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Electron-lattice interaction was the original idea of Müller and Berdnorz who chose copper oxides, because of the strong Jahn-
Teller effect of the Cu ion leading to the formation of bipolarons. Later several experimental features led to theoretical models
based on strong electronic correlations. The high-TC superconductors cuprates are quasi-bidimensional (2D) and thus lead to the
existence of Van Hove singularities (VHs) in the band structure, that is, a peak in the electronic density of states. The presence
of VHs near the Fermi-level in the cuprates is now well established. In this context we show that many physical properties of
these materials can be explained using electron-phonon interaction, in particular the high critical temperature TC , the anomalous
isotope effect, the superconducting gap and its anisotropy, and the marginal Fermi-liquid properties. These compounds present a
topological transition for a critical hole doping p ≈ 0.21 hole per CuO2 plane.

1. Introduction

Twenty three years after the discovery of the high tempera-
ture superconductivity in cuprates compounds [1], the exact
mechanism of superconductivity is still not yet understood.
Müller and Berdnorz stressed that superconductivity occurs
because of the Jahn-Teller effect of the Cu ion. But all these
compounds are also strongly anisotropic and almost two
dimensional, due to their CuO2 planes, where supercon-
ductivity mainly occurs. It is well known that electrons,
in a periodic system in one or two dimensions, lead to
divergences in the density of states (DOS), named Van Hove
singularities (VHs) [2]. The Van Hove scenario is based on
the assumption that in some superconductors the Fermi
level lies close to such a singularity. Labbé and Friedel [3]
applied this scenario for the first time to the A15 compounds,
where the Nb chains give an almost 1D behaviour. Hirsch
and Scalapino [4] examined the 2D situation (logarithmic
singularity) and applied it to excitonic superconductivity.
Labbé and Bok [5] proposed the Van Hove scenario for the
cuprates, using electron-phonon interaction and predicted
an anomalous isotope effect. The presence of saddle points

(or VHs) near the Fermi level has been confirmed by many
experiments, in particular by Angular Resolved Photoemis-
sion Spectroscopy (ARPES) [6, 7] in different compounds.

The origin of high-TC in the cuprates is still controversial,
and the role of these singularities in the mechanism of high-
TC superconductivity is not yet established, but we want to
stress that the model of 2D itinerant electrons in presence
of VHs in the band structure has already explained a certain
number of experimental facts.

We know that several experimental features led to
theoretical models based on electron-electron interaction
[8, 9] (strong correlations between electrons). These feature
are the following:

(i) the anomalous isotope effect,

(ii) the observation of antiferromagnetic (AF) fluctua-
tions,

(iii) the marginal Fermi-liquid behaviour in the normal
phase,

(iv) the d-wave symetry of the superconducting gap.
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The strong correlations are surely very important in the
underdoped regime but we shall show that electron-phonon
interaction coupled with the Van Hove scenario may explain
must of the properties in the region of optimum doping and
the overdoped region.

In this paper, we give a rapid description of the band
structure of the CuO2 planes. We give the results of our
calculations for the critical temperature TC [5, 10, 11],
the anisotropic superconducting gap [10]. We show the
importance of screening and Coulomb repulsion [10, 12].
We explain the anomalous isotope effect [5], the very small
values of the coherence length [13, 14].

The variation with the doping is linked to the distance
of the FL from the singularity level (EF-ES), so does the
variation with the temperature due to the Fermi-Dirac
distribution [11]. We show that EF-ES is critical for these
properties, leading to Fermi-liquid or marginal Fermi-liquid
behaviour [15, 16].

We explain how the occurrence of a lattice deformation
could place the Fermi level in an optimum situation of
high DOS, leading to a high critical temperature for the
superconducting phase.

In conclusion we show that taking into account both
the electron-phonon interaction and the existence of the
VHs, we obtain a model that fits with experiments in the
optimum and overdoped regime of the cuprates. We hope
that such an approach can help chemists to improve the
HTSC.

2. Electronic Structure of
the Cuprates and Van Hove Scenario

Van Hove singularities are general features of periodic system
[2]. A one electron calculation is easy to perform [5].
A general feature of a 2D model is the presence of Van
Hove singularity [5] (VHs) with logarithmic divergence of
the DOS at an energy E = ES. A simple calculation [17]
gives the result shown in Figure 1 for the constant energy
surfaces (CES) in k-space. This is very well confirmed by the
results of Ino et al. [6] using angular resolved photoemission
spectroscopy (ARPES) (see [6, Figure 7]).

A topological transition is well seen for a doping value
pc = 0.21 hole per Cu atom. The CES are hole-like for
p < pc and electron-like for p > pc. The resulting VHs
gives a peak in the DOS, see Figure 2, and thus increases the
transition temperature whatever the pairing mechanism. The
main consequences of this Van Hove scenario are given in
[17].

This approach is not valid for the underdoped region.
The strong Coulomb repulsion U between two electrons
on a same site is responsible for the fact that with p = 0
the cuprates are Mott-insulators with antiferromagnetic (AF)
order. The AF order disappears rather rapidly with doping,
but AF fluctuations remain, and decrease, until the optimum
doping. This region of strong correlations is present and the
valid approach is that of a doped Mott-insulator [8]. This
is also seen in ARPES; some points of the Fermi surface
disappear for underdoped samples.
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Figure 1: Constant energy surfaces.
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Figure 2: Density of States (DOS).

3. Calculation of TC with
Electron-Phonon Interaction

3.1. Calculation of TC Using the BCS Approach. Labbé and
Bok [5] have computed the band structure for the bidimen-
sional CuO2 planes of the cuprates, considered as a square
lattice (quadratic phase). They obtained a formula for TC

using the following assumptions:

(1) the Fermi level lies at the Van Hove singularity,

(2) the BCS approach is valid,

(i) the electron-phonon interaction is isotropic and so is
the superconducting gap ∆,

(ii) the attractive interaction Vp between electrons is
nonzero only in an interval of energy±�ω0 around the Fermi
level where it is constant. When this attraction is mediated by
emission and absorption of phonons, ω0 is a typical phonon
frequency.
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In that case, the critical temperature is given by

kBTc = 1.13D exp

[

−
(

1

λ
+ ln2

(

�ω0

D

)

− 1.3
)1/2

]

, (1a)

where λ is an electron-phonon coupling constant [3].
A simplified version of Formula (1a), when �ω0 is not too

small compared to D, is

kBTc = 1.13D exp

(

− 1√
λ

)

. (1b)

The two main effects enhancing TC are the following.

(1) The prefactor in Formula (1b) is an electronic energy
that is much larger than a typical phonon energy �ω0.

(2) λ is replaced by
√
λ in Formula (1b) in comparison

with the BCS formula, so that in the weak coupling
limit when λ < 1, the critical temperature is
increased.

As it is however, this approach already explains many
of the properties of the high-TC cuprates near optimum
doping.

3.2. The Variation of TC with Doping. Then we did more
accurate calculations (1995–1997) [10, 11]. By taking into
account the repulsive interaction between second nearest
neighbours (s.n.n.) and the variation of hole doping [11], the
band structure becomes

Ek = −2t(cosX + cosY) + 4t′ cosX cosY + De, (2)

where t′ is an integral representing the interaction with
s.n.n., where De = EF − ES + (4t′) represents the doping
in hole p. The Fermi surface at the VHs is no longer a
square but is rather diamond shaped, see Figure 1, and we
obtain the DOS of Figure 2. For lower or higher doping the
critical temperature decreases. We adjusted the experimental
results of Koike et al. [18]; see Figure 3 [11]. In this case the
authors varied the hole concentration in the CuO2 planes of
Bi2Sr2CaCu2O8+δ using different substitution of cations with
different valences, obtening different systems, that is

Bi2Sr2Ca1−xLuxCu2O8+δ , Bi2Sr2Ca1−xNaxCu2O8+δ ,

Bi2Sr2−xCa1−xLaxCaCu2O8+δ , Bi2Sr2−xKxCaCu2O8+δ .
(3)

In Figure 3 our model account for the variation of the holes
in the CuO2 plane, from an optimum doping, here p ≈
0.20, of this group of compounds, and we calculate the
corresponding TC when EF shift from ES.

3.3. Influence of the Coulomb Repulsion. Although BCS the-
ory [19] neglects Coulomb repulsion, Morel and Anderson
[20] showed very early that it plays a central role in
superconductivity. Assuming a constant repulsive potential
VC from 0 to EF , they found that TC is given by

TC
∼= To exp

[

− 1

λ− µ∗

]

(4)

with µ = NoVc and µ∗ = µ/(1 + µ ln EF/ω0).
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Figure 3: Comparison of the variation of TC with the variation of
the doping dp from the optimum doping at dp = 0, calculated in
our model (red filled circles) and the experimental results of Koike
et al. (black open circles) [18].

Cohen and Anderson [21] assumed that for stability rea-
sons µ is always greater than λ. Ginzburg [22] gave arguments
that in some special circumstances µ can be smaller than λ.
Nevertheless if we take µ ≥ λ, superconductivity only exists
because µ∗ is of the order of µ/3 to µ/5 for a Fermi energy
EF of the order of 100 �ω0. It is useless to reduce the width
of the band W , because λ and µ vary simultaneously and
µ∗ becomes greater if EF is reduced, thus giving a lower TC .
Superconductivity can even disappear in a very narrow band
if λ− µ∗ becomes negative.

Force and Bok studied the renormalization of µ, in the
case of a peak in the DOS in the middle of a broad band [14].
They predict a high-TC in this case due to three main effects.

(i) (λ− µ∗) is replaced by the square root (λ− µ∗)1/2.

(ii) µ∗ is reduced compared to µ because the renormal-
ization is controlled by the width W of the broad
band and not the singularity.

(iii) The prefactor before the exponential in the formula
giving TC is the width of the singularity D instead of
the phonon energy �ω0.

In Figure 4, we show the variation of TC with the width
of the singularity D, with all other parameters (W , ωo)
remaining constant.

4. Anomalous Isotope Effect

The variation of TC with the mass M of the atom of the metal
is considered as an evidence for electron-phonon interaction
as the origin of pairing. In this BCS model [19] TC varies
as M−1/2. The almost absence of isotope effect when O18

was substituted to O16 in the cuprates [23] was considered
as an evidence for non phonon origin of superconductivity.
But Labbé and Bok [5], using Formula (1a), have shown
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Figure 4: Effect of the band width D of the singularity on TC .
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Figure 5: From [26], experimental results of TC (�) and αo (©)
as a function of doping concentration for La2−xSrxCuO4 (the data
where taken from [24]).

that the isotope effect is strongly reduced for HTCS cuprates
at optimum doping. This is due to the fact that in this
situation the Fermi level lies near the VHs and then the width
of the singularity D is more important than the phonon
frequency ωo. They also have predicted that the isotope effect
should reappear for underdoped samples. This was later
experimentally observed [24, 25]. The isotope effect may be
measured by the cœfficient α defined as TC proportional to
M−α (α = 0.5 for usual superconductors). Tsuei et al. [26],
using the VH scenario, have calculated the variation of α
with doping and shown in that it explains the experimental
observations, see Figure 5.

5. Non-Fermi-liquid Properties

5.1. Resistivity. In a classical Fermi-liquid, the lifetime
broadening 1/τ of an excited quasiparticle goes as ε2 and
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Figure 6: From [30], fit of the resistivity ρ of Tl2Ba2CuO6+δ to a
power law temperature dependence ρ = ρo + ATn shown on a log-
log scan. The dashed lines indicate the slope for n = 1 and n = 2.

the resistivity ρ varies as T2 .The marginal Fermi-liquid
situation is the case where 1/τ goes as ε (electronic energy)
and ρ is linear in T . In the half-filled nearest-neighbour
coupled Hubbard model on a square lattice, Newns et al.
[15, 16] have shown that this can also occur when EF is close
to ES. This calculation was however contradicted by Hlubina
and Rice [27].

Experimental evidence of marginal Fermi-liquid
behaviour has been seen in angle resolved photoemission
[28], infrared data, and temperature dependence of electrical
resistivity [29]. Marginal Fermi-liquid theory, in the frame
work of VHs, predicts a resistivity linear with temperature T .
This was observed by Kubo et al. [30] and cited in [8]. They
also observe that the dependence of resistivity goes from T
for high-TC material to T2 as the system is doped away from
the maximum TC , see Figure 6, which is consistent with our
picture; in lower TC material the Fermi level is pushed away
from the singularity.

5.2. Hall Cœfficient. Many measurements of the Hall coef-
ficient RH in various high-TC cuprates have been published
[31, 32]. The main results are the following

(i) At low temperature T , RH ≈ 1/ph0e, where ph0 is the
hole doping, when T increases RH decreases, and for
highly overdoped samples it becomes even negative.

(ii) These authors are also able to define a temperature
T0, where RH changes its temperature behaviour,
and they found that RH(T)/RH(T0) versus T/T0 is
a universal curve for a large doping domain (from
ph0 = 0.10 to ph0 = 0.27).
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We can explain [33], following the approach given by
Ong [34], these results by using the band structure for
carriers in the CuO2 planes. In particular, the existence
of hole-like and electron-like constant energy curves, see
Figure 1, which give contributions of opposite sign to RH .
The transport properties explore a range of energy kBT
around the Fermi level, when T is increased more and more
carriers are on the electron like orbits, resulting in a decrease
of RH . In [33] we present our calculations and the theoretical
fits of many experimental results, and we show that it works
and this supports our model.

6. Gap Anisotropy

6.1. The Calculation. Bouvier and Bok [10] have shown
that using a weakly screening electron-phonon interaction,
and the band structure of the CuO2 planes, an anisotropic
superconducting gap is found.

We use the BCS equation for an anisotropic gap

∆−→
k
=
∑

k′

Vkk′∆k′
√

ξ2
k′ + ∆

2
k′

, (5)

and instead of a constant potential as used in BCS, we choose
a weakly screened attractive electron-phonon interaction
potential:

Vkk′ =
−
∣

∣

∣gq
∣

∣

∣

2

q2 + q2
0

< 0, (6)

where g(q) is the electron phonon interaction matrix

element for−→q =
−→
k
′
−
−→
k and q0 is the inverse of the screening

length. We compute ∆−→
k

for two values of
−→
k :

∆A for kxa = π, kya = 0, (7a)

∆B for kxa = kya =
π

2
. (7b)

We solve (5) by iteration for these two specific points of the
Fermi surface, the saddle point A (π,0) or (1,0) direction,
and point B (π/2,π/2) or (1,1) direction. To obtain the entire

dependence in the wave vector
−→
k , we know from group

theory considerations that Vkk′ having a fourfold symmetry,
the solution ∆k has the same symmetry, so we may use the

angle Φ between the 0 axis and the
−→
k vector as a variable and

expand ∆(Φ) in Fourrier series:

∆(Φ) = ∆0 + ∆1 cos
(

4Φ + ϕ1

)

+ ∆1 cos
(

8Φ + ϕ2

)

+ · · ·
(8)

Further developments of the calculations and explanations
about this model are done in [10]. We obtain, for the two
computed values

∆A = ∆max = ∆0 + ∆1, ∆B = ∆min = ∆0 − ∆1 (9)

The gap anisotropy is important because the scattering is
essentially forward, this is due to the weak screening in

∆
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Figure 7: Anisotropic superconducting gap. Exact calculation for Φ
= 0 and π/4. This represents an s-wave anisotropic superconducting
gap with no nodes in Φ = π/4.
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parameters, t = 0.2 eV, �ωo = 60 meV, q0a = 0.12, λeff = 0.665, red
square symbol =∆max, black diamond symbol =∆av, blue up triangle
symbol = ∆min.

two dimensions. The wave vector explores a small region
in k-space. The gap is important in the direction of the
saddle point, due to its high density of states, and its effect
is reinforced by the weak screening. But for the point B
(π/2,π/2) the DOS is smaller and the effect is reduced.

From our theoretical results, we find an effective coupling
constant λeff in agreement with the hypothesis of the BCS
weak electron-phonon coupling.

6.2. Results. In Figure 7, we present the result of the iterative
calculation.

We thus obtain an “extended s-wave” gap and not a d-
wave pair function. The order parameter is never negative
in our model. Abrikosov [35] has shown, however, that if a
short-range repulsive interaction (which can represent either
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some part of the Hubbard repulsion at the copper sites or
the interaction mediated by spin fluctuations) is added, then
the order parameter can vary in sign and become negative
at points of the Fermi surface distant from the singularity.
Such an approach may reconcile all the observations leading
sometimes to s-wave and other times to d-wave symmetry
of the order parameter. The fact that the order parameter is
negative in certain regions of the Fermi surface explains the
results of experiments showing a π phase shift of the order
parameter [36].

In Figure 8, we present the variation of the various gaps
∆max, ∆min, and ∆av (or ∆0) with temperature at optimum
doping, that is, for a density of holes of the order of 0.20 per
CuO2 plane. We find TC = 91 K and an anisotropy ratio α =

∆max/∆min = 4.2 and for the ratios of 2∆/kBTC the following
values:

2∆max

kBTC
= 6,

2∆av

kBTC
= 3.7,

2∆min

kBTC
= 1.4. (10)

This may explain the various values of 2∆/kBTC observed
in various experiments. The critical temperature found is TC

= 90.75 K as for HTSC cuprates as Bi2Sr2CaCu2O8 (Bi 2212),
YBa2Cu3O7−δ (Y123).

In Figure 9, we present the same results, ∆max, ∆min, ∆av

as a function of EF-ES linked to the variation of doping.

6.3. Effect of the Screening on the Gap Anisotropy and TC .
We stress the importance of q0a, the screening parameter,
in the value of TC , and the anisotropy ratio α = ∆max/∆min.
We give the results of our study, in the approximation of
weak screening (q0a < 0.2). The results are presented in
Figure 10. We see that increasing q0a, or, in other word, going
towards more metallic system or 3D, the anisotropy of the
gap decreases. For TC , the results are presented in Figure 11.
The effect of increasing the screening strength is to decrease
TC . An increase of the screening can be due to the proximity
of EF to ES, where the DOS is high, and in the other side TC is
increased by the high DOS. There is a competition of the two
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effects to obtain the maximum TC . It is why we have to take
into account these two effects and why the experimental TC

is not maximum when EF = ES [37].
We show that the effect of increasing q0a is to transform

the system in a metallic and more isotropic one.

7. Evidence of Lattice Involvement

Labbé and Friedel [38–40] gave an explanation for the
martensitic phase transformation from the cubic to the
tetragonal structure observed at low temperature in the A15
compounds of formula V3X (X = Si, Ga, Ge, . . .) or Nb3Sn.
This change of structure occurs at a temperature Tm greater
thanTC . The Vanadium (V) atoms form a linear chain and an
almost one-dimensional approximation can be used for the d
electrons. In these conditions a VHs appears at the bottom of
the band and can explain high-TC [3, 41–43]. The electronic
energy is reduced when the lattice is deformed and leads to
a band type Jahn-Teller effect. This effect can explain the
observed cubic to tetragonal transition at low temperature.
This effect does not change very much TC in these A15
compounds, because the role of the high DOS due to the VHs
is important only for small doping (low concentration of d
electrons).

The situation is more favorable in the cuprates, which
are almost bidimensional and where the VHs lies near the
middle of the band. Far or near TC , lattice deformations
tetragonal to orthorhombic phase transformations, defor-
mation of the orthorhombic phase, even martensitic phase
transformations, have been observed in the cuprates in func-
tion of temperature, doping, substitution, or under strained
[11, 44–48]. This leads to a competition between electronic
and elastic energies. Evidence of the role of phonon in the
physics of cuprates has been seen experimentally; see, for
example, the paper of Graf et al. [49].

When the Fermi level lies close to a VHs, of energy
ES, as it is the case for cuprates near optimum doping, the
situation could be unstable and a small distortion increases
the distance EF-ES and decreases strongly the electronic
energy.

We propose a different scenario in most of these 2D
compounds. When the lattice in the CuO2 plane is quadratic,
the four saddle points correspond to the same electronic
energy ES and the VHs is fourfold degenerate. Due to the
doping, and then to the effect of decreasing the temperature,
the lattice becomes orthorhombic (rectangular unit cell).
The degeneracy is lifted and we hope to obtain two VHs
at different energy ES1 and ES2 corresponding to the saddle
points along kx and ky in reciprocal space

Ek = −2t
(

1 + β
)

cosX − 2t cosY + 4t′ cosX cosY + De.
(11)

Using the twofold degenerate electronic dispersion, see (11),
where βt represents the difference in the interaction with
the first neigbours in the x and y direction, we calculate
the DOS versus energy, represented on Figure 12. In optimal
conditions the Fermi level could lie between ES1 and ES2. EF
is then between these energy levels of high DOS in a dip, itself

of a smaller but sufficiently high DOS, the lattice is stabilized.
No more phase transformation could be possible, at lower
temperature this situation favors the BCS condensation into
a superconducting phase instead of a lattice transformation,
leading to high-TC due to the high DOS.

The goal for experimentalists will be to find the optimal
parameters (doping, strain, temperature, etc.) to lead the
sample to such situation that it condensates when EF is
pinned in its dip in order to obtain a very high-TC .

We want to indicate in favour of the electron-lattice
interaction that Deutscher and de Gennes [50] proposed a
model valid in the underdoped regime based on the idea that
if two holes occupy two adjacent copper sites, a contraction
of the Cu–O–Cu band occurs. This increases significantly the
transfer integral between the Cu and this can lead to the
formation of bound hole pairs.

8. Conclusion

Strong correlations are probably the dominant factor in the
underdoped region. But in the optimum and overdoped
regions, we have shown that the experimental observations
may be explained by electron-phonon or electron-lattice
interaction coupled with the Van Hove scenario, both
in the normal and superconducting states. The existence
of VHs close to the Fermi level is now well established
experimentally, and this fact must be taken into account
in any physical description of the properties of high-TC

superconducting cuprates.
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