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This article reviews the theory of electron-phonon interactions in solids from the point of
view of ab initio calculations. While the electron-phonon interaction has been studied
for almost a century, predictive non-empirical calculations have become feasible only
during the past two decades. Today it is possible to calculate from first principles many
materials properties related to the electron-phonon interaction, including the critical
temperature of conventional superconductors, the carrier mobility in semiconductors,
the temperature dependence of optical spectra in direct and indirect-gap semiconduc-
tors, the relaxation rates of photoexcited carriers, the electron mass renormalization
in angle-resolved photoelectron spectra, and the non-adiabatic corrections to phonon
dispersion relations. Here we review the theoretical and computational framework un-
derlying modern electron-phonon calculations from first principles, as well as landmark
investigations of the electron-phonon interaction in real materials. In the first part of the
article we summarize the elementary theory of electron-phonon interactions and their
calculations based on density-functional theory. In the second part we discuss a general
field-theoretic formulation of the electron-phonon problem, and establish the connection
with practical first-principles calculations. In the third part we review a number of recent
investigations of electron-phonon interactions in the areas of vibrational spectroscopy,
photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.
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I. INTRODUCTION

The interaction between fermions and bosons is one of
the cornerstones of many-particle physics. It is therefore
unsurprising that, despite being one of the most thor-
oughly studied chapters of solid state physics, the inter-
action between electrons and phonons in solids continues
to attract unrelenting attention.

Electron-phonon interactions (EPIs) are ubiquitous in
condensed matter and materials physics. For example,
they underpin the temperature dependence of the electri-
cal resistivity in metals and the carrier mobility in semi-
conductors, they give rise to conventional superconduc-
tivity, and contribute to optical absorption in indirect-
gap semiconductors. In addition, EPIs enable the ther-
malization of hot carriers, determine the temperature de-
pendence of electron energy bands in solids, and distort
band structures and phonon dispersion relations of met-
als, leading to characteristic kinks and Kohn anomalies in
photoemission and Raman/neutron spectra, respectively.
EPIs also play a role in the areas of spintronics and quan-
tum information, for example by coupling lattice and spin
degrees of freedom in electromagnons, or by modulating
the lifetimes of electron spins in color centers.

Given the fundamental and practical importance of
electron-phonon interactions, it is perhaps surprising
that the majority of theoretical studies in this area still
rely on semi-empirical model Hamiltonians, especially in
times when ab initio calculations have become pervasive
in every area of condensed matter and materials physics.
The reason for this lag can be found in the complexity
of electron-phonon calculations: while density functional
theory (DFT) calculations of total energies and struc-
tural properties were already well established in the early

1980s (Martin, 2004), systematic ab initio calculations of
EPIs had to wait for the development of density func-
tional perturbation theory (DFPT) for lattice dynamics
between the late 1980s and the mid 1990s (Baroni et al.,
1987; Gonze et al., 1992; Savrasov, 1992).

Despite this delayed start, the past two decades have
witnessed tremendous progress in this area, and new
exciting applications are becoming accessible as first-
principles techniques for studying EPIs catch up with
more established DFT methods. These advances are
driving the evolution from qualitative and descriptive the-
ories of electron-phonon effects in model solids to quanti-

tative and predictive theories of real materials. As the
methodology for calculating EPIs from first principles
is rapidly reaching maturity, it appears that the time
is ripe for reviewing this vast, complex and fascinating
landscape.

One of the most authoritative reviews on the theory
of EPIs is the classic book by Grimvall (1981). This
monumental work represents an unmissable reference for
the specialist. However, as this book pre-dates the rise
of ab initio computational methods based on DFT, it
inevitably misses the most recent developments in this
area. The present article constitutes an attempt at fill-
ing this gap by reflecting on what DFT calculations can
contribute to the study of electron-phonon physics. In
addition, this article is also an opportunity to establish a
unified conceptual and mathematical framework in this
incredibly diverse landscape, shed light on the key ap-
proximations, and identify some of the challenges and
opportunities ahead.

As emphasized by the title ‘Electron-phonon interac-
tions from first principles’, the aim of this article is to
review the ab initio theory of EPIs and to survey modern
advances in ab initio calculations of EPIs. The reader in-
terested in the fundamentals of electron-phonon physics
or in theoretical developments relating to model Hamil-
tonians is referred to the outstanding monographs by Zi-
man (1960), Grimvall (1981), Schrieffer (1983), Mahan
(1993), and Alexandrov and Devreese (2010).

Among significant recent advances that are covered
in this review we mention the zero-point renormaliza-
tion and the temperature dependence of electronic band
structures; the calculation of phonon-assisted optical ab-
sorption spectra; the electron mass renormalization and
the kinks in angle-resolved photoemission spectra; the
thermalization of hot carriers in semiconductors; the cal-
culation of phonon-limited mobility; the development of
efficient computational techniques for calculating EPIs;
and efforts to improve the predictive power of EPI cal-
culations by going beyond standard density functional
theory.

The review is organized as follows: Sec. II provides
an historical perspective on the development of theo-
ries of the EPI, from early semi-empirical approaches to
modern first-principles calculations. In Sec. III we ex-
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amine the various components of DFT calculations of
EPIs in solids, and set the formalism which will be used
throughout this article. Section IV provides a synthesis
of the most advanced field-theoretic approaches employed
to study EPIs, and Sec. V makes the link between the
most general formalism and DFT calculations for real
materials. In this section the reader will find a num-
ber of expressions which are useful for practical imple-
mentations. Section VI reviews advanced computational
techniques for performing calculations of EPIs efficiently
and accurately, such as Wannier interpolation and Fermi
surface harmonics. Here we also discuss recent progress
in the study of electron-phonon couplings in polar semi-
conductors. In Sec. VII we discuss recent calculations
of phonons beyond the adiabatic Born-Oppenheimer ap-
proximation. Section VIII reviews calculations of EPIs
in the context of photoelectron spectroscopy. Section IX
focuses on the optical properties of semiconductors and
insulators, in particular the temperature dependence of
the band structure and phonon-assisted optical processes.
In Sec. X we review calculations on the effects of EPIs
on carrier dynamics and transport, including carrier ther-
malization rates and mobilities. Section XI discusses EPI
calculations in the area of phonon-mediated supercon-
ductivity. Attempts at improving the accuracy and pre-
dictive power of ab initio EPI calculations by using more
sophisticated electronic structure methods are discussed
in Sec. XII. Finally in Sec. XIII we highlight the most
pressing challenges in the study of EPIs from first prin-
ciples, and we present our conclusions. We leave to the
appendices some notational remarks and more technical
discussions.

II. HISTORICAL DEVELOPMENT

The notion of ‘electron-phonon interactions’ is as old
as the quantum theory of solids. In fact in the very
same work where Bloch (1929) discussed the formal solu-
tions of the Schrödinger equation in periodic potentials,
Sec. V begins with the all-telling title: “The interaction
of the electrons and the elastic waves of the lattice”. In
this work the first quantum theory of the temperature-
dependent electrical resistivity of metals was developed.
It took only a few years for Bloch’s ‘elastic waves’ to be
replaced by the brand-name ‘phonon’ by Frenkel (1932),
thus establishing a tradition that continues unaltered al-
most a century later (Walker and Slack, 1970).

In order to discuss the early approaches to the electron-
phonon problem, it is useful to state right from the start
the standard form of the Hamiltonian describing a cou-

pled electron-phonon system:

Ĥ =
∑

nk

εnkĉ
†
nkĉnk +

∑

qν

~ωqν(â
†
qν âqν + 1/2)

+N
− 1

2
p

∑

k,q
mnν

gmnν(k,q) ĉ
†
mk+qĉnk(âqν + â†−qν)

[

+N−1
p

∑

k,q,q′

mnνν′

gDW
mnνν′(k,q,q′) ĉ†mk+q+q′ ĉnk

× (âqν + â†−qν)(âq′ν′ + â†−q′ν′)

]

. (1)

In this expression the first line describes the separate
electron and phonon subsystems using the usual second-
quantized formalism, while the second line specifies the
mutual coupling between electrons and phonons to first
order in the atomic displacements (Mahan, 1993). Here
εnk is the single-particle eigenvalue of an electron with
crystal momentum k in the band n, ωqν is the fre-
quency of a lattice vibration with crystal momentum q

in the branch ν, and ĉ†nk/ĉnk (â†qν/âqν) are the associ-
ated fermionic (bosonic) creation/destruction operators.
Np is the number of unit cells in the Born-von Kár-
mán supercell (see Appendix A). The third and fourth
lines of Eq. (1) describe the electron-phonon coupling
Hamiltonian to second order in the atomic displacements.
This contribution is rarely found in the early literature
(hence the square brackets), but it plays an important
role in the theory of temperature-dependent band struc-
tures (Sec. V.B.1). The matrix elements gmnν(k,q) and
gDW
mnνν′(k,q,q′) measure the strength of the coupling be-

tween the electron and the phonon subsystems, and have
physical dimensions of an energy. Here the superscript
‘DW’ stands for Debye-Waller, and relates to the Debye-
Waller self-energy to be discussed in Sec. V.B.2. Com-
plete details as well as a derivation of Eq. (1) will be
provided in Sec. III.

The formal simplicity of Eq. (1) conceals some impor-
tant difficulties that one faces when attempting to use
this equation for predictive calculations. For example,
the electronic Hamiltonian relies on the assumption that
the system under consideration can be described in terms
of well-defined quasi-particle excitations. Similarly, the
phonon term is meaningful only within the harmonic and
the adiabatic approximations. More importantly, Eq. (1)
does not provide us with any prescription for determin-
ing the numerical parameters εnk, ωqν , gmnν(k,q), and
gDW
mnνν′(k,q,q′).
In a sense the history of the study of electron-phonon

interactions is really the history of how to calculate the
parameters entering Eq. (1) using procedures that can
be at once rigorous, reliable, and practical. As it will
become clear in Sec. IV, despite enormous progress in
this area, some conceptual difficulties still remain.
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A. Early approaches to the electron-phonon interaction

1. Metals

A clear account of the theory of EPIs until the late
1950s is given by Ziman (1960). In the following we
highlight only those aspects that are relevant to the sub-
sequent discussion in this article.

Early studies of electron-phonon interactions in solids
were motivated by the quest for a quantum theory of
the electrical resistivity in metals (Hoddeson and Baym,
1980). The common denominator of most early ap-
proaches is that the electronic excitations in Eq. (1)
were described using the free electron gas model, εnk =
~
2k2/2me − εF, me being the electron mass and εF the

Fermi energy; the lattice vibrations were described as
acoustic waves using the Debye model, ωqν = vs|q|, vs
being the speed of sound in the solid. Both approxima-
tions were reasonable given that the systems of interest
included almost exclusively elemental metals, and pri-
marily monovalent alkali and noble metals (Mott and
Jones, 1936). While these approximations were fairly
straightforward, it was considerably more challenging to
determine the EPI matrix elements gmnν(k,q) using re-
alistic approximations.

The very first expression of the electron-phonon ma-
trix element was derived by Bloch (1929); using contem-
porary notation it can be written as:

gmnν(k,q) = −i
(

~

2NpMκωqν

)1/2

q · eκν(q)V0. (2)

Here Mκ is the mass of the κ-th nucleus, and eκν(q) is
the polarization of the acoustic wave corresponding to
the wavevector q and mode ν. The term V0 represents
a unit-cell average of the ‘effective’ potential experienced
by the electrons in the crystal. Equation (2) was meant
to describe the scattering from an initial electronic state
with wavevector k to a final state with wavevector k+q,
via an acoustic phonon of wavevector q and frequency
ωqν . The formula was developed for free electron metals,
and neglects so-called ‘umklapp’ (folding) processes, i.e.
scattering events whereby k goes into k+ q+G with G

being a reciprocal lattice vector. A derivation of Eq. (2) is
provided in Sec. III.B.5. In order to determine V0 Bloch
(1929) argued that the crystal may be described as a
continuous deformable medium. Starting from this as-
sumption he reached the conclusion that the average po-
tential can be approximated as V0 = ~

2/(16mea
2
0) (a0 is

the Bohr radius). Even though Bloch’s matrix element is
no longer in use, this model provides helpful insight into
the nature of EPIs in monovalent metals. For example
the so-called ‘polarization factor’ in Eq. (2), q · eκν(q),
shows that (in the absence of umklapp processes) only
longitudinal sound waves scatter electrons.

Nordheim (1931) proposed a refinement of Bloch’s
model whereby the average potential V0 in Eq. (2) is

replaced by the Fourier component Vκ(q) of the ionic
Coulomb potential (see Sec. III.B.5). The key assump-
tion underlying this model is that the effective potential
experienced by the electrons is simply the sum of the
individual bare ionic potentials of each nucleus. When
a nucleus is displaced from its equilibrium position, the
corresponding potential also shifts rigidly. This is the
so-called the ‘rigid-ion’ approximation.

The main difficulty that arises with the rigid-ion model
is that the Fourier transform of the Coulomb potential
diverges as q−2 for q = |q| → 0; this leads to unreal-
istically strong EPIs. In order to circumvent this diffi-
culty Mott and Jones (1936) proposed to truncate the
ionic potential at the boundary of the Wigner-Seitz unit
cell of the crystal. This choice represents the first at-
tempt at including the electronic screening of the nuclear
potential in a rudimentary form. In practice Mott and
Jones (1936) calculated the Fourier transform of Vκ(r)
by restricting the integration over a Wigner-Seitz cell;
the resulting potential is no longer singular at long wave-
lengths. A detailed discussion of this model can be found
in (Ziman, 1960).

Despite some initial successes in the study of the elec-
trical conductivity of metals, the descriptive power of
these early models was undermined by the complete ne-
glect of the electronic response to the ionic displacements.
The first attempt at describing the effect of the electronic
screening was made by Bardeen (1937). In his model the
average potential V0 in Eq. (2) is replaced by:

V0 → Vκ(q)/ǫ(q), (3)

where ǫ(q) is the Lindhard function (Mahan, 1993):

ǫ(q) = 1 + (kTF/q)
2F (q/2kF). (4)

Here kTF and kF are the Thomas-Fermi screening
wavevector and the Fermi wavevector, respectively, and
F (x) = 1/2+(4x)−1(1−x2) log |1+x|/|1−x|. A deriva-
tion of Bardeen’s model is provided in Sec. III.B.5. Since
ǫ(q) → (kTF/q)

2 for q → 0, the sigularity of the electron-
nuclei potential is removed in Bardeen’s matrix element.
The work of Bardeen (1937) can be considered as a pre-
cursor of modern ab initio approaches, insofar the cal-
culation of the matrix element was carried out using a
self-consistent field method within the linearized Hartree
theory. This strategy is similar in spirit to modern DFPT
calculations.

The key qualitative difference between the approach
of Bardeen (1937) and modern techniques lies in the ne-
glect of exchange and correlation effects in the screening.
A possible route to overcome this limitation was pro-
posed by Bardeen and Pines (1955). In this work the
authors considered the role of a screened exchange inter-
action in the electron-phonon problem (see Appendix B
of their work), however the mathematical complexity of
the formalism prevented further progress along this di-
rection. Similar efforts were undertaken by Hone (1960),
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and a more detailed account of the early approximations
to exchange and correlation can be found in (Grimvall,
1981).

The most interesting aspect of the work by Bardeen
and Pines (1955), as well as previous work along the
same lines by Nakajima (1954), is that for the first time
the electron-phonon problem was addressed using a field-

theoretic approach.
One interesting feature in the theory of Bardeen and

Pines is that their field-theoretic formulation naturally
leads to a retarded electron-phonon vertex: the effec-
tive potential experienced by electrons upon the displace-
ment of nuclei depends on how fast this displacement
takes place. In this approach the effective potential V0 in
Eq. (2) is replaced by the dynamically screened potential:

V0 → Vκ(q)/ǫ(q, ωqν). (5)

Here ǫ(q, ω) is the frequency-dependent Lindhard func-
tion (Mahan, 1993), and the effect of electronic screening
is evaluated at the phonon frequency, ω = ωqν . Some-
what surprisingly, this development was not followed up
in the literature on ab initio calculations of EPIs.

2. Semiconductors

While the investigation of electron-phonon effects was
initially restricted to monovalent metals, the formal de-
velopments were soon extended to the case of more com-
plex systems such as semiconductors. Carriers in semi-
conductors are typically confined within a narrow energy
range near the band extrema; consequently it is expected
that the dominant electron-phonon scattering mecha-
nisms will involve long-wavelength phonons (q → 0).
This concept was formalized by Bardeen and Shockley
(1950) and Shockley and Bardeen (1950), laying the foun-
dations of the ‘deformation-potential’ method.

In the deformation potential approach it is assumed
that the atomic displacements can be described by long-
wavelength acoustic waves, and these can be related in
turn to the elastic strain of the crystal. Using concepts
from the effective mass theory, Bardeen and Shockley
showed that in this approximation the potential V0 in
Eq. (2) can be replaced by:

V0 → E1,nk = Ω ∂εnk/∂Ω, (6)

where Ω represents the volume of the unit cell, and the
electron eigenvalues correspond to the valence or con-
duction band extrema. The derivation of this result
can be found in Appendix B of (Bardeen and Shockley,
1950). The deformation potentials E1 were obtained em-
pirically; for example Bardeen and Shockley determined
these values for the band extrema of silicon by fitting mo-
bility data. More complex scenarios such as anisotropic

constant-energy surfaces in semiconductors were subse-
quently addressed by considering the effects of shear de-
formations (Dumke, 1956). While the concept of defor-
mation potentials has become a classic in semiconductor
physics, this method relies on a semi-empirical approach
and lacks predictive power.

3. Ionic crystals

A class of materials that played an important role in
the development of the theory of EPIs is that of ionic
crystals. The qualitative difference between ionic solids
and the systems discussed in Secs. II.A.1-II.A.2 is that
the atomic displacements can generate long-ranged elec-
tric fields; these fields provide a new scattering channel
for electrons and holes.

The theory of polar electron-phonon coupling started
with the investigation of the electron mean free path in
ionic crystals, in search for a theoretical model of dielec-
tric breakdown in insulators (Fröhlich, 1937; Fröhlich and
Mott, 1939). The central idea of these models is that in
insulators the density of free carriers is very low, there-
fore it is sensible to consider a single electron interacting
with the polarization field of the ionic lattice.

The Fröhlich model is similar in spirit to the contem-
porary work of Bardeen (1937) for metals. The main dif-
ference is that Fröhlich considered the screening arising
from the dielectric polarization of an insulating crystal,
while Bardeen considered the screening arising from the
response of the Fermi sea.

Fröhlich et al. (1950) showed that in the case of
isotropic ionic crystals the effective potential V0 appear-
ing in Eq. (2) must be replaced by:

V0 → −
[

e2Mκω
2
qν

ǫ0 Ω

(

1

ǫ∞
− 1

ǫ0

)

]
1
2

1

|q|2 . (7)

In this expression e is the electron charge, ǫ0 is the dielec-
tric permittivity of vacuum, ǫ0 and ǫ∞ are the static and
the high-frequency relative permittivities, respectively.
This result is derived in Sec. VI.A.3. Using Eqs. (7)
and (2) we see that when ǫ0 > ǫ∞ the matrix element
gmnν(k,q) diverges as |q|−1 at long wavelengths. This
singular behavior can lead to very strong EPIs, and pro-
vides the physical basis for the phenomenon of electron
self-trapping in polarons (Pekar, 1946; Emin, 2013). The
initial studies in this area were rapidly followed by more
refined approaches based on field-theoretic methods (Lee
et al., 1953). A comprehensive discussion of the vari-
ous models can be found in the original review article by
Fröhlich (1954).
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B. The pseudopotential method

The approximations underpinning the models dis-
cussed in Sec. II.A become inadequate when one tries to
study EPIs for elements across the periodic table. This
and other limitations stimulated the development of the
pseudopotential method, starting in the late 1950s with
the work of Phillips and Kleinman (1959). The theory of
pseudopotentials is too vast to be summarized in a few
lines, and the reader is referred to Chapter 11 of (Martin,
2004) for a thorough discussion. Here we only highlight
the aspects that are relevant to the calculation of EPIs.

The genesis of the pseudopotential method is linked
with the question on how the valence electrons of met-
als could be described using the electron gas model, even
though the orthogonality to the core states imposes rapid
fluctuations of the valence wavefunctions near the atomic
cores. In order to address this question, it is useful to go
through the key steps of the orthogonalized planewaves
method (Herring, 1940). In this method one consid-
ers planewaves |k + G〉 for the wavevector k + G, and
projects out the component belonging the Hilbert sub-
space spanned by core electrons. This is done by defin-
ing |k + G〉OPW = |k + G〉 −

∑

c|φc〉〈φc|k + G〉, where
the |φc〉 represent the core states of all atoms in the sys-
tem. The functions |k+G〉OPW are by construction or-
thogonal to core states, therefore they can be used to ex-
pand the valence electron wavefunctions |ψnk〉 using only
a few basis elements: |ψnk〉 =

∑

G ck(G)|k+G〉OPW. In
the language of pseudopotential theory |ψnk〉 is referred
to as the ‘all-electron’ wavefunction, while the function
|ψ̃nk〉 =

∑

G ck(G)|k+G〉 is referred to as the ‘pseudo’
wavefunction. The all-electron and the pseudo wavefunc-
tions are simply related as follows:

|ψnk〉 = T̂ |ψ̃nk〉, with T̂ = 1−
∑

c
|φc〉〈φc|. (8)

Here we used a modern notation borrowed from the
projector-augmented wave (PAW) method of Blöchl
(1994). By construction, the pseudo-wavefunction |ψ̃nk〉
does not exhibit rapid fluctuations near the atomic cores.
The projector operator T̂ is now used to rewrite the
single-particle Schrödinger equation for the all-electron
wavefunction (e.g. the Kohn-Sham equations) in terms
of the pseudo-wavefunctions. Using Ĥ|ψnk〉 = εnk|ψnk〉
and Eq. (8) we have:

T̂ † Ĥ T̂ |ψ̃nk〉 = εnk T̂ †T̂ |ψ̃nk〉, (9)

which is a generalized eigenvalue problem. By replacing
the definition of T̂ given above one finds (Phillips and
Kleinman, 1959):

(Ĥ + V̂ rep)|ψ̃nk〉 = εnk|ψ̃nk〉, (10)

with V̂ rep =
∑

c(εnk−εc)|φc〉〈φc| and εc being the eigen-
value of a core electron. Clearly the additional potential

V̂rep is strongly repulsive and is localized near the atomic
cores. Cohen and Heine (1961) showed that this extra
potential largely cancels the attractive potential of the
nuclei. This is the reason why valence electrons in met-
als behave almost like free electrons.

The practical consequence of these developments is
that it is possible to define smooth effective ‘pseudo-
potentials’ for systematic band structure calculations,
whose form factors include only a few Fourier compo-
nents (Phillips, 1958; Heine and Abarenkov, 1964; Ani-
malu and Heine, 1965; Cohen and Bergstresser, 1966).

The use of pseudopotentials in electron-phonon cal-
culations started with the works of Sham (1961) and
Sham and Ziman (1963). Sham (1961) showed that, if
the pseudopotential can be described by a local func-
tion, then the electron-phonon matrix element gmnν(k,q)
can be calculated by replacing the all-electron poten-
tials and wavefunctions by the corresponding pseudo-
potentials and pseudo-wavefunctions. In this approach
the pseudo-potentials move around rigidly with the ionic
cores, therefore we are dealing effectively with an im-
proved version of the rigid-ion approximation discussed
in Sec. II.A.

The pseudopotential method was employed by Shuey
(1965) in order to calculate the electron-phonon matrix
elements in germanium. Shortly afterwards many calcu-
lations of electron-phonon interactions based on the pseu-
dopotential method appeared in the literature, including
work on the resistivity of metals (Carbotte and Dynes,
1967; Dynes and Carbotte, 1968; Hayman and Car-
botte, 1971; Kaveh and Wiser, 1972), the electron mass-
enhancement in metals (Ashcroft and Wilkins, 1965;
Grimvall, 1969; Allen and Cohen, 1970; Allen and Lee,
1972; Allen, 1972a) the superconducting transition tem-
peratures within the McMillan formalism (Allen et al.,
1968; Allen and Cohen, 1969), the mobility of semicon-
ductors (Ralph, 1970), and the temperature dependence
of semiconductor band structures (Allen and Cardona,
1981, 1983). These calculations were mostly based on
phonon dispersion relations extracted from neutron scat-
tering data, and the results were in reasonable agreement
with experiment. It seems fair to say that the pseudopo-
tential method enabled the evolution from qualitative to
quantitative calculations of electron-phonon interactions.

Before proceeding we note that, although Eqs. (8) and
(9) were introduced starting from the method of orthog-
onalized planewaves, there exists considerable freedom in
the choice of the operator T̂ . In practice T̂ can be chosen
so as to make ψ̃nk as smooth as possible, while retain-
ing information on the all-electron wavefunctions near
the ionic cores. This was achieved by the PAW method
of Blöchl (1994). Broadly speaking it is also possible to
re-interpret the historical development of the pseudopo-
tential method as the evolution of the projector T̂ . In
fact Blöchl showed how the most popular pseudopoten-
tial methods (Hamann et al., 1979; Bachelet et al., 1982;
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Troullier and Martins, 1991; Vanderbilt, 1990) can be
derived from the PAW method under specific approxi-
mations.

C. Ab initio self-consistent field calculations

Predictive calculations of EPIs became possible with
the development of ab initio DFT techniques. The key
advantage of DFT methods is the possibility of calcu-
lating electron band structures, phonon dispersion rela-
tions, and electron-phonon matrix elements entirely from
first principles. Historically, DFT started with the works
of Hohenberg and Kohn (1964) and Kohn and Sham
(1965). However, its widespread use had to wait for
the development of accurate parametrizations of the ex-
change and correlation energy of the electron gas (Hedin
and Lundqvist, 1971; von Barth and Hedin, 1972; Gun-
narsson et al., 1974; Ceperley and Alder, 1980; Perdew
and Zunger, 1981). An introduction to DFT techniques
can be found in the books by Parr and Yang (1994,
advanced), Martin (2004, intermediate), and Giustino
(2014, elementary).

The first calculation of electron-phonon interactions
using DFT was carried out by Dacorogna et al. (1985b)
using a ‘frozen-phonon’ approach (see Sec. III.B.3). In
this work the authors computed electron bands, phonon
dispersions, and electron-phonon matrix elements of Al
entirely from first principles. Quoting from the original
manuscript: “This calculation is ab initio since only in-
formation about the Al atom, i.e. the atomic number and
atomic mass, is used as input”. Dacorogna et al. calcu-
lated the so-called electron-phonon coupling strength λqν
for several phonon branches ν and momenta q through-
out the Brillouin zone, as well as the phonon linewidths
arising from the EPI (see Secs. VII and XI.A). The aver-
age coupling strength was found to be in good agreement
with that extracted from the superconducting transition
temperature. In the approach of Chang et al. (1985);
Dacorogna et al. (1985a,b); and Lam et al. (1986) the
electron-phonon matrix element was calculated using:

gmnν(k,q) = 〈umk+q|∆qνv
KS|unk〉uc, (11)

with unk and umk+q being the Bloch-periodic compo-
nents of the Kohn-Sham electron wavefunctions, ∆qνv

KS

being the phonon-induced variation of the self-consistent

potential experienced by the electrons, and the integral
extending over one unit cell. Equation (11) will be dis-
cussed in Sec. III.B.2. The scattering potential ∆qνv

KS

was calculated by explicitly taking into account the re-
arrangement of the electronic charge following a small
displacement of the nuclei. The inclusion of the self-
consistent response of the electrons constitutes a consid-
erable step forward beyond the rigid-ion approximation
of Sec. II.B.

The next and most recent step in the evolution of
electron-phonon calculations came with the development
of DFPT for lattice dynamics (Baroni et al., 1987; Gonze
et al., 1992; Savrasov, 1992). In contrast to frozen-
phonon calculations, which may require large supercells,
DFPT enables the calculations of vibrational frequen-
cies and eigenmodes at arbitrary wavevectors in the Bril-
louin zone. This innovation was critical in the context
of electron-phonon physics, since the calculation of many
physical quantities requires the evaluation of nontrivial
integrals over the Brillouin zone. The first calculations
of EPIs using DPFT were reported by Savrasov et al.

(1994), Liu and Quong (1996), Mauri et al. (1996), and
Bauer et al. (1998). They calculated the electrical re-
sistivity, thermal conductivity, mass enhancement and
superconducting critical temperature of a number of ele-
mental metals (e.g. Al, Au, Cu, Mo, Nb, Pb, Pd, Ta, V,
and Te), and reported good agreement with experiment.

By the late 1990s most of the basic ingredients required
for the ab initio calculation of EPIs were available; sub-
sequent studies focused on using these techniques for cal-
culating a variety of materials properties, and on improv-
ing the efficiency and accuracy of the methodology. The
most recent advances will be reviewed in Secs. VI-XII.

III. ELECTRON-PHONON INTERACTION IN
DENSITY-FUNCTIONAL THEORY

In this section we review the basic formalism underly-
ing the calculation of EPIs using DFT, and we establish
the link with the Hamiltonian in Eq. (1). We start by in-
troducing the standard formalism for lattice vibrations,
and the electron-phonon coupling Hamiltonian. Then we
briefly summarize established methods of DFPT for cal-
culating electron-phonon matrix elements. For the time
being we describe electrons and phonons as separate sub-
systems; a rigorous theoretical framework for addressing
the coupled electron-phonon system will be discussed in
Sec. IV.

A. Lattice vibrations in crystals

The formalism for studying lattice dynamics in crystals
is covered in many excellent textbooks such as (Born and
Huang, 1954; Ziman, 1960; Kittel, 1963; Ashcroft and
Mermin, 1976; Kittel, 1976). Here we introduce the no-
tation and summarize those aspects which will be useful
for subsequent discussions in this section and in Secs. IV
and V.

We consider M nuclei or ions in the unit cell. The
position vector and Cartesian coordinates of the nucleus
κ in the primitive unit cell are denoted by τκ and τκα,
respectively. We describe the infinitely extended solid
using Born-von Kármán (BvK) boundary conditions. In
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this approach, periodic boundary conditions are applied
to a large supercell which contains Np unit cells, identi-
fied by the direct lattice vectors Rp, with p = 1, . . . , Np.
The position of the nucleus κ belonging to the unit cell p
is indicated by τκp = Rp + τκ. The Bloch wavevectors q
are taken to define a uniform grid of Np points in one
unit cell of the reciprocal lattice, and the vectors of the
reciprocal lattice are indicated by G. In Appendix A we
provide additional details on the notation, and we state
the Fourier transforms between direct and reciprocal lat-
tice.

Using standard DFT techniques it is possible to calcu-
late the total potential energy of electrons and nuclei in
the BvK supercell. This quantity is denoted as U({τκp}),
where the braces are a short-hand notation for the coor-
dinates of all the ions. The total potential energy refers
to electrons in their ground state, with the nuclei being
represented as classical particles clamped at the coordi-
nates τκp. Every DFT software package available today
provides the quantity U as a standard output.

In order to study lattice vibrations, one begins by mak-
ing the harmonic approximation. Accordingly, the total
potential energy is expanded to second order in the dis-
placements ∆τκαp of the ions in the BvK supercell away
from their equilibrium positions τ

0
κp:

U = U0 +
1

2

∑

καp
κ′α′p′

∂2U

∂τκαp∂τκ′α′p′

∆τκαp∆τκ′α′p′ , (12)

where U0 denotes the total energy calculated for the
ions in their equilibrium positions, and the derivatives
are evaluated for the equilibrium structure. The second
derivatives of the total energy with respect to the nu-
clear coordinates define the matrix of ‘interatomic force
constants’:

Cκαp,κ′α′p′ = ∂2U/∂τκαp∂τκ′α′p′ . (13)

The Fourier transform of the interatomic force constants
yields the ‘dynamical matrix’ (Maradudin and Vosko,
1968):

Ddm
κα,κ′α′(q) = (MκMκ′)−

1
2

∑

p
Cκα0,κ′α′p exp(iq ·Rp),

(14)
where Mκ is the mass of the κ-th ion. The superscript
‘dm’ is there to distinguish this quantity from the many-
body phonon propagatorsD(12) andDκαp,κ′α′p′ that will
be introduced in Sec. IV.B. The dynamical matrix is
Hermitian and therefore admits real eigenvalues, which
we denote as ω2

qν :

∑

κ′α′
Ddm

κα,κ′α′(q) eκ′α′,ν(q) = ω2
qν eκα,ν(q). (15)

In classical mechanics, each ωqν corresponds to the vi-
brational frequency of an independent harmonic oscilla-
tor. The hermiticity of the dynamical matrix allows us

to choose the eigenvectors eκα,ν(q) to be orthonormal for
each q:

∑

ν
e∗κ′α′,ν(q)eκα,ν(q) = δκκ′δαα′ , (16)

∑

κα
e∗κα,ν(q)eκα,ν′(q) = δνν′ . (17)

Here the index ν runs from 1 to 3M . The column vectors
eκα,ν(q) for a given ν are called the ‘normal modes of
vibration’ or the ‘polarization’ of the vibration wave. The
following relations can be derived from Eq. (14):

ω2
−qν = ω2

qν ; eκα,ν(−q) = e∗κα,ν(q). (18)

These relations between normal modes carry a degree of
arbitrariness in the choice of phases; here we have chosen
to follow the same phase convention as Maradudin and
Vosko (1968).

Using Eqs. (12) and (13) the Hamiltonian for nuclei
considered as quantum particles can be written as:

Ĥp =
1

2

∑

καp
κ′α′p′

Cκαp,κ′α′p′∆τκαp∆τκ′α′p′ −
∑

καp

~
2

2Mκ

∂2

∂τ2καp
,

(19)
where the ground-state energy U0 has been omitted and
the last term is the kinetic energy operator. The Hamil-
tonian in the above expression corresponds to the energy
of an entire BvK supercell. Equation (19) relies on two
approximations: (i) the harmonic approximation, which
coincides with the truncation of Eq. (12) to second or-
der in the displacements; and (ii) the Born-Oppenheimer
adiabatic approximation. This latter approximation is
made when one calculates the interatomic force constants
with the electrons in their ground state. The scope
and validity of the adiabatic approximation will be dis-
cussed in detail in Sec. V.A.1. We note incidentally that,
strictly speaking, the Born-Oppenheimer approximation
does not need to be invoked were one to use the gener-
alization of DFT to multicomponent systems introduced
by Kreibich and Gross (2001) and Kreibich et al. (2008).

For practical purposes it is convenient to rewrite
Eq. (19) by introducing the quanta of lattice vibrations.
This is accomplished by defining the standard creation
(â†qν) and destruction (âqν) operators for each phonon
of energy ~ωqν and polarization eκα,ν(q). This opera-
tion is not entirely trivial and is described in detail in
Appendix B. The formal definition of the ladder op-
erators is given in Eqs. (B13)-(B14). These operators
obey the commutation relations [âqν , â

†
q′ν′ ] = δνν′δqq′

and [âqν , âq′ν′ ] = [â†qν , â
†
q′ν′ ] = 0, where δ is the Kro-

necker symbol. From these relations we know that the
quanta of the harmonic oscillations in crystals obey Bose-
Einstein statistics. In Appendix B it is shown that the
atomic displacements can be expressed in terms of the
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ladder operators as follows:

∆τκαp =

(

M0

NpMκ

)
1
2 ∑

qν

eiq·Rpeκα,ν(q) lqν (âqν + â†−qν),

(20)
with lqν being the ‘zero-point’ displacement amplitude:

lqν = [~/(2M0ωqν)]
1/2. (21)

Here M0 is an arbitrary reference mass which is intro-
duced to ensure that lqν has the dimensions of a length
and is similar in magnitude to ∆τκαp. Typically M0 is
chosen to be the proton mass.

Using Eqs. (13)-(21) the nuclear Hamiltonian can be
written in terms of 3MNp independent harmonic oscilla-
tors as follows:

Ĥp =
∑

qν
~ωqν

(

â†qν âqν + 1/2
)

, (22)

where the sum is over all wavevectors. The ground-
state wavefunction of this Hamiltonian is a product of
Gaussians, and all other states can be generated by act-
ing on the ground state with the operators â†qν . In the
case of |q| = 0 there are three normal modes for which
ωqν = 0. For these modes, which correspond to global
translations of the crystal, the zero-point displacement
lqν is not defined. Throughout this article it is assumed
that these modes are skipped in summations containing
zero-point amplitudes. A detailed derivation of Eq. (22)
and a discussion of the eigenstates of Ĥp are provided in
Appendix B.

B. Electron-phonon coupling Hamiltonian

Having outlined the standard formalism for addressing
lattice vibrations in crystals, we now proceed to make
the connection between DFT calculations and the re-
maining terms of Eq. (1). The electronic band struc-
ture εnk and electron-phonon matrix elements gmnν(k,q)
are almost invariably calculated by using the Kohn-Sham
(KS) Hamiltonian (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965). A justification for these choices will
be provided in Sec. V; for now we limit ourselves to out-
line the key elements of practical calculations.

1. Kohn-Sham Hamiltonian

Let us denote the Kohn-Sham eigenfunctions by
ψnk(r), and use k to indicate both the wavevector
and spin. We shall restrict ourselves to systems with
collinear spins. The KS eigenfunctions satisfy the equa-
tion ĤKSψnk(r) = εnkψnk(r), with the Hamiltonian
given by:

ĤKS = − ~
2

2me
∇2 + V KS(r; {τκαp}). (23)

Here the potential V KS is the sum of the nuclear (or ionic)
contribution V en, the Hartree electronic screening V H,
and the exchange and correlation potential V xc (Martin,
2004):

V KS = V en + V H + V xc. (24)

The potentials appearing in Eq. (24) are defined as fol-
lows. The electron-nuclei potential energy is given by:

V en(r; {τκαp}) =
∑

κp,T
Vκ(r− τκp −T), (25)

where Vκ(r) is the interaction between an electron and
the nucleus κ located at the center of the reference frame,
and T denotes a lattice vector of the BvK supercell. In
the case of all-electron DFT calculations, Vκ(r) is the
Coulomb interaction:

Vκ(r) = − e2

4πǫ0

Zκ

|r| , (26)

where Zκ is the atomic number of the nucleus κ. In the
case of pseudopotential implementations Vκ is a function
that goes as in Eq. (26) at large |r|, but remains finite at
|r|=0. Furthermore the nuclear charge is replaced by the
ionic charge, that is the difference between the nuclear
charge and the number of core electrons described by the
pseudopotential. In all modern pseudopotential imple-
mentations Vκ(r) is nonlocal due to the separation of the
angular momentum channels (Martin, 2004). However,
since this nonlocality is short-ranged and is inconsequen-
tial in the following discussion, it will be ignored here in
order to maintain a light notation. The Hartree term is
obtained from the electron density, n(r′; {τκαp}):

V H(r; {τκαp}) =
e2

4πǫ0

∑

T

∫

sc

n(r′; {τκαp})
|r− r′ −T| dr

′, (27)

where the integral extends over the supercell. The ex-
change and correlation potential is the functional deriva-
tive of the exchange and correlation energy with respect
to the electron density (Kohn and Sham, 1965):

V xc(r; {τκαp}) = δExc[n]/δn
∣

∣

n(r;{τκαp})
. (28)

The eigenfunctions ψnk of ĤKS can be expressed in the
Bloch form:

ψnk(r) = N
− 1

2
p unk(r)e

ik·r, (29)

with unk a lattice-periodic function. The wavefunc-
tion ψnk is taken to be normalized to one in the su-
percell, while the periodic part unk(r) is normalized to
one in the crystal unit cell. The electron density is
n(r) =

∑

vk |ψvk(r)|2, where v indicates occupied states.
In order to determine ψnk and εnk the Kohn-Sham equa-
tions are solved self-consistently. This requires one to
start from a reasonable guess for the electron density (for
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example a superposition of atomic electron densities),
calculate the potentials in Eq. (24), and determine the
solutions of the KS Hamiltonian in Eq. (23). The elec-
tron density is re-calculated using these solutions, and
the cycle is repeated until convergence.

In order to establish the link with Eq. (1), we can re-
gard the KS Hamiltonian as an effective one-body oper-
ator, and make the transition to a second-quantized for-
malism by using the standard prescription (Merzbacher,
1998):

Ĥe =
∑

nk,n′k′

〈ψnk|ĤKS|ψn′k′〉ĉ†nkĉn′k′ =
∑

nk

εnk ĉ
†
nkĉnk.

(30)
This expression is useful for performing formal manip-
ulations in the study of coupled electron-phonon sys-
tems. However, Eq. (30) implicitly introduces the dras-
tic approximation that the electronic system can be de-
scribed in terms of sharp quasiparticle excitations. A
field-theoretic approach that does not rely on any such
approximation is discussed in Sec. IV.

2. Electron-phonon coupling Hamiltonian to first- and
second-order in the atomic displacements

Within the DFT Kohn-Sham formalism, the coupling
Hamiltonian appearing in the second line of Eq. (1) is
obtained by expanding the Kohn-Sham effective potential
in terms of the nuclear displacements ∆τκp from their
equilibrium positions τ

0
κp. The potential to first order in

the displacements is:

V KS({τκp}) = V KS({τ 0
κp}) +

∑

καp

∂V KS

∂τκαp
∆τκαp. (31)

This expression can be rewritten into normal mode coor-
dinates using Eq. (20):

V KS=V KS({τ 0
κp})+N

− 1
2

p

∑

qν

∆qνV
KS(âqν+â

†
−qν), (32)

having defined:

∆qνV
KS = eiq·r∆qνv

KS, (33)

∆qνv
KS = lqν

∑

κα
(M0/Mκ)

1
2 eκα,ν(q) ∂κα,qv

KS, (34)

∂κα,qv
KS =

∑

p
e−iq·(r−Rp)

∂V KS

∂τκα

∣

∣

∣

∣

r−Rp

. (35)

From the last expression we see that ∂κα,qv
KS and

∆qνv
KS are lattice-periodic functions. The transition

to second quantization is performed as in Eq. (30)
(Merzbacher, 1998):

Ĥep =
∑

nk,n′k′

〈ψnk|V KS({τκp})−V KS({τ 0
κp})|ψn′k′〉ĉ†nkĉn′k′ ,

(36)

where the brakets indicate an integral over the supercell.
After using Eqs. (29), (32)-(35), and (A1) we have:

Ĥep = N
− 1

2
p

∑

k,q
mnν

gmnν(k,q) ĉ
†
mk+qĉnk(âqν + â†−qν), (37)

where the electron-phonon matrix element is given by:

gmnν(k,q) = 〈umk+q|∆qνv
KS|unk〉uc. (38)

Here the subscript ‘uc’ indicates that the integral is car-
ried out within one unit cell of the crystal. The coupling
Hamiltonian in Eq. (37) yields the energy of an entire
supercell. In the case of the three translational modes at
|q|=0 we set the matrix elements gmnν(k,q) to zero, as
a consequence of the acoustic sum rule (see discussion in
Sec.IX.A.1).

Taken together, Eqs. (22), (30), and (37) constitute
the starting point of most first-principles calculations
of electron-phonon interactions. It remains to be seen
how one calculates the electron-phonon matrix elements
gmnν(k,q); the most common procedures are described
in Sec. III.B.3.

Before proceeding, we discuss briefly the second-order
coupling Hamiltonian which appears in the third and
fourth lines of Eq. (1). The rationale for incorporat-
ing this extra term is that the expansion of the Kohn-
Sham potential to first order in the atomic displacements,
Eq. (31), is somewhat inconsistent with the choice of ex-
panding the total potential energy in Eq. (12) to second
order in the atomic displacements. This aspect was dis-
cussed by Allen and Heine (1976) and Allen (1978). In
order to obtain an electron-phonon coupling Hamiltonian
including terms of second-order in the displacements, we
must include the second derivatives of the Kohn-Sham
potential in Eq. (31), and follow the same steps which
led to Eq. (37). By calling the extra term Ĥ

(2)
ep we have:

Ĥ(2)
ep = N−1

p

∑

k,q,q′

mnνν′

gDW
mnνν′(k,q,q′)ĉ†mk+q+q′ ĉnk

× (âqν + â†−qν)(âq′ν′ + â†−q′ν′), (39)

where

gDW
mnνν′(k,q,q′) =

1

2
〈umk+q+q′ |∆qν∆q′ν′vKS|unk〉uc.

(40)
The variations ∆qν are the same as in Eqs. (33)-(35).

The second-order coupling Hamiltonian in Eq. (39) is
considerably more involved than its first-order counter-
part; the increased complexity partly explains why in
the literature this term has largely been ignored. So far
the Hamiltonian Ĥ

(2)
ep has only been described using an

approximation based on first-order perturbation theory
(Allen and Heine, 1976). In this special case, the only
terms in Eq. (39) that can modify the electron excitation
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spectrum are those with q′=−q. The corresponding en-
ergy shift is ∆εnk =N−1

p

∑

qν g
DW
nnνν(k,q,−q)(2nqν+1),

with nqν being the number of phonons in each mode. We
will come back to this point in Sec. IX.A.1.

3. Calculation of electron-phonon matrix elements using
density-functional perturbation theory

In this section we review how the scattering poten-
tial ∆qνv

KS appearing in Eq. (38) is calculated in first-
principles approaches. The most intuitive approach is to
evaluate the derivatives appearing in Eq. (35) by using
finite atomic displacements in a supercell:

∂V KS

∂τκαp

∣

∣

∣

∣

τ
0
κp

≃
[

V KS(r; τ0καp + b)− V KS(r; τ0καp)
]

/b. (41)

In this expression b is a small displacement of the order
of the zero-point amplitude (∼ 0.1 Å), and the atom κ in
the unit cell p is displaced along the direction α. The first
calculations of electron-phonon interactions within DFT
employed a variant of this ‘supercell approach’ whereby
all atoms are displaced according to a chosen vibrational
eigenmode (Chang et al., 1985; Dacorogna et al., 1985a,b;
Lam et al., 1986); this strategy is usually referred to as
the ‘frozen-phonon’ method.

One disadvantage of the frozen-phonon method is that
the supercell may become impractically large when evalu-
ating matrix elements corresponding to long-wavelength
phonons. This difficulty can be circumvented by using
DFPT (Baroni et al., 1987; Gonze et al., 1992; Savrasov,
1992). The main strength of DFPT is that the scat-
tering potential ∆qνv

KS in Eq. (38) is obtained by per-
forming calculations within a single unit cell. Since the
computational workload of standard (non linear-scaling)
DFT calculations scales as the cube of the number of
electrons, the saving afforded by DFPT over the frozen-
phonon method is proportional to N2

p , and typically cor-
responds to a factor > 103.

In the DFPT approach of Baroni et al. (2001) one cal-
culates the lattice-periodic scattering potential ∂κα,qvKS

defined by Eq. (35). By differentiating Eq. (24) via
Eq. (35) this potential is written as:

∂κα,qv
KS = ∂κα,qv

en + ∂κα,qv
H + ∂κα,qv

xc. (42)

The variation of the ionic potential is obtained from
Eqs. (25) and (35). The result is conveniently expressed
in reciprocal space:

∂κα,qv
en(G) = −i (q+G)αVκ(q+G)e−i(q+G)·τκ , (43)

where the convention for the Fourier transform is f(G) =
Ω−1

∫

uc
dr e−iG·rf(r), and Ω is the volume of the unit cell.

In order to keep the presentation as general as possible
we avoid indicating explicitly the non-locality of Vκ which

arises in pseudopotential implementations. The adapta-
tion of this equation and the following ones to the case
of nonlocal pseudopotentials, ultrasoft pseudopotentials,
and the projector-augmented wave method can be found
in (Giannozzi et al., 1991), (Dal Corso et al., 1997), and
(Audouze et al., 2006), respectively. The variation of the
Hartree and exchange-correlation contributions to the
Kohn-Sham potential is obtained from the self-consistent
charge density response to the perturbation in Eq. (43).
After a few manipulations using Eqs. (27) and (35) one
obtains:

∂κα,qv
H(G) = Ω vC(q+G) ∂κα,qn(G), (44)

where vC(q) = Ω−1
∫

dr e−iq·re2/4πǫ0|r| is the Fourier
transform of the Coulomb potential. For the exchange
and correlation potential we use Eq. (28) and the Taylor
expansion of a functional to find:

∂κα,qv
xc(G) = Ω

∑

G′
fxc(q+G,q+G′) ∂κα,qn(G

′),

(45)
where fxc indicates the standard exchange and correla-
tion kernel, which is the second-order functional deriva-
tive of the exchange and correlation energy Exc with
respect to the electron density (Hohenberg and Kohn,
1964):

fxc(r, r′) =
δ2Exc[n]

δn(r)δn(r′)

∣

∣

∣

∣

n(r;{τ0
κp

})

. (46)

In the case of the local density approximation (LDA) to
DFT the exchange and correlation kernel reduces to a
local function (Parr and Yang, 1994), and Eq. (45) is
more conveniently evaluated in real space. Today DFPT
calculations can be performed using one of several ex-
change and correlation kernels. The effect of the ker-
nel on the calculation of lattice-dynamical properties of
solids has been analyzed in several works, see for exam-
ple Dal Corso (2013) and He et al. (2014). The formal
structure of the DFPT equations discussed in this sec-
tion remains unchanged if we replace the DFT kernel
in Eq. (46) by more sophisticated versions. For exam-
ple both DFPT calculations based on Hubbard-corrected
DFT (Floris et al., 2011) and DFPT coupled with dy-
namical mean-field theory (Savrasov and Kotliar, 2003)
have been demonstrated.

It should be noted that in Eqs. (45)-(46) we are implic-
itly assuming a spin-unpolarized system. The adaptation
of these equations as well as the other DFPT equations
to the most general case of non-collinear spin systems
can be found in (Dal Corso, 2007, 2008; Verstraete et al.,
2008).

From Eqs. (44) and (45) we see that the evaluation
of gmnν(k,q) goes through the calculation of the vari-
ation of the electron density induced by the perturba-
tion ∂κα,qv

KS(r) eiq·r. Within DFPT such a variation
is obtained by evaluating the change of the Kohn-Sham
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wavefunctions to first order in perturbation theory. After
inspection of the perturbed Hamiltonian it becomes ev-
ident that the wavefunction change must be of the form
∂unk,q e

iq·r, with ∂unk,q a lattice-periodic function. Us-
ing this observation the first-order variation of the Kohn-
Sham equations can be written as a Sternheimer equation
(Sternheimer, 1954):

(

ĤKS
k+q − εvk

)

∂uvk,q = −∂κα,qvKSuvk, (47)

with ĤKS
k+q = e−i(k+q)·r ĤKS ei(k+q)·r. In this equa-

tion the index v indicates an occupied state. For
|q| = 0 one needs also to consider a shift of the en-
ergy eigenvalues which introduces an additional term
〈uvk|∂κα,0v|uvk〉uc uvk on the right-hand side of Eq. (47).
In practice this term is canceled by the use of the pro-
jectors described in Eq. (48) below, unless one is dealing
with metallic systems. This aspect is discussed in detail
by de Gironcoli (1995) and Baroni et al. (2001). The prin-
cipal advantage of Eq. (47) over standard perturbation
theory is that it does not involve unoccupied electronic
states.

A practical problem arises when attempting to solve
Eq. (47): the linear system on the left-hand side is
ill-conditioned owing to small eigenvalues correspond-
ing to εvk ≃ εv′k+q; furthermore in the case of acci-
dental degeneracies, εvk = εv′k+q, the system becomes
singular. In order to make the system non-singular Gi-
annozzi et al. (1991) noted that the variation of the
electron density only involves the component of ∂uvk,q
belonging to the unoccupied manifold of Kohn-Sham
states. As a consequence, what is really needed is only
∂ũvk,q = (1 − P̂ occ

k+q) ∂uvk,q, having denoted by P̂ occ
k+q =

∑

v |uvk+q〉〈uvk+q| the projector over the occupied states
with wavevector k + q. The equation for this ‘trimmed’
wavefunction variation is simply obtained by projecting
both side of Eq. (47) onto (1 − P̂ occ

k+q), and noting that

P̂ occ
k+q and ĤKS

k+q do commute:
(

ĤKS
k+q − εvk

)

∂ũvk,q = −(1− P̂ occ
k+q) ∂κα,qv

KSuvk. (48)

At this point it is possible to remove all small or
null eigenvalues of the operator on the left-hand side
by adding a term αP̂ occ

k+q to the Hamiltonian. This
term has no effect on the wavefunction variation, since
P̂ occ
k+q ∂ũvk,q = 0 by construction. The operator is made

non-singular by choosing the parameter α larger than
the valence bandwidth (Baroni et al., 2001). From the
wavefunction variation obtained by solving Eq. (48), it is
now possible to construct the density response associated
with the wavevector q:

∂nκα,q(r) = 2N−1
p

∑

vk
u∗vk ∂ũvk,q. (49)

For simplicity a spin-degenerate system has been as-
sumed (a factor of 2 is implicitly included in the sum

over k), and time-reversal symmetry has been used in
order to make the expression more compact (yielding the
factor of 2 on the right-hand side).

In practical DFPT calculations, Eq. (48) is solved us-
ing an iterative procedure which is similar to standard
DFT total energy calculations. One sets the starting
perturbation ∂κα,qvKS to be equal to the electron-nuclei
potential in Eq. (43). By solving Eq. (48) for each occu-
pied state v and each wavevector k using standard lin-
ear algebra techniques, one obtains the induced density
in Eq. (49). The new density is now used to construct
the variations of the Hartree and exchange-correlation
potentials in Eqs. (44) and (45). These induced poten-
tials are added to the electron-nuclei potential, yielding
a ‘screened’ perturbation ∂κα,qv

KS in Eq. (48). The cy-
cle is repeated until the change of ∂nκα,q between two
successive cycles is smaller than a set tolerance.

It can be shown that the screened perturbation
∂κα,qv

KS described in this section is also the key ingre-
dient required for calculating the interatomic force con-
stants in Eq. (13) (Baroni et al., 2001). As a practical
consequence, every software implementation that sup-
ports DFPT calculations already contains all the infor-
mation necessary for evaluating the electron-phonon ma-
trix elements gmnν(k,q).

All the quantities introduced in this section can equiv-
alently be calculated using an alternative, variational
formulation of density-functional perturbation theory
(Gonze et al., 1992; Gonze, 1995a, 1997; Gonze and Lee,
1997). A thorough discussion of the connection between
the Sternheimer approach and the variational approach
to DFPT is provided by Gonze (1995b).

The second-order matrix elements gDW
mn,νν′(k,q,q′)

given by Eq. (40) involve the second derivative of the
Kohn-Sham potential with respect to the nuclear dis-
placements. The evaluation of these quantities would re-
quire the solution of second-order Sternheimer equations
for the second variations of the Kohn-Sham wavefunc-
tions. The general structure of second-order Sternheimer
equations can be found in Sec. IV.H of (Gonze, 1995b).
Since these calculations are rather involved, most practi-
cal implementations employ an approximation whereby
the Debye-Waller matrix elements are expressed in terms
of products of the standard matrix elements gmnν(k,q).
Such an alternative formulation was developed by Allen
and Heine (1976) and Allen and Cardona (1981), and will
be discussed in Sec. IX.A.1. All recent ab initio calcu-
lations of electron-phonon interactions based on DFPT
employed this latter approach.1

1 See for example Marini (2008); Giustino et al. (2010); Gonze
et al. (2011); Cannuccia and Marini (2013); Poncé et al. (2014a);
Poncé et al. (2014b); Antonius et al. (2014); Kawai et al. (2014);
Poncé et al. (2015).
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4. The dielectric approach

Besides the DFPT method described in the previ-
ous section, it is also possible to calculate the screened
perturbation ∂κα,qv

KS using the so-called ‘dielectric ap-
proach’ (Pick et al., 1970; Quong and Klein, 1992). This
latter approach did not find as widespread an applica-
tion as those of Baroni et al. (1987); Gonze et al. (1992);
and Savrasov (1992), but it is useful to establish a link
between DFT calculations of electron-phonon matrix ele-
ments and the field-theoretic formulation to be discussed
in Sec. IV.

For consistency with Sec. III.B.3, we derive the key ex-
pressions of the dielectric approach starting from DFPT.
To this aim we expand the variation of the wavefunction
∂ũvk,q using the complete set of states unk+q (with n re-
ferring to both occupied and empty Kohn-Sham states).
Then we replace this expansion inside Eq. (48), project
onto an arbitrary conduction state, and insert the result
in Eq. (49). After taking into account time-reversal sym-
metry, these steps lead to the following result:

∂κα,qn(r) =

∫

uc

dr′χ0
q(r, r

′) ∂κα,qv
KS(r′), (50)

having defined:

χ0
q(r, r

′) = N−1
p

∑

mnk

fnk − fmk+q

εnk − εmk+q

× u∗nk(r)umk+q(r)u
∗
mk+q(r

′)unk(r
′). (51)

In this expression fnk and fmk+q are the occupations of
each state, and the indices run over all bands. A fac-
tor of 2 for the spin degeneracy is implicitly included
in the sum over k. The quantity χ0

q in Eq. (51) is the
lattice-periodic component for the wavevector q of the
‘independent-electron polarizability’ (Adler, 1962; Wiser,
1963; Pick et al., 1970; Quong and Klein, 1992).

For ease of notation we can write Eq. (50) in symbolic
form as ∂n = χ0 ∂vKS. Using the same symbolic nota-
tion it is also possible to formally rewrite Eqs. (42), (44),
and (45) as follows:

∂vKS = ∂ven + (vC + fxc)χ0 ∂vKS, (52)

from which one obtains:

∂vKS =
(

ǫHxc
)−1

∂ven, (53)

having defined the dielectric matrix:

ǫHxc = 1− (vC + fxc)χ0. (54)

The superscript ‘Hxc’ refers to the Hartree and exchange
and correlation components of the screening. In the lan-
guage of many-body perturbation theory ǫHxc is referred
to as the ‘test electron’ dielectric matrix, hinting at the
fact that the electron density redistribution in response

to a perturbation arises both from classical electrostatics
(the Hartree term vC χ0) and from quantum effects (the
exchange and correlation term fxc χ0). If we neglect the
kernel fxc in this expression, then we obtain the ‘test
charge’ dielectric matrix, which is most commonly known
as the dielectric matrix in the random-phase approxima-
tion (RPA) (Pines and Bohm, 1952):

ǫH = 1− vCχ0. (55)

The symbolic expressions outlined here remain almost
unchanged when using a reciprocal-space representation.
As an example, Eq. (55) becomes simply:

ǫHGG′(q) = δGG′ −Ω2
∑

G′′

χ0
G′′G′(q)vC(q+G)δGG′′ .(56)

Taken together Eqs. (38) and (53) show that the calcula-
tion of electron-phonon matrix elements using DFPT is
equivalent to screening the bare electron-nucleus interac-
tion using ǫHxc; in this case we say that the screening is
described at the ‘RPA+xc’ level of approximation.

At this point it is worth to point out that so far we only
considered the screening of static perturbations: in fact
∂ven was implicitly taken to be frequency-independent.
Physically this choice corresponds to describing phonons
as quasi-static perturbations, so that at each set of in-
stantaneous atomic positions during a vibration cycle,
the electrons have enough time to re-adjust and reach
their ground state. This is a statement of the adiabatic
approximation (Born and Oppenheimer, 1927). The im-
portance of retardation effects in the electron-phonon
problem was already recognized in the early work of
Bardeen and Pines (1955), but the first ab initio calcula-
tions of these effects appeared much later (see Lazzeri and
Mauri, 2006). The formal framework required to incor-
porate retardation in the study of EPIs will be presented
in Sec. IV.

5. Connection with early formulations

For completeness, we illustrate the link between
electron-phonon matrix elements obtained within DFPT
(Sec. III.B.3) and the early approaches of Bloch (1929)
and Bardeen (1937) (Sec. II.A).

The Bloch matrix element can be derived as follows.
We assume that the scattering potential is unscreened
and corresponds to the bare pseudopotentials Vκ in
Eq. (43); that there is only one atom at the origin of the
unit cell; and the Kohn-Sham wavefunctions can be ap-
proximated by free electrons, unk(r) = Ω− 1

2 exp(iGn ·r).
In the last expression, the subscript in Gn is used in or-
der to stress the one-to-one correspondence between the
reciprocal lattice vectors and the energy bands of the free
electron gas in the reduced zone scheme. Using these ap-
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proximations in Eqs. (21), (34), (38), and (43), we find:

gmnν(k,q) = −i [~/(2NpMκωqν)]
1
2 Vκ(q+Gm −Gn)

×(q+Gm −Gn) · eκ,ν(q). (57)

By further neglecting umklapp processes (Gm 6=Gn) the
previous result becomes (Grimvall, 1981, Sec. 3.4):

gmnν(k,q) = −i[~/(2NpMκωqν)]
1
2q ·eκ,ν(q)Vκ(q). (58)

The expression obtained by Bloch (1929) and reproduced
in Eq. (2) is simply obtained by replacing Vκ(q) with the
effective potential V0.

The Bardeen matrix element is more elaborate and can
be derived as follows. We describe the screening of the
bare ionic potential within the RPA approximation, and
determine the dielectric matrix by replacing the Kohn-
Sham wavefunctions by free electrons. Using unk(r) =

Ω− 1
2 exp(iGn · r) and εnk = ~

2(k + Gn)
2/2me − εF in

Eq. (51), the polarizability reduces to:

χ0
GG′(q) = − mekF

π2~2Ω
F (|q+G|/2kF) δGG′ , (59)

where F is the function defined below Eq. (4). The
derivation of this result requires making the transition
from the first Brillouin zone to the extended zone scheme.
If we use Eq. (59) inside Eq. (56), neglect the exchange
and correlation kernel, and use the Fourier transform of
the Coulomb potential, we find:

ǫGG′(q) = δGG′

[

1+
(

k2TF/|q+G|2
)

F (|q+G|/2kF)
]

,
(60)

where the Thomas-Fermi screening length is given by
kTF = [4me2kF/(4πε0π~

2)]1/2. Equation (60) is the well-
known Lindhard dielectric matrix, and the diagonal ma-
trix elements are the same as in Eq. (4) (see Mahan, 1993,
and Giuliani and Vignale, 2005, for in-depth discussions
of the Lindhard function). By following the same steps
that led to Eq. (58), replacing the bare ionic potential
by its screened counterpart, and using Eq. (53) with ǫ
instead of ǫHxc, we obtain:

gmnν(k,q) = −i [~/(2NpMκωqν)]
1
2 q ·eκ,ν(q)Vκ(q)/ǫ(q).

(61)
Here we considered only one atom at the center of the
unit cell, and we neglected umklapp processes. This is
essentially the result derived by Bardeen (1937) and re-
produced in Eq. (3).

IV. FIELD-THEORETIC APPROACH TO THE
ELECTRON-PHONON INTERACTION

In Sec. III we discussed how the materials parame-
ters entering the electron-phonon Hamiltonian in Eq. (1),
namely εnk, ωqν , and gmnν(k,q), can be calculated from

first principles using DFT and DFPT. Today the for-
malism and techniques described in Sec. III constitute de

facto the standard tool in quantitative studies of electron-
phonon interactions in solids (see Secs. VII-XII).

However, it should be noted that the DFT approach
to EPIs does not rest on strong theoretical foundations.
For one, the evaluation of the EPI matrix elements via
Eq. (38) relies on the assumption that the interaction
between electrons and nuclei is governed by the effective
Kohn-Sham potential; therefore we can expect the matrix
elements to be sensitive to the exchange and correlation
functional (see Sec. XII). Furthermore, the very defini-
tion of phonons starting from Eq. (12) relies on the Born-
Oppenheimer approximation, and one might ask whether
this choice is accurate enough in metals and narrow-gap
semiconductors (see Sec. VII). Finally, if one were to
go beyond the Born-Oppenheimer approximation, then
it would seem sensible to also incorporate retardation ef-
fects in the calculation of the EPI matrix elements.

On top of these practical points, and at a more funda-
mental level, we expect that the electron-phonon inter-
action will modify both the electronic structure and the
lattice dynamics of a solid, and these modifications will in
turn affect the coupling between electrons and phonons.
It is therefore clear that a complete theory of interact-
ing electrons and phonons must be self-consistent. In
order to address these issues it is necessary to formulate
the electron-phonon problem using a rigorous and general
theory of interacting electrons and phonons in solids.

The most systematic and elegant approach is based on
quantum field theory (Schwinger, 1951), and is tightly
connected with the development of the GW method
(Hedin, 1965). The first attempts in this direction were
from Nakajima (1954), Bardeen and Pines (1955), Migdal
(1958), and Engelsberg and Schrieffer (1963). However,
from the point of view of the present article, these works
are of limited usefulness since they were mostly developed
around the homogeneous electron gas.

A completely general formulation of the problem,
which seamlessly applies to metals, semiconductors, and
insulators, was first provided by Baym (1961) and subse-
quently by Hedin and Lundqvist (1969). The formalism
developed in these articles constitutes today the most
complete theory of the electron-phonon problem. In fact,
many aspects of this formalism are yet to be explored
within the context of ab initio calculations. After these
seminal works several authors contributed to clarifying
various aspects of the many-body theory of the coupled
electron-phonon system, including Keating (1968), Gillis
(1970), Sjölander and Johnson (1965), Maksimov (1976),
Vogl (1976), and more recently van Leeuwen (2004) and
Marini et al. (2015). In particular, van Leeuwen focused
on the issues of translational and rotational invariance
of the resulting theory, while Marini et al. analyzed the
connection between many-body perturbation theory ap-
proaches and DFT calculations.
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Since the mathematical notation of the original articles
is obsolete and rather difficult to follow, in Secs. IV.A-
IV.D we cover the theory in some detail using contempo-
rary notation. The following derivations can be found
across the works of Kato et al. (1960), Baym (1961),
Hedin and Lundqvist (1969), and Maksimov (1976). Here
we provide a synthesis of these contributions using a uni-
fied notation, and we fill the gaps wherever it is necessary.
The presentation requires some familiarity with field op-
erators (see for example Merzbacher, 1998 for a succinct
introduction).

A. Operators and distinguishability

The starting point for studying EPIs using a field-
theoretic approach is to define the Fock space and the
field operators for electrons and nuclei. In the case of
electrons the choice is unambiguous, since any many-
body state can be represented as a linear combination of
Slater determinants constructed using a basis of single-
particle wavefunctions. In the case of nuclei the situation
is slightly more ambiguous: in principle we might proceed
in a very general way by choosing to focus on the nuclei
as our quantum particles, as opposed to their displace-
ments from equilibrium. In practice this choice leads to
a dead end for two reasons. Firstly, the quantum statis-
tics of nuclei would be dependent on their spin, therefore
we would end up with an unwieldy mix of fermions and
bosons depending on the solid. Secondly, the notion of
‘indistinguishable’ particles, which is central to second
quantization, does not apply to nuclei in solids (at least
in thermodynamic equilibrium and far from a solid-liquid
phase transition). In fact, in many cases we can directly
label the nuclei, for example by means of experimental
probes such as scanning tunneling microscopy and elec-
tron diffraction. In order to avoid these issues, it is best
to study the electron-phonon problem by considering (i)
indistinguishable electrons, for which it is convenient to
use second-quantized operators; (ii) distinguishable nu-
clei, for which it is best to use first quantization in the
displacements; (iii) indistinguishable phonons, resulting
from the quantization of the nuclear displacements; in
this latter case the distinction between first and second
quantization is irrelevant. These aspects are briefly men-
tioned by Baym (1961) and Maksimov (1976).

With these choices, the dynamical variables of the
problem are the electronic field operators ψ̂ (discussed
below) and the nuclear displacements from equilibrium
∆τ̂ (discussed in Sec. IV.C). In this theory the equilib-
rium coordinates of the nuclei are regarded as external

parameters, and are to be obtained for example from
crystallography or DFT calculations. Throughout this
section, we limit ourselves to consider equilibrium Green’s
functions at zero temperature. As a result, all expec-
tation values will be evaluated for the electron-nuclei

ground state |0〉. The extension of the main results to
finite temperature is presented in Sec. V. We will not
specify how to obtain the ground state, since the follow-
ing discussion is independent on the precise shape of this
state. In order to derive expressions that are useful for
first-principles calculations, at the very end the ground
state will be approximated using standard DFT wave-
functions and phonons (see Sec. V).

The electronic field creation/destruction operators are
denoted by ψ̂†(x)/ψ̂(x), where the variable x indicates
both the position r and the spin label σ. These operators
obey the anti-commutation relations (Merzbacher, 1998):
{ψ̂(x), ψ̂(x′)} = {ψ̂†(x), ψ̂†(x′)} = 0, {ψ̂(x), ψ̂†(x′)} =
δ(x−x′). The most general non-relativistic Hamiltonian
for a system of coupled electrons and nuclei can be writ-
ten as:

Ĥ = T̂e + T̂n + Ûee + Ûnn + Ûen, (62)

where each term will be introduced hereafter. The elec-
tron kinetic energy is:

T̂e = − ~
2

2me

∫

dx ψ̂†(x)∇2 ψ̂(x), (63)

with me being the electron mass, and the integrals
∫

dx
denoting the sum over spin and the integration over
space,

∑

σ

∫

dr. The electron-electron interaction is:

Ûee =
1

2

∫

dr

∫

dr′ n̂e(r) [n̂e(r
′)− δ(r− r′)] v(r, r′), (64)

where the electron particle density operator is given by
n̂e(r) =

∑

σψ̂
†(x)ψ̂(x), and where v(r, r′) = e2/(4πε0|r−

r′|) is the Coulomb interaction between two particles
of charge e. In Eqs. (63) and (64) the integrals are
over the entire crystal. This corresponds to consider-
ing a supercell of infinite size (therefore the lattice vec-
tors T of the supercell drop out) and a dense sampling
of wavevectors q in the Brillouin zone. This choice is
useful in order to maintain the formalism as light as pos-
sible. Accordingly, all sums over q are replaced using
N−1

p

∑

q → Ω−1
BZ

∫

dq, where the integral is over the Bril-
louin zone of volume ΩBZ. Similarly the closure relations
in Eq. (A1) are replaced by:

∫

dq exp(iq ·Rp) = ΩBZ δp0
and

∑

p exp(iq · Rp) = ΩBZ δ(q). The nuclear kinetic
energy operator is the same as the last term in Eq. (19).
Using the same notation as in Sec. III the nucleus-nucleus
interaction energy is:

Ûnn =
1

2

∑

κ′p′ 6=κp

ZκZκ′v(τ 0
κp+∆τ̂κp, τ

0
κ′p′+∆τ̂κ′p′). (65)

Here τ
0
κp denotes the classical equilibrium position of

each nucleus, and the displacement operators ∆τ̂κp will
later be expressed in terms of the ladder operators from
Appendix B. The electron-nucleus interaction energy is:

Ûen =

∫

dr

∫

dr′ n̂e(r)n̂n(r
′)v(r, r′), (66)
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where the nuclear charge density operator is given by:

n̂n(r) = −
∑

κp
Zκ δ(r− τ

0
κp −∆τ̂κp). (67)

Here the density operators are expressed in units of the
electron charge, so that the expectation value of the total
charge density is −e〈0|n̂(r)|0〉 with n̂(r) = n̂e(r)+ n̂n(r).

We underline the asymmetry between Eqs. (64) and
(65): in the case of electrons one considers the electro-
static energy of a continuous distribution of charge, and
the unphysical self-interaction is removed by the Dirac
delta; whereas in the case of nuclei, the particles are dis-
tinguishable therefore one has to take into account all
pairwise interactions individually.

B. Electron Green’s function

1. Equation of motion and self-energy

In this section we focus on the electrons. By combining
Eqs. (62)-(66) and using the anti-commutation relations
for the field operators one finds the standard expression:

Ĥ = T̂n + Ûnn +

∫

dx ψ̂†(x)

[

− ~
2

2me
∇2 + V̂n(r)

]

ψ̂(x)

+
1

2

∫

dx dx′ v(r, r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x), (68)

where the nuclear potential V̂n is given by:

V̂n(r) =

∫

dr′v(r, r′)n̂n(r
′). (69)

In order to study the excitation spectrum of the many-
body Hamiltonian Ĥ at equilibrium we need to determine
the time-ordered one-electron Green’s function (Kato
et al., 1960; Fetter and Walecka, 2003). At zero tem-
perature this function is defined as:

G(xt,x′t′) = − i

~
〈0| T̂ ψ(xt)ψ†(x′t′)|0〉, (70)

where T̂ is Wick’s time-ordering operator for fermions,
and ensures that the times of the subsequent operators in-
crease towards the left. The formal definition of the Wick
operator is: T̂ψ(xt)ψ†(x′t′) = θ(t− t′)ψ(xt)ψ†(x′t′) −
θ(t′−t)ψ†(x′t′)ψ(xt), where θ is the Heaviside function.
Based on this definition we see that for t > t′ the Green’s
function in Eq. (70) corresponds to the scalar product
between the initial state ψ†(x′t′)|0〉 and the final state
ψ†(xt)|0〉. This product is precisely the probability am-
plitude for finding an electron in the position x at the
time t, after having introduced an electron in x′ at an
earlier time t′. In the case t < t′ the situation is reversed
and the Green’s function describes the propagation of a
hole created in the system at the time t′.

In order to determine G(xt,x′t′) we need to establish
an equation of motion for the field operators. This can be

done by describing the time-dependence of the operators
within the Heisenberg picture:

ψ̂(xt) = eitĤ/~ ψ̂(x) e−itĤ/~, (71)

where Ĥ was defined in Eq. (68). From this definition it
follows immediately:

i~
∂

∂t
ψ̂(xt) = [ψ̂(xt), Ĥ]. (72)

By combining Eqs. (68) and (72) and using the anti-
commutation relations for the field operators one obtains:

i~
∂

∂t
ψ̂(xt) =

[

− ~
2

2me
∇2 +

∫

dr′v(r, r′) n̂(r′t)

]

ψ̂(xt),

(73)
where the time-dependence in n̂(r′t) is to be understood
in the Heisenberg sense, as in Eq. (71). This equation of
motion allows us to write the corresponding equation for
the electron Green’s function in Eq. (70):

[

i~
∂

∂t
+

~
2

2me
∇2 − ϕ(rt)

]

G(xt,x′t′) = δ(xt,x′t′)

− i

~

∫

dr′′dt′′v(rt, r′′t′′)〈T̂ n̂(r′′t′′)ψ(xt)ψ†(x′t′)〉. (74)

Here v(rt, r′′t′′) = v(r, r′′)δ(t− t′′), the brakets 〈· · ·〉 are
a short-hand notation for 〈0| · · · |0〉, and the additional
term ϕ is discussed below. In order to obtain Eq. (74)
we used once again the anti-commutation relations, and
we noted that the derivative of the Heaviside function is
a Dirac delta.

The new term ϕ(rt) which appeared in Eq. (74) is a
scalar electric potential which couples to both electronic
and nuclear charges. This potential has been introduced
in order to perturb the system via the additional Hamil-
tonian Ĥ1(t) =

∫

dr n̂(rt)ϕ(rt). The physical idea behind
this choice is to use ϕ(rt) in order to induce forced oscil-
lations in the system. When the system resonates with
the perturbation we know that the resonant frequency
must correspond to a free oscillation, that is a many-body
eigenmode. From a formal point of view, the potential
ϕ(rt) is introduced in order to exploit Schwinger’s func-
tional derivative technique (Kato, 1960, Appendix II)
and is set to zero at the end of the derivation.

One complication arising from the introduction of
ϕ(rt) in Eq. (74) is that the time evolution in Eq. (71)
is no longer valid, since the perturbed Hamiltonian now
depends on the time variable. The way around this
complication is to switch from the Heisenberg picture
to the interaction picture. This change amounts to re-
placing the exponentials in Eq. (71) by the time-ordered

Dyson series Û(t) = T̂ exp
(

−i~−1
∫ t

0
Ĥ(t′)dt′

)

(Fetter

and Walecka, 2003, p. 57). Since this would lead to an
overlong derivation, we prefer to leave this aspect aside
and refer the reader to Aryasetiawan and Gunnarsson
(1998) for a more comprehensive discussion.
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In order to write Eq. (74) in a manageable form, we
use the identity (Kato et al., 1960):

δ〈T̂ â(t1)b̂(t2)〉
δϕ(r′′t′′)

=− i

~
〈T̂ [n̂(r′′t′′)−〈n̂(r′′t′′)〉] â(t1)b̂(t2)〉.

(75)
In this and the following expressions δ/δϕ(r′′t′′) denotes
the functional derivative with respect to ϕ(r′′t′′), and
should not be confused with the Dirac delta functions
δ(xt,x′t′). Equation (75) is proven by Kato et al. (1960,
Appendix II) and by Hedin and Lundqvist (1969, Ap-
pendix B.a). After identifying â and b̂ with ψ̂(xt) and
ψ̂†(x′t′), respectively, Eq. (74) becomes:
[

i~
∂

∂t
+

~
2

2me
∇2 − Vtot(rt)−i~

∫

dr′′dt′′v(rt+ η, r′′t′′)

× δ

δϕ(r′′t′′)

]

G(xt,x′t′) = δ(xt,x′t′), (76)

where η is a positive infinitesimal arising from the time-
ordering, and Vtot(rt) is the total potential acting on the
electronic and nuclear charges, averaged over the many-
body quantum state |0〉:

Vtot(rt) =

∫

dr′v(r, r′)〈n̂(r′t)〉+ ϕ(rt). (77)

Equation (76) was first derived by Kato et al. (1960). In
order to avoid a proliferation of variables, it is common
practice to replace the letters by integer numbers, using
the convention (xt) or (rt) → 1, (x′t′) or (r′t′) → 2,
(rt+η) → 1+, and so on. Using this convention the last
two equations become:

[

i~
∂

∂t1
+

~
2

2me
∇2(1)− Vtot(1)

−i~
∫

d3 v(1+3)
δ

δϕ(3)

]

G(12) = δ(12), (78)

and

Vtot(1) =

∫

d2 v(12)〈n̂(2)〉+ ϕ(1). (79)

In these expressions the spin labels are implied for the
Green’s function and for the Dirac delta.

At this point, a set of self-consistent equations for cou-
pled electrons and phonons can be generated by eliminat-
ing the functional derivative in Eq. (78). For this purpose
one first relates the total screened electrostatic potential
Vtot to the external potential ϕ by introducing the inverse
dielectric matrix ǫ−1 as a functional derivative:

ǫ−1(12) = δVtot(1) / δϕ(2). (80)

The function ǫ−1(12) is the many-body counterpart of
the dielectric matrix discussed in Sec. III.B.4. The form
given by Eq. (80) is the most general field-theoretic for-
mulation for a system of interacting electrons and nuclei.

The next step is to rewrite δG/δϕ inside Eq. (78) in
terms of the inverse Green’s function, G−1. By using the
fact that δ

∫

d2G(12)G−1(23) = 0 and the rule for the
functional derivative of a product (Kadanoff and Baym,
1962) one obtains:

δG(12)

δϕ(3)
= −

∫

d(45)G(14)
δG−1(45)

δϕ(3)
G(52). (81)

In order to eliminate any explicit reference to ϕ we
can express the functional derivative on the right-hand
side using the chain rule for functional differentiation
(Kadanoff and Baym, 1962):

δG−1(45)

δϕ(3)
=

∫

d6
δG−1(45)

δVtot(6)

δVtot(6)

δϕ(3)
. (82)

It is customary to call ‘vertex’ the three-point quantity
defined by:

Γ(123) = − δG−1(12) / δVtot(3). (83)

By combining Eqs. (78) and (80)-(83) one finds:
[

i~
∂

∂t1
+

~
2

2me
∇2(1)− Vtot(1)

]

G(12)

−
∫

d3Σ(13)G(32) = δ(12), (84)

having introduced the so-called ‘electron self-energy’ Σ:

Σ(12) = i~

∫

d(34)G(13)Γ(324)W (41+), (85)

which in turn contains the ‘screened Coulomb interac-
tion’ W , defined as:

W (12) =

∫

d3 ǫ−1(13) v(32) =

∫

d(3) v(13)ǫ−1(23). (86)

The last equality can be obtained by observing that
δ〈n̂(1)〉/δϕ(2) = δ〈n̂(2)〉/δϕ(1) after Eq. (75), therefore
W (12) =W (21).

Now, by inverting Eq. (84) and using Eq. (83), we can
express the vertex Γ in terms of Σ and G:

Γ(123)=δ(12)δ(13)+

∫

d(4567)
δΣ(12)

δG(45)
G(46)G(75)Γ(673).

(87)
The derivation of this result is rather lengthy: it re-
quires the use of the chain rule, in symbols δ/δVtot =
(δG/δVtot)δ/δG, as well as Eq. (81) with Σ and Vtot in-
stead of G and ϕ, respectively.

Equations (84)-(87) form a nonlinear system of equa-
tions for the electron Green’s function, G, the electron
self-energy, Σ, the total screened Coulomb interaction,
W , and the vertex, Γ. In order to close the loop it re-
mains to specify the relation between W and the other
quantities. The next section is devoted to this aspect.
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2. The screened Coulomb interaction

An equation for the screened Coulomb interaction can
be found by combining Eqs. (79), (80), and (86):

W (12) = v(12) +

∫

d(34) v(13)
δ〈n̂(3)〉
δVtot(4)

W (42). (88)

By defining the ‘polarization propagator’ as:

P (12) =
δ〈n̂(1)〉
δVtot(2)

, (89)

the previous expression takes the usual form (Hedin,
1965):

W (12) = v(12) +

∫

d(34) v(13)P (34)W (42). (90)

This result can be combined with Eq. (86) in order to
express the dielectric matrix in terms of the polarization:

ǫ(12) = δ(12)−
∫

d(3)v(13)P (32). (91)

We now consider the special case whereby the nuclei are
regarded as classical point charges clamped to their equi-
librium positions. In this situation, the variation of the
charge density δ〈n̂〉 in Eq. (89) corresponds to the re-
distribution of the electronic charge in response to the
perturbation δVtot. In order to describe this special case
it is convenient to introduce a new polarization propaga-
tor, Pe, associated with the electronic response only:

Pe(12) =
δ〈n̂e(1)〉
δVtot(2)

=−i~
∑

σ1

∫

d(34)G(13)G(41+)Γ(342).

(92)
The last equality in this expression is obtained by using
Eq. (81) with Vtot instead of ϕ, together with Eq. (83),
and by considering that the electron density is related to
the Green’s function via the relation:

〈n̂e(1)〉 = −i~
∑

σ1

G(11+). (93)

In conjunction with Pe it is natural to define the Coulomb
interaction screened by the electronic polarization only:

We(12) = v(12) +

∫

d(34) v(13)Pe(34)We(42), (94)

as well as the associated dielectric matrix, in analogy
with Eq. (91):

ǫe(12) = δ(12)−
∫

d3 v(13)Pe(32). (95)

Taken together, Eqs. (84)-(87) with W replaced by We

constitute the well-known Hedin’s equations for a system
of interacting electrons when the nuclei are clamped to
their equilibrium positions (Hedin, 1965).

In order to go back to the most general case whereby
the nuclei are not clamped to their equilibrium positions,
one has to describe the re-adjustment of both electronic
and nuclear charge. To this aim we combine Eq. (80),
(86), (88), (92), (94), and (95). The result is:

W (12) =We(12) +

∫

d(34)We(13)
δ〈n̂n(3)〉
δϕ(4)

v(42). (96)

An explicit expression for δ〈n̂n〉/δϕ can be obtained using
the following reasoning. We go into the details since this
is a delicate passage. Equation (75) provides a recipe for
evaluating the variation of any operator with respect to a
potential ϕ(rt) which couples to the total charge density
operator n̂(rt) via Ĥ1(t) =

∫

dr n̂(rt)ϕ(rt). Therefore we
can replace â b̂ in Eq. (75) by n̂n to obtain:

δ〈n̂n(1)〉
δϕ(2)

= − i

~
〈T̂ [n̂(2)−〈n̂(2)〉][n̂n(1)−〈n̂n(1)〉]〉. (97)

In addition, if we introduce a second perturbation,
Ĥ2(t) =

∫

dr n̂n(rt)J(rt), which couples only to the nu-
clear charges, we can repeat the same reasoning as in
Eq. (97) after replacing ϕ by J and n̂ by n̂n:

δ〈n̂(1)〉
δJ(2)

=− i

~
〈T̂ [n̂n(2)−〈n̂n(2)〉] [n̂(1)− 〈n̂(1)〉]〉. (98)

The comparison between Eqs. (97) and (98) yields:

δ〈n̂n(1)〉
δϕ(2)

=
δ〈n̂(2)〉
δJ(1)

. (99)

This can be restated by using the chain rule, δ〈n̂e〉/δJ =
δ〈n̂e〉/δVtot × δVtot/δ〈n〉 × δ〈n〉/δJ :

δ〈n̂(1)〉
δJ(2)

=

∫

d3 ǫ−1
e (13)

δ〈n̂n(3)〉
δJ(2)

. (100)

The variation δ〈n̂n〉/δJ on the right-hand side can be
expressed as in Eq. (98):

δ〈n̂n(1)〉
δJ(2)

=− i

~
〈T̂ [n̂n(2)−〈n̂n(2)〉] n̂n(1)〉, (101)

and since 〈n̂n − 〈n̂n〉〉 = 0 this can also be rewritten as:

δ〈n̂n(1)〉/δJ(2)=D(21), (102)

having defined:

D(12) = − i

~
〈T̂ [n̂n(1)−〈n̂n(1)〉] [n̂n(2)−〈n̂n(2)〉]〉.

(103)
This quantity is called the ‘density-density correlation
function’ for the nuclei. Finally, we can combine
Eqs. (96), (99), (100), and (103) to obtain:

W (12) =We(12) +Wph(12), (104)
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where Wph is the nuclear contribution to the screened
Coulomb interaction, and is given by:

Wph(12) =

∫

d(34)We(13)D(34)We(24). (105)

This important result was derived first by Hedin and
Lundqvist (1969).

3. Nuclear contribution to the screened Coulomb interaction

In view of the forthcoming discussion, it is useful to
derive a more explicit expression for the screened interac-
tion Wph in Eq. (105). Here we follow Baym (1961) and
Maksimov (1976). The Taylor expansion of the Dirac
delta to second order in the displacement u reads:

δ(r− u) = δ(r)− u · ∇δ(r) + 1

2
u·∇∇δ(r)·u, (106)

where u · ∇∇ ·u is a short-hand notation for the second-
order derivative

∑

αα′uαuα′∇α∇α′ . The above expres-
sion derives from the Fourier representation of the Dirac
delta. Using Eq. (106) inside (67) we deduce:

n̂n(r) = n0
n(r) +

∑

κp
Zκ ∆τ̂κp · ∇δ(r− τ

0
κp)

− 1

2

∑

κp
Zκ ∆τ̂κp · ∇∇δ(r− τ

0
κp) ·∆τ̂κp, (107)

where n0
n(r) is the density of nuclear point charges at

the classical equilibrium positions τ
0
κp. After taking into

account the time evolution in the Heisenberg picture as in
Eq. (71), we can replace this expansion inside Eq. (103)
to obtain:

D(12) =
∑

καp
κ′α′p′

Zκ∇1,αδ(r1 − τ
0
κp)Dκαp,κ′α′p′(t1t2)

×Zκ′∇2,α′δ(r2 − τ
0
κ′p′). (108)

On the right-hand side we introduced the ‘displacement-
displacement correlation function’:

Dκαp,κ′α′p′(tt′) = − i

~
〈T̂ ∆τ̂καp(t)∆τ̂κ′α′p′(t′)〉. (109)

If we insert the last two equations in Eq. (105) we find:

Wph(12) =
∑

καp
κ′α′p′

∫

d(34) ǫ−1
e (13)∇3,αVκ(r3 − τ

0
κp)

×Dκαp,κ′α′p′(t3t4)ǫ
−1
e (24)∇4,α′Vκ′(r4 − τ

0
κ′p′). (110)

In this expression Vκ is the bare Coulomb potential of a
nucleus or its ionic pseudo-potential.

At this point of the derivation, Hedin and Lundqvist
introduce the approximation that the electronic dielec-
tric matrix in Eq. (110) can be replaced by its static

counterpart. This choice implies the Born-Oppenheimer

adiabatic approximation. In view of maintaining the for-
malism as general as possible, we prefer to keep retarda-
tion effects, following the earlier works by Bardeen and
Pines (1955) and Baym (1961). We will come back to
this aspect in Secs. V.A.3 and V.B.2.

We stress that the sole approximation used until this
point is to truncate the density operator for the nuclei
to the second order in the atomic displacements. This
is the standard harmonic approximation. Apart from
this approximation, which is useful to express Wph in a
tractable form, no other assumptions are made. Gillis
(1970) proposed a generalization of the results by Baym
(1961) which does not use the harmonic approximation.
However, the resulting formalism is exceedingly complex,
and has not been followed up.

C. Phonon Green’s function

In order to complete the set of self-consistent many-
body equations for the coupled electron-phonon sys-
tem, it remains to specify a prescription for calculat-
ing the displacement-displacement correlation function,
Dκαp,κ′α′p′(tt′). This function is seldom referred to
as the ‘phonon Green’s function’, even though stricly
speaking this name should be reserved for the quan-
tity −(i/~)〈T̂ âqν(t)â†q′ν′(t′)〉 which will be discussed in
Sec. V.A.1. In the following we describe the procedure
originally devised by Baym (1961), and subsequently an-
alyzed by Keating (1968), Hedin and Lundqvist (1969),
Gillis (1970), and Maksimov (1976).

The starting point is the equation of motion for the dis-
placement operators ∆τ̂καp(t). In analogy with Eq. (72)
we have: i~∂/∂t∆τ̂κp(t) = [∆τ̂κp(t), Ĥ]. Since we are
considering the harmonic approximation and we expect
the nuclei to oscillate around their equilibrium positions,
it is convenient to aim for an expression resembling New-
ton’s equation. This can be done by taking the time-
derivative of the equation of motion:

Mκ
∂2

∂t2
∆τ̂κp = −Mκ

~2
[[∆τ̂κp, Ĥ], Ĥ]. (111)

After evaluating the commutators using Eqs. (62)-(66)
and performing the derivatives with respect to the nu-
clear displacements by means of Eq. (106), we obtain
(the steps are laborious but straightforward):

Mκ
∂2

∂t2
∆τ̂κp(t) = Zκ

∫

dr dr′ n̂(κp)(rt)v(r, r′)

×
{

−∇′δ(r′−τ
0
κp) +∇′

[

∇′δ(r′−τ
0
κp) ·∆τ̂κp(t)

]}

. (112)

Here n̂(κp)(r) is the total charge density of electrons and
nuclei, except for the contribution of the nucleus κ in the
unit cell p. In the second line ∇′ indicates that the deriva-
tives are taken with respect to the variable r′. At this
point, we can use the functional derivative technique as
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in Sec. IV.B in order to determine an expression involving
the displacement-displacement correlation function from
Eq. (109). Here, instead of using J(r) as in Sec. IV.B.2
for the nuclear density, it is convenient to work with the
individual displacements, and introduce a third pertur-
bation Ĥ3(t) =

∑

κp Fκp(t) · ∆τ̂κp(t). The extra terms
Fκp(t) have the meaning of external forces acting on the
nuclei. Using this perturbation, it is possible to write
the displacement-displacement correlation function in a
manner similar to Eq. (101):

δ〈∆τ̂καp(t)〉
δFκ′α′p′(t′)

= Dκαp,κ′α′p′(tt′). (113)

This result was derived by Baym (1961) using a finite-
temperature formalism. As in the case of the electron
Green’s function in Sec. IV.B, it can only be obtained
by working in the interaction picture, and by taking into
account the explicit time-dependence of the Hamiltonian
Ĥ+Ĥ3(t). Also in the present case, we omit these details
for the sake of conciseness.

If we take the expectation value of Eq. (112) in the
ground state, after having added the new force term
−Fκp(t), and carry out the functional derivative with
respect to Fκ′p′(t′), we obtain:

Mκ
∂2

∂t2
Dκαp,κ′α′p′(tt′) = −δκαp,κ′α′p′δ(tt′)

+Zκ

∫

dr dr′
[

−δ〈n̂
(κp)(rt)〉

δFκ′α′p′(t′)
v(r, r′)∇′

α δ(r
′ − τ

0
κp)

+〈n̂(κp)(rt)〉v(r, r′)∇′
α∇′

γ δ(r
′−τ

0
κp)Dκγp,κ′α′p′(tt′)

]

,(114)

where the sum over the Cartesian directions γ is implied.
The derivation of this result is rather cumbersome and
involves the following considerations: (i) the Dirac deltas
in the first line come from the force terms −Fκp added to
the Hamiltonian; (ii) within the Harmonic approximation
the expectation value 〈n̂(κp)∆τ̂κp〉 can be replaced by
〈n̂(κp)〉〈∆τ̂κp〉 (Baym, 1961); (iii) the expectation value
〈∆τ̂κp〉 can be set to zero, because at the end of the
derivation one sets |Fκp| = 0 hence the expectation val-
ues of the displacements vanish. We note that Hedin
and Lundqvist (1969) omitted the last line of Eq. (114)
in their derivation, but this term was correctly included
by Baym (1961) and Maksimov (1976).

The remaining functional derivative in Eq. (114) can
be expressed in terms of the nuclear charge density using
the same strategy which led to Eq. (100). The result is:

δ〈n̂(κp)(rt)〉
δFκ′α′p′(t′)

=

∫

dr′′dt′′ǫ−1
e (rt, r′′t′′)

δ〈n̂n(r
′′t′′)〉

δFκ′α′p′(t′)

−
∑

γ
ZκDκγp,κ′α′p′(tt′)∇γδ(r−τ

0
κp).(115)

By inserting this result inside Eq. (114) and using the
expansion in Eq. (107), we finally obtain the equation

of motion for the displacement-displacement correlation
function:

Mκ
∂2

∂t2
Dκαp,κ′α′p′(tt′) = −δκαp,κ′α′p′δ(tt′)

−
∑

κ′′α′′p′′

∫

dt′′Πκαp,κ′′α′′p′′(tt′′)Dκ′′α′′p′′,κ′α′p′(t′′t′). (116)

The quantity Πκpα,κ′p′α′(tt′) in this expression is called
the ‘phonon self-energy’ and is given by:

Πκαp,κ′α′p′(tt′) =
∫

drdr′
[

Zκ∇α δ(r−τ
0
κp)We(rt, r

′t′)Zκ′∇′
α′δ(r′−τ

0
κ′p′)

+ δκp,κ′p′δ(tt′)∇α〈n̂(r)〉 v(r, r′)Zκ′∇′
α′δ(r′−τ

0
κ′p′)

]

.

(117)

The derivation of Eq. (117) is nontrivial and is not found
consistently in the literature; it requires converting the
derivatives with respect to the position variables r, r′

into derivatives with respect to the nuclear coordinates;
integrating by parts in order to re-arrange the derivatives
with respect to r and r′; invoking the harmonic approx-
imation; and considering that, after setting the forces
Fkp(t) = 0 and the field ϕ(rt) = 0 at the end, the expec-
tation value 〈n̂(rt)〉 does not depend on time. The term
in the third line of Eq. (117) is what Baym (1961) called
the ‘static force’, since it arises from the forces experi-
enced by the nuclei in their equilibrium configuration.

In order to simplify Eq. (117) it is convenient to move
from the time to the frequency domain. We use the fol-
lowing convention for the Fourier transform of a function
f(t): f(ω) =

∫∞

−∞
dtf(t)eiωt. Since we are considering

equilibrium properties in absence of time-dependent ex-
ternal potentials, the time variables enter in the above
quantities only as differences (Abrikosov et al., 1975); for
example We(rt, r

′t′) =We(r, r
′, t−t′). As a consequence,

Eq. (116) is rewritten as:
∑

κ′′α′′p′′

[

Mκω
2δκαp,κ′′α′′p′′ −Πκαp,κ′′α′′p′′(ω)

]

×Dκ′′α′′p′′,κ′α′p′(ω) = δκαp,κ′α′p′ , (118)

whereas the phonon self-energy in the frequency-domain
at equilibrium reads:

Πκαp,κ′α′p′(ω) =

∫

drdr′
[

Zκ∇α δ(r−τ
0
κp)We(r, r

′, ω)

+ δκp,κ′p′∇α〈n̂(r)〉 v(r, r′) ]Zκ′∇′
α′δ(r′−τ

0
κ′p′). (119)

The second line in this expression is conveniently rewrit-
ten by making use of the acoustic sum rule. This sum
rule is well-known in the theory of lattice dynamics of
crystals (Born and Huang, 1954), and can be generalized
to the case of many-body Green’s function approaches as
follows (Hedin and Lundqvist, 1969):

∑

κ′p′
Πκαp,κ′α′p′(ω = 0) = 0 for any α, α′. (120)
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Eq. Description Expression

(93) Electronic charge density 〈n̂e(1)〉 = −i~
∑

σ1
G(11+)

(122) Nuclear charge density 〈n̂n(rt)〉 = n0
n(r)− (i~/2)

∑

κp,αα′ Zκ∂
2δ(r− τ

0
κp)/∂rα∂rα′Dκαp,κα′p(t

+t)

(79) Total electrostatic potential Vtot(1) =
∫

d2 v(12) [〈n̂e(2)〉+ 〈n̂n(2)〉]

(84) Equation of motion, electrons
[

i~∂/∂t1 + (~2/2me)∇
2(1)− Vtot(1)

]

G(12)−
∫

d3Σ(13)G(32) = δ(12)

(118) Equation of motion, nuclei
∑

κ′′α′′p′′

[

Mκω
2δκαp,κ′′α′′p′′ −Πκαp,κ′′α′′p′′(ω)

]

Dκ′′α′′p′′,κ′α′p′(ω) = δκαp,κ′α′p′

(85) Electron self-energy Σ(12) = i~
∫

d(34)G(13) Γ(324)
[

We(41
+) +Wph(41

+)
]

(94) Screened Coulomb, electrons We(12) = v(12) +
∫

d(34) v(13)Pe(34)We(42)

(92) Electronic polarization Pe(12) = −i~
∑

σ1

∫

d(34)G(13)G(41+) Γ(342)

(95) Electronic dielectric matrix ǫe(12) = δ(12)−
∫

d(3)v(13)Pe(32)

(87) Vertex Γ(123)=δ(12)δ(13)+
∫

d(4567) [δΣ(12)/δG(45)]G(46)G(75)Γ(673)

(110) Screened Coulomb, nuclei Wph(12) =
∑

καp,κ′α′p′

∫

d(34) ǫ−1
e (13)∇3,αVκ(r3−τ

0
κp)

×Dκαp,κ′α′p′(t3t4)ǫ
−1
e (24)∇4,α′Vκ′(r4−τ

0
κ′p′)

(121) Phonon self-energy Πκαp,κ′α′p′(ω) =
∑

κ′′p′′ZκZκ′′(∂2/∂rα∂r
′
α′)

× [δκ′p′,κ′′p′′We(r, r
′, ω)−δκp,κ′p′We(r, r

′, 0)]
r=τ

0
κp

,r′=τ
0

κ′′p′′

TABLE I Self-consistent Hedin-Baym equations for the coupled electron-phonon system in the harmonic approximation.

This relation was first derived by Baym (1961) by im-
posing the condition that the nuclei in the crystal must
remain near their equilibrium positions due to fictitious
restoring forces. Physically this condition corresponds
to considering a crystal which is held fixed in the lab-
oratory reference frame. In this approach, the crystal
cannot translate or rotate as a whole. Similar relations
were derived by Sjölander and Johnson (1965) and Gillis
(1970).

If we combine Eqs. (119) and (120), perform integra-
tions by parts, and carry out the integrations in r and r′

we obtain:

Πκαp,κ′α′p′(ω) =
∑

κ′′p′′

ZκZκ′′

∂2

∂rα∂r′α′

∣

∣

∣

∣

r =τ
0
κp

,r′=τ
0

κ′′p′′

[

δκ′p′,κ′′p′′We(r, r
′, ω)−δκp,κ′p′We(r, r

′, 0)
]

, (121)

which fulfils the sum rule in Eq. (120).
Eqs. (118) and (121) completely define the nuclear dy-

namics in the harmonic approximation. After obtain-
ing the displacement-displacement correlation function
Dκαp,κ′α′p′(tt′) by solving this set of equations, it is pos-
sible to construct the expectation value of the nuclear
density using Eqs. (107) and (109):

〈n̂n(rt)〉 = n0
n(r)−

i~

2

∑

κp,αα′

Zκ

∂2δ(r− τ
0
κp)

∂rα∂rα′

Dκαp,κα′p(t
+t).

(122)
We should emphasize that, according to Eq. (121), the
coupling of the nuclear displacements to the electrons

is completely defined by the electronic dielectric ma-
trix through We. Similarly, the nuclei affect the elec-
tronic structure via the dielectric matrix which enters
Wph in Eq. (110) and via the nuclear density inside Vtot
in Eq. (79). From these considerations it should be clear
that the electronic dielectric matrix ǫe(r, r

′, ω) plays an
absolutely central role in the the field-theoretic approach
to the electron-phonon problem.

D. Hedin-Baym equations

Apart from making use of the harmonic approxima-
tion, the set of equations given by Eqs. (79), (84), (85),
(87), (92), (93), (94), (95), (110), (118), (121), and
(122) describe the coupled electron-phonon system en-
tirely from first principles. This set of equations can be
regarded as the most sophisticated description of inter-
acting electrons and phonons available today. Since the
self-consistent equations for the electrons were originally
derived by Hedin (1965), and those for the nuclei were de-
rived first by Baym (1961), we will refer to the complete
set as the Hedin-Baym equations. Given the importance
of these relations, we summarize them schematically in
Table I. The standard Hedin’s equations for interacting
electrons in the potential of clamped nuclei (Hedin, 1965)
are immediately recovered from the Hedin-Baym equa-
tions by setting to zero the displacement-displacement
correlation function of the nuclei, Dκpα,κ′p′α′ = 0.

Table I provides a closed set of self-consistent equa-
tions whose solution yields the Green’s functions of a
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fully-interacting electron-phonon system, within the har-

monic approximation. We stress that these relations are
fundamentally different from diagrammatic approaches.
In fact, here the coupled electron-phonon system is not
addressed using Feynman-Dyson perturbation theory as
it was done for example by Keating (1968). Instead,
in Table I, electrons and phonons are described non-
perturbatively by means of a coupled set of nonlinear
equations for the exact propagators. In particular we
emphasize that this approach does not require the Born-
Oppenheimer adiabatic approximation, and therefore it
encompasses insulators, intrinsic as well as doped semi-
conductors, metals, and superconductors.

Almost every property related to electron-phonon in-
teractions in solids that can be calculated today from first
principles can be derived from these equations. Examples
to be discussed in Secs. V-X include the renormalization
of the Fermi velocity, the band gap renormalization in
semiconductors and insulators, the non-adiabatic correc-
tions to vibrational frequencies, the Frölich interaction,
and the lifetimes of electrons and phonons. The gen-
eralization of these results to the case of finite temper-
ature should also be able to describe phonon-mediated
superconductivity, although this phenomenon is best ad-
dressed by studying directly the propagation of Cooper
pairs (see Sec. XI).

Baym’s theory can in principle be extended to go be-
yond the harmonic approximation (Gillis, 1970). How-
ever, the mathematical complexity of the resulting for-
malism is formidable, due to the appearance of many
additional terms which are neglected in the harmonic ap-
proximation.

V. FROM A MANY-BODY FORMALISM TO PRACTICAL
CALCULATIONS

The Hedin-Baym equations summarized in Table I de-
fine a rigorous formalism for studying interacting elec-
trons and phonons in metals, semiconductors, and insu-
lators entirely from first principles. However, a direct
numerical solution of these equations for real materials
is currently out of reach, and approximations are needed
for practical calculations. The following sections estab-
lish the connection between the Hedin-Baym equations
and standard expressions which are currently in use in
ab initio calculations of electron-phonon interactions.

A. Effects of the electron-phonon interaction on phonons

1. Phonons in the Born-Oppenheimer adiabatic approximation

The vibrational eigenmodes of the nuclei can be
identified with the resonances of the displacement-
displacement correlation function Dκpα,κ′p′α′(tt′) in the

frequency domain. If we denote by M the diagonal ma-
trix having the nuclear masses Mκ along its diagonal,
then the formal solution of Eq. (118) can be written as:

D(ω) =
[

Mω2 −Π(ω)
]−1

, (123)

where D is the matrix with elements Dκpα,κ′p′α′ . The
resonant frequencies of the system correspond to the so-
lutions of the nonlinear equations:

Ων(ω)− ω = 0, with ν = 1, . . . 3M, (124)

where Ω2
ν(ω) is an eigenvalue of M−1/2 Π(ω)M−1/2,

parametric in the variable ω.
As expected, the study of lattice vibrations within a

field-theoretic framework resembles the standard eigen-
value problem reviewed in Sec. III.A. In particular, the
matrix Π(ω) represents the many-body counterpart of
the matrix of interatomic force constants Cκαp,κ′α′p′ in-
troduced in Eq. (13). However, despite its formal sim-
plicity, Eq. (124) conceals the full wealth of informa-
tion associated with the many-body electronic screening
ǫe(r, r

′, ω) via Eq. (121). In fact, the phonon self-energy
is generally complex and frequency-dependent. Therefore
we can expect to find roots of Eq. (124) outside of the
real frequency axis, as well as multiple roots for the same
‘eigenmode’.

The link between Eq. (124) and phonon calculations by
means of DFT is established by noting that DFT relies on
the Born-Oppenheimer adiabatic approximation. In the
adiabatic approximation the nuclei are considered immo-
bile during characteristic electronic timescales. Formally,
this approximation is introduced by setting ω = 0 in
Eq. (121) (Keating, 1968). In practice, this assumption
corresponds to stating that ǫe(r, r′, ω) can be replaced
by ǫe(r, r

′, 0) in the frequency range of the vibrational
excitations. Obviously this is not always the case, and
important exceptions will be discussed in Sec. V.A.2.

In order to see more clearly the connection with the for-
malism discussed in Sec. III.A, we partition the phonon
self-energy into ‘adiabatic’ and ‘non-adiabatic’ contribu-
tions:

Π(ω) = ΠA +ΠNA(ω), (125)

with ΠA = Π(ω = 0). As we will see below, the adia-
batic term ΠA will be taken to describe ‘non-interacting’
phonons, and the non-adiabatic self-energy ΠNA will be
used to describe the effects of electron-phonon interac-
tions.

In the early literature it is common to find a differ-
ent partitioning, whereby the non-interacting system is
defined by the bare interatomic force constants, corre-
sponding to nuclei in the absence of electrons (Grimvall,
1981). This alternative choice is not useful in modern cal-
culations, because the resulting non-interacting phonon
dispersions are very different from the fully-interacting
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dispersions. The present choice of using instead adi-
abatic phonons as the non-interacting system, is more
convenient in the context of modern ab initio techniques,
since calculations of adiabatic phonon spectra are rou-
tinely performed within DFPT.

In the remainder of this section we concentrate on the
adiabatic term, and we defer the discussion of the non-
adiabatic self-energy to Sec. V.A.2. Using Eq. (121), we
can rewrite the adiabatic self-energy as follows:

ΠA
καp,κ′α′p′ =

∑

κ′′p′′

(δκ′p′,κ′′p′′ − δκp,κ′p′)

×
[
∫

dr
∂ 〈n̂e(r)〉
∂τκ′′α′p′′

∂V en(r)

∂τκαp
+

∂2Unn

∂τκαp∂τκ′′α′p′′

]

. (126)

In this expression Unn is the nucleus-nucleus interaction
energy from Eq. (65), V en is the electron-nuclei interac-
tion from Eq. (25), and all the derivatives are taken at
the equilibrium coordinates. The derivation of Eq. (126)
requires the use of the identity:

∂ 〈n̂e(r)〉
∂τ0καp

= −Zκ

∫

dr′[ǫ−1
e (r, r′; 0)−δ(r, r′)]∇′

αδ(r
′−τ

0
κp).

(127)
This identity follows from the same reasoning leading to
Eq. (100), after considering an external potential which
modifies the position of the nucleus κ in the cell p. Equa-
tion (126) can be recast in a familiar form by exploiting
the acoustic sum rule in Eq. (120). Indeed after a few
tedious but straightforward manipulations we obtain:

ΠA
καp,κ′α′p′ =

∫

dr
∂〈n̂e(r)〉
∂τκ′α′p′

∂V en(r)

∂τκαp

+

∫

dr 〈n̂e(r)〉
∂2V en(r)

∂τκαp∂τκ′α′p′

+
∂2Unn

∂τκαp∂τκ′α′p′

. (128)

In this form, one can see that the adiabatic self-
energy gives precisely the interatomic force constants
that we would obtain using the Born-Oppenheimer ap-
proximation and the Hellman-Feynman theorem, com-
pare Eq. (128) for example with Baroni et al. (2001,
p. 517).

The difference between the ΠA
καp,κ′α′p′ in Eq. (128)

and the Cκαp,κ′α′p′ in Eq. (13) is that, in the former
case, the electron density response to atomic displace-
ments is governed by the exact many-body dielectric
matrix ǫe(r, r′, 0) and electron density 〈n̂e(r)〉, as shown
by Eqs. (127) and (128). As a result, ΠA

καp,κ′α′p′ corre-
sponds to force constants and electron density dressed by
all many-body interactions of the system (both electron-
electron and electron-phonon interactions). In contrast,
when the force constants in Eq. (13) are calculated using
DFT, the electron density response to an atomic displace-
ment is evaluated using the RPA+xc screening, that is
ǫHxc(r, r′) from Sec. III.B.4, and the ground-state elec-
tron density is calculated at clamped nuclei.

The use of the adiabatic approximation in the study of
phonons carries the important advantage that the many-
body force constants ΠA form a real and symmetric
matrix. This can be seen by rewriting Eq. (121) for
ω = 0, and using the relation We(r, r

′, ω) =We(r
′, r,−ω)

which follows from the property W (12) = W (21) (see
Sec. IV.B). Since ΠA is real and symmetric, all its
eigenvalues are guaranteed to be real. In this approx-
imation, the excitations of the lattice correspond to
sharp resonances in the displacement-displacement corre-
lation function D(ω), and it is meaningful to talk about
phonons as long-lived excitations of the system. In fact
these excitations are infinitely long-lived in the harmonic
approximation. In practical calculations, the many-body
ΠA is invariably replaced by the DFT interatomic force
constants, and in this case the agreement of the calcu-
lated phonon frequencies with experiment is excellent in
most cases. Illustrative examples can be found among
others in (Yin and Cohen, 1982; Giannozzi et al., 1991;
Dal Corso et al., 1993; Lee et al., 1994; Kresse et al.,
1995; Dal Corso and de Gironcoli, 2000; Bungaro et al.,
2000; Karki et al., 2000; Baroni et al., 2001; Díaz-Sánchez
et al., 2007; Dal Corso, 2013).

The most obvious criticism to the adiabatic approx-
imation is that, in the case of metals, the assumption
ǫe(r, r

′, ω)≃ǫe(r, r′, 0) is inadequate. This can intuitively
be understood by recalling that the dielectric function of
the homogeneous electron gas diverges when ω,q → 0
(Mahan, 1993). In practical calculations, this divergence
is connected with vanishing denominators in Eq. (51)
for q → 0. An approximate, yet very successful strat-
egy for overcoming this problem, is to replace the oc-
cupation numbers in Eq. (51) by smoothing functions
such as the Fermi-Dirac distribution, and to describe the
singular terms analytically (de Gironcoli, 1995). Most
first-principles calculations of phonon dispersion rela-
tions in metals have been carried out using this strat-
egy. Improvements upon this strategy will be discussed
in Sec. V.A.2.

The adiabatic approximation leads naturally to the
definition of an ‘adiabatic’ propagator DA(ω), which can
be obtained from Eq. (123) after replacing the phonon
self-energy by its static limit:

DA(ω) =
[

Mω2 −ΠA
]−1

. (129)

Now, if we identify ΠA
καp,κ′α′p′ with the interatomic force

constant Cκαp,κ′α′p′ in Eq. (13), we can obtain an explicit
expression for the adiabatic phonon propagator in terms
of the eigenmodes eκα,ν(q) and eigenfrequencies ωqν in-
troduced in Sec. III.A. To this end we invert Eq. (129)
using Eqs. (14)-(17), and recall that the dynamical ma-
trix is Hermitian and obeys the relation Ddm,∗

κα,κ′α′(q) =

Ddm
κα,κ′α′(−q) (Maradudin and Vosko, 1968). After te-
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dious but straightforward steps we find:

DA
καp,κ′α′p′(ω) =

∑

ν

∫

dq

ΩBZ
S∗
qν,καpSqν,κ′α′p′

2ωqν

ω2 − ω2
qν

,

(130)
with the definition:

Sqν,καp = eiq·Rp(2Mκωqν)
−1/2 eκα,ν(q). (131)

This result suggests that, as expected, the propagator
should take a simple form in the eigenmodes representa-
tion. In fact, by using the inverse transform of Eq. (131)
we have: DA

qν,q′ν′(ω) = ΩBZ δ(q−q′)DA
qνν′(ω), with

DA
qνν′(ω) = 2ωqν/(ω

2 − ω2
qν)δνν′ . (132)

This result can alternatively be obtained starting from
the ladder operators of Appendix B. In fact, after using
Eqs. (20), (109), and (131) we find:

DA
qνν′(tt′) = −i〈T̂ [â†qν(t)âqν(t

′) + â−qν(t)â
†
−qν(t

′)]〉δνν′ .
(133)

An explicit evaluation of the right-hand side using the
Heisenberg time evolution generated by the phonon
Hamiltonian in Eq. (22) yields precisely Eq. (132), with
the added advantage that it is easier to keep track of the
time-ordering. The result is:

DA
qνν(ω) =

1

ω − ωqν + iη
− 1

ω + ωqν − iη
, (134)

with η a positive real infinitesimal. This alternative ap-
proach is very common in textbooks, see for example
Schrieffer (1983) and Schäfer and Wegener (2002). How-
ever, it does not carry general validity in a field-theoretic
framework since it rests on the adiabatic approximation.

2. Phonons beyond the adiabatic approximation

In order to go beyond the adiabatic approximation, it
is necessary to determine the complete propagator D(ω)
in Eq. (123). Formally this can be done by combining
Eqs. (123) and (125) to obtain the following Dyson-like
equation:

D(ω) = DA(ω) +DA(ω)ΠNA(ω)D(ω). (135)

In this form it is apparent that the non-adiabatic phonon
self-energy ΠNA(ω) ‘dresses’ the non-interacting phonons
obtained within the adiabatic approximation, as shown
schematically in Fig. 1(a). It is convenient to rewrite the
Dyson equation in such a way as to show more clearly
the poles of the propagator. Using Eqs. (131)-(132) we
find:

D−1
qνν′(ω) =

1

2ωqν

[

δνν′(ω2 − ω2
qν)− 2ωqνΠ

NA
qνν′(ω)

]

,

(136)

FIG. 1 Diagrammatic representation of the phonon Green’s
function and self-energy. (a) Dyson equation for the phonon
propagator, Eq. (135). The thick wavy line represents the
fully-interacting, non-adiabatic propagator; the thin wavy
line is the adiabatic propagator; the disc is the non-adiabatic
self-energy. (b) Lowest-order diagrammatic expansion of the
phonon self-energy in terms of the bare electron-phonon ver-
tices and the RPA electronic polarization. The small dots
are the bare electron-phonon coupling functions, and the thin
lines are the non-interacting (for example Kohn-Sham) elec-
tron Green’s functions. This diagram is the simplest possible
term which begins and ends with a phonon line. (c) Non-
perturbative representation of the phonon self-energy in terms
of the bare coupling, the dressed coupling (large gray disc),
the fully-interacting electron’s Green’s functions (thick lines),
and the vertex Γ from Eq. (83). This diagram was proposed
by Keating (1968) and describes the first line of Eq. (141).
(d) Schematic representation of the relation between the
dressed electron-phonon coupling g and the bare coupling gb,
from Eq. (144). Vogl (1976) reports a similar diagram, al-
though with the bare coupling function on the far right; the
difference stems from the present choice of using the irre-
ducible polarization P = GGΓ instead of the reducible polar-
ization employed by Vogl.

where ΠNA
qνν′ and D−1

qνν′ are obtained using the transform
of Eq. (131) and its inverse, respectively.

From Eq. (136) we see that the non-adiabatic self-
energy ΠNA modifies the adiabatic phonon spectrum in
four distinct ways: (i) the real part of the diagonal ele-
ments ΠNA

qνν shifts the adiabatic frequencies; (ii) the imag-
inary part introduces spectral broadening; (iii) the off-
diagonal elements of ΠNA

qνν′ introduce a coupling between
the adiabatic vibrational eigenmodes; (iv) the frequency-
dependence of ΠNA

qνν(ω) might lead to multiple poles for
the same mode ν, thereby introducing new structures in
the phonon spectrum.

Today it is relatively common to calculate phonon
linewidths arising from electron-phonon interactions
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(Allen, 1972b; Bauer et al., 1998). Recently it has also
become possible to study the frequency renormalization
due to non-adiabatic effects (Calandra et al., 2010; Saitta
et al., 2008).

The possibility of observing new features in vibra-
tional spectra arising from the EPI has not been stud-
ied from first principles, but the underlying phenomenol-
ogy should be similar to that of plasmon satellites in
photoelectron spectra (see Sec. V.B.6). Generally speak-
ing we expect satellites whenever ǫe(r, r′, ω) exhibits dy-
namical structure close to vibrational frequencies. This
can happen, for example, in the case of degenerate po-
lar semicondutors, when phonon and plasmon energies
are in resonance. In these cases, phonons and plas-
mons can combine into ‘coupled plasmon-phonon modes’
(Richter, 1984), which are the electronic analogue of pho-
ton polaritons (Yu and Cardona, 2010, p. 295). This
phenomenon was predicted theoretically (Varga, 1965),
and subsequently confirmed by Raman measurements on
GaAs (Mooradian and Wright, 1966). We speculate that
it should be possible to obtain coupled plasmon-phonon
modes from the frequency-dependence of the phonon self-
energy in Eq. (136); it would be interesting to perform
first-principles calculations in order to shed light on these
aspects.

In practical calculations the non-adiabatic corrections
to the adiabatic phonon spectrum are evaluated from
Eq. (136) using first-order perturbation theory, by re-
taining only the diagonal elements of ΠNA. If we denote
the complex zeros of D−1

qνν(ω) by Ω̃qν = Ωqν − iγqν , in
the case of non-degenerate eigenmodes Eq. (136) gives:

Ω̃2
qν = ω2

qν + 2ωqνΠ
NA
qνν(Ω̃qν), (137)

therefore:

γqν = −ωqν

Ωqν
ImΠNA

qνν(Ωqν − iγqν), (138)

Ω2
qν = ω2

qν + γ2qν + 2ωqνReΠ
NA
qνν(Ωqν − iγqν). (139)

Apart from the small γ2qν term in the second line, these
expressions are identical to those provided by Allen
(1972b) and Grimvall (1981). Since non-adiabatic cor-
rections are usually small as compared to the adiabatic
phonon frequencies, the above expressions are often sim-
plified further by using the additional approximations
|Ωqν − ωqν | ≪ ωqν and |γqν | ≪ ωqν , leading to γqν ≃
−ImΠNA

qνν(ωqν) and Ωqν ≃ ωqν +ReΠNA
qνν(ωqν). In these

forms it becomes evident that the real part of the self-
energy shifts the adiabatic phonon frequencies, and the
imaginary part is responsible for the spectral broadening
of the resonances. Using these expressions in Eq. (136)
and going back to the time domain, it is seen that, as a
result of the EPI, phonons acquire a finite lifetime given
by τphqν = (2γqν)

−1.

3. Expressions for the phonon self-energy used in ab initio

calculations

In the literature on electron-phonon interactions, the
phonon self-energy Π is almost invariably expressed in
terms of an electron-phonon vertex g and the electron
Green’s function G as Π = |g|2GG in symbolic notation,
see for example Grimvall (1981, p. 195). While this has
become common practice also in ab initio calculations,
the origin of this choice is not entirely transparent. One
could derive the above expression directly from Eq. (1),
using standard Green’s function techniques. However,
this procedure does not answer the key question on how

to calculate the electron-phonon matrix elements g.
Closer inspection of the theory reveals that this is

a rather nontrivial point. In fact, on the one hand,
a straightforward expansion of the second-quantized
Hamiltonian of Eq. (68) in terms of the nuclear coor-
dinates leads to ‘bare’ electron-phonon matrix elements,
gb, which contain the bare Coulomb interaction between
electrons and nuclei. On the other hand, if we go back
to Sec. III.B.2, we see that the electron-phonon matrix
elements in DFT are ‘dressed’ by the self-consistent re-
sponse of the electrons. The difference between bare and
dressed vertex is not only quantitative, but also qualita-
tive: for example in metals the bare vertex is long-ranged,
while the screened vertex is short-ranged.

The relation between bare and dressed electron-phonon
vertices and the derivation of explicit expressions for the
phonon self-energy have been discussed by many authors,
see for example Rickayzen (1980) and Scalapino (1969).
In short the argument is that the lowest-order Feynman
diagram starting and ending with a phonon line must
contain precisely two bare electron-phonon vertices, as
shown in Fig. 1(b). By construction this diagram cor-
responds to having Π = |gb|2GG. In order to make the
transition from the bare vertex to the dressed vertex it
is necessary to collect together all the proper electronic
polarization diagrams around the vertex. However, these
steps have been carried out only for the homogeneous
electron gas (Rickayzen, 1980; Scalapino, 1969). In the
following we show how the dressed electron-phonon ver-
tex emerges from a non-perturbative analysis based on
the Hedin-Baym equations.

The non-adiabatic phonon self-energy ΠNA introduced
in Sec. V.A.2 can be written explicitly by combining
Eqs. (119) and (125):

ΠNA
καp,κ′α′p′(ω) =

∫

drdr′Zκ∇α δ(r−τ
0
κp)

× [We(r, r
′, ω)−We(r, r

′, 0)]Zκ′∇′
α′δ(r′−τ

0
κ′p′).(140)

Using the Dyson equation for the screened Coulomb in-
teraction, it can be seen that this expression does indeed
contain electron-phonon matrix elements. In fact, by in-
serting Eq. (94) into Eq. (140) we find terms like vPeWe,
and the electron-phonon matrix elements will arise from
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taking the gradients of v and We, respectively. By work-
ing in the eigenmodes representation via Eq. (131), after
lengthy manipulations this procedure yields:

~ΠNA
qν,q′ν′(ω) =

∫

drdr′ gbqν(r)Pe(r, r
′, ω) gccq′ν′(r′, ω)

−
∫

drdr′ gbqν(r)Pe(r, r
′, 0) g∗q′ν′(r′, 0), (141)

where we introduced electron-phonon ‘coupling func-
tions’ as follows. The bare coupling gb is defined as:

gbqν(r) = ∆qνV
en(r), (142)

where V en is the potential of the nuclei from Eq. (25);
in practical calculations this quantity is replaced by the
usual ionic pseudo-potentials. The meaning of the vari-
ation ∆qν is the same as in Eqs. (33)-(35). The dressed

couplings g and gcc are defined as (Hedin and Lundqvist,
1969):

gqν(r, ω) =

∫

dr′ ǫ−1
e (r, r′, ω) gbqν(r

′), (143)

gccqν(r, ω) =

∫

dr′ ǫ−1
e (r, r′, ω) gb,∗qν (r

′). (144)

Since the dielectric matrix is real at ω = 0, we have
the simple relation gccqν(r, 0) = g∗qν(r, 0). In order to de-
rive Eq. (141) it is best to carry out the algebra in the
time domain. We emphasize that the result expressed
by Eq. (141) is non-perturbative, and relies solely on the
harmonic approximation.

Equation (141) is in agreement with the standard re-
sult for the homogeneous electron gas (Scalapino, 1969).
The same expression was also obtained by Keating (1968)
using a detailed diagrammatic analysis. Keating’s di-
agrammatic representation of the self-energy is shown
in Fig. 1(c), and can be obtained from Eq. (141) by
noting that, in symbolic notation, Pe = GGΓ from
Eq. (92), therefore Π = gbGGΓg. For completeness we
also show in Fig. 1(d) a diagrammatic representation of
the dressed electron-phonon coupling function g as given
by Eq. (144). This representation is obtained by observ-
ing that g = ǫ−1gb, ǫ = 1− vP , and P = GGΓ, therefore
g = gb + vGGΓg.

In view of practical first-principles calculations it
is useful to have a simplified expression for the non-
adiabatic phonon self-energy in Eq. (141). To this aim
we make the following approximations:

(i) The vertex function in Eq. (92) is set to Γ(123) =
δ(12)δ(13). This is the same approximation at the
heart of the GW method (Hedin, 1965; Hybertsen
and Louie, 1986; Onida et al., 2002);

(ii) The fully-interacting electron Green’s function G is
replaced by its non-interacting counterpart, using
the Kohn-Sham eigenstates/eigenvalues evaluated
with the nuclei held in their equilibrium positions;

(iii) The fully-interacting dielectric matrix in Eq. (144)
is replaced by the RPA+xc response obtained from
a DFT calculation, as discussed in Sec. III.B.2;

(iv) The frequency-dependence of the screened electron-
phonon coupling defined in Eq. (144) is neglected:
gccqν(r, ω) ≃ gccqν(r, 0) = g∗qν(r, 0). This approxima-
tion is ubiquitous in the literature but it is never
mentioned explicitly;

(v) For notational simplicity, we consider a spin-
degenerate system with time-reversal symmetry;
this simplification is easily removed.

Using these assumptions we can rewrite the component
of Eq. (141) for q = q′ as:

~ΠNA
qνν′(ω) = 2

∑

mn

∫

dk

ΩBZ
gbmnν(k,q)g

∗
mnν′(k,q)

×
[

fmk+q − fnk
εmk+q − εnk − ~(ω + iη)

− fmk+q − fnk
εmk+q − εnk

]

. (145)

We note that the components of the phonon self-energy
for q 6= q′ vanish due to the periodicity of the crys-
talline lattice. In Eq. (145) the sums run over all the
Kohn-Sham states, with occupations fnk, and η is a real
positive infinitesimal. In this case we indicate explicitly
the factor of 2 arising from the spin degeneracy. The
matrix element gmnν(k,q) is the same as in Eq. (38),
and it is precisely the quantity calculated by most linear-
response codes. The matrix element gbmnν(k,q) is ob-
tained from gmnν(k,q) by replacing the variation of the
Kohn-Sham potential by the corresponding variation of
the ionic (pseudo)potentials. The field-theoretic phonon
self-energy given by Eq. (145) is in agreement with the
expression derived by Calandra et al. (2010) starting from
time-dependent density-functional perturbation theory.

The presence of both the bare electron-phonon matrix
element and the screened matrix element in Eq. (145)
has not been fully appreciated in the literature, and most
ab initio calculations employ an approximate self-energy
whereby gb is replaced by g. The replacement of the
bare matrix elements by their screened counterparts in
the phonon self-energy goes a long way back, and can be
found already in the seminal work by Allen (1972b). As
a result many investigators (including the author) cal-
culated phonon lifetimes using the following expression
(Grimvall, 1981):

1

τphqν

=
2π

~
2
∑

mn

∫

dk

ΩBZ
|gmnν(k,q)|2(fnk − fmk+q)

× δ(εmk+q − εnk − ~ωqν). (146)

This is obtained from Eq. (145) by taking the imagi-
nary part and by making the replacement gb→g. While
Eq. (146) can be derived from the Fermi golden rule in
a independent-particle approximation (see Albers et al.,
1976, Appendix B), the choice of the electron-phonon
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matrix elements is somewhat arbitrary. In future calcula-
tions of the phonon self-energy it will be important to as-
sess the importance of using the correct vertex structure,
that is replacing |gmnν(k,q)|2 by gbmnν(k,q)g

∗
mnν(k,q)

in Eq. (146).
In general, the effects of the non-adiabatic self-energy

on the phonon spectrum are expected to be significant
only in the case of metals and small-gap semiconduc-
tors. In fact, by combining Eqs. (138), (139), and (145)
it is seen that ΠNA can be large only when occupied and
empty single-particle states are separated by an energy
of the order of the characteristic phonon energy. In such
a case, we can expect a shift of the adiabatic phonon fre-
quencies, and a concomitant broadening of the lines. A
clear illustration of these effects was provided by Maksi-
mov and Shulga (1996), who analyzed a simplified model
of a metal with linear bands near the Fermi level.

Calculations of phonon linewidths based on Eq. (146)
have been reported by several authors2 and have be-
come commonplace in first-principles studies of electron-
phonon physics. On the other hand, calculations of the
non-adiabatic phonon frequencies using Eq. (145) have
only been reported in (Lazzeri and Mauri, 2006; Piscanec
et al., 2007; Caudal et al., 2007; Saitta et al., 2008; Calan-
dra et al., 2010), using the approximation that the bare
vertex gb can be replaced by the screened vertex g. Ex-
amples of such calculations will be reviewed in Sec. VII.

Equation (145) suggests several avenues worth explor-
ing in the future: firstly, the use of the bare vertex should
not pose a challenge in practical calculations, since this
quantity is already being calculated in linear-response
DFT codes. Testing the impact of the bare vertex on
phonon linewidths and frequency renormalizations will
be important. Secondly, Eq. (145) contains off-diagonal
couplings, which are usually ignored. It will be inter-
esting to check the effect of using the complete matrix
self-energy. Thirdly, the dynamical structure of the self-
energy may contain interesting information, such as for
example spectral satellites and coupled phonon-plasmon
modes. Lastly, the move from Eq. (141) to Eq. (145) in-
volves the approximation that the frequency-dependence
of the electron-phonon matrix elements can be neglected.
The validity of this approximation is uncertain, and there
are no reference ab initio calculations on this. However,
we note that frequency-dependent electron-phonon ma-
trix elements have been employed systematically in the-
oretical models of doped semiconductors (Mahan, 1993,
Sec. 6.3).

Before closing this section we note that the formal-
ism discussed here is based on zero-temperature Green’s
functions. In order to extend the present results to finite

2 See for example Butler et al., 1979; Bauer et al., 1998; Shukla
et al., 2003; Lazzeri et al., 2006; Park et al., 2008a; Giustino
et al., 2007a; Heid et al., 2010.

temperature it is necessary to repeat all derivations us-
ing the Matsubara representation, and then perform the
analytic continuation of the self-energy to the real fre-
quency axis. Detailed derivations can be found in (Baym,
1961) and (Gillis, 1970), and will not be repeated here.
Fortunately it turns out that Eq. (145) can be extended
to finite temperature by simply replacing the occupation
factors fnk and fmk+q by the corresponding Fermi-Dirac
distributions.3

B. Effects of the electron-phonon interaction on electrons

1. Electron self-energy: Fan-Migdal and Debye-Waller terms

In Sec. V.A we discussed the link between the Hedin-
Baym equations summarized in Table I and ab initio

calculations of phonons. We first identified a Hermi-
tian eigenvalue problem for the vibrational frequencies
via the adiabatic approximation, and then we improved
upon this description by means of a non-adiabatic self-
energy. In this section, we adopt a similar strategy in
order to discuss electronic excitation energies: first we
identify an approximation to the Hedin-Baym equations
which does not include any electron-phonon interactions,
and then we introduce an electron self-energy to incor-
porate such interactions.

The single most common approximation in first-
principles electronic structure calculations is to describe
nuclei as classical particles clamped in their equilibrium
positions. Within this approximation the expectation
value of the nuclear charge density operator in Eq. (67),
〈n̂n(r)〉, is replaced by the first term in Eq. (107), n0n(r).
From Eq. (122) we see that this approximation for-
mally corresponds to setting to zero the displacement-
displacement correlation function of the nuclei. This ob-
servation suggests that, in order to unambiguously sin-
gle out electron-phonon interactions in the Hedin-Baym
equations, we need to define a non-interacting problem
by setting Dκαp,κ′α′p′ = 0, and identify the electron-
phonon interaction with the remainder. In the following,
we write an equation of motion for the electrons analo-
gous to Eq. (84), except with the nuclei clamped in their
equilibrium positions; then we use a Dyson-like equation
to recover the fully-interacting electron Green’s function.

The equation of motion for the electron Green’s func-

3 Throughout this article, when fnk and nqν have the meaning of
Fermi-Dirac and Bose-Einstein distributions, respectively, they
are defined as follows: fnk = f [(εnk−εF)/kBT ] with f(x) =
1/(ex + 1) and εF being the Fermi energy; nqν = n(~ωqν/kBT )
with n(x) = 1/(ex − 1).
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tion at clamped nuclei, which we denote as Gcn, reads:
[

i~
∂

∂t1
+

~
2

2me
∇2(1)− V cn

tot(1)

]

Gcn(12)

−
∫

d3Σcn
e (13)Gcn(32) = δ(12). (147)

Here the potential V cn
tot differs from its counterpart Vtot

of Eq. (79) in that the total density of electrons and nu-
clei, 〈n̂〉, is replaced by the density calculated at clamped
nuclei, 〈n̂cn〉:

V cn
tot(1) =

∫

d2 v(1, 2) 〈n̂cn(2)〉, (148)

where we defined:

〈n̂cn(1)〉 = −i~
∑

σ1

Gcn(11+) + n0
n(r1). (149)

The term Σcn
e in Eq. (147) represents the electronic part

of Hedin’s self-energy in Eq. (85), evaluated at clamped
nuclei:

Σcn
e (12) = i~

∫

d(34)Gcn(13) Γcn(324)W cn
e (41+). (150)

In this expression, the vertex Γcn and the screened
Coulomb interaction W cn

e are both evaluated via the
Hedin-Baym equations at clamped nuclei. Equa-
tions (147)-(150) lead directly to the well-known Hedin’s
equations (Hedin, 1965). Hedin’s equations and the asso-
ciated GW method at clamped nuclei are addressed in a
number of excellent reviews (Hedin and Lundqvist, 1969;
Hybertsen and Louie, 1986; Aryasetiawan and Gunnars-
son, 1998; Onida et al., 2002) hence they will not be
discussed here.

In order to recover the complete Hedin-Baym equation
of motion, Eq. (84), starting from Eqs. (147)-(150), it is
sufficient to introduce the Dyson equation:

G(12) = Gcn(12)+

∫

d(34)Gcn(13)Σep(34)G(42), (151)

together with the electron self-energy Σep arising from
electron-phonon interactions:

Σep = ΣFM +ΣDW +ΣdGW, (152)

where we have defined:

ΣFM(12) = i~

∫

d(34)G(13) Γ(324)Wph(41
+), (153)

ΣDW(12) =

∫

d3 v(13) [〈n̂(3)〉 − 〈n̂cn(3)〉] δ(12), (154)

ΣdGW(12) = Σe(12)− Σcn
e (12). (155)

We emphasize that Eqs. (147)-(155) are just an alterna-
tive formulation of the Hedin-Baym equations in Table I.
The advantage of this formulation is that it better reflects
standard practice, whereby the DFT equations and the

GW quasiparticle corrections are evaluated at clamped
nuclei. Equations (147)-(155) are formally exact within
the harmonic approximation.

A schematic representation of the Dyson equation for
the electron Green’s function and the decomposition of
the electron self-energy are given in Fig. 2. The self-
energy contribution ΣFM in Eq. (153) is a dynamic cor-
rection to the electronic excitation energies, and is analo-
gous to the GW self-energy at clamped nuclei. Indeed, in
the same way as the correlation part of the standard GW
self-energy describes the effect of the dynamic electronic
polarization upon the addition of electrons or holes to
the system, the term GWph in Eq. (153) describes the
effect of the dynamic polarization of the lattice.

In the semiconductors community, the self-energy ob-
tained from Eq. (153) by setting Γ(123) = δ(13)δ(23) is
commonly referred to as the Fan self-energy (Fan, 1951;
Allen and Heine, 1976; Allen and Cardona, 1981; Car-
dona, 2001). In the metals and superconductors commu-
nities, the same term is traditionally referred to as the
self-energy in the Migdal approximation (Migdal, 1958;
Engelsberg and Schrieffer, 1963; Scalapino, 1969; Schrief-
fer, 1983). By extension we refer to the self-energy ΣFM

in Eq. (153) as the ‘Fan-Migdal’ (FM) self-energy.
The static term ΣDW in Eq. (154) corresponds to the

difference between the self-consistent potential Vtot cal-
culated for the fully-interacting system, and the same
potential evaluated with the nuclei clamped in their equi-
librium positions, V cn

tot. Intuitively this term corresponds
to a time-independent correction to the ‘crystal poten-
tial’ that arises from the fuzziness of the nuclear charge
density around the equilibrium nuclear positions. This
term is similar to the one appearing in the study of the
temperature dependence of X-ray diffraction and neutron
diffraction spectra (Mermin, 1966; Ashcroft and Mermin,
1966), and is commonly referred to as the Debye-Waller

(DW) term (Antonc̆ík, 1955; Walter et al., 1970; Car-
dona and Thewalt, 2005). Hedin and Lundqvist (1969)
did not include this term in their classic work, however
this contribution was discussed by Allen and Heine (1976;
see also Allen, 1978).

The last term Eq. (152), ΣdGW, is the correction to
the standard Hedin self-energy arising from the fact that
the fully-interacting electron Green’s function and den-
sity are slightly different from those evaluated at clamped
nuclei, owing to the electron-phonon interaction. The
magnitude of this term corresponds to a fraction of the
GWΓ quasiparticle corrections at clamped nuclei. Since
ΣdGW has never been investigated so far, we will not dis-
cuss this term further.



29

FIG. 2 Diagrammatic representation of the electron Green’s
function and electron-phonon self-energy. (a) Dyson equa-
tion for the electron Green’s function, Eq. (151). The thick
straight line represents the fully-dressed electron propagator,
the thin straight line is the propagator calculated at clamped
nuclei, and the disc is the electron-phonon self-energy. (b) De-
composition of the electron-phonon self-energy into Fan-
Migdal self-energy, Eq. (153), Debye-Waller contribution,
Eq. (154), and the remainder given by Eq. (155). (c) Fan-
Migdal electron-phonon self-energy expressed in terms of the
dressed electron-phonon coupling function (dark grey disc
as in Fig. 1), the fully-interacting electron’s Green’s func-
tions (thick straight line), the fully interacting phonon prop-
agator (thick wavy line), and the vertex Γ from Eq. (83).
(d) Debye-Waller contribution resulting from the fully inter-
acting phonon propagator (thick wavy line) and the matrix
element in Eq. (40) (hatched disc). (e) Correction to Hedin’s
GW self-energy arising from the modification of the electronic
structure induced by the electron-phonon interaction. We is
the screened Coulomb interaction of Eq. (94) (bold dashed
double line). W cn

e is the screened Coulomb interaction eval-
uated at clamped nuclei (thin dashed double line). Γcn is the
vertex of Eq. (83), but evaluated at clamped nuclei.

2. Expressions for the electron self-energy used in ab initio

calculations

A complete self-consistent solution of Eqs. (147)-(155)
from first principles is not possible at present, and one
has to replace the various entries of Eq. (152) by the
best approximations available. In practice, one resorts
to either DFT or to GW calculations; recent progress
will be reviewed in Secs. VIII and IX.

Using Eqs. (110), (130)-(131), and (144) we can rewrite
the Fan-Migdal self-energy as follows:

ΣFM(12) = i
∑

νν′

∫

dω

2π

dq

ΩBZ
d(34)e−iω(t4−t+

1
)

×G(13) Γ(324) gccqν(r4, ω)Dqνν′(ω) gqν′(r1, ω). (156)

This shows that the Fan-Migdal self-energy is, in sym-
bolic notation, of the type Σ = g2DGΓ; a graphical rep-
resentation of this term is given in Fig. 2(c). In order
to make the last expression amenable to ab initio calcu-
lations, it is common to make the following approxima-
tions, which are similar to those introduced earlier for
the phonon self-energy:

(i) The vertex Γ(123) is set to δ(13)δ(23);

(ii) The fully-interacting electron Green’s function is
replaced by the Kohn-Sham Green’s function eval-
uated at clamped nuclei;

(iii) The fully-interacting phonon propagator Dqνν′(ω)
is replaced by the adiabatic propagator DA

qνν′(ω)
from Eq. (134);

(iv) The screened electron-phonon vertex is evaluated
using the RPA+xc electronic screening from a DFT
calculation;

(v) The frequency dependence of the electron-phonon
coupling is neglected, gqν(r, ω) ≃ gqν(r, 0).

After using these approximations in Eq. (156), we obtain
the following result for the k=k′ matrix elements of the
Fan-Migdal self-energy in the basis of Kohn-Sham states:

ΣFM
nn′k(ω) =

1

~

∑

mν

∫

dq

ΩBZ
g∗mnν(k,q)gmn′ν(k,q)

×
[

1− fmk+q

ω−εmk+q/~− ωqν + iη
+

fmk+q

ω−εmk+q/~+ ωqν − iη

]

.

(157)

Here fmk+q = 1 for occupied Kohn-Sham states and
0 otherwise, and the matrix element gmnν(k,q) is ob-
tained from Eq. (38). As for the phonon self-energy in
Eq. (145), also in this case the components of the elec-
tron self-energy for k 6= k′ vanish due to the periodicity
of the lattice. The result in Eq. (157) is obtained by
closing the contour of the frequency integration in the
upper complex plane, owing to the t+1 in the exponential
of Eq. (156). The infinitesimals inside the electron and
phonon propagators, which reflect the time-ordering, are
crucial to obtain the correct result (Schrieffer, 1983). The
spin label is omitted in Eq. (157) since this contribution
to the self-energy is diagonal in the spin indices.

The result above is only valid at zero temperature. The
extension to finite temperature requires going through
the Matsubara representation, and then continuing the
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self-energy from the imaginary axis to the real axis. The
procedure is described in many textbooks, see for exam-
ple Sec. 3.5 of (Mahan, 1993). The result is that at finite
temperature the square brackets of Eq. (157) are to be
modified as follows:
[

1−fmk+q

· · ·+ iη
+
fmk+q

· · · − iη

]

→
[

1−fmk+q+nqν

· · ·+ iη
+
fmk+q+nqν

· · ·+ iη

]

,

(158)
where fmk+q and nqν are now Fermi-Dirac and Bose-
Einstein distribution functions, respectively (see foot-
note 3). The change of sign in the imaginary infinitesimal
on the second fraction has to do with the fact that in the
Matsubara formalism the analytic continuation from the
imaginary frequency axis to the real axis through the
upper complex plane leads to the so-called retarded self-
energy, that is a self-energy with all poles below the real
axis (Abrikosov et al., 1975; Mahan, 1993).

The Debye-Waller term in Eq. (154) can also be written
in a form which is convenient for practical calculations,
by expanding the total density operator n̂(3) to second
order in the atomic displacements. Using Eqs. (79) and
(109) we find:

ΣDW(12) = δ(12)
i~

2

∑

καp
κ′α′p′

∂2Vtot(1)

∂τ0καp∂τ
0
κ′α′p′

Dκαp,κ′α′p′(t+1 , t1).

(159)
In order to arrive at this result, it is necessary to make the
additional approximation that the electronic field opera-
tors and the operators for the nuclear displacements are
uncorrelated, that is 〈n̂∆τ̂καp〉 = 〈n̂〉〈∆τ̂καp〉, and sim-
ilarly for the second power of the displacements. This
requirement was noticed by Gillis (1970), and is trivially
satisfied if we describe phonons within the adiabatic ap-
proximation of Sec. V.A.1. Equation (159) motivates the
diagrammatic representation of the Debye-Waller self-
energy shown in Fig. 2(d), whereby the phonon line be-
gins and ends at the same time point. We note that
Eq. (159) involves the variation of the screened poten-
tial Vtot; this result, which we here derived starting from
Schwinger’s functional derivative technique, is also ob-
tained when starting from a perturbative diagrammatic
analysis (Marini et al., 2015). The Debye-Waller self-
energy can be simplified further if we make use of the
following approximations, in the same spirit as for the
Fan-Migdal self-energy:

(vi) The fully-interacting phonon propagator is re-
placed by the adiabatic propagator DA

qνν′(ω) from
Eq. (134);

(vii) The total many-body potential Vtot of Eq. (79) is
replaced by the Kohn-Sham potential V KS(r) eval-
uated at clamped nuclei. Strictly speaking, the
Kohn-Sham effective potential includes also contri-
butions from exchange and correlation, which in the

Hedin-Baym equations are all contained in the elec-
tron self-energy. However, the present discussion
holds unchanged if we add any local and frequency-
independent potential to Vtot in Eq. (84), while
removing the same potential from the self-energy
(Keating, 1968).

Using these simplifications together with Eqs. (130) and
(131), we can write the ΣDW in the basis of Kohn-Sham
eigenstates as follows:

ΣDW
nn′k =

∑

ν

∫

dq

ΩBZ
gDW
nn′νν(k,q,−q), (160)

where the Debye-Waller matrix element gDW is obtained
from Eq. (40), and the presence of only the diagonal
terms ν=ν′ is a result of the Kronecker delta in Eq. (132).
In going from Eq. (159) to Eq. (160) the frequency inte-
gration is performed by using Eq. (134), after closing the
contour in the lower half plane. The resulting expression
is diagonal in the spin indices.

The expression for the Debye-Waller term in Eq. (160)
is only valid at zero temperature. In this case the ex-
tension to finite temperature is immediate since the self-
energy does not involve the electron Green’s function,
hence we only need to evaluate the canonical average of
Eq. (133) at equal times. The result is that Eq. (160) is
simply to be modified as follows:

gDW
nn′νν(k,q,−q) → gDW

nn′νν(k,q,−q)(2nqν + 1), (161)

with nqν being the Bose-Einstein occupations (see foot-
note 3).

The Debye-Waller contribution to the electron self-
energy is almost invariably ignored in the literature on
metals and superconductors, but it is well-known in
the theory of temperature-dependent band structures of
semiconductors (Allen and Heine, 1976; Allen and Car-
dona, 1981; Marini, 2008; Giustino et al., 2010; Poncé
et al., 2015). Neglecting ΣDW in metals is partly justi-
fied by the fact that this term is frequency-independent,
therefore it is expected to be a slowly-varying function
over each Fermi surface sheet. A detailed first-principles
analysis of this aspect is currently lacking.

3. Temperature-dependence of electronic band structures

Once determined the electron self-energy as in
Sec. V.B.2 it is possible to study the modification of the
electronic structure induced by the EPI. To this aim it
is convenient to rewrite Eq. (151) in the basis of Kohn-
Sham eigenstates:

G−1
nn′k(ω) = Gcn,−1

nn′k (ω)− Σep
nn′k(ω). (162)

Assuming that the electronic structure problem at
clamped nuclei has been solved using DFT or DFT+GW
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calculations, the Green’s function Gcn can be written in
terms of simple poles at the Kohn-Sham or quasiparti-
cle eigenvalues εnk (Hedin and Lundqvist, 1969). In this
case Eq. (162) reduces to:

G−1
nn′k(ω) = (~ω − ε̃nk)δnn′ − Σep

nn′k(ω), (163)

where ε̃nk = εnk ± i~η with the upper/lower sign cor-
responding to occupied/unoccupied states. The spin in-
dices are omitted since these self-energy contributions do
not mix states with opposite spin.

In order to gain insight into the effects of the electron-
phonon interaction, we start from the drastic approxi-
mation that Σep only leads to a small shift of the quasi-
particle poles, from the ‘non-interacting’ energies εnk to
the renormalized energies Ẽnk = Enk + iΓnk. In this
approximation, the fully interacting Green’s function is
expressed as a sum of simple poles, given by the zeros of
Eq. (163):

Enk = εnk +ReΣep
nnk(Ẽnk/~), (164)

Γnk = ImΣep
nnk(Ẽnk/~). (165)

As in the case of vibrational frequencies in Eq. (137), we
are considering for simplicity non-degenerate electronic
states, and making the assumption that the off-diagonal
elements of the self-energy Σep

nn′k with n 6=n′ can be ne-
glected. In more general situations the right-hand side
of Eq. (163) needs to be to diagonalized, or alternatively
the off-diagonal terms Σep

nn′k need to be treated pertur-
batively. The energies Enk obtained from Eq. (164) yield
the band structure renormalized by the EPIs, to be dis-
cussed below. The imaginary part Γnk in Eq. (165) is
connected with the quasiparticle lifetimes and will be dis-
cussed in Sec. V.B.4.

Equation (164) is to be solved self-consistently for
Enk and Γnk. When Eq. (164) is used in combination
with the standard approximations to the Fan-Migdal and
Debye-Waller self-energies given by Eqs. (157) and (160),
the result that one obtains is equivalent to describing
electron-phonon couplings to second order in Brillouin-
Wigner perturbation theory (Mahan, 1993). Similarly
one recovers the more basic Rayleigh-Schrödinger per-
turbation theory by making the replacements Enk→εnk
and Γnk→0 in Eq. (164).

By combining Eqs. (157)-(158), (160)-(161), and (164),
we obtain the temperature-dependent ‘band structure
renormalization’ arising from the EPI:

Enk = εnk +
∑

ν

∫

dq

ΩBZ

∑

m

|gmnν(k,q)|2

× Re

[

1− fmk+q + nqν

Enk − εmk+q − ~ωqν + iΓnk

+
fmk+q + nqν

Enk − εmk+q + ~ωqν + iΓnk

]

+
∑

ν

∫

dq

ΩBZ
gDW
nnνν(k,q,−q)(2nqν + 1). (166)

For practical calculations it is important to bear in mind
that this result rests on the approximations (i)-(vii) in-
troduced at p. 29, as well as the harmonic approximation.

The theory of temperature-dependent band structures
developed by Allen and Heine (1976) makes two addi-
tional approximations on top of Eq. (166): Brillouin-
Wigner perturbation theory is replaced by Rayleigh-
Schrödinger perturbation theory; and the phonon ener-
gies in the denominators are neglected. Using these ad-
ditional approximations Eq. (166) becomes:

Enk = εnk +
∑

ν

∫

dq

ΩBZ

[

∑

m

|gmnν(k,q)|2
εnk−εmk+q

+ gDW
nnνν(k,q,−q)

]

(2nqν + 1), (167)

which is referred to as the ‘adiabatic Allen-Heine for-
mula’. By setting T = 0 the Bose-Einstein factors nqν

vanish and we have the so-called ‘zero-point renormal-
ization’ of the energy bands, ∆EZP

nk = Enk(T =0)− εnk.
This is the modification of the electronic energies evalu-
ated at clamped nuclei, which arises from the zero-point
fluctuations of the atoms around their equilibrium sites.

An expression that is essentially identical to Eq. (167)
can also be obtained directly from Eq. (1) using second-
order Raleigh-Schrödinger perturbation theory in Fock
space, following the same lines as in (Kittel, 1963, p. 134).
A detailed derivation of the formalism starting from
Eq. (1) was given by Chakraborty and Allen (1978).

Historically, the Allen-Heine theory (Allen and Heine,
1976) was developed by starting from a straightforward
perturbation theory expansion of the electron energies in
terms of the atomic displacements within the adiabatic
approximation, followed by a canonical average of the dis-
placements using Bose-Einstein statistics. It is reassuring
that, after making a few well-defined approximations, a
field-theoretic method leads to the same result.

Equation (167) was employed in many semi-empirical
calculations.4 More recently, this expression was used in
the context of first-principles DFT calculations by Marini
(2008) and Giustino et al. (2010). DFT calculations of
band structure renormalization based on Eqs. (166) or
(167) are becoming increasingly popular, and the latest
developments will be reviewed in Sec. IX.A.1.

The nature of the band structure renormalization by
electron-phonon interactions can be understood at a
qualitative level by considering a drastically simplified
model, consisting of a semiconductor with parabolic and

4 See for example the works of Allen and Cardona (1981, 1983),
Lautenschlager et al. (1985), Gopalan et al. (1987), Zollner et al.

(1992), Olguín et al. (2002). Detailed reviews of early calcula-
tions and comparison to experiments can be found in (Cardona,
2001, 2005; Cardona and Thewalt, 2005).
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nondegenerate valence and conduction bands, with the
band extrema coupled to all other states by a dispersion-
less phonon mode of frequency ω0. If the Debye-Waller
matrix elements are much smaller than the Fan-Migdal
matrix elements, then the dominant contributions to
Eq. (167) arise from denominators such as εnk−εnk+q ≃
±~

2|q|2/2m∗
n, where the upper/lower sign is for the va-

lence/conduction band, and m∗
n are the effective masses.

As a result the temperature dependence of the band gap
will take the form:

Eg(T ) = Ecn
g −

∣

∣∆EZP
g

∣

∣ [1 + 2n(~ω0/kBT )], (168)

where Ecn
g is the gap at clamped nuclei, and |∆EZP

g | is
the zero-point correction. The negative sign in the last
expression arises from the opposite curvatures of the va-
lence and conduction bands. In this example the band
gap decreases with temperature: this is a well known ef-
fect in semiconductor physics, and is often referred to
as the ‘Varshni effect’ (Varshni, 1967). The first mea-
surements of such effects were performed by Becker and
Fan (1949), and stimulated the development of the first
theory of temperature-dependent band gaps (Fan, 1951).
A schematic illustration of this qualitative model is pro-
vided in Fig. 3(a). The redshift of the gap as a function
of temperature is seen in many albeit not all semiconduc-
tors. For example, copper halides (Göbel et al., 1998) and
lead halide perovskites (D’Innocenzo et al., 2014) exhibit
an ‘inverse Varshni’ effect, that is a blueshift of the gap
with temperature; in addition some chalcopyrites exhibit
a non-monotonic temperature dependence of the band
gap (Bhosale et al., 2012). We also point out that the
qualitative model shown in Fig. 3(a) does not take into
account the subtle temperature-dependence of the band
gap renormalization at very low temperature. These ef-
fects were recently investigated by Allen and Nery (2017).

4. Carrier lifetimes

While the real part of the poles in Eq. (164) describes
the energy level renormalization induced by the electron-
phonon coupling, the imaginary part Γnk in Eq. (165)
carries information on the spectral broadening, which
will be discussed in Sec. (V.B.5), and on quasiparticle
lifetimes, which we discuss below.

After transforming Gnn′k(ω) from Eq. (163) into the
time domain it is seen that, for an electron or hole added
to the system at time t in the state |nk〉, the probabil-
ity amplitude to persist in the same state decreases as
exp[Γnk(t

′ − t)/~]. Using Eqs. (157) and (165) it can be
seen that Γnk < 0 for an electron added to the system
and Γnk > 0 for a hole. Therefore the average time spent
by the particle in the state |nk〉 is τnk = ~/(2|Γnk|).

A popular expression for the electron and hole life-
times is obtained by making the replacement Ẽnk→εnk

FIG. 3 (Color online) Temperature-dependent band gap and
lifetimes in an idealized semiconductor or insulator. (a) Tem-
perature dependence of the band gap according to Eq. (168)
(thick solid blue line). The straight thin black line is the
asymptotic expansion at high temperature; this line intercepts
the vertical axis at the band gap calculated with clamped nu-
clei, Ecn

g . The difference between the latter value and the
band gap at T = 0 including the EPI gives the zero-point
renormalization, ∆EZP

g . (b) Temperature dependence of the
electron linewidth (solid blue line) and lifetimes (dashed red
line) using the same model as in (a). The zero-point broad-
ening is ΓZP

nk . This simplified trend is only valid when the
electron energy is at least one phonon energy away from a
band extremum, so that both phonon emission and phonon
absorption processes are allowed. The parameters of the
model are: Ecn

g = 1 eV, ∆EZP
g = 100 meV, ~ω0 = 100 meV,

ΓZP
nk = 50 meV; these values are representative of common

semiconductors.

in Eq. (157), and by taking the absolute value of the
imaginary part. We find:

1

τnk
=

2π

~

∑

mν

∫

dq

ΩBZ
|gnmν(k,q)|2

× |(1− fmk+q)δ(εnk − ~ωqν −εmk+q)

−fmk+q δ(εnk + ~ωqν −εmk+q)| . (169)

A more accurate expression is discussed after Eq. (174)
in the next section. The extension of the above result
to finite temperature is obtained by taking the absolute
value of the imaginary part of Eq. (158):

1

τnk
=

2π

~

∑

mν

∫

dq

ΩBZ
|gnmν(k,q)|2

× [(1− fmk+q + nqν)δ(εnk − ~ωqν −εmk+q) +

(fmk+q + nqν)δ(εnk + ~ωqν −εmk+q)] . (170)

We emphasize the change of sign in the third line, re-
sulting from the analytic continuation to the retarded
self-energy. Equation (170) coincides with the expres-
sion that one would obtain by using the standard Fermi
golden rule (Grimvall, 1981). The intuitive interpretation
of this result is that the quasiparticle lifetime is reduced
by processes of phonon emission and absorption, corre-
sponding to the second and third lines of Eq. (170), re-
spectively. We note that in deriving Eq. (170) we did not
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consider the Debye-Waller self-energy; this is because the
diagonal matrix elements of ΣDW are purely real, hence
they do not contribute to the quasiparticle widths (Laut-
enschlager et al., 1986). Ab initio calculations of carrier
lifetimes using Eq. (170) were first reported by Eiguren
et al. (2003a, 2002). These applications and more recent
developments will be reviewed in Sec. X.A.

If we evaluate Eq. (170) for the same simplified model
introduced for the temperature renormalization, and we
neglect the phonon energy in the Dirac delta functions,
we obtain Γnk(T ) = ΓZP

nk [1+2n(~ω0/kBT )] where ΓZP
nk is

the linewidth at T = 0. The dependence of the linewidth
and the corresponding lifetime on temperature for this
model are shown in Fig. 3(b). This trend is typical in
semiconductors (Lautenschlager et al., 1987a,b).

5. Kinks and satellites

In many cases of interest, the use of Brillouin-Wigner
perturbation theory as given by Eqs. (164)-(165) is not
sufficient to provide an adequate description of EPIs, and
it becomes necessary to go back to the complete Dyson
equation, Eq. (163). Generally speaking a direct so-
lution of the Dyson equation is important in all those
cases where the electronic energy scales are compara-
ble to phonon energies, namely in metals (including su-
perconductors), narrow-gap semiconductors, and doped
semiconductors. In order to study these systems, it is
convenient to introduce an auxiliary function called the
‘spectral density function’, or simply spectral function.

In its simplest version the spectral function is defined
as (Abrikosov et al., 1975; Mahan, 1993):

A(k, ω) = − 1

π

∑

n
ImG ret

nnk(ω), (171)

where the superscript ‘ret’ stands for ‘retarded’, and
simply indicates that all poles of the Green’s function
Gnn′k(ω) in the upper complex plane must be replaced
by their complex conjugate. The spectral function is pos-
itive definite and carries the meaning of a ‘many-body
momentum-resolved density of states’ (Abrikosov et al.,
1975). This is precisely the function that is probed by
angle-resolved photoelectron spectroscopy experiments
or ARPES (Damascelli et al., 2003). Using Eq. (163)
the spectral function can be rewritten as:

A(k, ω) =
∑

n

−(1/π) ImΣep
nnk(ω)

[~ω−εnk−ReΣep
nnk(ω)]

2
+[ImΣep

nnk(ω)]
2 .

(172)
In order to obtain the correct spectral function, it is im-
portant to use the retarded self-energy. This is done by
using Eq. (158) for the Fan-Migdal term, while the static
Debye-Waller term remains unchanged.

It is often convenient to approximate the spectral func-
tion as a sum of quasiparticle peaks. To this aim, one

performs a linear expansion of Eq. (172) around each
quasiparticle energy Enk, to obtain:

A(k, ω) =
∑

n

Znk
−(1/π)Znk ImΣep

nnk(Enk/~)

[~ω−Enk]
2
+[Znk ImΣep

nnk(Enk/~)]
2 .

(173)
This is a sum of Lorentzians with strength Znk and width
Znk ImΣep

nnk(Enk/~). Here the ‘quasiparticle strength’ is
defined as the homonymous quantity appearing in GW
calculations (Hedin and Lundqvist, 1969):

Znk =
[

1− ~
−1∂ReΣep

nnk(ω)/∂ω
∣

∣

ω=Enk/~

]−1

. (174)

The result expressed by Eq. (173) shows that, in a rigor-
ous field-theoretic approach, the quasiparticle broaden-
ing and lifetime given by Eqs. (169) and (170) should be
renormalized by Znk and Z−1

nk , respectively, and should
be evaluated using the quasiparticle energy Enk instead
of εnk. This result can also be derived from Eq. (165) by
performing a Taylor expansion of the self-energy along
the imaginary axis and using the Cauchy-Riemann con-
ditions.

In order to illustrate the typical features of the spectral
function, we consider a model system characterized by
one parabolic conduction band. The occupied electronic
states couple to all states within an energy cutoff via
a dispersionless phonon mode and a constant electron-
phonon matrix element. A simplified version of this
model was discussed by Engelsberg and Schrieffer (1963)
by considering a constant density of electronic states. By
evaluating the spectral function in Eq. (172) using the
Fan-Migdal self-energy and neglecting the Debye-Waller
term, we obtain the results shown in Fig. 4 for two sets
of parameters.

In Fig. 4(a) the Fermi energy is much larger than the
characteristic phonon energy. This case is representative
of a metallic system with electron bands nearly linear
around the Fermi level. Here the electron-phonon inter-
action leads to (i) a reduction of the band velocity in
proximity of the Fermi level, and (ii) a broadening of
the spectral function beyond the phonon energy ~ω0. A
detailed analysis of these features for a slightly simpler
model system, including a discussion of the analytic prop-
erties of the Green’s function, can be found in the work
by Engelsberg and Schrieffer.

The solid line (red/dark gray) in Fig. 4(a) shows the
renormalized band structure obtained from Brillouin-
Wigner perturbation theory, Eq. (164). We see that
these solutions track the maxima of the spectral func-
tion A(k, ω). The renormalized bands exhibit a charac-
teristic ‘S-shape’ near the Fermi level, corresponding to
multiple solutions of Eq. (164) for the same wavevector
k. Starting from the late 1990s such S-shaped energy-
momentum dispersion curves have been observed in a
number of ARPES experiments, and have become known
in the literature as the ‘photoemission kink’ (Valla et al.,
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FIG. 4 (Color online) Two-dimensional maps of the electron
spectral function A(k, ω) for electrons coupled to a disper-
sionless phonon of frequency ω0. The non-interacting bands
are given by ε(k) = −εF + ~

2|k|2/2m∗, and the Fermi level
coincides with the top of the energy window. The matrix el-
ement is |g|2 = ~ω0/NF when the electron energies differ by
less than the cutoff εmax, and zero otherwise (NF is the den-
sity of states at the Fermi level). (a) Spectral function for the
case εF = 10 ~ω0 (white on blue/black), non-interacting band
structure (solid line, yellow/light gray), and fully-interacting
band structure within Brillouin-Wigner perturbation theory
(solid line, red/dark gray). (b) Spectral function for the
case εF = 2 ~ω0. The model parameters are: m∗ = 0.1me,
~ω0 = 100 meV, η = 20 meV, εc = 5 eV, For clarity the cal-
culated spectral functions are cut off at the value 3 eV−1 and
normalized. The self-energy is shifted by a constant so as to
have Σep(0) = 0; this correction guarantees the fulfillment of
Luttinger’s theorem about the volume enclosed by the Fermi
surface (Luttinger, 1960).

1999a). First-principles calculations of kinks were first
reported by Eiguren et al. (2003a) and Giustino et al.

(2008), and will be reviewed in Sec. VIII.
In Fig. 4(b) the Fermi energy is comparable to the char-

acteristic phonon energy. This case is representative of a
degenerately doped semiconductor close to a conduction
band minimum. Here the electron-phonon interaction
leads to two distinct spectral features: (i) a parabolic
band with a heavier mass, which is well described by
the Brillouin-Wigner solutions (solid line, red/dark gray),
and (ii) a polaron satellite that is visible further down.
In this example, it is clear that Eq. (164) is unable to
describe the satellite, and that the spectral function car-
ries qualitatively new information about the system. Po-
laron satellites resembling Fig. 4(b) have been observed
in ARPES experiments on doped oxides (Moser et al.,
2013; Chen et al., 2015; Cancellieri et al., 2016; Wang
et al., 2016) and recently calculated from first principles
(Verdi et al., 2016).

6. Model Hamiltonians, polarons, and the cumulant expansion

At the end of this section it is worth mentioning com-
plementary non first-principles approaches for studying

the effects of EPIs on the electronic properties of solids.
Model EPI Hamiltonians can be derived from Eq. (1)
by choosing a priori explicit expressions for the elec-
tron band energies, the vibrational frequencies, and the
coupling matrix elements. Examples of model Hamil-
tonians are those of Fröhlich (1954), Holstein (1959),
Su, Schrieffer, and Heeger (1979), the Hubbard-Holstein
model (Berger et al., 1995), the Peierls-Hubbard model
(Campbell et al., 1984), the ‘t-J ’ Holstein model (Rösch
and Gunnarsson, 2004), and the Su-Schrieffer-Heeger-
Holstein model (Perroni et al., 2004). These mod-
els involve the tight-binding approximation, the Ein-
stein phonon spectrum, and electron-phonon couplings
to first order in the atomic displacements. Using these
model Hamiltonians it is possible to go beyond the ap-
proximations introduced in Sec. V.B.2, and obtain non-
perturbative solutions by means of canonical Lang-Firsov
transformations, path-integral methods, exact diagonal-
ization, variational or quantum Monte Carlo techniques
(Alexandrov, 2008; Alexandrov and Devreese, 2010).
These models have been used extensively to explore many
aspects of polaron physics, for example the ground-state
energy of polarons (weak or strong coupling), their spa-
tial extent (large or small polarons), and transport prop-
erties (band-like or hopping-like).

Given the considerable body of literature on model EPI
Hamiltonians, it is natural to ask whether one could bring
ab initio calculations of EPIs to a similar level of sophis-
tication. The main limitation of current first-principles
approaches is that, given the complexity of the calcula-
tions, the electron self-energies are evaluated using the
bare propagators, as in Eq. (157). As a consequence,
higher-order interaction diagrams beyond the Migdal ap-
proximation (Migdal, 1958) are omitted altogether.

A promising avenue for going beyond the Migdal ap-
proximation consists of introducing higher-order dia-
grams via the ‘cumulant expansion’ approach (Hedin and
Lundqvist, 1969; Langreth, 1970; Aryasetiawan et al.,
1996). In the cumulant expansion method, instead of
calculating the electron Green’s function via a Dyson
equation, one evaluates the time evolution of the Green’s
function by formulating the problem in the interaction
picture, in symbols: Gnnk(t) = (i/~) exp[−i(εnk/~)t +
Cnnk(t)] (Aryasetiawan et al., 1996). The distinctive ad-
vantage of this approach is that the ‘cumulant’ Cnnk(t)
can be obtained from a low-order self-energy, for exam-
ple the Fan-Migdal self-energy in Eq. (157), and the ex-
ponential ‘resummation’ automatically generates higher-
order diagrams (Mahan, 1993, pag. 523). Detailed dis-
cussions of the cumulant expansion formalism are given
by Zhou et al. (2015) and Gumhalter et al. (2016).

The cumulant method provides an interesting point
of contact between ab initio and model Hamiltonian ap-
proaches. In fact, the cumulant expansion is closely re-
lated to the ‘momentum average approximation’ intro-
duced by Berciu (2006) for studying the Green’s function
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of the Holstein polaron.
The cumulant expansion has proven successful in

ab initio calculations of electron-electron interactions,
in particular valence band satellites in semiconductors
(Kheifets et al., 2003; Guzzo et al., 2011, 2012, 2014; Lis-
chner et al., 2013; Kas et al., 2014; Caruso et al., 2015,
2015b). In the context of EPIs, the ab initio cumulant
expansion method has been applied to elemental metals
by Story et al. (2014), and to the ARPES spectra of n-
doped TiO2 by Verdi et al. (2016). In the latter work the
cumulant method correctly reproduced the polaron satel-
lites observed in the experiments of Moser et al. (2013).

The study of polarons using ab initio many-body tech-
niques is yet to begin, however a first calculation of the
spectral function of Fröhlich polarons and an approxi-
mate polaron wavefunction have recently been reported
by Verdi et al. (2016).

VI. EFFICIENT CALCULATIONS OF MATRIX ELEMENTS
AND THEIR INTEGRALS

The study of EPIs from first principles requires eval-
uating Brillouin-zone integrals of functions that exhibit
strong fluctuations. This requirement can be appreciated
by inspecting Eqs. (145) and (157): there the denomina-
tors become large whenever the difference between two
electronic eigenvalues approaches a phonon energy. As a
result, while in DFT total energy calculations the Bril-
louin zone is typically discretized using meshes of the
order of 10×10×10 points, the numerical convergence
of EPI calculations requires much finer grids, sometimes
with as many as 106 wavevectors (Giustino et al., 2007a;
Poncé et al., 2015). Determining vibrational frequen-
cies ωqν and perturbations ∆qνv

KS(r) for such a large
number of wavevectors is a prohibitive task, since every
calculation is roughly as expensive as one total energy
minimization.

These difficulties stimulated the development of spe-
cialized numerical techniques for making calculations of
EPIs affordable. In the following sections two such tech-
niques are reviewed: electron-phonon Wannier interpola-
tion and Fermi-surface harmonics.

A. Wannier interpolation

1. Maximally-localized Wannier functions

In addition to the standard description of electrons in
solids in terms of Bloch waves, as in Eq. (29), it is possible
to adopt an alternative point of view whereby electrons
are described as linear combinations of localized orbitals
called ‘Wannier functions’ (Wannier, 1937). The most
general relation between Wannier functions and Bloch
waves can be written as follows. One considers electron
bands εnk with eigenfunctions ψnk, where the index n

is restricted to a set of bands that are separated from
all other bands by finite energy gaps above and below.
These bands are referred to as ‘composite energy bands’
(Marzari and Vanderbilt, 1997). Wannier functions are
defined as:

wmp(r) = N−1
p

∑

nk
eik·(r−Rp) Unmk unk(r), (175)

where Unmk is a unitary matrix in the indices m
and n. From this definition and Eq. (A1) it follows
that Wannier functions are normalized in the super-
cell, 〈wmp|wm′p′〉sc = δmp,m′p′ . Furthermore, since unk
is lattice-periodic, Wannier functions have the property
wmp(r) = wm0(r − Rp). The inverse transformation of
Eq. (175) is obtained by using the unitary character of
Unmk together with Eq. (A1):

unk(r) =
∑

mp
e−ik·(r−Rp)U†

mnkwmp(r). (176)

The unitary matrix Unmk is completely arbitrary, there-
fore there exists considerable freedom in the construc-
tion of Wannier functions. For example by requiring that
Unm,−k = U∗

nmk one can make Wannier functions real-
valued. Marzari and Vanderbilt exploited this degree of
freedom to construct Wannier functions that are maxi-

mally localized.
A comprehensive and up-to-date review of the theory

and applications of maximally-localized Wannier func-
tions (MLWFs) is given by Marzari et al. (2012). Here
we only recall that, in order to minimize the spatial ex-
tent of a function in a periodic solid, one needs to use
a modified definition of the position operator, since the
standard position operator is unbounded in an infinite
crystal. This procedure is now well-established and it is
linked to the development of the modern theory of di-
electric polarization (King-Smith and Vanderbilt, 1993;
Resta, 1994). Nowadays it is possible to determine ML-
WFs routinely (Mostofi et al., 2008). The original al-
gorithm of Marzari and Vanderbilt (1997) was also ex-
tended to deal with situations where a composite set of
bands cannot be identified. This happens notably in met-
als for electronic states near the Fermi energy. For these
cases, Souza et al. (2001) developed a band ‘disentangle-
ment’ procedure, which extracts a subset of composite
bands out of a larger set of states.

For the purposes of the present article, the most im-
portant property of MLWFs is that they are exponen-
tially localized in insulators, in the sense that |wm0(r)| ∼
|r|−α exp(−h|r|) for large |r|, with α, h > 0 real pa-
rameters. This property was demonstrated in one spa-
tial dimension by Kohn (1959a) and He and Vanderbilt
(2001), and in two and three dimensions by Brouder
et al. (2007), under the condition that the system ex-
hibits time-reversal symmetry. In the case of metallic
systems, no exponential localization is expected. How-
ever, the Wannier functions obtained in metals using the



36

disentanglement procedure of Souza et al. (2001) are typ-
ically highly localized.

MLWFs are usually comparable in size to atomic or-
bitals, and this makes them ideally suited for Slater-
Koster interpolation of band structures, as shown by
Souza et al. (2001). This concept was successfully em-
ployed in a number of applications requiring accurate cal-
culations of band velocities, effective masses, density of
states, Brillouin-zone integrals, and transport coefficients
(Wang et al., 2006; Yates et al., 2007; Wang et al., 2007;
Pizzi et al., 2014).

2. Interpolation of electron-phonon matrix elements

Wannier functions were introduced in the study of
EPIs by Giustino et al. (2007a,b). The starting point
is the definition of the electron-phonon matrix element
in the Wannier representation:5

gmnκα(Rp,Rp′)=〈wm0(r)|
∂V KS

∂τκα
(r−Rp′)|wn0(r−Rp)〉sc,

(177)
where the subscript ‘sc’ indicates that the integral is over
the BvK supercell. The relation between these quanti-
ties and the standard EPI matrix elements gmnν(k,q) is
found by replacing Eq. (176) inside Eq. (38), and using
Eqs. (34)-(35) (Giustino et al., 2007a):

gmnν(k,q) =
∑

pp′
ei(k·Rp+q·R

p′ )

×
∑

m′n′κα

Umm′k+q gm′n′κα(Rp,Rp′)U†
n′nkuκα,qν , (178)

where we defined uκα,qν = (~/2Mκωqν)
1
2 eκα,ν(q) and

eκα,ν(q) are the vibrational eigenmodes of Eq. (15). The
inverse relation is:

gmnκα(Rp,Rp′) =
1

NpNp′

∑

k,q

e−i(k·Rp+q·R
p′ )

×
∑

m′n′ν

u−1
κα,qν U

†
mm′k+q gm′n′ν(k,q)Un′nk, (179)

with u−1
κα,qν = (~/2Mκωqν)

− 1
2 e∗κα,ν(q). The last two

equations define a generalized Fourier transform of
the electron-phonon matrix elements between reciprocal
space and real space. In Eq. (179) we have Np and Np′

to indicate that the BvK supercells for electronic band
structures and phonon dispersions may not coincide.

If the quantity gmnκα(Rp,Rp′) decays rapidly as a
function of |Rp| and |Rp′ |, then only a small number

5 We note that gmnκα(Rp,Rp′ ) has dimensions of energy by
length, at variance with Eq. (38). For consistency here we use a
definition that differs from that given in (Giustino et al., 2007a)
by a factor Np; this factor is inconsequential.

of matrix elements in the Wannier representation will be
sufficient to generate gmnν(k,q) anywhere in the Bril-
louin zone by means of Eq. (178). The dependence of
the matrix elements on Rp and Rp′ can be analyzed
by considering the following bound: |gmnκα(Rp,Rp′)| ≤
∫

sc
dr |w∗

m0(r)wn0(r−Rp)|×
∫

sc
dr |∂V KS/∂τκα(r−Rp′)|.

The first term guarantees that the matrix element decays
in the variable Rp at least as fast as MLWFs. As a result
the worst case scenario corresponds to the choice Rp = 0.
In this case, the matrix element |gmnκα(0,Rp′)| decays
with the variable Rp′ at the same rate as the screened

electric dipole potential generated by the atomic displace-
ment ∆τκα. In non-polar semiconductors and insulators,
owing to the analytical properties of the dielectric ma-
trix (Pick et al., 1970), this potential decays at least as
fast as a quadrupole, that is |Rp′ |−3. As a result, all
matrix elements in reciprocal space are finite for q → 0
(Vogl, 1976) and hence amenable to interpolation. In
the case of metals the asymptotic trend of ∂V KS/∂τκα
is dictated by Fermi-surface nesting, leading to Friedel
oscillations that decay as |Rp′ |−4 (Fetter and Walecka,
2003, pp. 175–180). These oscillations are connected to
the Kohn anomalies in the phonon dispersion relations
(Kohn, 1959b). In practical calculations, Friedel oscilla-
tions are usually not an issue since they are suppressed
by the numerical smearing of the Fermi-Dirac occupa-
tions, and a Yukawa-type exponential decay is recovered.
The case of polar materials is more subtle and will be
discussed in Sec. VI.A.3. Figure 5 illustrates the spatial
decay of |gmnκα(Rp,Rp′)| as a function of Rp and Rp′

for the prototypical case of diamond.
The interpolation strategy is entirely analogous to

standard techniques for generating phonon dispersion
relations using the interatomic force constants (Gonze
and Lee, 1997): one first determines matrix elements in
the Bloch representation using DFPT on a corse grid
in the Brillouin zone, as in Sec. III.B.3. Then ML-
WFs are determined using the procedures of Marzari and
Vanderbilt (1997) and Souza et al. (2001). This yields
the rotation matrices Umnk to be used in Eq. (179).
The Fourier transform to real space is performed via
Eq. (179). At this point, one assumes that matrix ele-
ments outside of the Wigner-Seitz supercell defined by
the coarse Brillouin-zone grid can be neglected, and
uses Eq. (178) in order to obtain the matrix elements
gmnν(k,q) on very fine grids. The last step requires
the knowledge of the rotation matrices Umnk also on the
fine grids; these matrices are obtained from the Wan-
nier interpolation of the band structures, as described
by Souza et al. (2001). The operation is computation-
ally inexpensive and enables the calculation of millions
of electron-phonon matrix elements. The procedure can
now be applied routinely (Noffsinger et al., 2010; Poncé
et al., 2016). Figure 6 shows the matrix elements ob-
tained using this method, as compared to explicit DFPT
calculations.
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FIG. 5 (Color online) Spatial decay of the electron-phonon
matrix elements of diamond in the Wannier representation:
(a) max |gmnκα(Rp, 0)| vs. |Rp|, and (b) max |gmnκα(0,Rp′)|
vs. |Rp′ |. The maximum values are taken over all subscript
indices, and the data are normalized to the largest value. The
insets show the same quantities in logarithmic scale. The
calculations were performed using the local-density approxi-
mation to DFT. Reproduced with permission from (Giustino
et al., 2007a), copyright (2007) by the American Physical So-
ciety.

FIG. 6 (Color online) Comparison between Wannier-
interpolated electron-phonon matrix elements and explicit
DFPT calculations, for diamond. The interpolated matrix
elements were calculated starting from a coarse 43 Brillouin-
zone grid (dotted line, black), a 63 grid (dashed line, blue),
and a 83 grid (solid line, red). The dots indicate explicit
DFPT calculations. In this example |nk〉 is set to the valence
band top at Γ; |mk+q〉 spans Λ3, ∆5, and Σ2 bands, and the
phonon is set to the highest optical branch. Reproduced with
permission from (Giustino et al., 2007a), copyright (2007) by
the American Physical Society.

Wannier interpolation of electron-phonon matrix ele-
ments was successfully employed in a number of applica-
tions, ranging from metal and superconductors to semi-

conductors and nanoscale systems.6

3. Electron-phonon matrix elements in polar materials

In the case of polar materials, that is systems exhibit-
ing nonzero Born effective charges (Pick et al., 1970),
the interpolation scheme discussed in Sec. VI.A.2 breaks
down. In fact, in these systems the dominant contribu-
tion to the potential ∂V KS/∂τκα in Eq. (177) is a dipole,
which decays as |Rp′ |−2. As a consequence some of the
matrix elements in reciprocal space diverge as |q|−1 for
q → 0, and cannot be interpolated straightforwardly
from a coarse grid to a fine grid. Physically this singu-
larity corresponds to the ‘Fröhlich electron-phonon cou-
pling’ (Fröhlich, 1954).

The adaptation of the Wannier interpolation method
to the case of polar materials was recently given by Sjak-
ste et al. (2015) and by Verdi and Giustino (2015). In
both works the basic idea is to separate the matrix ele-
ments into a short-range contribution, gSmnν(k,q), which
is amenable to standard Wannier interpolation, and a
long-range contribution, gLmnν(k,q), which is singular
and is dealt with analytically. The strategy is analogous
to that in use for calculating LO-TO splittings in po-
lar materials (Gonze and Lee, 1997). The starting point
is to define the long-range component of the matrix ele-
ments by considering the potential generated by the Born
charges of all the atoms, when displaced according to a
given vibrational eigenmode. The derivation relies on
standard electrostatics and can be found in (Verdi and
Giustino, 2015):

gLmnν(k,q) = i
4π

Ω

e2

4πε0

∑

κ

(

~

2NpMκωqν

)
1
2 ∑

G 6=−q

(q+G) · Z∗
κ · eκν(q)

(q+G) · ǫ∞ · (q+G)
〈ψmk+q|ei(q+G)·(r−τκ)|ψnk〉sc.

(180)

In this expression Z∗
κ and ǫ

∞ denote the Born effec-
tive charge tensors and the electronic permittivity tensor
(that is, the permittivity evaluated at clamped nuclei).
This expression is the generalization of Fröhlich’s model
to the case of anisotropic crystalline lattices and multi-
ple phonon modes (Fröhlich, 1954). The result can be
derived alternatively using the analytical properties of
the dielectric matrix (Pick et al., 1970) as discussed by
Vogl (1976).

6 See for example (Park et al., 2007; Giustino et al., 2008; Park
et al., 2008b; Noffsinger et al., 2009, 2010; Calandra et al.,
2010; Giustino et al., 2010; Vukmirović et al., 2012; Noffsinger
et al., 2012; Margine and Giustino, 2013, 2014; Park et al., 2014;
Bernardi et al., 2014; Verdi and Giustino, 2015; Sjakste et al.,
2015; Bernardi et al., 2015).
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FIG. 7 (Color online) Wannier interpolation of electron-
phonon matrix elements for anatase TiO2. The initial state
|nk〉 is set to the bottom of the conduction band at Γ, the final
state |mk+q〉 spans the bottom of the conduction band along
high-symmetry lines, and the phonon is the highest LO mode.
The dots correspond to explicit DFPT calculations. The red
dashed line is the short-range component of the matrix el-
ements, gS . The solid curve in blue represents the matrix
elements gS + gL, as obtained from the modified Wannier in-
terpolation of Sec. VI.A.3. The interpolation was performed
starting from a coarse 4×4×4 unshifted grid. Reproduced
with permission from (Verdi and Giustino, 2015), copyright
(2015) by the American Physical Society.

In order to perform Wannier interpolation, one sub-
tracts Eq. (180) from the matrix elements computed on
a coarse grid, interpolates the remainig short-range part,
and then adds back Eq. (180) on the fine grid. This pro-
cess requires the interpolation of the brakets 〈· · ·〉sc in
the second line of Eq. (180). Verdi and Giustino showed
that, for small q+G, these brakets can be interpolated
via the relation 〈ψmk+q|ei(q+G)·r|ψnk〉sc =

[

Uk+qU
†
k

]

mn
,

where the rotation matrices Umnk are obtained as usual
from the procedure of Marzari and Vanderbilt (1997) and
Souza et al. (2001).7 Figure 7 shows an example of Wan-
nier interpolation for the prototypical polar semiconduc-
tor TiO2: it is seen that the singularity is correctly cap-
tured by the modified interpolation method.

At the end of this section, we mention that other in-
terpolation schemes are equally possible (Eiguren and
Ambrosch-Draxl, 2008b; Prendergast and Louie, 2009;
Agapito et al., 2013; Gunst et al., 2016). For example
Eiguren and Ambrosch-Draxl (2008b) proposed to inter-
polate only the local component of ∆V KS

qν , while calcu-
lating explicitly the nonlocal part of the perturbation as
well as the Kohn-Sham wavefunctions in the Bloch rep-
resentation. Furthermore, Eq. (178) remains unchanged
if MLWFs are replaced by a basis of localized atomic

7 Eq. (4) of Verdi and Giustino (2015) misses a factor e−i(q+G)·τκ ;
this factor needs to be retained in order to correctly describe the
acoustic modes near q = 0. In practical calculations the G-
vector sum in Eq. (180) is restricted to small |q + G| via the

cutoff function e−a|q+G|2 ; the results are independent of the
choice of the cutoff parameter a.

orbitals, and all the concepts discussed in this section re-
main valid. An interpolation scheme using local orbitals
was recently demonstrated by Gunst et al. (2016).

B. Fermi surface harmonics

In the study of metallic systems, one is often interested
in describing EPIs only for electronic states in the vicinity
of the Fermi surface. In these cases, besides the Wannier
interpolation discussed in Secs. VI.A.2-VI.A.3, it is possi-
ble to perform efficient calculations using ‘Fermi-surface
harmonics’ (FSH). FSHs were introduced by Allen (1976)
and recently revisited by Eiguren and Gurtubay (2014).

The basic idea underlying FSHs is to replace expensive
three-dimensional Brillouin-zone integrals by inexpensive
one-dimensional integrals in the energy variable. To this
aim, Allen (1976) proposed to expand functions of the
band index n and wavevector k, say Ank, in products of
pairs of functions, one depending on the energy, AL(ε),
and one depending on the wavevector, ΦL(k):

Ank =
∑

L
AL(εnk) ΦL(k). (181)

In this expression, the Fermi-surface harmonics ΦL(k)
(to be defined below) are constructed so as to obey the
following orthogonality condition:

N−1
p

∑

nk
δ(εnk − ε) ΦL(k) ΦL′(k) = N(ε)δLL′ , (182)

where N(ε) = N−1
p

∑

nkδ(εnk−ε) is the density of states.
Using Eqs. (181)-(182) one finds:

AL(ε) = N(ε)−1N−1
p

∑

nk
δ(εnk − ε) ΦL(k)Ank. (183)

Allen showed that in the FSH representation a linear sys-
tem of the kind Ank = N−1

p

∑

n′k′ Mnk,n′k′Bn′k′ trans-
forms into AL(ε) =

∑

L′

∫

dε′N(ε′)MLL′(ε, ε′)BL′(ε′).
Linear systems of this kind are common in the solu-
tion of the Boltzmann transport equation (Sec. X) and
the Eliashberg equations for the superconducting gap
(Sec. XI.B). If one could perform the expansion using
only a few harmonics, then the transformation would be
advantageous, since the integrals over the wavevectors
would have been absorbed in the expansion coefficients.

In the original proposal of Allen, the harmonics ΦL(k)
were defined as polynomials in the band velocities, how-
ever the completeness of the basis set was not established.
In a recent work, Eiguren and Gurtubay (2014) proposed
to construct these functions as eigenstates of a modified
Helmholtz equation:

|vk|∇2
kΦL(k) = ωLΦL(k), (184)

where vk = ~
−1∇kεnk is the band velocity for states

at the Fermi surface, and ωL is the eigenvalue for the
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harmonic ΦL. The new definition in Eq. (184) main-
tains the properties of the original FSHs, and carries the
added advantage that the basis set is complete. In this
case the subscript L in ΦL(k) labels the eigenstates of
the Helmholtz equation. Eiguren and Gurtubay demon-
strated the construction of ‘Helmholtz FSHs’ for proto-
typical metals such as Cu, Li, and MgB2.

Recent examples of the application of Fermi surface
harmonics to first-principles calculations of EPIs include
work on the photoemission kink of YBa2Cu3O7 (Heid
et al., 2008), and on the Seebeck coefficient of Li (Xu
and Verstraete, 2014).

VII. NON-ADIABATIC VIBRATIONAL FREQUENCIES AND
LINEWIDTHS

As discussed in Secs. V.A.2-V.A.3, the electron-phonon
interaction can lead to a renormalization of the adiabatic

vibrational frequencies and to a broadening of the spec-
tral lines.

The first ab initio investigations of the effects of
the non-adiabatic renormalization of phonon frequencies
were reported by Lazzeri and Mauri (2006) and Pisana
et al. (2007). In these works the authors concentrated
on the E2g phonon of graphene, which is found at the
wavenumber ω/2πc = 1585 cm−1 at room temperature
(c is the speed of light). This phonon corresponds to an
in-plane C–C stretching vibration with q = 0, and has
been studied extensively via Raman spectroscopy. In the
graphene literature this mode is referred to as the ‘Ra-
man G band’. Figure 8 shows a comparison between
calculated and measured E2g phonon frequencies, as a
function of doping, from (Pisana et al., 2007). The cal-
culations were performed (i) within the adiabatic approx-
imation and (ii) by including the non-adiabatic frequency
renormalization using Eq. (145).8 From Fig. 8 we see that
the adiabatic theory is unable to reproduce the experi-
mental data. On the contrary, the calculations including
non-adiabatic effects nicely follow the measured Raman
shift. This is a clear example of the limits of the adiabatic
Born-Oppenheimer approximation and a demonstration
of the importance of the phonon self-energy in Eq. (145).

The fact that the adiabatic approximation is inade-
quate for the E2g phonon of doped graphene should have
been expected from the discussion on p. 27. In fact,
graphene is a zero-gap semiconductor, therefore electrons
residing in the vicinity of the Dirac points can make ‘vir-
tual’ transitions with |q|=0 and energies comparable to

8 In the works reviewed in this section the authors used Eq. (145)
with the bare matrix elements gbmnν(k,q) replaced by the
screened matrix elements gmnν(k,q). All calculations were per-
formed within DFT, using either the LDA or gradient-corrected
DFT functionals.

FIG. 8 (Color online) Frequency of the Raman G band of
graphene vs. carrier concentration. The black filled disks are
from Raman measurements of gated graphene on a silicon
substrate at 295 K. The thick horizontal dashed line (red)
shows the variation of the E2g mode frequency with dop-
ing, within the adiabatic approximation. The solid blue line
shows the variation of the frequency calculated by including
non-adiabatic frequency renormalization. Reproduced with
permission from (Pisana et al., 2007), copyright (2007) by
Macmillan Publishers Ltd.

that of the E2g mode. As a result, the condition underly-
ing the adiabatic approximation, |εmk+q − εnk| ≫ ~ωqν ,
does not hold in this case.

The importance of non-adiabatic effects was confirmed
also in the case of metallic single-walled carbon nan-
otubes (Piscanec et al., 2007; Caudal et al., 2007). In
these works, the authors studied the phonon dispersion
relations in the vicinity of |q|= 0, and they found that
the difference between adiabatic and non-adiabatic dis-
persions is concentrated around the zone center. This
finding is consistent with earlier models of non-adiabatic
effects. In fact Maksimov and Shulga (1996) showed that,
for metals with linear electron bands crossing the Fermi
level, ΠNA is only significant for wavevectors |q| ∼ ω/vF,
where ω is the phonon energy and vF the Fermi velocity.
This result can be derived from Eq. (145).

In the previous examples, the non-adiabatic renormal-
ization of the vibrational frequencies is measurable but
very small, typically of the order of 1% of the correspond-
ing adiabatic frequencies. Saitta et al. (2008) considered
the question as to whether one could find materials ex-
hibiting large non-adiabatic renormalizations, and con-
sidered several graphite intercalation compounds, namely
LiC6, LiC12, KC8, KC24, RbC8, CaC6, SrC6, BaC6, as
well as other metallic systems such as MgB2, Mg, and
Ti. In order to calculate the non-adiabatic renormal-
ization at a reduced computational cost, the real part
of the phonon self-energy was approximated as follows:
~ReΠNA

q=0,νν ≃ NF 〈|gnnν(k,q = 0)|2〉BZ, where 〈· · ·〉BZ

stands for the average taken over the wavevectors k in
the Brillouin zone, and NF is the density of states at
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FIG. 9 Comparison between measured (ωexp) and calculated
(ωth) vibrational frequencies of the E2g mode of graphite in-
tercalation compounds. Open symbols are adiabatic DFPT
calculations, filled symbols are calculations including the non-
adiabatic corrections. The line corresponds to ωth = ωexp.
Reproduced with permission from (Saitta et al., 2008), copy-
right (2008) by the American Physical Society.

the Fermi level. This expression can be derived from
Eq. (145) by replacing the bare matrix elements by their
screened counterparts, and by neglecting the ‘interband’
contributions m 6= n in the sum. Figure 9 shows a com-
parison between vibrational frequencies from experiment
and those calculated with or without including the non-
adiabatic self-energy. It is clear that the non-adiabatic
frequencies are in much better agreement with experi-
ment than the corresponding adiabatic calculations. Fur-
thermore, in these compounds the renormalization can
reach values as large as ∼300 cm−1. In contrast to this,
the renormalization in Mg and Ti was found to be of only
a few wavenumbers in cm−1.

The case of MgB2 proved more puzzling: here the cal-
culated non-adiabatic frequency is 761 cm−1, while ex-
periments reported 600 cm−1. In order to explain this
discrepancy, Saitta et al. reasoned that a more accu-
rate calculation would require taking into account the
relaxation time of the electrons, as pointed out by Mak-
simov and Shulga (1996). This would act so as to partly
wash out non-adiabatic effects. In the field-theoretic lan-
guage of Sec. V, this observation corresponds to stating
that when one approximates the dressed electron propa-
gatorG in Fig. 2(c) using the non-interacting Kohn-Sham
Green’s function, one should include at the very least
the effects of finite electron lifetimes (due to electron-
electron, electron-impurity, and electron-phonon scatter-
ing), for example via the imaginary part of Eq. (157).

The calculations discussed so far in this section ad-
dressed the non-adiabatic renormalization of zone-center
phonons. The generalization to calculations of complete
phonon dispersions was made by Calandra et al. (2010).
In their work, Calandra et al. employed Wannier in-
terpolation (see Sec. VI) in order to calculate the non-
adiabatic phonon self-energy of Eq. (145) throughout the
Brillouin zone. Figure 10 shows a comparison between

FIG. 10 (Color online) Phonon dispersion relations of CaC6

calculated using Wannier interpolation. The dashed lines
(black) and the solid lines (red) represent the standard adi-
abatic calculation and the non-adiabatic phonon dispersions,
respectively. Reproduced with permission from (Calandra
et al., 2010), copyright (2010) by the American Physical So-
ciety.

the standard DFPT phonon dispersion relations of CaC6

and the dispersions obtained after incorporating the non-
adiabatic self-energy. It is seen that also in this case non-
adiabatic effects are most pronounced at small q, and can
be as large as 7% of the adiabatic frequency.

In their work Calandra et al. approximated the bare
matrix element gbmnν(k,q) appearing in Eq. (145) by the
screened matrix element gmnν(k,q). This replacement
was justified by reasoning that the error is of second-
order in the induced electron density, hence it should be
negligible.

The broadening of vibrational spectra arising from the
electron-phonon interaction is almost invariably calcu-
lated from first principles using Eq. (146). Since the in-
tegration of the Dirac delta is computationally costly, it
is common to rewrite that equation by neglecting the
phonon energy in the delta function and by taking the
low-temperature limit, as proposed by Allen (1972b):

γqν
πωqν

≃ 2
∑

mn

∫

dk

ΩBZ
|gmnν(k,q)|2δ(εnk−εF)δ(εmk+q−εF),

(185)
where εF is the Fermi energy. Oddly enough, this is
a sort of adiabatic approximation to the non-adiabatic
theory. The main advantage is that this expression is
positive definite, hence easier to converge numerically as
compared to the complete expression in Eq. (146). The
disadvantages are that the temperature dependence is
lost, and that one cannot resolve fine features on the
scale of a phonon energy. There exists a vast literature
on first-principles calculations of phonon linewidths using
Eq. (185), mostly in connection with electron-phonon su-
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perconductors.9 Equation (185) is now implemented in
several large software projects (Giannozzi et al., 2009;
Gonze et al., 2009), and it is used routinely.

Phonon linewidths range from very small values such
as ∼1 meV in Nb (Bauer et al., 1998) to large values
such as ∼30 meV in MgB2 (Shukla et al., 2003). The
agreement between calculations and neutron scattering
or Raman measurements is usually reasonable.

Calculations of phonon linewidths using the more ac-
curate expression in Eq. (146) are computationally more
demanding and have been reported less extensively in the
literature.10

So far we considered the effect of EPIs on the frequen-
cies and lifetimes of vibrational excitations in solids. An-
other important phenomenon which modifies frequencies
and lifetimes is anharmonicity. Anharmonic effects re-
sult from third and higher-order terms in the Taylor ex-
pansion of the total potential energy U in the atomic
displacements (Sec. III.A). These effects can be inter-
preted as additional interactions that couple the oscilla-
tors of the harmonic lattice; for example, third-order an-
harmonic effects reduce phonon lifetimes via energy up-
or down-conversion processes involving three phonons.

Anharmonic effects can be described using a many-
body field-theoretic formalism (Cowley, 1963), in com-
plete analogy with the theory of EPIs discussed in
Sec. IV. The calculation of anharmonic effects from
first principles goes through the evaluation of third-
and fourth-order derivatives of the total potential energy
U in the adiabatic approximation. Third-order coeffi-
cients are routinely computed using DFPT (Debernardi
et al., 1995; Deinzer et al., 2003; Lazzeri et al., 2003;
Broido et al., 2007; Bonini et al., 2007). In thoses cases
where the harmonic approximation fails completely, ‘self-
consistent phonon’ techniques can be employed (Hooton,
1955; Koehler, 1966); recent implementations and calcu-
lations can be found in Errea et al. (2011, 2014), Hellman
et al. (2011, 2013); and Monserrat et al. (2013).

VIII. ELECTRON-PHONON INTERACTIONS IN
PHOTOELECTRON SPECTROSCOPY

In Sec. V.B.5 we have seen how the electron-phonon
interaction in metals can lead to band structure ‘kinks’
near the Fermi energy. This is illustrated by the model
calculation in Fig. 4(a). The experimental investigation
of these features started in the late 1990s, following the

9 See for example early frozen-phonon calculations (Dacorogna
et al., 1985b; Chang and Cohen, 1986; Lam et al., 1986) and
more recent DFPT calculations (Savrasov et al., 1994; Bauer
et al., 1998; Shukla et al., 2003; Heid et al., 2010). Earlier cal-
culations not based on DFT are reviewed by Grimvall (1981).

10 See for example the works of Lazzeri et al. (2006); Bonini et al.

(2007); Giustino et al. (2007a); and Park et al. (2008a).

development of high-resolution angle-resolved photoelec-
tron spectroscopy (ARPES). Since in ARPES only the
component of the photoelectron momentum parallel to
the sample surface is conserved (Damascelli et al., 2003),
complete energy vs. wavevector dispersion relations can
be measured directly only for 2D or quasi-2D materi-
als. Accordingly, the first observations of kinks were re-
ported for the surface states of elemental metals11 and
for the CuO2 planes of copper oxide superconductors.12

Ab initio calculations of ARPES kinks can be performed
by using the diagonal part of the Fan-Migdal self-energy
(the Debye-Waller self-energy will be discussed at the
end of this section). To this aim, it is common to rewrite
Eqs. (157)-(158) at finite temperature using a spectral
representation:

ΣFM
nnk(ω, T ) =

∫ +∞

−∞

dε

∫ ∞

0

dε′ α2Fnk(ε, ε
′)

×
[

1−f(ε/kBT )+n(ε′/kBT )
~ω−ε− ε′ + i~η

+
f(ε/kBT )+n(ε

′/kBT )

~ω−ε+ ε′ + i~η

]

.

(186)

Here the function α2F is the so-called the ‘Eliashberg
function’ and is defined as:

α2Fnk(ε, ε
′) =

∑

mν

∫

dq

ΩBZ
|gnmν(k,q)|

2

× δ(ε− εmk+q)δ(ε
′ − ~ωqν). (187)

This quantity is positive, temperature-independent, and
contains all the materials-specific parameters. Physically
it is proportional to the scattering rate of an electron in
the state |nk〉 into any electronic state at the energy ε,
by emitting or absorbing any one phonon of energy ε′.
One complication related to the Eliashberg function is
that in the literature many variants of Eq. (187) can
be found, each stemming from specific approximations;
some of these expressions are summarized by Grimvall
(1981, pp. 107–109).

The first ab initio calculations of the phonon-induced
electron self-energies and photoemission kinks were re-
ported by Eiguren et al. (2003a) for the surface state of
the Be(0001) surface. Since the evaluation of Eqs. (186)
and (187) is computationally demanding, Eiguren et al.

employed simplified expressions which involve three ap-
proximations: (i) the Eliashberg function is replaced
by its isotropic average, α2Fn(ε, ε

′) =
∫

dk δ(εnk − ε)
α2Fnk(ε, ε

′)/
∫

dk δ(εnk−ε); (ii) phonon energies are ne-
glected next to electron energies (as in the adiabatic
approximation), and (iii) particle-hole symmetry is as-
sumed. Using these approximations the imaginary part

11 Hengsberger et al. (1999) and Valla et al. (1999a)
12 Valla et al. (1999b), Lanzara et al. (2001), Johnson et al. (2001).
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FIG. 11 (Color online) Calculated Fan-Migdal self-energy of
the surface state at the Be(0001) surface. (a) Imaginary
part of the self-energy, obtained from Eq. (188). The dashed
(black) line is the self-energy evaluated using the DFT/LDA
bands; the solid lines (color/grayscale) correspond to the self-
energy calculated by taking into account the renormaliza-
tion of the DFT band structure by the electron-phonon in-
teraction. (b) Real part of the self-energy, using the same
color/grayscale code as in (a). The inset in (a) compares the
renormalized band structure (color) with the ‘bare’ DFT band
(black dashed line). The inset of (b) shows the renormaliza-
tion of the band velocity induced by the electron-phonon in-
teraction. Reproduced with permission from (Eiguren et al.,
2003a), copyright (2003) by the American Physical Society.

of the Fan-Migdal self-energy becomes:

|ImΣFM
n (ω, T )| = π

∫ ∞

0

dε′ α2Fn(~ω, ε
′){1 + 2n(ε′/kBT )

+f [(~ω + ε′)/kBT ]− f [(~ω − ε′)/kBT ]}, (188)

where the average of the self-energy is defined as for the
Eliashberg function. The real part of the self-energy can
be found starting from the same approximations, and is
given by Grimvall (1981).

Figure 11 shows the self-energy of the surface state at
the Be(0001) surface calculated by Eiguren et al. (2003a)
using Eq. (188). The imaginary part resembles a step-
function, with an onset around the energy threshold for
phonon emission by a hole (40–80 meV in this case).
At a qualitative level, this trend can be rationalized
by replacing the Eliashberg function in Eq. (188) by a
Dirac delta at a characteristic phonon energy ~ωph. In
this case, the hole self-energy becomes proportional to
f [(~ω + ~ωph)/kBT ]. At T = 0 this is precisely a step
function with onset at −~ωph. The real part of the self-
energy vanishes for |ω| ≫ ωmax, with ωmax being the
largest phonon frequency. This can be seen in Fig. 11(b),

and is a consequence of the approximation of particle-hole
symmetry. Eiguren et al. also determined the renor-
malization of the surface state band structure arising
from electron-phonon interactions, using Eq. (164); this
is shown in the inset of Fig. 11(a). Overall the calcu-
lations of Eiguren et al. (2003a) showed good agreement
with photoelectron spectroscopy experiments, both in the
shape and magnitude of the self-energy (LaShell et al.,
2000).

In addition to the above calculations, several studies
of the electron-phonon self-energy at metal surfaces were
reported, namely for the Cu(111) and Ag(111) surfaces
(Eiguren et al., 2002), the Al(100), Ag(111), Cu(111),
and Au(111) surfaces (Eiguren et al., 2003b), and the
W(110) surface (Eiguren and Ambrosch-Draxl, 2008a).
Building on these studies, Eiguren et al. (2009) per-
formed a detailed analysis of the self-consistent solutions
of the complex Dyson equation for the quasiparticle en-
ergies, Eq. (164)-(165), and illustrated the key concepts
in the cases of the W(110) surface and for the phonon-
mediated superconductor MgB2.

Equation (188) or closely-related approximations were
also employed in the study of electron and hole lifetimes
in bulk Be (Sklyadneva et al., 2005), Pb (Sklyadneva
et al., 2006), and Mg (Leonardo et al., 2007); the pho-
toemission kink in YBa2Cu3O7 (Heid et al., 2008); and
the spectral function of Ca-intercalated graphite (Sanna
et al., 2012).

In the case of complex systems the validity of the ap-
proximations (i)–(iii) leading to Eq. (188) is not war-
ranted, and a direct calculation of the Fan-Migdal self-
energy using Eqs. (186) and (187) is necessary. Calcula-
tions of the complete self-energy were reported by Park
et al. (2007) for graphene, by Giustino et al. (2008) for
the high-temperature superconductor La1−xSrxCu2O4,
and by Margine et al. (2016) for Ca-intercalated bilayer
graphene. Figure 12 shows the calculated self-energy and
spectral function of graphene calculated by Park et al.

(2007, 2009). The structure of the self-energy is similar
to that shown in Fig. 11, with one important exception:
ΣFM

nnk(ω) does not vanish a few phonon energies away
from the Fermi level, but tends instead towards a lin-
ear asymptote. Calandra and Mauri (2007) performed
a combined ab initio/analytical study of the effects of
the electron-phonon interaction on the electron bands
of graphene and obtained very similar results. A linear
asymptote in the real-part of the self-energy is a gen-
eral feature of systems which do not exhibit particle-hole
symmetry. For another example see the work on copper
oxides by Giustino et al. (2008).

Using the Fan-Migdal self-energy, it is possible to cal-
culate the renormalization of the band velocity induced
by the electron-phonon interaction. Let us denote by
vnk = ~

−1∇kεnk the DFT band velocity and Vnk =
~
−1∇kEnk the band velocity after including electron-

phonon interactions. Using Eq. (164) with Γnk = 0
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FIG. 12 (Color online) (a), (b) Calculated real part of the
Fan-Migdal self-energy in pristine and n-doped graphene, re-
spectively (solid black lines). The doping level is 4·1013 cm−2.
The dashed lines correspond to a simplified analytical model
where particle-hole symmetry is assumed. (c), (d) Electron
band velocity renormalization resulting from the self-energies
in (a) and (b). All calculations in (a)-(d) were performed
using DFT/LDA. Reproduced with permission from (Park
et al., 2007), copyright (2007) by the American Physical So-
ciety. (e) Calculated spectral function of n-doped graphene
for one of the branches of the Dirac cone. ωph indicates the
characteristic phonon energy leading to the photoemission
kink; ED denotes the energy of the Dirac point. The cal-
culations include GW quasiparticle corrections. Reproduced
with permission from (Park et al., 2009), copyright (2009) by
the American Chemical Society.

we find that these two quantities are simply related
by Vnk = Znk vnk = vnk/(1 + λnk), where Znk is
the quasiparticle strength of Eq. (174), and λnk is the
‘mass enhancement parameter’ or ‘electron-phonon cou-
pling strength’ (Grimvall, 1981):

λnk = Z−1
nk−1 = −~

−1∂ ReΣnnk(ω)/∂ω
∣

∣

ω=Enk/~
. (189)

In the study of EPIs in metals, the coupling strength λnk
is of significant interest since it is related to the super-
conducting transition temperature of phonon-mediated
superconductors (see Secs. VIII.1 and XI).

The velocity renormalization in graphene calculated
using Eq. (189) is shown in Fig. 12(c) and (d), while
a calculation of the complete spectral function A(k, ω)
is shown in Fig. 12(e). Here the characteristic photoe-
mission kink is visible between 150–200 meV but it is
not very pronounced, since in this case λnk ∼ 0.1 (Park
et al., 2009). These results are in good agreement with
measured photoelectron spectra (Bostwick et al., 2007;
Zhou et al., 2007).

Incidentally, we remark that in the analysis of ARPES
data it is common to extract the coupling strength λnk
directly from the ratio of the band velocities above and
below the electron-phonon kink. However, this procedure
is subject to a significant uncertainty, since the ‘bare’ ve-
locity is not known and must be approximated by fit-
ting the fully-interacting dispersions using ad hoc mod-
els. For example, in the vicinity of Van Hove singulari-
ties this procedure leads to a significant overestimation of
the electron-phonon coupling strength λnk (Park et al.,
2008b; Bianchi et al., 2010).

In addition to photoemission kinks, recent ARPES
measurements revealed the existence of polaron satellites
in doped oxides, namely TiO2 (Moser et al., 2013) and
SrTiO3 (Cancellieri et al., 2016; Chen et al., 2015; Wang
et al., 2016). The phenomenology is similar to what was
discussed in relation to Fig. 4(b). The first theoretical
studies along this direction were reported by Story et al.

(2014), who applied the cumulant expansion approach to
the case of the electron-phonon self-energy; by Antonius
et al. (2015) who identified satellites in the spectral func-
tions of LiF and MgO; and by Verdi et al. (2016), who
calculated the ARPES spectra of n-doped TiO2.

At the end of this section, it is worth coming back to
the Debye-Waller self-energy. So far we only discussed
the Fan-Migdal self-energy, starting from Eq. (186), and
we ignored the Debye-Waller self-energy appearing in
Eq. (152). This omission reflects the fact that, in the
literature on electron-phonon interactions in metals, the
DW term has always been disregarded. In order to ratio-
nalize this approximation, we rewrite the DW self-energy
as follows, by combining Eqs. (160) and (40):

ΣDW
nnk = 〈unk|VDW|unk〉uc, (190)

with VDW(r) = Ω−1
BZ

∑

ν

∫

dq (nqν+1/2)∆qν∆−qνv
KS(r).

The subscript ‘uc’ indicates that the integral is over one
unit cell. From Eq. (190) we see that VDW acts like
a static local potential; indeed the first calculations in-
cluding DW effects were performed by directly modifying
the ionic pseudopotentials (Antonc̆ík, 1955; Walter et al.,
1970). From Eq. (190) we also see that the only varia-
tion in the DW self-energy comes from the Bloch ampli-
tudes unk. Let us consider the limiting situation of the
homogeneous electron gas. In this case |unk(r)|2 = 1/Ω
(Sec. III.B.5), therefore ΣDW

nnk is a constant, independent
of k. This behavior should be contrasted with the Fan-
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Migdal self-energy, which exhibits significant structure
near the Fermi energy, as it can be seen in Fig. 4.

In more realistic situations, such as doped semiconduc-
tors, k ·p perturbation theory (Kittel, 1963) can be used
to show that ΣDW

nnk varies smoothly as a function of k

within the same band. In contrast with this scenario,
ΣDW

nnk exhibits large variations across different bands.
This carries important consequences for the calculation
of temperature-dependent band gaps (Sec. IX.A.1).

1. Electron mass enhancement in metals

We now come back to the mass enhancement parame-
ter λnk introduced in Eq. (189), since this quantity played
a central role in the development of the theory of EPIs
in metals.

The notion of ‘mass enhancement’ becomes clear when
we consider a parabolic band as in the model calculations
of Fig. 4. Near the Fermi surface the non-interacting
dispersions are given by εnk = ~kF · ~ (k − kF)/m

∗,
where kF is a wavevector on the Fermi surface, and the
electron velocity is vnk = ~kF/m

∗. After taking into
account the EPI, the electron velocity is renormalized
to Vnk = vnk/(1 + λnk). Since the magnitude of the
Fermi momentum is unchanged (see caption of Fig. 4)
this renormalization can be interpreted as an effective in-
crease of the band mass from m∗ to mep = m∗(1 + λnk).
This reasoning holds for metals with parabolic bands and
for doped semiconductors near band extrema, and does
not take into account the Debye-Waller self-energy.

The electron mass enhancement is reflected into the
increase of the heat capacity of metals at low tempera-
ture. In fact, below the Debye temperature the electronic
contribution to the heat capacity dominates over the lat-
tice contribution (Kittel, 1976). Since the heat capac-
ity is proportional to the density of states at the Fermi
level, and the density of states is inversely proportional
to the band velocity, it follows that the heat capacity is
directly proportional to the electron mass. This property
can be used as a means to determine the strength of the
electron-phonon coupling in simple metals from specific
heat measurements (Grimvall, 1975).

The general theory of the effects of electron-phonon
interactions on the heat capacity and other thermody-
namic functions was developed by Eliashberg (1963),
Prange and Kadanoff (1964), and Grimvall (1969). A
field-theoretic analysis of the effect of EPIs on thermo-
dynamic functions was developed by Eliashberg (1963)
starting from the identities of Luttinger and Ward (1960)
in the zero-temperature limit. Eliashberg’s analysis was
subsequently extended to all temperatures by Grimvall
(1969). Here we only quote Grimvall’s result relating
the electronic entropy to the Fan-Migdal self-energy of

Sec. V.B.1:

Se =
NFkB~

3

(kBT )2

∫ ∞

0

ω
[

ω − ~
−1ReΣFM

nnk(ω, T )
]

cosh2(~ω/2kBT )
dω. (191)

In order to derive this relation, Grimvall started by
expressing the thermodynamic potential of the cou-
pled electron-phonon system in terms of the electron
and phonon propagators and self-energies, and identi-
fied the electronic contribution by neglecting terms of or-
der (me/M0)

1/2 as well as electron-electron interactions
(Grimvall, 1969, Appendix).

Below the Debye temperature, an explicit expression
for the entropy in Eq. (191) can be obtained by not-
ing that the function cosh−2(~ω/2kBT ) is nonvanishing
only for ~ω . 2kBT ; in this range Eq. (189) yields
ΣFM

nnk(ω, T ) ≃ −λnk ~ω, therefore the integration in
Eq. (191) can be carried out explicitly. As a result, the
low-temperature heat capacity can be written as:

Ce = T
∂Se

∂T
=

2

3
π2kB

2NF(1 + λnk)T. (192)

If we ignore the EPI by setting λnk = 0, this expression
reduces to the standard textbook result for the free elec-
tron gas (Kittel, 1976). At high temperature Eq. (192)
is no longer valid, and one has to evaluate the integral in
Eq. (191) using the complete frequency-dependent FM
self-energy. The main result of this procedure is that
at high temperature the electronic heat capacity is no
longer renormalized by EPIs. A detailed discussion of
this aspect is provided by Grimvall (1969; 1981).

Early examples of DFT calculations of mass enhance-
ment parameters and comparisons with specific heat
measurements in simple metals can be found in Da-
corogna et al. (1985b), Savrasov et al. (1994), and Liu
and Quong (1996).

IX. ELECTRON-PHONON EFFECTS IN THE OPTICAL
PROPERTIES OF SEMICONDUCTORS

A. Temperature dependence of band gaps and band
structures

1. Perturbative calculations based on the Allen-Heine theory

In Sec. V.B.3 we discussed how the electron-phonon
interaction induces a ‘renormalization’ of the electronic
energy levels, and thereby gives rise to ‘temperature-
dependent band structures’. These effects have been
studied in detail using the Fan-Midgal and the Debye-
Waller self-energies, either via the Raleigh-Schrödinger
approximation to Eq. (166), or via its adiabatic counter-
part given by Eq. (167).

Equation (167) was first employed in a number of cal-
culations based on empirical pseudopotentials, following
the seminal work of Allen and Heine (1976). The key
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references can be found on p. 31, footnote. Allen and
Cardona (1981) offer a clear introduction to the basic
theory, a discussion of the computational methodology,
as well as an historical perspective on earlier calculations.

The evaluation of the Debye-Waller contribution to the
self-energy requires the calculation of the second-order
variations of the Kohn-Sham potential with respect to
the ionic displacements, Eq. (40). From a computational
standpoint, this is challenging because one would have
to use second-order DFPT, as discussed at the end of
Sec. III.B.3. In order to avoid this complication, it is
common practice to recast all second-order derivatives
as products of first-order derivatives. This strategy was
introduced by Allen and Heine in the case of monoatomic
crystals, and extended to polyatomic unit cells by Allen
and Cardona. The key observation behind this approach
is that one can impose translational invariance of the the-
ory to second order in the nuclear displacements. Specifi-
cally, the variation of the Kohn-Sham eigenvalues ensuing
an arbitrary displacement of the nuclei should not change
if all nuclei are further displaced by the same amount. Us-
ing time-independent perturbation theory, this condition
yields the following two sum rules:
∑

κp
〈ψnk|∂καpV KS|ψnk〉sc = 0, (193)

∑

κ′p′
〈ψnk|∂2καp,κ′α′p′V KS|ψnk〉sc = −2Re

∑

κ′p′

∑

mq

′

〈ψnk|∂καpV KS|ψmk+q〉sc〈ψmk+q|∂κ′α′p′V KS|ψnk〉sc
εnk − εmk+q

. (194)

Here ∂καpV KS is a short-hand notation for ∂V KS/∂τκαp
and similarly for the second derivative; the primed
summation indicates that eigenstates ψmk+q such that
εnk = εmk+q are skipped. The first sum rule is equiva-
lent to stating that the electron-phonon matrix elements
gmnν(k,q) associated with the three translational modes
at |q| = 0 must vanish; this is an alternative formula-
tion of the ‘acoustic sum rule’. The second sum rule,
Eq. (194), suggests to express the matrix elements of
the second derivatives of the potential in terms of first-
order derivatives. However, Eq. (194) cannot be used
as it stands, since it involves a sum of matrix elements
on the left-hand side. In order to proceed, Allen and
Heine employed the ‘rigid-ion’ approximation, whereby
V KS is written as a sum of atom-centered contributions
(see Sec. II.A.1). Under this approximation all the terms
κp 6= κ′p′ on the left-hand side of Eq. (194) are neglected,
and an explicit expression for 〈ψnk|∂2καp,καpV KS|ψnk〉sc is
obtained.

In view of practical DFT implementations, Giustino
et al. (2010) used the sum rule in Eq. (194) in order to
rewrite the Debye-Waller self-energy as follows:

ΣDW
nnk = −

∑

νm

′
∫

dq

ΩBZ

g2,DW
mnν (k,q)

εnk − εmk

(2nqν + 1). (195)

Here gDW
mnν(k,q) is an ‘effective’ matrix element, and it

is obtained from the standard DFPT matrix elements by
means of inexpensive matrix multiplications:

g2,DW
mnν (k,q)=

∑

κα
κ′α′

tνκα,κ′α′(q)

2ωqν
h∗mn,κα(k)hmn,κ′α′(k), (196)

tνκα,κ′α′(q)=
eκαν(q)e

∗
κα′ν(q)

Mκ
+
eκ′αν(q)e

∗
κ′α′ν(q)

Mκ′

,(197)

hmn,κα(k)=
∑

ν
(Mκ ω0ν)

1
2 eκαν(0)gmnν(k, 0). (198)

In the case of the three translational modes at |q| = 0,
these definitions are replaced by gDW

mnν(k,q) = 0, see
the discussion at the end of p. 57. The derivation of
Eqs. (195)-(198) requires using Eqs. (20), (33)-(35), and
(38), as well as taking the canonical average over the
adiabatic nuclear quantum states.

Equation (195) involves a summation over unoccu-
pied Kohn-Sham states, and so does the Fan-Migdal self-
energy in Eq. (167). The numerical convergence of these
sums is challenging, since one needs to evaluate a very
large number of unoccupied electronic states. To address
this issue, Gonze et al. (2011) developed a procedure
whereby only a subset of unoccupied states is required,
along the lines of the DFPT equations of Sec. III.B.3.

The first ab initio calculations using the formalism of
Allen and Heine were reported by Marini (2008), who
investigated the temperature dependence of the optical
absorption spectrum of silicon and boron nitride. In this
work Marini included excitonic effects by combining the
Bethe-Salpeter formalism (Onida et al., 2002) with the
Allen-Heine theory, and obtained good agreement with
experiments by calculating the direct absorption peaks
using DFT/LDA phonons and matrix elements (indirect
optical absorption will be discussed in Sec. IX.B).

The second application of the Allen-Heine theory us-
ing DFT/LDA was reported by Giustino et al. (2010)
for the case of diamond. Here the authors investigated
the temperature dependence of the direct band gap of
diamond, and found that the Fan-Migdal and the Debye-
Waller self-energies are of comparable magnitude. The
calculations captured the characteristic Varshni effect
(Fig. 3), and were able to reproduce the measured red-
shift of the band gap in the temperature range 80-800 K.
These calculations were based on the adiabatic version of
the Allen-Heine theory, and employed Eqs. (196)-(198)
for the Debye-Waller self-energy. The calculations by
Giustino et al. confirmed the large (> 0.5 eV) zero-point
renormalization of the direct gap of diamond predicted
by Zollner et al. (1992) using the empirical pseudopoten-
tial method.

The unusually large zero-point correction to the elec-
tronic structure of diamond stimulated further work on
this system: Cannuccia and Marini (2011, 2012) calcu-
lated the gap renormalization in diamond by employing
both the adiabatic version of the Allen-Heine theory, as
well as the non-adiabatic Green’s function approach, as
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FIG. 13 (Color online) Temperature dependence of the direct
band gap of diamond calculated using the Allen-Heine theory.
The upper curve shows the results obtained within DFPT at
the LDA level. The lower curve was obtained via GW calcu-
lations in the frozen-phonon approach. Triangles are exper-
imental data. The zero-point renormalization calculated by
including GW quasiparticle corrections is 628 meV. Repro-
duced with permission from (Antonius et al., 2014), copyright
(2014) by the American Physical Society.

described in Sec. V.B.5. Their calculations confirmed the
large zero-point renormalization, and showed that the
adiabatic theory underestimates the effect to some ex-
tent. Cannuccia and Marini (2012; 2013) also analyzed
the quasiparticle renormalization and the spectral func-
tion.

Antonius et al. (2014) revisited the electron-phonon in-
teraction in diamond by assessing the reliability of the
rigid-ion approximation and the importance of many-
body GW quasiparticle corrections to the DFT/LDA
band structure. The main findings were that the rigid-ion
approximation introduces a very small error in diamond,
of the order of ∼10 meV, while GW quasiparticle correc-
tions can increase the electron-phonon renormalization
of the band gap by as much as ∼200 meV. The tempera-
ture dependence of the band gap of diamond calculated
by Antonius et al. is shown in Fig. 13.

Further work on diamond was reported by Poncé et al.

(2014b), who compared ab initio calculations based on
the Allen-Heine theory with explicit frozen-phonon cal-
culations (Sec. IX.A.2). The corrections to the rigid-ion
approximation were found to be smaller than 4 meV in all
cases considered. Poncé et al. (2014a,b) also reported a
detailed assessment of the accuracy of the various levels of
approximation in the calculation of the zero-point renor-
malization of energy levels, as well as a thorough compar-
ison between the results of different first-principles imple-
mentations.

The electron-phonon renormalization of band struc-
tures was also investigated in a number of other systems.
For example Kawai et al. (2014) studied zinc-blend GaN
by combining the Allen-Heine theory with the Bethe-
Salpeter approach. Poncé et al. (2015) investigated sil-
icon, diamond, BN, α-AlN, and β-AlN using both the
adiabatic version of the Allen-Heine theory and the non-

adiabatic Green’s function method of Eqs. (157)-(158).
Friedrich et al. (2015) investigated the zero-point renor-
malization in LiNbO3 using the adiabatic Allen-Heine
theory. Villegas et al. (2016) studied the anomalous tem-
perature dependence of the band gap of black phospho-
rous. Antonius et al. (2015) investigated diamond, BN,
LiF, and MgO, focusing on the dynamical aspects and
the spectral function (see Sec. VIII). The works by An-
tonius et al. (2015) and Poncé et al. (2015) were the first
to report complete band structures at finite temperature.

In (Poncé et al., 2015) the authors paid special atten-
tion to the numerical convergence of the self-energy inte-
grals with respect to the limit η → 0 of the broadening
parameter; they noted that in the case of polar crystals
the adiabatic correction to the electron energies of band
extrema, as given by Eq. (167), diverges in the limit of
dense Brillouin-zone sampling. This behavior stems from
the polar singularity in the electron-phonon matrix ele-
ments, Eq. (180). In fact, near band extrema the bands
are approximately parabolic, and the integrand in the
adiabatic Fan-Migdal self-energy goes as q−4 for q → 0,
while the volume element goes only as dq = 4πq2dq. This
problem can be avoided by first performing the integra-
tion over q in principal value, without neglecting phonon
frequencies, and then taking the limit ωqν → 0 so as to
recover the adiabatic approximation (Fan, 1951, Sec. IV);
in this way the adiabatic approximation can still be em-
ployed without incurring into a singularity in the cal-
culations. A practical strategy to correctly perform the
principal value integration in first-principles calculations
was recently proposed by Nery and Allen (2016); here
the authors treat the singularity via an explicity ana-
lytic integration near q = 0. The complications arising
in polar materials can also be avoided at once by us-
ing directly the more accurate expression in Eq. (166)
based on Brillouin-Wigner perturbation theory, or even
better by calculating the spectral functions as in (An-
tonius et al., 2015; Kawai et al., 2014). In particular,
Eq. (166) shows that in more accurate approaches the
infinitesimal η should be replaced by the finite physical

linewidth Γnk.
Although temperature-dependent band structures of

polar materials were recently reported (Antonius et al.,
2015; Kawai et al., 2014; Poncé et al., 2015), the specific
role of the Fröhlich coupling discussed in Sec. VI.A.3 re-
ceived only little attention so far. The only ab initio

investigations which specifically addressed the role of po-
lar couplings in this context are from Botti and Marques
(2013) and Nery and Allen (2016). In order to under-
stand the strategy of Botti and Marques, we refer to
the Hedin-Baym equations in Sec. IV.B.1. Botti and
Marques proposed that, instead of splitting the screened
Coulomb interaction W into electronic and nuclear con-
tributions as in Eq. (104), one could try to directly cal-
culate the screened Coulomb interaction W including the
lattice screening, as in Eqs. (85) and (86). In order



47

to make the calculations tractable, Botti and Marques
evaluated the total dielectric matrices using a simplified
model based on the Lyddane-Sachs-Teller relations. The
resulting formalism combines GW calculations and ex-
perimentally measured LO-TO splittings. The zero-point
renormalization of the band gaps calculated by Botti and
Marques for LiF, LiCl, NaCl, and MgO were all > 1 eV.
This is an interesting result and deserves further investi-
gation. We note incidentally that the Allen-Heine theory
and that of Botti and Marques can both be derived from
the Hedin-Baym equations. Therefore the approach of
Botti and Marques should effectively correspond to cal-
culating the Fan-Migdal self-energy by retaining only the
long-range part of the polar electron-phonon matrix ele-
ments. In the case of the work by Nery and Allen (2016),
the authors reported a Fröhlich contribution to the zero-
point renormalization of the band gap of GaN of 45 meV,
to be compared with the total renormalization arising
from all modes of 150 meV.

2. Non-perturbative adiabatic calculations

An alternative approach to the calculation of
temperature-dependent band structures consists of
avoiding perturbation theory and electron-phonon ma-
trix elements altogether, and replacing the entire
methodology discussed in Sec. IX.A.1 by straightforward
finite-differences calculations. To see how this alterna-
tive strategy works we perform a Taylor expansion of
the Kohn-Sham eigenvalues εnk to second order in the
atomic displacements ∆τκαp, and then average the re-
sult on a nuclear wavefunction identified by the quantum
numbers {nqν}. After using Eq. (20) one obtains:

〈εnk〉{nqν} = εnk +
∑

ν

∫

dq

ΩBZ
(nqν + 1/2)

∂εnk
∂nqν

, (199)

where we used the formal definition ∂/∂nqν = ∆qν∆−qν ,
and the variations ∆qν are the same as in Eqs. (33)-(35).
The nuclear wavefunctions are obtained from the ground-
state in Eq. (B10) by applying the ladder operators, as
discussed in Appendix B. The above expression can be
generalized to finite temperature by considering a canon-
ical average over all possible nuclear states. The result
maintains the same form as in Eq. (199), except that
we now have the Bose-Einstein occupations nqν(T ) (see
footnote 3). Equation (199) is precisely the conceptual
starting point of the Allen-Heine theory of temperature-
dependent band structures, and appeared for the first
time in (Allen and Cardona, 1981). If the variations
∆qν∆−qνεnk are calculated in second-order perturbation
theory, one obtains precisely the formalism of Allen and
Heine.

It has been proposed that the coefficients ∂εnk/∂nqν
could alternatively be obtained from the derivatives of
the vibrational frequencies with respect to the electronic

occupations, ~∂ωqν/∂fnk (Allen and Hui, 1980; King-
Smith et al., 1989; Poncé et al., 2014b). A formal deriva-
tion of the link between these alternative approaches can
be found in (Allen and Hui, 1980, Appendix; the authors
refer to this as Brooks’ theorem). Incidentally, the first
ab initio calculation of temperature-dependent band gaps
relied on this approach (King-Smith et al., 1989).

Most commonly, the coefficients ∂εnk/∂nqν in
Eq. (199) are evaluated using frozen-phonon supercell
calculations, via the second derivative of the eigenvalue
εnk with respect to collective atomic displacements along
the vibrational eigenmodes eκαν(q). This approach was
employed by Capaz et al. (2005) to study the tempera-
ture dependence of the band gaps in carbon nanotubes
(within a tight-binding model), and by Han and Bester
(2013) to obtain the zero-point renormalization and tem-
perature dependence of the gaps of silicon and diamond
quantum dots. Recent examples include works on dia-
mond, silicon, SiC (Monserrat and Needs, 2014), as well
as CsSnI3 (Patrick et al., 2015).

Frozen-phonon supercell calculations based on
Eq. (199) carry the advantage that the rigid-ion approx-
imation, which is necessary to obtain Eqs. (195)-(198),
is no longer required. Therefore this approach is more
accurate in principle. In practice, however, the calcula-
tions are challenging as they require large supercells, and
the derivatives must be evaluated for every vibrational
mode of the supercell. Several computational strategies
were developed to tackle this challenge. Patrick and
Giustino (2013) proposed to perform the averages lead-
ing to Eq. (199) via importance-sampling Monte Carlo
integration. Monserrat (2016b) described a constrained
Monte Carlo scheme which improves the variance of
the Monte Carlo estimator. Recently Zacharias and
Giustino (2016) showed that it is possible to perform
these calculations more efficiently by replacing the
stochastic sampling by a suitable choice of an ‘opti-
mum’ configuration; the result becomes exact in the
thermodynamic limit of large supercells. In order to
reduce the computational cost associated with the use of
large supercells, Lloyd-Williams and Monserrat (2015)
introduced ‘non-diagonal’ supercells, which allow one
to access phonon wavevectors belonging to a uniform
grid of Np points using supercells containing only N

1/3
p

unit cells.
The merit of these non-perturbative approaches is that

they treat explicitly the nuclear wavefunctions, and en-
able exploring effects which go beyond the Allen-Heine
theory. For example Monserrat et al. (2013, 2014, 2015)
and Engel et al. (2015) were able to investigate effects
beyond the harmonic approximations in several systems,
such as LiH, LiD, high-pressure He, molecular crystals of
CH4, NH3, H2O, HF, as well as Ice. In all these cases the
authors found large zero-point effects on the band gaps.

Finally, we mention that the calculation of electronic
properties at finite temperature via the Allen-Heine the-
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ory and its variants is closely related to what one would
obtain using path-integral molecular dynamics simula-
tions (Della Sala et al., 2004; Ramírez et al., 2006, 2008),
or even classical molecular dynamics simulations at high
enough temperatures (Franceschetti, 2007).

B. Phonon-assisted optical absorption

In addition to modifying the electron energy levels in
solids, the electron-phonon interaction plays an impor-
tant role in the optical properties of semiconductors and
insulators, as it is responsible for phonon-assisted optical
transitions. Phonon-assisted processes could be analyzed
by considering the many-body electronic screening func-
tion ǫe(12) in Eq. (95), by using the electron Green’s func-
tion G dressed by the electron-phonon self-energy Σep as
in Eq. (151). Since this would require us a lengthy detour,
here we simply reproduce the standard result of second-
order time-dependent perturbation theory (Bassani and
Parravicini, 1975; Ridley, 1993):

α(ω) =
πe2

ǫ0 cΩ

1

ω nr(ω)

∫

dk dq

Ω2
BZ

∑

mnν

∑

s=±1

(fnk − fmk+q)

×
∣

∣

∣

∣

∣

e·
∑

p

[

vnp(k)gpmν(k,q)

εpk − εnk − ~ω
+
gnpν(k,q)vpm(k+ q)

εpk+q − εnk + s~ωqν

]

∣

∣

∣

∣

∣

2

× (nqν + 1/2 + s/2) δ(εmk+q−εnk−~ω+s~ωqν). (200)

In this expression α(ω) is the absorption coefficient for
visible light, e is the photon polarization, vmn are the
matrix elements of the electron velocity operator, and
nr(ω) is the real part of the refractive index. The two
denominators in the second line corresponds to indirect
processes whereby a photon is absorbed and a phonon
is absorbed or emitted (left), and processes whereby a
phonon is absorbed or emitted, and subsequently a pho-
ton is absorbed (right). The above expression relies on
the electric dipole approximation and is therefore valid
for photon energies up to a few electronvolts. The the-
ory leading to Eq. (200) was originally developed by Hall,
Bardeen, and Blatt (1954).

The first ab initio calculation employing Eq. (200) was
reported by Noffsinger et al. (2012) for the prototypical
case of silicon. The authors employed DFT for computing
phonons and electron-phonon matrix elements, and the
GW method for the quasiparticle band structures. The
sampling of the Brillouin zone was achieved by means
of the interpolation strategy described in Sec. VI. Fig-
ure 14 shows that the calculations by Noffsinger et al.

are in very good agreement with experiment throughout
the energy range of indirect absorption.

Further work along similar lines was reported by
Kioupakis et al. (2010), who calculated the indirect opti-
cal absorption by free carriers in GaN; and Peelaers et al.

(2015), who studied the indirect absorption by free carri-
ers in the transparent conducting oxide SnO2. Recently,

FIG. 14 (Color online) Phonon-assisted optical absorption in
silicon: comparison between first-principles calculations (solid
lines, orange) and experiment (circles, blue). The calculations
were performed using the theory of Hall et al. (1954), as given
by Eq. (200). Spectra calculated at different temperatures
were shifted horizontally so as to match the experimental on-
sets. Reproduced with permission from (Noffsinger et al.,
2012), copyright (2012) by the American Physical Society.

the ab initio theory of phonon-assisted absorption was
also extended to the case of indirect Auger recombina-
tion by Kioupakis et al. (2015).

One limitation of the theory by Hall et al. is that the
indirect absorption onset is independent of temperature.
This is seen by noting that the Dirac delta functions in
Eq. (200) contain the band structure energies at clamped

nuclei. The generalization to incorporate temperature-
dependent band structures as discussed in Sec. IX.A.1 is
nontrivial. Patrick and Giustino (2014) and Zacharias
and Giustino (2016) showed that the electron-phonon
renormalization of the band structure modifies the en-
ergies of real transitions but leaves unchanged the ener-
gies of virtual transitions; in other words the Allen-Heine
renormalization should be incorporated only in the Dirac
delta functions and in the first denominator in Eq. (200).
In order to avoid these complications at once, Zacharias
et al. (2015) developed an alternative approach which
relies on the ‘semiclassical’ approximation of Williams
(1951) and Lax (1952). In this approximation, the initial
states in the optical transitions are described quantum-
mechanically, and the final states are replaced by a qua-
siclassical continuum. In the formulation of Zacharias
et al. the imaginary part of the temperature-dependent
dielectric function takes the form:

ǫ2(ω;T ) =
1

Z

∑

{nqν}
e−E{nqν}/kBT 〈ǫ2(ω)〉{nqν}, (201)

where ǫ2(ω) denotes the imaginary part of the dielec-
tric function at clamped nuclei, and the expectation val-
ues have the same meaning as in Eq. (199). E{nqν} is
the energy of the quantum nuclear state specified by the
quantum number {nqν} and Z is the canonical partition
function. Zacharias et al. demonstrated that this ap-
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proach provides an adiabatic approximation to Eq. (200),
and seamlessly includes the temperature dependence of
the electronic structure within the Allen-Heine theory.
Using techniques similar to those of Sec. IX.A.2, the au-
thors calculated the indirect optical absorption lineshape
of silicon at various temperatures and obtained very
good agreement with experiment. These results were
recently extended to the temperature-dependent optical
spectra of diamond and gallium arsenide by Zacharias
and Giustino (2016).

X. CARRIER DYNAMICS AND TRANSPORT

A. Electron linewidths and lifetimes

In Sec. V.B.4 we have seen how the Fan-Migdal self-
energy can be used in order to evaluate the quasiparticle
lifetimes (or equivalently linewidths) resulting from the
electron-phonon interaction. The first ab initio calcula-
tions of this kind were reported by Eiguren et al. (2003a,
2002) in the study of the decay of metal surface states,
and by Sklyadneva et al. (2005, 2006) and Leonardo et al.

(2007) in the study of electron lifetimes of elemental met-
als. Some of these calculations and the underlying ap-
proximations were reviewed in Sec. VIII. Calculations of
quasiparticle linewidths were also employed to study the
temperature-dependent broadening of the optical spectra
in semiconductors. For example Giustino et al. (2010)
and Poncé et al. (2015) investigated the broadening of
the direct absorption edge of diamond and silicon, respec-
tively. In both cases good agreement with experiment
was obtained. More recently, the same approach was
employed to study the broadening of photoluminescence
peaks in lead-iodide perovskites (Wright et al., 2016). In
this case, it was found that the standard Fermi golden
rule expression, Eq. (170), significantly overestimates the
experimental data. The agreement with experiment is
restored by taking into account the quasiparticle renor-
malization Znk; see discussion following Eq. (174).

While these works were primarily concerned with the
broadening of the spectral lines in photoemission or op-
tical experiments, Eq. (170) can also be used to study
carrier lifetimes in time-resolved experiments. The first
ab initio study in this direction was reported from Sjak-
ste et al. (2007), who investigated the thermalization of
hot electrons in GaAs and the exciton lifetimes in GaP.
In the case of GaAs, Sjakste et al. found thermalization
rates in quantitative agreement with time-resolved lumi-
nescence and transient optical absorption measurements.
Work along similar lines was also reported for the inter-
valley scattering times in Ge (Tyuterev et al., 2011). Re-
cently, the thermalization rates of hot electrons in GaAs
were revisited by Bernardi et al. (2015). The authors
employed Eq. (170) and the Wannier interpolation tech-
nique described in Sec. VI in order to finely sample the

FIG. 15 (Color online) Electron relaxation times in GaAs
resulting from electron-phonon scattering. (a) Calculated re-
laxation times as a function of electron energy with respect to
the conduction band bottom. The color code (gray shades) of
the data points identifies the valley where each electronic state
belongs. (b) Schematic representation of the conduction band
valleys in GaAs. Reproduced with permission from (Bernardi
et al., 2015), copyright (2015) by the National Academy of
Sciences.

electron-phonon scattering processes near the bottom of
the conduction band, see Fig. 15. Based on these calcu-
lations they were able to interpret transient absorption
measurements in terms of the carrier lifetimes within each
valley. Another interesting application of Eq. (170) was
reported by Bernardi et al. (2014), who investigated the
rate of hot carrier thermalization in silicon, within the
context of photovoltaics applications.

Very recently Sangalli and Marini (2015a,b) employed
the lifetimes calculated using Eq. (170) in order to study
carrier dynamics in silicon in real time. Strictly speak-
ing, these developments lie outside of the scope of equi-
librium Green’s functions discussed in Sec. IV, and re-
quire concepts based on non-equilibrium Green’s func-
tions (Kadanoff and Baym, 1962). However, the basic
ingredients of the electron-phonon calculations remain
unchanged.

In all calculations discussed in this section, the
electron-phonon matrix elements were obtained within
DFT. However, in order to accurately describe electron-
phonon scattering near band extrema Bernardi et al.

(2014, 2015) and Wright et al. (2016) employed GW
quasiparticle band structures. This is important in order
to obtain accurate band effective masses, which affect the
carrier lifetimes via the density of states.

B. Phonon-limited mobility

The carrier lifetimes τnk of Eq. (170) are also use-
ful in the calculation of electrical mobility, conductivity,
and resistivity, within the context of the semiclassical
model of electron dynamics in solids (Ashcroft and Mer-
min, 1976). In the semiclassical model, one describes the
electronic response to an external perturbation by tak-
ing the fermionic occupations fnk to represent the prob-
ability density function in the phase space defined by
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the unperturbed band structure. The probabilities fnk
are then determined using a standard Boltzmann equa-
tion. A comprehensive discussion of these methods can
be found in the classic book of Ziman (1960).

Here we only touch upon the key result which is needed
in ab initio calculations of electrical conductivity. In the
semiclassical model, the electrical current is calculated as
J = −2eΩ−1

BZ

∑

n

∫

dkvnkfnk. In the absence of external
fields and thermal gradients, the occupations fnk reduce
to the standard Fermi-Dirac occupations at equilibrium,
f0nk, and the current vanishes identically. Upon introduc-
ing an electric field E, the electrons respond by adjusting
their occupations. In this model it is assumed that the
variation fnk − f0nk is so small that the electronic den-
sity is essentially the same as in the unperturbed system.
The modified occupations can be calculated using the
linearized Boltzmann transport equation (Ziman, 1960):

∂f0nk
∂εnk

vnk · (−e)E = −
∑

ν

∫

dq

ΩBZ
Γmnν(k,q)

×
[

(fnk − f0nk)− (fmk+q − f0mk+q)
]

, (202)

where the kernel Γmnν(k,q) is defined as:

Γmnν(k,q) =
∑

s=±1

2π

~
|gmnν(k,q)|2f0nk(1− f0mk+q)

×(nqν+1/2−s/2) δ(εnk + s~ωqν − εmk+q). (203)

The left-hand side of Eq. (202) represents the collision-
less term of the Boltzmann equation, that is the change
in occupations due to the particle drift under the electric
field. The right-hand side represents the change of occu-
pations resulting from electrons scattered in or out of the
state |nk〉 by phonon emission or absorption. The rates
in Eq. (203) are simply derived from Fermi’s golden rule
(Grimvall, 1981). By solving Eq. (202) self-consistently
for all fnk it is possible to calculate the current, and from
there the conductivity. The connection with the carrier
lifetimes τnk of Eq. (170) is obtained within the so-called
‘energy relaxation time approximation’. In this approxi-
mation the incoming electrons are neglected in Eq. (202),
that is the last term (fmk+q − f0mk+q) in the second line
is ignored. As a result the entire right-hand side of the
equation simplifies to −(fnk − f0nk)/τnk.

The direct solution of Eq. (202) is computationally
challenging, and fully ab initio calculations were reported
only very recently by Li (2015) for Si, MoS2, and Al, and
by Fiorentini and Bonini (2016) for n-doped Si. Figure 16
shows that the mobility of n-type silicon calculated by Li
is in good agreement with experiment. The theory over-
estimates the measured values to some extent, and this
might have to do with the limitations of the DFT matrix
elements (see Sec. XII). In addition to the carrier mobil-
ity, Fiorentini and Bonini employed the ab initio Boltz-
mann formalism to calculate thermoelectric properties,
such as the Lorenz number and the Seebeck coefficient.

The first ab initio calculation of mobility was reported
by Restrepo et al. (2009) for the case of silicon, within

FIG. 16 (Color online) Temperature-dependent mobility of
n-type silicon. The solid line (red) indicates the mobility
calculated using the linearized Boltzmann transport equation,
Eq. (202); the dashed line (blue) corresponds to the energy
relaxation time approximation. The triangles and diamonds
are experimental data points. Reproduced with permission
from (Li, 2015), copyright (2015) by the American Physical
Society.

the energy relaxation time approximation. Other recent
calculations using various approximations to Eq. (202)
focused on silicon (Wang et al., 2011; Liao et al., 2015),
graphene (Borysenko et al., 2010; Park et al., 2014; So-
hier et al., 2014; Restrepo et al., 2014; Gunst et al.,
2016; Kim et al., 2016), MoS2 (Kaasbjerg et al., 2012;
Li et al., 2013; Restrepo et al., 2014; Gunst et al., 2016),
silicene (Li et al., 2013; Gunst et al., 2016), SrTiO3 and
KTiO3 (Himmetoglu et al., 2014; Himmetoglu and Jan-
otti, 2016).

Ab initio calculations of the resistivity of metals are
less challenging than for semiconductors, and started ap-
pearing already with the work of Bauer et al. (1998).
Most calculations on metals are based on Ziman’s resis-
tivity formula, see Grimvall (1981, p. 210). An interest-
ing recent example can be found in the work by Xu and
Verstraete (2014) on the transport coefficients of lithium.
We also highlight related work on phonon-limited trans-
port in organic crystals (Hannewald and Bobbert, 2004a,
2004b; Ortmann et al., 2009; Vukmirović et al., 2012).

XI. PHONON-MEDIATED SUPERCONDUCTORS

The last application of ab initio calculations of EPIs
that we will consider is the study of phonon-mediated
superconductivity (Schrieffer, 1983). This research field
is so vast that any attempt at covering it in a few pages
would not make justice to the subject. For this reason, it
was decided to limit the discussion to those novel theoret-
ical and methodological developments which are aiming
at fully predictive calculations, namely the ‘anisotropic
Migdal-Eliashberg theory’ (Sec. XI.B), and the ‘density
functional theory for superconductors’ (Sec. XI.C). For
completeness, in Sec. XI.A we also summarize the most
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popular equations employed in the study of phonon-
mediated superconductors. All calculations described in
this section were performed at the DFT level.

A. McMillan/Allen-Dynes formula

Most ab initio calculations on phonon-mediated super-
conductors rely on a semi-empirical expression for the
critical temperature, first introduced by McMillan (1968)
and then refined by Allen and Dynes (1975):

kBT c =
~ωlog

1.2
exp

[

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]

. (204)

Here Tc is the superconducting critical temperature, ωlog

is a ‘logarithmic’ average of the phonon frequencies (Allen
and Dynes, 1975), λ is the electron-phonon ‘coupling
strength’, and µ∗ is a parameter describing the Coulomb
repulsion. The functional form of Eq. (204) was derived
by McMillan by determining an approximate solution of
the Eliashberg gap equations (see Sec. XI.B). λ and ωlog

are calculated from the isotropic version of the Eliashberg
function in Eq. (187) as follows (McMillan, 1968; Allen
and Dynes, 1975; Grimvall, 1981; Allen and Mitrovic,
1982):

α2F (ω) =
1

NF

∫

dk dq

Ω2
BZ

∑

mnν

|gmnν(k,q)|2

× δ(εnk−εF)δ(εmk+q−εF)δ(~ω−~ωqν), (205)

λ = 2

∫ ∞

0

α2F (ω)

ω
dω, (206)

ωlog = exp

[

2

λ

∫ ∞

0

dω
α2F (ω)

ω
logω

]

, (207)

where NF is the density of states at the Fermi level
and the matrix elements gmnν(k,q) are the same as in
Eq. (38). The remaining parameter µ∗ (Morel and An-
derson, 1962) is obtained as 1/µ∗ = 1/µ + log(ωp/ωph),
where ~ωp is the characteristic plasma energy of the sys-
tem, ~ωph the largest phonon energy, and µ is the aver-
age electron-electron Coulomb repulsion across the Fermi
surface. More specifically: µ = NF〈〈Vnk,n′k′〉〉FS, where
〈〈· · ·〉〉FS denotes a double average over the Fermi sur-
face, and Vnk,n′k′ = 〈k′n′,−k′n′|W |kn,−kn〉, with W
being the screened Coulomb interaction of Sec. IV.B.2
(Lee et al., 1995; Lee and Chang, 1996).

The coupling strength λ is related to the mass enhance-
ment parameter λnk discussed in Sec. VIII..1. The main
difference between λ and λnk is that the former repre-
sents an average over the Fermi surface, while the latter
refers to the Fermi velocity renormalization of a specific
electron band. While these quantities are related, they
do not coincide and hence cannot be used interchange-
ably.

Equations (204)-(207) involve a number of approxima-
tions. For example, it is assumed that the superconduc-
tor is isotropic and exhibits a single superconducting gap.

Furthermore, almost invariably the effective Coulomb po-
tential µ∗ is treated as an adjustable parameter, on the
grounds that it should be in the range µ∗ = 0.1-0.2. This
procedure introduces a large uncertainty in the determi-
nation of Tc, especially at moderate coupling strengths.

B. Anisotropic Migdal-Eliashberg theory

A first-principles approach to the calculation of the
superconducting critical temperature is provided by
the anisotropic Migdal-Eliashberg theory (Migdal, 1958;
Eliashberg, 1960). This is a field-theoretic approach to
the superconducting pairing, formulated in the language
of finite-temperature Green’s functions. At variance
with the Hedin-Baym equations of Table I, the Migdal-
Eliashberg theory is best developed within the Nambu-
Gor’kov formalism (Gor’kov, 1958; Nambu, 1960), which
enables describing the propagation of electron quasipar-
ticles and of superconducting Cooper pairs on the same
footing (Scalapino, 1969; Schrieffer, 1983). A comprehen-
sive presentation of the Migdal-Eliashberg theory is pro-
vided by Allen and Mitrovic (1982). Their article served
as the starting point of current first-principles implemen-
tations of the theory.

In the Migdal-Eliashberg theory, one solves the two
coupled equations:

Znk(iωj) = 1 +
πkBT

NF

∑

n′k′j′

ωj′/ωj
√

~2ω2
j′ +∆2

n′k′(iωj′)

×λnk,n′k′(iωj−iωj′)δ(εn′k′−εF), (208)

Znk(iωj)∆nk(iωj) =
πkBT

NF

∑

n′k′j′

∆n′k′(iωj′)
√

~2ω2
j′ +∆2

n′k′(iωj′)

× [λnk,n′k′(iωj−iωj′)−NFVnk,n′k′ ] δ(εn′k′−εF), (209)

where
∑

k′ stands for Ω−1
BZ

∫

dk′. In these equations, T
is the absolute temperature, Znk(iωj) is the quasipar-
ticle renormalization function, and is analogous to Znk

in Eq. (189). ∆nk(iωj) the superconducting gap func-
tion. The functions Znk(iωj) and ∆nk(iωj) are deter-
mined along the imaginary frequency axis, at the fermion
Matsubara frequencies iωj = i(2j + 1)πkBT/~ with j an
integer. The anisotropic and frequency-dependent gener-
alization of Eq. (206) to be used in the Migdal-Eliashberg
equations is:

λnk,n′k′(iω) =
NF

~

∑

ν

2ωqν

ω2
qν + ω2

|gnn′ν(k,q)|2, (210)

with q = k′−k. Equations (208)-(209) are to be solved
self-consistently for each temperature T . The supercon-
ducting critical temperature is then obtained as the high-
est temperature for which a nontrivial solution is ob-
tained, that is a solution with ∆nk(iωj) 6= 0. From the
superconducting gap along the imaginary axis it is then
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FIG. 17 (Color online) (a) Energy distribution of the super-
conducting gap function of MgB2 as a function of tempera-
ture, calculated using the anisotropic Migdal-Eliashberg the-
ory. The gap vanishes at the critical temperature (in this cal-
culation Tc = 50 K). Two distinct superconducting gaps can
be seen at each temperature. (b) Density of electronic states
in the superconducting state of MgB2 at various temperatures
calculated within the Migdal-Eliashberg theory. Reproduced
with permission from (Margine and Giustino, 2013), copyright
(2013) by the American Physical Society.

possible to obtain the gap at real frequencies by analytic
continuation (Marsiglio et al., 1988), and from there one
can compute various thermodynamic functions.

The first ab initio implementation of the anisotropic
Migdal-Eliashberg theory was reported by Choi et al.

(2002a,b) and Choi et al. (2003) in a study of the su-
perconducting properties of MgB2. The authors suc-
ceeded to explain the anomalous heat capacity of MgB2

in terms of two distinct superconducting gaps, and ob-
tained a Tc in good agreement with experiment. These
calculations were later extended to MgB2 under pressure
(Choi et al., 2009a) and other hypothetical borides (Choi
et al., 2009b). Margine and Giustino (2013) demon-
strated an implementation of the Migdal-Eliashberg the-
ory based on the Wannier interpolation scheme of Sec. VI,
and reported applications to Pb and MgB2. The super-
conducting gap and superconducting density of states of
MgB2 calculated by Margine and Giustino are shown in
Fig. 17. In all these calculations, the Coulomb repul-
sion was described empirically via µ∗, and this partly
accounts for the slight discrepancy between the calcu-
lated Tc of 50 K and the experimental Tc of 39 K (Naga-
matsu et al., 2001). Additional calculations based on
the anisotropic Migdal-Eliashberg theory include a study
of doped graphene (Margine and Giustino, 2014), as
well as investigations of Li-decorated monolayer graphene
(Zheng and Margine, 2016) and Ca-intercalated bilayer

graphene (Margine et al., 2016). In this latter work
the authors incorporated Coulomb interactions from first
principles, after calculating µ∗ via the screened Coulomb
interaction in the random-phase approximation. The cal-
culated Tc = 7-8 K was in reasonable agreement with the
experimental value of 4 K (Ichinokura et al., 2016). The
Migdal-Eliashberg theory has also been extended to de-
scribe the superconducting state as a function of applied
magnetic field; a complete ab initio implementation was
successfully demonstrated with an application to MgB2

(Aperis et al., 2015). Very recently Sano et al. (2016) per-
formed ab initio Migdal-Eliashberg calculations including
retardation effects on high-pressure sulfur hydrides, ob-
taining good agreement with experiment. Interestingly
in this work the authors also checked the effect of the
zero-point renormalization of the electron bands within
the Allen-Heine theory, and found that it accounts for a
change in Tc of up to 20 K.

C. Density functional theory for superconductors

Another promising ab initio approach to the calcula-
tion of the superconducting critical temperature is the
density functional theory for superconductors (Lüders
et al., 2005; Marques et al., 2005). The starting point
of this approach is a generalization of the Hohenberg-
Kohn theorem (Hohenberg and Kohn, 1964) to a sys-
tem described by three densities: the electron density in
the normal state, the density of superconducting pairs,
and the nuclear density. Based on this premise, Lüders
et al. mapped the fully-interacting system into an equiv-
alent Kohn-Sham system (Kohn and Sham, 1965) of
non-interacting nuclei and non-interacting, yet super-
conducting, electrons. The resulting Kohn-Sham equa-
tions for the electrons take the form of Bogoliubov-de
Gennes equations (Bogoliubov, 1958), whereby electrons
are paired by an effective gap function ∆(r, r′).

In its simplest formulation, the density functional the-
ory for superconductors determines the expectation value
of the pairing field over Kohn-Sham eigenstates, ∆nk =
〈unk(r)|∆(r, r′)|unk(r′)〉, using the following gap equa-
tion:

∆nk = −Znk∆nk −
∑

n′k′

Knk,n′k′∆n′k′

2En′k′

tanh

(

En′k′

2kBT

)

,

(211)

where E2
nk = ε2nk + |∆nk|2. In this expression, the ker-

nel K contains information about the phonon-mediated
pairing interaction and the Coulomb repulsion between
electrons, K = Kep + Kee, and Z contains information
about the electron-phonon interaction. More specifically,
Kep and Z are evaluated starting from the electron-
phonon matrix elements gmnν(k,q) and the DFT elec-
tron band structure and phonon dispersions, as in the
Migdal-Eliashberg theory. Kee is approximated using the
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FIG. 18 (Color online) Superconducting order parameter
χ(r, r′) in real space, calculated for (a) MgB2 and (b) hole-
doped graphane. The plots show a top view (top) and a side
view (bottom) of the hexagonal layers in each case. The vari-
able s=r−r′ is the relative coordinate in the order parameter,
while the center-of-mass coordinate is placed in the middle of
a B-B bond or a C-C bond. Reproduced with permission from
(Linscheid et al., 2015b), copyright (2015) by the American
Physical Society.

screened Coulomb interaction Vnk,n′k′ introduced below
Eq. (207). Complete expressions for Z and K can be
found in (Marques et al., 2005).

Equation (211) is reminiscent of the gap equation in
the Bardeen-Cooper-Schrieffer (BCS) theory (Schrieffer,
1983), with the difference that the ab initio kernel K re-
places the model interaction of the BCS theory, and the
function Z introduces quasiparticle renormalization as in
the Migdal-Eliashberg theory, see Eq. (208). At variance
with the Migdal-Eliashberg theory, the gap function in
the density functional theory for superconductors does
not carry an explicity frequency dependence. Neverthe-
less, retardation effects are fully included through the de-
pendence of the kernels Z and K on the electron bands
and the phonon dispersions. An important advantage of
this theory is that the Coulomb potential µ∗ is not re-
quired, since the electron-electron repulsion is seamlessly
taken into account by means of the kernel Kee.

The density functional theory for superconductors
was successfully employed to study the superconduct-
ing properties of MgB2 (Floris et al., 2005), Li, K, and
Al under pressure (Profeta et al., 2006; Sanna et al.,
2006), Pb (Floris et al., 2007), Ca-intercalated graphite
(Sanna et al., 2007), high-pressure hydrogen (Cudazzo
et al., 2008, 2010), CaBeSi (Bersier et al., 2009), lay-
ered nitrides (Akashi et al., 2012), alkali-doped fullerides
(Akashi and Arita, 2013b), compressed sulfur hydrides
(Akashi et al., 2015), and intercalated layered carbides,
silicides, and germanides (Flores-Livas and Sanna, 2015).

An interesting recent development of the theory was
the determination of the superconducting order pa-
rameter in real space, χ(r, r′) = 〈ψ̂↑(r)ψ̂↓(r

′)〉 (Lin-
scheid et al., 2015b). In the density functional theory
for superconductors, the order parameter is obtained

from the superconducting gap using the relation χnk =
∆nk/(2|Enk|) tanh [Enk/(2kBT )]. Figure 18 shows the
order parameter calculated by Linscheid et al. for both
MgB2 and hole-doped graphane (Savini et al., 2010). The
plots show Friedel-like oscillations of the superconducting
density as a function of the relative coordinates between
two paired electrons.

Further developments of the superconducting density
functional theory include the study of non-phononic pair-
ing mechanisms, such as plasmon-assisted superconduc-
tivity (Akashi and Arita, 2013a), and the extension to
magnetic systems (Linscheid et al., 2015a,c).

XII. ELECTRON-PHONON INTERACTIONS BEYOND
THE LOCAL DENSITY APPROXIMATION TO DFT

The calculations of electron-phonon interactions re-
viewed in Sec. VII-XI have in common the fact that
most investigations used the local density approxima-
tion to DFT or a generalized gradient approximation
(GGA) such as the PBE functional (Perdew et al.,
1996a). Although the LDA and the GGA do represent
the workhorse of electron-phonon calculations from first
principles, there is growing evidence that these choices
can lead to an underestimation of the electron-phonon
coupling strength. At a conceptual level we can under-
stand this point by rewriting the electron-phonon matrix
element after combining Eqs. (38) and (142), (143):

gmnν(k,q) = 〈umk+q|
∫

dr′ ǫ−1
e (r, r′, ω)∆qνv

en(r′)|unk〉uc.
(212)

In DFT the many-body dielectric matrix ǫe appearing in
this expression is replaced by the RPA+xc screening ǫHxc

from Eq. (54). Given the DFT band gap problem, we ex-
pect ǫHxc to overestimate the screening, thereby leading
to matrix elements gmnν(k,q) which are underestimated
to some extent.

Several groups investigated this point on quantita-
tive grounds. Zhang et al. (2007) studied the electron-
phonon coupling in a model copper oxide superconduc-
tor, CaCuO2. By calculating the vibrational frequencies
of the half-breathing Cu-O stretching mode, the authors
established that the local spin-density approximation
(LSDA) yields phonons which are too soft (65.3 meV) as
compared to experiment (80.1 meV). In contrast, the in-
troduction of Hubbard corrections in a LSDA+U scheme
restored agreement with experiment (80.9 meV). Since
the electron-phonon matrix elements are connected to the
phonon frequencies via the phonon self-energy, Eq. (145),
a corresponding underestimation of the matrix elements
can be expected. These results were supported by the
work of Floris et al. (2011), who developed DFPT within
LSDA+U , and applied their formalism to the phonon dis-
persions of antiferromagnetic MnO and NiO. Here the au-
thors found that the DFT underestimates measured LO
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energies by as much as 15 meV in MnO, while the use of
LSDA+U leads to good agreement with experiment. Re-
lated work was reported by Hong et al. (2012), who inves-
tigated the multiferroic perovskites CaMnO3, SrMnO3,
BaMnO3, LaCrO3, LaFeO3, and the double perovskite
La2CrFeO6. Here the authors calculated the variation
of the vibrational frequencies between the ferromagnetic
and the antiferromagnetic phases of these compounds as
a function of the Hubbard U parameter, and compared
DFT+U calculations with hybrid-functional calculations.

Lazzeri et al. (2008) investigated the effect of quasipar-
ticle GW corrections on the electron-phonon coupling of
graphene and graphite, for the A′

1 phonon at K and the
E2g phonon at Γ. They evaluated the intraband electron-
phonon matrix elements using a frozen-phonon approach,
noting that gnnν(k,q=0) represents precisely the shift of
the Kohn-Sham energy εnk upon displacing the atoms ac-
cording to the ν-th phonon eigenmode at q=0. Lazzeri
et al. found that the matrix elements increase by al-
most 40% from DFT to GW . The GW values led to
slopes in the phonon dispersions near K in very good
agreement with inelastic X-ray scattering data (Grüneis
et al., 2009b). Similar results, albeit less dramatic, were
obtained by Grüneis et al. (2009a) for the potassium-
intercalated graphite KC8.

Laflamme Janssen et al. (2010) studied the electron-
phonon coupling in the C60 molecule as a model for
superconducting alkali-doped fullerides. They employed
the PBE0 hybrid functional (Perdew et al., 1996b) with
a fraction of exact exchange α = 30%, and obtained an
enhancement of the total coupling strength λ of 42% as
compared to PBE. This work was followed up by Faber
et al. (2011), who used the GW approximation and ob-
tained a similar enhancement of 48%. We also point out
an earlier work by Saito (2002) based on the B3LYP func-
tional, reporting similar results.

Yin et al. (2013) investigated the effects of using
the GW approximation and the HSE hybrid functional
(Heyd et al., 2003) on the electron-phonon coupling
in the superconducting bismuthates Ba1−xKxBiO3 and
chloronitrides β-ZrNCl, as well as MgB2. In the case of
Ba1−xKxBiO3 the authors obtained a three-fold increase
in the coupling strength λ from PBE to HSE. This en-
hancement brought the critical temperature calculated
using Eq. (204) to 31 K, very close to the experimental
value of 32 K. Similarly, in the case of β-ZrNCl, Yin et al.

obtained a 50% increase of λ, bringing the calculated crit-
ical temperature, 18 K, close to the experimental value
of 16 K. Instead, in the case of MgB2, they noticed only
a slight increase of the electron-phonon coupling as com-
pared to the standard LDA.

Another application of hybrid functionals to the study
of EPIs was reported by Komelj and Krakauer (2015).
Here the authors investigated the sensitivity of the su-
perconducting critical temperature of the H3S phase of
sulfur hydride to the exchange and correlation functional.

They found that the PBE0 functional enhances the crit-
ical temperature by up to 25% as compared to PBE,
bringing Tc from 201-217 K to 253-270 K (the spread in
values is related to the choice of the parameter µ∗).

Mandal et al. (2014) reported work on the super-
conductor FeSe based on dynamical mean-field theory
(DMFT). In this case DMFT yielded a three-fold en-
hancement of the coupling strength for selected modes.

As already mentioned in Sec. IX.A.1, Antonius et al.

(2014) performed GW calculations of the electron-
phonon coupling in diamond using a frozen-phonon ap-
proach. They found that quasiparticle corrections lead
to a uniform enhancement of the electron-phonon matrix
elements. The net effect is an increase of the zero-point
renormalization of the band gap by 40% as compared
to standard LDA calculations. Monserrat (2016a) con-
firmed this result and found a GW correction of compa-
rable magnitude in the case of silicon. However, Monser-
rat also found that the GW corrections to the zero-point
band gap renormalization of LiF, MgO, and TiO2 are
very small (∼5% of the PBE value), therefore at present
it is not possible to draw general conclusions.

Finally, we mention that Faber et al. (2015) examined
possible strategies for systematically incorporating GW
corrections in electron-phonon calculations. By using
diamond, graphene, and C60 as test cases, the authors
showed that a ‘constant screening’ approximation is able
to reproduce complete GW results with an error below
10% at reduced computational cost. This approximation
amounts to evaluating the variation of the Green’s func-
tion G in a frozen-phonon calculation, while retaining
the screened Coulomb interaction W of the unperturbed
ground state.

All these recent developments point to the need of mov-
ing beyond local exchange and correlation functionals in
the study of electron-phonon interactions from first prin-
ciples. In the future, it will be important to devise ac-
curate computational methods for calculating not only
the intraband electron-phonon matrix elements (as in the
frozen-phonon method) but also matrix elements between
all states and for scattering across the entire Brillouin
zone.

For the sake of completeness we emphasize that the
underestimation of the EPI matrix elements by semilo-
cal DFT functionals does not propagate in the same way
into different materials properties. This is readily un-
derstood by examining two fundamental quantities, the
Allen-Heine renormalization of electron bands, Eq. (167),
and the adiabatic phonon frequencies, as obtained from
Eqs. (126) and (127). In the former case the electronic
screening enters as ǫ−2

∞ ; in the latter case the screening
contributes through a term which scales with ǫ

−1/2
∞ . As

a result, in the hypothetical case of a semiconductor for
which DFT underestimated the electronic permittivity
by 20%, we would have an error of ∼40% in the energy
renormalization, and of ∼10% in the phonon frequen-
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cies. This example is an oversimplification of the prob-
lem, but it shows that different properties relating to the
EPI could be affected to a very different degree by the
inherent limitations of DFT functionals.

XIII. CONCLUSIONS

The study of electron-phonon interactions has a long
and distinguished history, but it is only during the past
two decades that quantitative and predictive calculations
have become possible. First-principles calculations of
electron-phonon couplings are finding an unprecedented
variety of applications in many areas of condensed matter
and materials physics, from spectroscopy to transport,
from metals to semiconductors and superconductors. In
this article we discussed the standard DFT formalism
for performing calculations of electron-phonon interac-
tions, we showed how most equations can be derived from
a field-theoretic framework using a few well-defined ap-
proximations, and we reviewed recent applications of the
theory to many materials of current interest.

As calculation methods improve relentlessly and quan-
titative comparisons between theory and experiment be-
come increasingly refined, new and more complex ques-
tions arise. Much is still left to do, both in the funda-
mental theory of electron-phonon interactions, and in the
development of more accurate and more efficient compu-
tational methods.

For one, we are still using theories where the coupling
matrix elements are calculated using the adiabatic lo-
cal density approximation to DFT. The need for moving
beyond standard DFT and beyond the adiabatic approx-
imation can hardly be overemphasized. Progress is be-
ing made on the incorporation of nonlocal corrections
into electron-phonon matrix elements, for example us-
ing hybrid functionals or GW techniques, but very little
is known about retardation effects. It is expected that
such effects may be important in the study of heavily
doped oxides and semiconductors, both in their normal
and superconducting states (Mahan, 1993, Sec. 6.3.A),
but ab initio investigations are currently missing. This is
truly uncharted territory and a systematic effort in this
direction is warranted.

In this article we emphasized that it is possible to for-
mulate a compact, unified theory of electron-phonon in-
teractions starting from a fully ab initio field-theoretic
approach. The only assumption which is absolutely cru-
cial to the theory is the harmonic approximation. Aban-
doning the harmonic approximation leads to the appear-
ance of several new terms in the equations, and the re-
sulting formalism becomes considerably more complex
than in Table I. Despite these difficulties, given the
importance of anharmonic effects in many systems of
current interest, extending the theory to the case of an-
harmonic phonons and multi-phonon interactions consti-

tutes a pressing challenge. Ab initio investigations of an-
harmonic effects on the temperature dependence of band
gaps have recently been reported (Monserrat et al., 2013;
Antonius et al., 2015). Since these studies rely on non-
perturbative adiabatic calculations in supercells, it would
be highly desirable to establish a clear formal connec-
tion of these methods with the rigorous field-theoretic
approach of Sec. IV. Along the same line, it would
be important to clarify the relation between many-body
approaches, adiabatic supercells calculations, and more
traditional classical or path-integral molecular dynamics
simulations.

The study of electron-phonon interactions has long
been dominated by Fröhlich-like Hamiltonians, whereby
the electron-phonon coupling is retained only to linear
order in the atomic displacements. This is the case for
all the model Hamiltonians mentioned in Sec. V.B.6. It is
now clear that quadratic couplings, leading to the Debye-
Waller contributions in the optical spectra of semicon-
ductors, are by no means negligible and should be inves-
tigated more systematically. For example, in the current
literature it is invariably assumed that Debye-Waller con-
tributions are negligible in metals near the Fermi surface;
while this is probably the case for the simplest elemen-
tal metals, what happens in the case of multiple Fermi-
surface sheets is far from clear, and should be tested by
direct calculations.

The identification of the correct matrix elements to be
calculated is not always a trivial task, as it was discussed
for the case of the non-adiabatic phonon self-energy. In
the future it will be important to pay attention to these
aspects, especially in view of detailed comparison with
experiment. For now, the issue on whether the phonon
self-energy arising from EPIs should be calculated using
bare or screened EPI matrix elements (Sec. VII) is to be
considered an open question, and calls for further inves-
tigation.

The theory and applications reviewed in this article
focused on non-magnetic systems. The rationale for this
choice is that a complete many-body theory of electron-
phonon interactions for magnetic systems is not available
yet. Recent investigations of spin-phonon couplings were
conducted by assuming that the spin and the vibrational
degrees of freedom can be decoupled, as in the Born-
Oppenheimer approximation. Under this assumption it
is possible to investigate how the spin configuration re-
sponds to a frozen phonon, or alternatively how the vi-
brational frequencies depend on the spin configuration
(see for example Chan et al., 2007; Łażewski et al., 2010;
Lee and Rabe, 2011; Cao et al., 2015). In all these cases
it would be desirable to employ a more rigorous many-
body theory of spin-phonon interactions. The Hedin-
Baym equations discussed in Sec. IV maintain their va-
lidity in the case of spin-polarized systems, provided
collinear spins are assumed. In more general situations,
where it is important to consider noncollinear spins, ex-
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ternal magnetic perturbations, or spin-dependent inter-
actions such as spin-orbit and Rashba-Dresselhaus cou-
plings, it becomes necessary to generalize the equations
in Table I. Although such a generalization has not been
reported yet, the work of Aryasetiawan and Biermann
(2008) constitutes a promising starting point. In that
work the Schwinger functional derivative technique (see
Sec. IV.B.1) was used to extend Hedin’s equations at
clamped nuclei to systems containing spin-dependent in-
teractions. Generalizing Aryasetiawan and Biermann’s
work to incorporate nuclear vibrations will be important
for the study of electron-phonon interactions in many sys-
tems of current interest, from multifunctional materials
to topological quantum matter.

At this time it is not possible to predict how this fast-
moving field will evolve over the years to come. However,
the impressive progress made during the past decade
gives us confidence that this interesting research area will
continue to thrive, and will keep surprising us with fas-
cinating challenges and exciting new opportunities.
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Appendix A: Born-von Kármán boundary conditions

In this Appendix we provide more details on the no-
tation related to the Born-von Kármán boundary condi-
tions used throughout this article. The crystalline unit
cell is defined by the primitive lattice vectors ai with
i = 1, 2, 3, and the p-th unit cell is identified by the
vector Rp =

∑

i niai with ni integers between 0 and
Ni − 1. The BvK supercell contains Np = N1×N2×N3

unit cells. The primitive vectors of the reciprocal lat-
tice are denoted by bj , and fulfil the duality condition
ai ·bj = 2πδij . We consider Bloch wavevectors q belong-
ing to a uniform grid in one unit cell of the reciprocal
lattice: q =

∑

j(mj/Nj)bj with mj being integers be-
tween 0 and Nj−1. This grid contains the same number
of q-vectors as the number of unit cells in the BvK su-
percell. From these definitions the standard sum rules
follow:
∑

q
exp(iq ·Rp) = Npδp0,

∑

p
exp(iq ·Rp) = Npδq0.

(A1)

If G is a reciprocal-lattice vector, the replacement of any
of the q-vectors by q+G in these expressions and in all
expressions presented in this article is inconsequential,
since exp(iG · Rp) = 1. Similarly any replacement of
Rp by Rp + T where T is a lattice vectors of the BvK
supercell is inconsequential. Owing to these properties
we are at liberty to replace the q-grid defined above with
a Wigner-Seitz grid, i.e. the first Brillouin zone, and the
supercell with a Wigner-Seitz supercell. These choices
are useful for practical calculations in order to exploit the
symmetry operations of the crystal, and to truncate the
interatomic force constants, given by Eq. (13), outside a
Wigner-Seitz supercell.

Appendix B: Ladder operators in extended systems

In this Appendix we describe the construction of the
phonon ladder operators âqν/â†qν , and derive the phonon
Hamiltonian given by Eq. (22). We show how the defini-
tion of the ladder operators depends on the behavior of
the wavevector q under inversion.

The normal modes introduced in Eq. (15) can be used
to define a linear coordinate transformation of the ionic
displacements as follows:

zqν = N
− 1

2
p

∑

καp

e−iq·Rp(Mκ/M0)
1
2 e∗κα,ν(q)∆τκαp.

(B1)
Here zqν is referred to as ‘complex normal coordinate’
(Brüesch, 1982). The exponential and the masses in
Eq. (B1) are chosen so as to obtain Eq. (22) starting
from Eq. (12). Since there are 3MNp degrees of freedom,
and since the complex normal coordinates correspond to
2× 3MNp real variables, this coordinate transformation
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carries some redundancy. Indeed by combining Eqs. (18)
and (B1) it is seen that:

z−qν = z∗qν . (B2)

The inverse relation of Eq. (B1) is:

∆τκαp = N
− 1

2
p (M0/Mκ)

1
2

∑

qν
eiq·Rpeκα,ν(q) zqν . (B3)

The right-hand side is real-valued after Eqs. (18)
and (B2). In preparation for the transition to a quan-
tum description of lattice vibrations, it is useful to iden-
tify 3MNp independent normal coordinates. This can be
done by partitioning the grid of q-vectors in three sets.
We call A the set of vectors which are invariant under
inversion, that is −q+G = q for some reciprocal lattice
vector G (including |G|=0). The center of the Brillouin
zone and the centers of its faces belong to this set. The
remaining vectors can be separated further in B and C,
in such a way that all the vectors in C are obtained from
those in B by inversion (modulo a reciprocal lattice vec-
tor). After defining zqν = xqν + iyqν , Eq. (B3) can be
rewritten as:

∆τκαp = N
− 1

2
p (M0/Mκ)

1
2

[

∑

q∈A,ν
eκα,ν(q)xqν

+ 2Re
∑

q∈B,ν
eiq·Rpeκα,ν(q)(xqν + iyqν)

]

.(B4)

The q-vectors of the set C have been grouped together
with those in B by taking the real part in the second
line. It can be verified that in this expression there are
exactly 3MNp real coordinates, therefore we can choose
the xqν for q in A and the pairs xqν , yqν for q in B as
the independent variables. These variables are referred
to as ‘real normal coordinates’ (Brüesch, 1982).

Using Eqs. (12)-(18), (A1), and (B4) the nuclear
Hamiltonian can be written in terms of 3MNp indepen-
dent harmonic oscillators in the real normal coordinates:

Ĥp =
1

2

∑

q∈B,ν
~ωqν(−∂2/∂x̃2qν− ∂2/∂ỹ2qν+ x̃2qν + ỹ2qν)

+
1

2

∑

q∈A,ν
~ωqν(−∂2/∂x̃2qν + x̃2qν), (B5)

where for ease of notation we performed the scaling:

x̃qν = xqν/2 lqν for q in A, (B6)

x̃qν = xqν/lqν , ỹqν = yqν/lqν for q in B, (B7)

with lqν being the zero-point displacement amplitude of
Eq. (21). In the case of |q| = 0 there are three normal
modes for which ωqν=0, and the corresponding potential
terms x̃2qν must be removed from Eq. (B5).

The eigenstates of Eq. (B5) are found by introduc-
ing the real ladder operators for each normal coordinate
(Cohen-Tannoudji et al., 1977):

âqν,x = (x̃qν + ∂/∂x̃qν)/
√
2, (B8)

and similarly for âqν,y. With these definitions Eq. (B5)
becomes:

Ĥp =
∑

q∈B,ν
~ωqν

(

â†qν,xâqν,x + â†qν,yâqν,y + 1
)

+
∑

q∈A,ν
~ωqν

(

â†qν,xâqν,x + 1/2
)

. (B9)

The eigenstates of this Hamiltonian are products of sim-
ple harmonic oscillators (Merzbacher, 1998), and the
ground state is:

χ0({τκp}) = Ae−
1
2 (

∑
q∈A,ν

x̃2
qν

+
∑

q∈B,ν
x̃2
qν

+ỹ2
qν), (B10)

with A a normalization constant. The relations between
the positions τκp and the normal coordinates x̃qν , ỹqν
are given by Eqs. (B1), (B6)-(B7), and (21).

The eigenstates of Ĥp can be generated by applying
â†qν,x and â†qν,y to the ground state χ0. However this ap-
proach is not entirely satisfactory, since we cannot assign
separate quantum numbers to modes with wavevectors q
or −q. In order to avoid this inconvenience we observe
that, for each normal mode, the first line of Eq. (B5)
defines an effective isotropic two-dimensional harmonic
oscillator. The degenerate eigenstates of this oscillator
can be combined to form eigenstates of the angular mo-
mentum; this leads to right and left circular quanta with
the same energy and definite angular momentum (Cohen-
Tannoudji et al., 1977). This analogy motivates the con-
sideration of the following linear combinations, for q in B:

â+qν = (âqν,x + iâqν,y)/
√
2, (B11)

â−qν = (âqν,x − iâqν,y)/
√
2. (B12)

Since both âqν,x and âqν,y lower the energy of an eigen-
state by the same quantum of energy ~ωqν , the resulting
states are degenerate and their linear combinations are
also eigenstates for the same eigenvalue. As a conse-
quence we can generate all the eigenstates of the Hamil-
tonian Ĥp by acting on the ground state χ0 with the
creation operators â+,†

qν and â−,†
qν . In this reasoning the

wavevectors q belong to B; if we now consider Eqs. (B2),
(B11), and (B12) we see that formally we also have
â−qν = â+−qν . Therefore it is natural to associate â−qν
to phonons propagating along the direction −q.

These observations suggest replacing the real ladder
operators of Eq. (B8) by the complex ladder operators
â+qν and â−−qν for q in B and C, respectively. In the
case of q in A we keep the real operators âqν,x. These
definitions can be turned into the compact expressions:

âqν = âqν,x for q in A, (B13)

âqν = (âqν,x + iâqν,y)/
√
2 for q in B, C. (B14)

Using these operators the nuclear Hamiltonian of
Eq. (B5) takes the well-known form given by Eq. (22).
Any eigenstate of Ĥp can now be generated as
∏

qν(nqν !)
− 1

2 (â†qν)
nqνχ0. In this form we see that it is

possible to assign independently a number of phonons
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nqν to each wavevector q and each mode ν. Using
Eqs. (B6)-(B8) and (B13)-(B14) we also have the basic
identity:

zqν = lqν (âqν + â†−qν). (B15)

By combining this last expression with Eq. (B3) we ob-
tain Eq. (20).
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