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Abstract

We investigate phonon induced electronic dynamics in the ground and excited states of the negatively
charged silicon-vacancy ( −SiV ) centre in diamond.Optical transition linewidths, transition
wavelength and excited state lifetimes aremeasured for the temperature range 4 K–350 K. The ground
state orbital relaxation rates aremeasured using time-resolved fluorescence techniques. Amicroscopic
model of the thermal broadening in the excited and ground states of the −SiV centre is developed. A
vibronic process involving single-phonon transitions is found to determine orbital relaxation rates for
both the ground and the excited states at cryogenic temperatures.We discuss the implications of our
findings for coherence of qubits in the ground states and proposemethods to extend coherence times
of −SiV qubits.

1. Introduction

Colour centres in diamond have emerged as attractive systems for applications in quantummetrology, quantum

communication, and quantum information processing [1–3]. Diamond has a large band gapwhich allows for

optical control, and it can be synthesizedwith high purity, enabling long coherence times as was demonstrated

for nitrogen-vacancy ( −NV ) spin qubits [4]. Amongmany colour centres in diamond [5, 6], the negatively

charged silicon-vacancy ( −SiV ) centre stands out due to its desirable optical properties. In particular, near

transform-limited photons can be createdwith high efficiency due to the strong zero-phonon line emission that

constitutes∼70%of the total emission. −SiV centres can also be createdwith a narrow inhomogeneous

distribution that is comparable to the transform limited optical linewidth [7]. These optical properties, due to

the inversion symmetry of the systemwhich suppresses effects of spectral diffusion, recently enabled

demonstration of two-photon interference from separated emitters [8] that is a key requirement formany

quantum information processing protocols [9–12].
Interfacing coherent optical transitions with long-lived spin qubits is a key challenge for quantumoptics

with solid state emitters [13–17]. This challengemay be addressed using optically accessible electronic spins in
−SiV centres [18]. It has recently been demonstrated that coherent spin states can be prepared and read out

optically [19, 20], although the spin coherence timewas found to be limited by phonon-induced relaxation in

the ground states [19].Herewe present thefirst systematic study of the electron–phonon interactions that are

responsible for relaxationwithin the ground and excited states of the −SiV centre. This is achieved bymeasuring

the temperature dependence of numerous processes within the centre. A comprehensivemicroscopicmodel is

then developed to account for the observations. In section 4.1we discuss the implications of these phonon

processes for spin coherences in the −SiV ground state, and identify approaches that could extend the spin

coherences.
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The −SiV centre consists of an interstitial silicon atom in a split-vacancy configurationwith D3d symmetry as

illustrated infigure 1(a) [21]. This symmetry gives rise to an electronic level structure consisting of ground ( E2
g)

and excited ( E2
u) states that both have E symmetry and double orbital degeneracy. The degenerate orbital states

are occupied by a single holewith =S 1 2 [22–25], leading to both orbital and spin degrees of freedom. In the
absence of off-axis strain ormagnetic fields, the spin–orbit interaction ( λ∼ S Lz zso

g,u ) determines the eigenstates
withwell defined orbital and spin angularmomentum [24].Optical and phononic transitions between these
eigenstates couple only to the orbital degree of freedom and are spin conserving.We therefore focus on the
orbital dynamics within the ground and excited states, which can each be described as an effective two-level
system consisting of two orbital states ∣ = ± 〉 = ∣ 〉±L e{ 1 }z

g u, for a given spin projection as shown infigure 1(b)
[24]. Phonons can introduce vibronic coupling between ∣ 〉+e and ∣ 〉−e orbitals, resulting in population transfer
between orbitals at rates γ+ −,

g,u [26, 27].This effect, also called the dynamic Jahn–Teller effect, has been observed in

the excited states of the −NV centre [28, 29]where a similar orbital degeneracy is present.

2. Experimental results

2.1. Excited states

The spin–orbit interaction results in four optical dipole transitions, labelledA–D in order of increasing
wavelength, centred around∼737 nmat cryogenic temperatures [30–32]. At liquid helium temperatures, the
optical linewidths are broader for transitions A andB than for the lower energy transitions C andD [7]. This was
attributed to thermal relaxation reducing the effective lifetime of the upper branch via the decay rate γ−

u, which is

faster than γ+
u by the Boltzmann factor γ γ λ=− + k Texp ( )u u

so
u

B [30, 31].
To probe themicroscopicmechanismof the orbital relaxation in the excited states, the temperature

dependence of the linewidth of transitionDwasmeasured for individual −SiV centres. Since these −SiV centres
exhibit negligible spectral diffusion [7], themeasured optical linewidths Γ T( ) correspond to homogeneous
broadeningmechanisms associatedwith depolarisation and dephasing: Γ γ γ γ γ= + + ++T T T T( ) ( ) ( ) ( )r nr

u
d .

The non-radiative decay rate γ T( )nr has a veryweak temperature dependence, as discussed later in section 2.3,
leading to a small contribution compared to the other rates for all temperature regions of interest. Themost
significant temperature dependence comes from the relaxation rates within the excited states: γ+ T( )u and γ T( )d .
Aswill be shown in section 3.2, the optical transition linewidth is dominated by relaxation rates in the excited
states with little contribution from the ground states.

For temperatures between 4 K and 50 K, the optical transition linewidthwasmeasured using
photoluminescence excitation in a continuous flow cryostat, where aweak probe laserwas scanned across
transitionD andfluorescence in the phonon-sideband (PSB)was detected. At higher temperatures, 532 nm
excitationwas used and emission linewidthsweremeasuredwith a spectrometer (Princeton Instruments Acton
2500 equippedwith a Pixis 100 cooledCCD-array and a 1596mm−1 grating) giving a resolution of 16GHz. To

Figure 1.Molecular structure and electronic dynamics of −SiV . (a) The −SiV centre consists of a silicon atom centred between two
neighbouring vacant lattice sites. (b) The optical transitions are between states of E symmetry with opposite parity ( E , E2

g
2

u). γr (γnr)

are radiative (non-radiative) decay rates out of the excited states. Straight (curved) lines denote the radiative (non-radiative)
transitions. In both the ground and excited states, the four-fold degeneracy is partially lifted by the spin–orbit interaction λso

g,u

[23, 24]. Every level illustrated here is a spin-1/2 doublet (e.g. ∣ 〉∣ ↑ 〉 ∣ 〉∣ ↓ 〉− +e e{ , } for the lowest energy level), and for clarity only the
spin-up levels are drawn. Implications of this study for the spin sublevels are discussed in section 4.1. The horizontal dashed line
denotes the unidentified level (either an additional electronic level or excited vibrational state of E2

g) involved in the non-radiative

decay between the ground and excited states.
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measure fundamental properties of the −SiV centre, a bulk diamond sample containing highly uniformdefect

sites and low strainwas used in these experiments. It was a low strain high-pressure high-temperature (HPHT)

type-IIa diamondwith a {100} surface onwhich a 60 μm layer incorporating −SiV was created bymicrowave-

plasma chemical-vapour-deposition (MPCVD). This sample was used in previous publications [7, 8, 23] and

shows a narrow inhomogeneous distribution for the −SiV optical transitions.
Figure 2 shows the full width at halfmaximum linewidths (determined fromLorentzian fits)measured for

single −SiV sites in a 200× 200 μm−2 region containing 28Si. Above∼70K the linewidth scales as the cube of the

temperature (Γ = + T(103 0.12 · [ K] )3 MHz).However for low temperatures (<20 K ), the behaviour

deviates fromT3 and is better approximated by a linear dependence on temperature

(Γ = − + T( 1.05 24.26 · [ K])MHz) saturating at about 4K to the lifetime limited linewidth. Early studies on

nanodiamonds havemeasured theT3 dependence of the linewidth on temperature, butwere not able to resolve

this linear contribution due to a combination of inhomogeneous broadening and spectral resolution limits [33].

It is shown in section 3 that the observedT andT3mechanisms result fromfirst- and second-order transitions

due to linear electron–phonon interactions with E-symmetric phononmodes.

2.2. Ground states

Relaxationwithin the ground state doublet, γ+
g infigure 1(b), was probed directly using pulsed excitation and

time-resolved fluorescencemeasurements. Transitions C andD form an opticalΛ-systemwhich allows ground

state populations to be optically pumped. For these experiments a second diamond sample was used inwhich

the properties and orientation of the −SiV centres were known from earlier studies [23]. The sample is a low

strainHPHTdiamond observed through a {111} surfacewith a lowdensity of in-grown −SiV centres and the

optical properties of the −SiV centres foundwithin are comparable to those in the {100} sample. A laser was

tuned to transitionD and 80-ns-pulses were generated using an electro-optical amplitudemodulator with a

measured extinction ratio of up to 20 dB. The signal was detected by counting the photon arrival times in

relation to the laser pulses using a time-tagged data acquisition card (FASTComTecMCS26A) giving a time

resolution of up to 200 ps.
At the start of each laser pulse we observed a fluorescence peak that decayed to a steady state level. For the

first laser pulse, the peak height a corresponds to the thermal population in the bright state (∣ 〉∣ ↑ 〉+e g or

∣ 〉∣ ↓ 〉−e g ) which is∼50% for the temperatures in ourmeasurements. The decay of this initial peakwhen the
laser is on corresponds to optical pumping into the dark state (∣ 〉∣ ↑ 〉−e g or ∣ 〉∣ ↓ 〉+e g ). After a dark interval τ, the

dark state relaxes back to the bright state, leading to a recovery of peak height h for subsequent pulses. The peak

height, τh ( ), exhibits a simple exponential recovery indicating a single characteristic relaxation time,T1, as

shown infigures 3(a) and (b). Thismeasurement was repeated for a single −SiV centre at various temperatures

between 4.5 K and 22K and the relaxation ratewas found to scale linearly with temperature (figure 3(c)). The

longestT1 timewasmeasured at the lowest temperatures to be = ±T (5 K) 39 1 ns1 .

Figure 2. Linewidth of transitionDmeasured for different temperatures. Each linewidthwas determined by Lorentzian fits for
multiple sites. The green fit corresponds to a cubic scaling over the high temperature range (>70 K ) after the spectrumhasmerged to
two peaks and one peak at >120K . At low temperatures (<20 K) the pinkfit represents a linear scaling seen in the inset. For the
temperature range in between these two regimes, the scaling of the linewidth crosses over from linear to cubic behaviour.
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Wenote that the steady state fluorescence level under laser excitation, h (0), is determined by a competition
between the optical pumping rate and thermalization rates ( T1 1).With increasing temperature, the
thermalization rate increases (figure 3(c)) while the optical pumping rate remains nearly constant at saturation.
This leads to a reducedmeasured peak contrast (h a(0) 2 ,figure 3(d))with increasing temperature, showing
that the ground state of the −SiV centre cannot be polarised at elevated temperatures.

2.3. Excited state lifetimes

The results presented so far have only highlighted the processes within the ground and excited state doublets.
The transition rates from excited to ground states also have a temperature dependencewhich can be probed by
measuring thefluorescence lifetime of the excited state as a function of temperature. Previous experiments have
reported excited state lifetimes in the∼1–4 ns range alongwith various estimates of the quantum yield
[7, 30, 32–35]. Figure 1(b) shows potential radiative (γr) and non-radiative (γnr) processes taking place at the
optical energy scale that determine the excited state lifetimes and the quantumyield. The total decay rate from
the excited states, γ τ γ γ= = +T T T( ) 1 ( ) ( )t 0 r nr , is a combination of a constant radiative (γr) and a

temperature dependent non-radiative rate (γ T( )nr ).

In an attempt to identify the non-radiative process, wemeasured the lifetime of the E2
u excited states as a

function of temperature from5 K to 350 K. At each temperature, 10 separate single −SiV centres were excited
using a pulsed 532 nm laserwith a 80MHz repetition rate and themeasured time traces were fitted using a single
exponential decay. Themeasured temperature dependence of τ γ=T T( ) 1 ( )0 t is shown in figure 4(a). The
excited state lifetimewas found to increase as temperature was decreased down to 50 K, where it saturated to a
constant level. These results suggest there is afinite non-radiative rate γnr at room temperature, while the
saturation below 50Kdoes not necessarily imply γ < =T( 50 K) 0nr as theremight still be afinite spontaneous
non-radiative rate at zero temperature. The observed temperature dependence infigure 4(a) can be described by

theMott–Seitzmodel for non-radiative relaxation, τ τ α= = + − −Δ

T T( ) ( 0 K)(1 e )0 0
1E

k TB , with an activation
energy of Δ = ±E 55 2 meV and α = ±3.3 0.3 [36]. Ourmeasurements do not, however, provide enough
information to distinguishwhether the systemdecays from E2

u directly to a higher vibrational state of E2
g, or to

an unidentified electronic level closer to E2
u in energy.Whilst there exists some ab initio [25] and experimental

[37] evidence of an additional electronic level below the excited E2
u level, this evidence conflicts with the simple

molecular orbitalmodel of the centres electronic structure [21–24], which predicts no such additional level.

Figure 3.Ground state orbital relaxation time (T1)measurements. (a) The pulse sequence used tomeasure the T1 of the ground states.
A single laser was amplitudemodulated to pump (first pulse) and probe (second pulse) transitionD at each temperature.
Photoluminescence (PL) intensity corresponds to the bright state population. (b) The height h of the leading edge peak plotted for
different wait times τ between the pulses. An exponential fit to the recovery of the height gives the orbital ground state relaxation time
T1. (c)Measured orbital relaxation rate, γ+,g as a function of temperature. Afit (pink) to a single-phonon relaxationmodel (section 3.2)
shows good agreement with the data by introducing an offset on the temperature ( Δ= −T n T1 0.0099 · ( , 2.26 K)1 ). (d) Bright state
population, h a(0) 2 , after optical pumping shown for different temperatures.
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Future studies involving spectroscopy of the →E E2
g

2
u absorption PSB and single-shot readout capability of

−SiV electronic statesmight help identify the relaxation paths from the E2
u and dark states of

−SiV centres [38].

2.4.Optical line positions

The line positions of all four optical transitions were determined using the Lorentzian fits to themeasurements
described in section 2.1. The spectrometer was calibratedwith respect to awavemeter, allowing us to
consistently reproduce transitionwavelengths across the entire temperature range. For simplicity, only
transitionC is shown infigure 4(b). Fittingwith a free temperature exponent results in
Δλ = ±T19.2 · ( K)2.78 0.05, in close agreement with a cubic temperature dependence. Figure 4(b) compares fits
of the form Δλ ∼ βT for β = 2, 3, 4 aswell as amodel based on thermal expansion described below.Our
observation ofT3 scaling differsmarginally from earliermeasurementsmade on nanodiamonds [33]. For
temperatures at which the linewidthwas narrow enough to resolve individual transitions, the ground and
excited state splittings could also be obtained from the spectrum.We observe that themeasured splittings, which
correspond to the spin–orbit interaction at low temperature, are reducedwith increasing temperature for both
the excited (figure 4(c)) and ground (figure 4(c)) states.

In diamond, the temperature shifts of optical lines have two distinct origins: thermal expansion and
electron–phonon interactions [39, 40]. The shift of the transition energy due to thermal expansion has the form

δ =E T A P T( ) · ( )exp. , whereA is the hydrostatic pressure shift of the transition energy, P T( ) ∫= −B e x x( )d
T

0

is the negative pressure of thermal expansion,B is the diamond bulkmodulus and e(T) is the bulk thermal
expansion coefficient [39, 40].WhilstB and e(T) are well-known for diamond [41], the pressure shiftA of the

−SiV optical transition has not beenmeasured. The dashed green line infigure 4(b) is the best fit of the line shift
obtained using the singlefit parameterA of the thermal expansionmechanism, and it is clear that it does not
account for the observed shift. The shift of the transition energy due to electron–phonon interactions typically

Figure 4. (a) Fluorescence lifetime (τ0) of the excited states as a function of temperature. At each temperature, τ T( )0 wasmeasured
for ten emitters. The error bars denote the standard deviation of the τ T( )0 distribution. Thefit (magenta) line corresponds to the
Mott–Seitzmodel. (b)Optical transitionwavelength of transitionCdetermined fromLorentzian fits to the spectrum and excitation
scans. A cubic (magenta) dependence on temperature (∼T 3) is in good agreement with the data, unlike quadratic (dashed, orange)
and quartic (dashed, brown) fits. (c), (d) Themeasured excited and ground state splittings as a function of temperature. The quadratic
fits based on themodel in section 3.4 are shown inmagenta. The dashed green lines in (b), (c) and (d) are the bestfits obtained using
the pure thermal expansionmechanism explained in the text.
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arises fromquadratic interactions with A1-symmetric phononmodes and produces aT 4 dependence [42],
which is also inconsistent with our observations. Furthermore, a linear combination of shifts caused by these
twomechanisms is not able to produce a good fit to our observations. It is shown in section 3 that the atypicalT3

shift arises from second-order linear interactions with E-symmetric phononmodes. Thisfits well to the
observed data and therefore the shift due to thermal expansion is negligible.

The temperature reductions of the ground and excited state splittings can also arise from thermal expansion
and electron–phonon interactions [40]. The dashed green lines infigures 4(c) and (d) are the best thermal
expansion fits obtained by introducing pressure shift parameters of the spin–orbit splittings, and as above it is
clear, at least forfigure 4(c), that anothermechanismmust be involved in the reduction of the splittings.
Similarly, theT 4 dependence of the quadratic interactionswith A1-symmetric phononmodes and its linear
combinationwith the thermal expansion shift do not satisfactorilyfit the observations.Wewill show in the next
section that theT 2 dependence of the spin–orbit splittings are also consequences of second-order linear
interactionswith E-symmetric phononmodes as for the shift of the transition energy.

3.Microscopicmodel of the electron–phonon processes

In this sectionwe develop amicroscopicmodel of the electron–phonon processes within the ground and excited
electronic levels that are summarized infigure 5. Themodel successfully describes the observed temperature
variations of optical linewidth, line position and spin–orbit splittings. In each case, the electron–phonon
processes are consequences of the linear Jahn–Teller interaction between the E-symmetric electronic states and
E-symmetric acoustic phononmodes [27, 43, 44].

As discussed in the introduction, spin projection and orbital angularmomentum are good quantum
numbers and can be treated separately in the situation of lowmagnetic fields and strain [24]. Since the optical
transitions and electron–phonon interactions are spin conserving, we can focus on the orbital degrees of
freedomof the ground and excited levels. For a given spin state, the effective zero-field orbital Hamiltonian takes
the following form for both the ground and excited levels

Δσ= ±H
1

2
, (1)z0

where σz is the usual Pauli operator for orbital states in the ∣ 〉 ∣ 〉+ −e e{ , }basis, Δ is themagnitude of the relevant
spin–orbit splitting, which is Δ+ for ∣ ↑ 〉 and Δ− for ∣ ↓ 〉.

3.1. Electron–phonon interaction

For the −SiV centre the interaction between the E-symmetric orbital states ∣ 〉 ∣ 〉+ −e e{ , } and phononmodes of E

symmetry is describedmost conveniently if the E modes are linearly transformed to be circularly polarised.With
this transformation, the phononHamiltonian and the linear electron–phonon interaction are

∑ ω=H a aˆ , (2)E

p k

k p k p k

,

,
†

,

∑ χ σ σ= + + ++ − − − + +( ) ( )V a a a aˆ , (3)E

k

k k k k k, ,
†

, ,
†⎡

⎣
⎤
⎦

Figure 5.Electron–phonon processes within the ground and excited states. (a) The relevant rates in the problem are γ+ and γ−, which
denote the transition rates between states that determine the orbital T1 relaxation time, and γd which denotes the rate of a pure
dephasing process. These rates can originate from a (b) single-phonon direct process; (c) two-phononRaman process; or (d) two-
phonon elastic scattering process. These processes are analogous to (b) resonant absorption, (c) Raman transitions, and (d) AC Stark
shift in atomic physics.
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where χk is the interaction frequency for a single phonon, σ+ (σ−) is the raising (lowering) operator for orbital

states, and a p k,
† (a p k, ) is the creation (annihilation) operator for phononswith polarisation = − +p { , } and

wavevector k. Longwavelength acoustic phonons in diamond give rise to the collective translation and relative
displacement of the ions of the center. Phononmodes resulting in the relative displacement have even parity and
are responsible for the electron–phonon coupling. The interaction frequency and density ofmodes are

approximately χ ω χω∣ ∣ ≈( )k
2 and ρ ω ρω=( ) 2, respectively, where the overbar denotes the average over all

modeswith frequency ω ω=k and χ and ρ are proportionality constants [28, 45]. Note that interactions with
A-symmetricmodes have not been included, as they do not couple the states within the ground and excited
electronic levels.

3.2. First-order electron–phonon transitions

Treating V̂E as a time-dependent perturbation, the first-order transitions between the orbital states involve the
absorption or emission of a single E phononwhose frequency is resonant with the splittingΔ (see figure 5(b)).
The corresponding transition rates are

∑

∑

γ π χ δ Δ ω

γ π χ δ Δ ω

= −

= + −

+ −

− +

( )

( ) ( )

n

n

2 ,

2 1 , (4)

k

k k k

k

k k k

,
2

,
2

where np k, is the occupation of the phononmodewith polarisation p andwavector k. Assuming acoustic
phonons, performing the thermal average over initial states and the sumover allfinal states leads to

γ πχ ρ Δ Δ

γ πχ ρ Δ Δ

=

= +

+

−

n T

n T

2 ( , ),

2 [ ( , ) 1]. (5)

3

3

For temperatures Δ>T kB, equation (5) can be approximated by a single relaxation rate with a linear
temperature dependence


γ γ

π
χρΔ≈ ≈+ − k T

2
. (6)2

B

Hence, the one-phonon transitions lead to the relaxation of population between the orbital states as well as
the dephasing of the states that are linearly dependent on temperature. Themeasurements presented infigures 2
and 3 demonstrated a clear linear dependence of broadening for temperatures below 20 K, but greater than the
spin–orbit splitting ( Δ> ∼T k 2.4 KB ).We therefore conclude that the relaxationmechanisms are
dominated by a resonant single phonon process at liquid helium temperatures for both the ground and the
excited states. Equation (6) also shows that the relaxation rate is Δ∼ 2, whereΔ is the spin–orbit splitting in the
zero-field limit. The Δ2 scaling explains why the phonon relaxation processes aremuch faster in the excited
levels for which the splittings are larger comparedwith the ground states.

3.3. Second-order electron–phonon transitions

It was seen infigure 2 that the line broadening deviated from its linear temperature dependence above about
20 K ( Δ≫T kB), suggesting that higher order processes involving two phonons start dominating the
relaxation rates. Given the formof the electron–phonon interaction in equation (3), the only allowed two-
phonon processes are thosewhere the initial and final orbital states are identical. Therefore, the inelastic Raman-
type scattering processes (figure 5(c)) that are dominant for −NV centres [28], are suppressed in −SiV and the
elastic Raman-type scattering processes (figure 5(d)) dominate instead. The elastic scattering rate for ∣ 〉−e is

 ∑γ π χ χ

Δ ω Δ ω
δ Δ ω ω

= + ∣ ∣ ∣ ∣

−
+

+
− +

− − +( )

( )

n n2 1

1 1
. (7)

k q

k q k q

k k
k q

d
2

,

, ,
2 2

2

Performing the thermal average over the initial states and the sumover allfinal states leads to

 ∫γ π Δ ω ω χ Δ ω χ ω

ω Δ ω
ρ Δ ω ρ ω ω

= + + +

−
+

+
+

Ω

− n T n T2 ( , )( ( , ) 1) ( ) ( )

1 1
( ) ( )d , (8)

k qd
2

0

2 2

2

whereΩ is theDebye frequency of diamond. Assuming acousticmodes and that the temperatures are such that
onlymodeswith frequencies Ω ω Δ≫ ≫ contribute significantly to the integral, to lowest order inΔ, the rates
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become





∫γ γ π Δ χ ρ ω ω ω ω

π
Δ χ ρ

≈ ≈ +

=

− +

∞
n T n T

k T

2 ( , )( ( , ) 1) d

2

3
. (9)

d d
2 2 2 2

0

2

3
2 2 2

B
3 3

Hence, the two-phonon elastic scattering process contributes to the dephasing of the orbital states and has
rates that are proportional to ∼T 3, matching the observed linewidth behaviour infigure 2. Therefore our
microscopicmodel shows perfect agreement with themeasurements andwe can understand the orbital
relaxation process as a combination of a single phononmixing between the orbital states and a two-phonon
dephasing process.

For −SiV centres under high strain (larger than the spin–orbit interaction), the orbital eigenstates
∣ 〉 ∣ 〉e e{ , }x y no longer havewell defined angularmomentum.Under such conditions, the inelastic Raman

process shown infigure 5(c) becomes allowed, which results in a competing orbital relaxation rate that scales as
∼T 5.

3.4. Spin–orbit splitting shifts

The electron–phonon interactions also perturb the energies of the orbital states at second-order. The second-
order energy shifts δ −E ( δ +E ) for states ∣ 〉−e ( ∣ 〉+e ) can be expressed in a simple formusing the linear phonon
x y{ , }polarisation basis. The energy shift due to phononmodes withwavevector k and occupation nx y k( ), are





δ χ
ω Δ ω Δ

δ χ
ω Δ ω Δ

=
−

−
+

+

=
+

−
+

−

−

+

E x y k
n n

E x y k
n n

( ( ), )
1

,

( ( ), )
1

, (10)

k

x y k x y k

k

x y k x y k

2 2 ( ), ( ),

2 2 ( ), ( ),

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

where each polarisation contributes independently. Assuming acousticmodes and that the temperatures are
such that onlymodeswith frequencies Ω ω Δ≫ ≫ contribute significantly to the integral, then correct to
lowest order inΔ, the thermal averages of the shifts in the orbital energies over all (acoustic) vibrational levels are
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This yields a temperature shift in the spin–orbit splitting




δΔ δ δ χρΔ Ω
π

= − = − ++ −E E
k

T
2

3
, (12)2 2

2
B
2

2
2

⎛

⎝
⎜

⎞

⎠
⎟

that is proportional toT 2 and a temperature independentmean energy of the orbital states
δ δ χρΩ+ = −+ −E E( ) 2 32 3 . This correctly predicts the observedT 2 dependence of the fine structure

splittings infigures 4 (c) and (d) , but it fails to predict theT 3 dependence of the optical line position in
figure 4(b).

3.5.Optical line position

The failure of the above analysis to predict the temperature shift of the optical line position is due to awell-
knownproblem in the treatment of the linear Jahn–Teller interaction [46]. The problem arises from the implicit
choice of rectangularmode coordinates for the zero-order vibrational wavefunctions of the perturbative
analysis. In rectangular coordinates, the vibrational wavefunction of a pair (Qx ,Qy) of degenerate E modes is of
the form ψ ψQ Q( ) ( )i x j y , where i and j are the independent vibrational quantumnumbers of themodes. Since

the rectangular coordinates do notmatch the cylindrical symmetry of the linear Jahn–Teller vibrational
potential, the rectangular vibrational wavefunctions are a poor choice of zero-order basis [47]. As a
consequence,much higher perturbative expansions are required to correctly predict a shift in the optical line
position.

A superior choice of basis is obtained by transforming to polar coordinates (Qx ,Qy)→(ρ,ϕ), withinwhich
the vibrational wavefunctions take the form ψ ρ ϕν ( , )l, , where ν = …1, 2, is the principal vibrational quantum

number and ν ν ν= − + − + … −l 1, 2, , 1 is the vibrational angularmomentumquantumnumber, such that
the vibrational energies ofmodes with frequencyω are ν ω=νE [47]. Using the formalismof the linear Jahn–
Teller effect in the polar vibrational basis [47], we obtained the second-order shifts of the vibrational energies as
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per section 3.4. Performing the thermal average of the shifts in the orbital energies over all (acoustic) vibrational
levels, the corrected expression for the temperature shift of the optical line position is


 

 
∫δ δ χρ ω ω+ = −

+

− +
∝

Ω
ω ω

ω ω
+ −

( )
( )( )

( )E E T
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2
2

2e e 3

e 1 e 1
d , (13)

k T k T

k T k T0

2

2
2 3

B B

B B

which correctly predicts theT 3 dependence of the optical line position.Note that this corrected approach is
consistent with the previous subsection and also predicts aT 2 dependence of the fine structure splittings. Hence,
we can conclude that the electron–phonon processes of the linear Jahn–Teller interactionswithin the ground
and excited electronic levels are responsible for the observed temperature variations of the optical linewidth,
position andfine structure splittings.

4.Discussion

In section 3, we have shown that a simplemodel of linear electron–phonon interactions can be used to
successfully explain population dynamics (γ+ −,

u, g, section 3.2), dephasing processes (γd
u, g, section 3.3), relative

(section 3.4) andmean (section 3.5) energy shifts within the ground and excited states.We next discuss
implications of our observations for ground state coherences and approaches that could be used to enhance
coherence times.

4.1. Implications for ground state coherences

The −SiV ground states have spin and orbital degrees of freedomwhich can be used as qubit states. Figure 6(a)
shows the electronic states under amagneticfield applied along the −SiV symmetry axis. The orbital relaxation
rates γ+ −,

g,u discussed in thismanuscript are spin conserving, consistent with the long spinT1 times that were

recentlymeasured [19]. Even though such orbital relaxations are spin conserving, the detuning between ∣ ↑ 〉
and ∣ ↓ 〉 spin states varies depending onwhich orbital state is occupied. Thismeans that the phase evolution of
any coherent spin state changes after a phonon-induced orbital quantum jump, leading to the accumulation of
randomphasewhich ismeasured as decoherence. Hence coherences formed between any of the four states
shown infigure 6 are expected to be limited by theT1of the orbital degree of freedom.

Recent experiments [19, 20] that probed ground state coherences using coherent population trapping have
reportedT2

* values that are in good agreement with the orbitalT1 reported in ourwork.Wenote that themodel
used in [20] considered thermal relaxationmechanisms only between the two lowest energy ground states
shown infigure 6. The authors concluded thermal relaxation rates between these two states to be suppressed
owing to small spin overlap at lowmagnetic fields, and theT2

* to be limited bymagnetic field noise from the −SiV
environment.While the former agrees with ourmodel (no relaxation between ∣ 〉∣ ↓ 〉 ↔ ∣ 〉∣ ↑ 〉− +e e ), all four
ground states need to be considered to relate orbital relaxation rates to coherences. Based on the close
experimental agreement betweenT2

* and orbitalT ,1 we conclude that coherence times of −SiV ground states are
limited by phonon processes even at liquid helium temperatures.

4.2. Extending ground state coherences

Wehave shown that ground state coherences are limited by a single-phonon orbital relaxation process with a

rate determined by a combination of phonon density of states and occupation γ ρ Δ Δ∼ + ∓±( )n T( )(2 ( , ) 1 1)g

Figure 6. (a) Implications of phonon processes for ground state coherences. The transitions arising from electron–phonon
interactions described by ourmodel are spin conserving. Any coherences created between two ground states decay with the orbital
relaxation rates. (b) The γ+

g can be suppressed at low temperatures ( Δ λ≪ =T SO
g ). (c) Large strain fields result in an increased

splitting, also resulting in reduced phonon occupation and suppressed γ+
g. For (b) and (c), the two lowest energy states constitute a

subspacewith reduced thermal relaxation and extended coherence.
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at the energy of the spin–orbit splittingwith Δ λ= so
g
∼ 50 GHz. Since the interactionwith the phonon bath is a

Markovian process, dynamical decoupling sequences cannot be applied to extend coherences. To extend T2
*, we

will therefore focus on approaches that reduce the orbital relaxation rates γ±
g.

Thefirst two approaches focus on reducingphononoccupation todecrease γ+
g. Theoccupationdependson the

ratio, ΔT , of the temperature and the energy splitting between the coupled orbital states. Substantial improvements
canbe achievedbyminimizing this ratio in cooling the sample to lower temperatures ( Δ≪ ∼T 2.4 K,figure 6(b)).
Basedonourfits in section2.2, the expectedorbital relaxation timescale is givenby γ = −+1 101(e 1)Tg 2.4 ns
which correspond to 1μs at 1 K and1ms at 0.26 K.A second approach is to increaseΔbyusing emitters subjected to
high strain.At the limit of Δ ≫ T , similar reductions inphononoccupation canbeused to suppress relaxation
rates, as shown infigure 6(c). Basedon equation (5),wefind that γ+1 g equals 1 ms (1μs) for a strain shift of 1.6THz
(0.9THz) at 4K.Wenote that in both cases, only the two lowest energy states constitute a subspace that doesnot
couple to phonons. The lowest two energy states are therefore expected tohave long coherence times and could be
used as a long-lived spin qubit.

The linear interactionHamiltonian of section 3.1 and the resulting single-phonon orbital relaxation
process are analogous to the Jaynes–CummingsHamiltonian andWigner–Weisskopfmodel of spontaneous
emission used in quantumoptics [48]. One can therefore use ideas developed in the context of cavity QED to
engineer relaxation rates γ±

g. In particular, the phonon density of states can be reduced to suppress the orbital

relaxation rates. This is analogous to inhibited spontaneous emission of photons [49] which has been
observed formicrowave and optical photons in atomic and solid-state systems [50–52]. Acoustic phonons in
diamond offer an exciting new platform to probe this effect in a new regime owing to the highly broadband
and reflective boundary conditions at the diamond-vacuum interface. To suppress orbital relaxation rates due
to phonons at Δ ∼ 50GHz, small nano diamonds ( <d 120 nm) can be used to realize a complete phononic
band gap for ν < 50GHz phonons owing to the strong confinement [53]. An alternative approachwould
utilize recent advances in diamond nanofabrication [54, 55] to create 1D-optomechanical structures
engineered to inhibit phonon and enhance optical transitions bymodifying the density of states [56–59].
Using this approach both γ+

g and γ−
g are inhibited, therefore all four ground states can be used as long-lived

qubits.We expect both approaches thatmodify phonon occupation and density of states to result in
substantial improvements for the ground state coherences of −SiV centres.
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