in a form of a deformation type of interaction

The next step is to evaluate the functionS(k), which is
contained inU(k,Q). It serves the role of a deformatio
constant for the exchange interaction. In a more general
S(x) could be written as

S1D,2D~x!52
e2kF

2p
J1D,2D~x!. ~102!

In the Appendix we deriveJ(x) in 1D and 2D. From there it
is estimated thatJ1D(x51)50.77 andJ2D(x51)51.17.

There is a direct analogy between these three types
electron-phonon interaction. Thus, to estimatet one needs to
use Eqs.~74! and~75! and substituteS1D andS2D instead of
C.

VI. CONDUCTIVITY

First, we consider the electrical conductivity of the tw
dimensional graphite. It can be estimated by the formula

sgr5e2^vx&
2N~eF!tgr , ~103!

where N(eF) is the number of states. Following Ref. 1
N(eF)54A0e/3pJ0

2a2. For graphene with a circular Ferm
surface^vx&

25 1
2 v2, with v being the velocity of the elec

tron. We use the value given for the carbon nanotube—v
58.13105 m/s.8 We obtained that the lifetime of the charg
carriers ist;ek

21 for all processes. Following Mathiessen
rule

1

t
5

1

t1
1

1

t2
1••• . ~104!

The conductivity is a quantity that does not depend on
energy of the particles. One readily obtains that

sgr5
4e2^vx&

2Ms2\

~ uDu21uS2Du21uD̃u2!~kBT!
. ~105!

Only the modulated hopping and the exchange scatte
will contribute to the electron transport. Their dominance
guaranteed by the fact that the deformation constants
these two processes are an order larger than the deform
constant for the linear electron-phonon interaction. Using
expressions for the constants one findsuDu53.87 eV, uD̃u
50.87 eV, and uS2Du54.46 eV. Thus, the contribution
from the electron-phonon deformation constant is neglec

h
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One estimates thatsgr57.8731022 S. Compare to the ac
cepted valuesgr;431022 S. The contribution from the
RPA with one phonon line is not significant.

The situation with the carbon nanotube is the followin
The standard formula for the conductivity in 1D is

s tube5
2e2vt

p\
, ~106!

wheret is the relaxation time determined from all process
that contribute to the transport. The resultantt is found from
the Mathiessen’s rule according to Eq.~104!. The factor of 2
indicates that there are two bands that cross the Fermi le
The dominant processes are the modulated hopping and
exchange interactions. The relaxation time due to these
cesses is a constant. The numerical value is obtained t
t57.57310214 s. The linear electron-phonon coupling
neglected as having a small deformation constant. The R
contribution should also be neglected, becauseuk2kFu is
small compared to the constant terms.

Another term to the lifetime is proportional toT22, which
is a signature of a relaxation time due to the traditio
electron-electron interaction. We estimate thatt54.18
31028 s at room temperature. A typical electron-electr
relaxation time in a metallic system is of the order
10210 s. This kind of process has a much slower time th
the one for the processes involving phonons at room t
peratures, thus, it is neglected.

Therefore, one finds that the electrical transport proper
are governed by a constant lifetime, determined from t
processes—modulated hopping and exchange inetrac
The estimated value for the resistance of the single w
nanotube is 3.163105 V, which agrees with the measure
values by Refs. 5, 6, and 8.

As it was mentioned earlier, one group9 has announced
that an individual metallic SWNT will exhibit ballistic trans
port not only at low temperatures, but also atT5300 K. For
the ballistic transport to occur the following condition mu
be true—L!Lm ,Lf , whereL is the length of the sample
Lm5vt is the mean free path andLf is phase coherenc
length.v58.13105 m/s is the velocity of the electrons. Th
length of the tube typically isL51210 mm. We derived
that the electron lifetime is finite and it corresponds toLm
'61 nm. This shows that the mean free path is smaller t
the size of the sample and the nanotube at room tempera
is not in the ballistic regime.

VII. CONCLUSIONS

Several important results were obtained by the above
culations. First, we were able to derive the matrix eleme
of three types of the electron-phonon coupling—modula
hopping, linear electron-phonon coupling, and phon
modulated electron-electron interaction, which all display
a deformation type of approximation. The matrix eleme
for the modulated hopping for graphene and SWNT are
duced due to the fact that the acoustic modes are couple
the optical ones. This was found by introducing a two p
rameter model for the description of the phonon spectra
the two systems.
.
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Up to now only the contribution from the modulated ho
ping was considered for these tight-binding systems.14,20

Now due to the reduction one expects that other proce
could be important. To see which type of interaction is dom
nant compare the deformation constants—uDu53.87,
uD ũ50.87, S1D53.03, andS2D54.56 eV. Therefore, the
modulated hopping and the exchange interaction give sim
contributions in agreement with Ref. 11 and the ordina
electron-phonon interaction could be neglected.

Second, it was found that for graphene 1/t;ek with ek
being the energy of the electron. The interesting fact is t
the relaxation time is energy dependentt;ek

21 , but the elec-
trical conductivity is constant. The modulated hopping a
the exchange scatterings give similar contributions and
RPA with one phonon line can be neglected. The accep
value forsgr is approximately 431022 V21, which is in a
good agreement with our numerical estimates.

Third, we obtained that in the quasi-one-dimensional m
tallic SWNT the important contribution comes from th
same processes as in graphene—modulated hopping an
change interaction. We find that the lifetime of the char
carriers is constant, which leads to a constant mean free p
The numerical value fort corresponds toLm smaller than the
size of the sample. Thus, the electron transport is gover
by the electron-phonon interaction at room temperatures
the nanotube is not in the ballistic regime. This is in d
agreement with the experimental results, presented by Re
The conclusion from our theoretical derivations is that t
nanotube should behave as a 1D metallic system aT
5300 K. The estimated value for the resistance is in a go
agreement with the resistance given by Refs. 5, 6, and 8
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APPENDIX

The functionS(k) in 1D and 2D is evaluated here. Usin
the definition in 1D we have

S~k!1D5
1

2pkE dqMqf k2qq. ~A1!

Now the change of variablesk2q→k is made and the inte
gration is restricted in the first Brillouin zone. Thus,

Mq52e2ln
q

kF
~A2!

S~k!1D52
e2kF

2px
@~11x!2ln u11xu2~12x!2ln u12xu22x#

~A3!

S~k!52
e2kF

2p
J1D~x! ~A4!
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wherex5k/kF . Since we are interested at processes aro
the Fermi level we takex51 and the above expression
become

S~1!52
e2kF

2p
J1D~1! ~A5!

J1D~1!54 ln 222. ~A6!

Therefore,J1D(x)'0.77.
The analytical evaluation ofS(k) in 2D is more difficult

because the integration now becomes two-dimensional. A
the appropriate change of variablesk2q→k we obtain

S~k!2D52
e2

2pk
E

0

kF
dk8E

0

2p

df
kk82k82cosf

Ak821k222kk8 cosf

.

~A7!

If the integration overf is done first, this leads to elliptica
integrals. It turns out that simple results can be obtaine
we integrate overk8 first. With x5k/kF the above expres
sion becomes
se
d

er

if

S2D~x!52
e2kF

2pxE0

2pF S 3

2
x cosf2x2D1S x2

113x cosf

2 D
3A11x222x cosf1x2S cosf2

3cos2f21

2 D
3 ln

A11x222x cosf112x cosf

x~12cosf!
G . ~A8!

Now at x51 the S(x) function can be written in the usua
form —

S~x!52
e2kF

2p
J2D~x!. ~A9!

J2D(x) is evaluated whenx51

J2D~x51!5E
0

2p

dfF S 3

2
cosf21D1~123 cosf!sin

f

2

1
1

2
~2 cosf23 cos2f11!lnS 11

1

sin
f

2
D G .

~A10!

The above integral can be done and we obtain thatJ2D(x
51)'1.17.
,
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