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Abstract

Due to the interaction of physics and astrophysics we are witnessing in these years
a splendid synthesis of theoretical, experimental and observational results originating
from three fundamental physical processes. They were originally proposed by Dirac,
by Breit and Wheeler and by Sauter, Heisenberg, Euler and Schwinger. For almost
seventy years they have all three been followed by a continued effort of experimental
verification on Earth-based experiments. The Dirac process, ete™ — 27, has been by
far the most successful. It has obtained extremely accurate experimental verification
and has led as well to an enormous number of new physics in possibly one of the most
fruitful experimental avenues by introduction of storage rings in Frascati and followed
by the largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process,
27 — eTe™, although conceptually simple, being the inverse process of the Dirac one,
has been by far one of the most difficult to be verified experimentally. Only recently,
through the technology based on free electron X-ray laser and its numerous applications
in Earth-based experiments, some first indications of its possible verification have been
reached. The vacuum polarization process in strong electromagnetic field, pioneered
by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of critical electric
field E. = m2c®/(eh). Tt has been searched without success for more than forty years
by heavy-ion collisions in many of the leading particle accelerators worldwide.

The novel situation today is that these same processes can be studied on a much
more grandiose scale during the gravitational collapse leading to the formation of a
black hole being observed in Gamma Ray Bursts (GRBs). This report is dedicated to
the scientific race. The theoretical and experimental work developed in Earth-based
laboratories is confronted with the theoretical interpretation of space-based observa-
tions of phenomena originating on cosmological scales. What has become clear in the
last ten years is that all the three above mentioned processes, duly extended in the
general relativistic framework, are necessary for the understanding of the physics of
the gravitational collapse to a black hole. Vice versa, the natural arena where these
processes can be observed in mutual interaction and on an unprecedented scale, is
indeed the realm of relativistic astrophysics.

We systematically analyze the conceptual developments which have followed the
basic work of Dirac and Breit—-Wheeler. We also recall how the seminal work of Born
and Infeld inspired the work by Sauter, Heisenberg and Euler on effective Lagrangian
leading to the estimate of the rate for the process of electron—positron production in
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a constant electric field. In addition of reviewing the intuitive semi-classical treat-
ment of quantum mechanical tunneling for describing the process of electron—positron
production, we recall the calculations in Quantum FElectro-Dynamics of the Schwinger
rate and effective Lagrangian for constant electromagnetic fields. We also review the
electron—positron production in both time-alternating electromagnetic fields, studied
by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the corresponding processes
relevant for pair production at the focus of coherent laser beams as well as electron
beam-laser collision. We finally report some current developments based on the gen-
eral JWKB approach which allows to compute the Schwinger rate in spatially varying
and time varying electromagnetic fields.

We also recall the pioneering work of Landau and Lifshitz, and Racah on the col-
lision of charged particles as well as experimental success of AdA and ADONE in the
production of electron—positron pairs.

We then turn to the possible experimental verification of these phenomena. We
review: (A) the experimental verification of the eTe™ — 2v process studied by Dirac.
We also briefly recall the very successful experiments of e*e™ annihilation to hadronic
channels, in addition to the Dirac electromagnetic channel; (B) ongoing Earth based
experiments to detect electron—positron production in strong fields by focusing coherent
laser beams and by electron beam-laser collisions; and (C) the multiyear attempts
to detect electron—positron production in Coulomb fields for a large atomic number
Z > 137 in heavy ion collisions. These attempts follow the classical theoretical work
of Popov and Zeldovich, and Greiner and their schools.

We then turn to astrophysics. We first review the basic work on the energetics and
electrodynamical properties of an electromagnetic black hole and the application of
the Schwinger formula around Kerr—Newman black holes as pioneered by Damour and
Ruffini. We only focus on black hole masses larger than the critical mass of neutron
stars, for convenience assumed to coincide with the Rhoades and Ruffini upper limit of
3.2 M. In this case the electron Compton wavelength is much smaller than the space-
time curvature and all previous results invariantly expressed can be applied following
well established rules of the equivalence principle. We derive the corresponding rate
of electron—positron pair production and introduce the concept of dyadosphere. We
review recent progress in describing the evolution of optically thick electron—positron
plasma in presence of supercritical electric field, which is relevant both in astrophysics
as well as ongoing laser beam experiments. In particular we review recent progress
based on the Vlasov-Boltzmann-Maxwell equations to study the feedback of the cre-
ated electron—positron pairs on the original constant electric field. We evidence the
existence of plasma oscillations and its interaction with photons leading to energy and
number equipartition of photons, electrons and positrons. We finally review the re-
cent progress obtained by using the Boltzmann equations to study the evolution of an
electron—positron-photon plasma towards thermal equilibrium and determination of its
characteristic timescales. The crucial difference introduced by the correct evaluation
of the role of two and three body collisions, direct and inverse, is especially evidenced.
We then present some general conclusions.

The results reviewed in this report are going to be submitted to decisive tests in
the forthcoming years both in physics and astrophysics. To mention only a few of the
fundamental steps in testing in physics we recall the starting of experimental facilities
at the National Ignition Facility at the Lawrence Livermore National Laboratory as well
as corresponding French Laser the Mega Joule project. In astrophysics these results
will be tested in galactic and extragalactic black holes observed in binary X-ray sources,
active galactic nuclei, microquasars and in the process of gravitational collapse to a
neutron star and also of two neutron stars to a black hole giving origin to GRBs. The



astrophysical description of the stellar precursors and the initial physical conditions
leading to a gravitational collapse process will be the subject of a forthcoming report.
As of today no theoretical description has yet been found to explain either the emission
of the remnant for supernova or the formation of a charged black hole for GRBs.
Important current progress toward the understanding of such phenomena as well as
of the electrodynamical structure of neutron stars, the supernova explosion and the
theories of GRBs will be discussed in the above mentioned forthcoming report. What
is important to recall at this stage is only that both the supernovae and GRBs processes
are among the most energetic and transient phenomena ever observed in the Universe:
a supernova can reach energy of ~ 10°* ergs on a time scale of a few months and GRBs
can have emission of up to ~ 10°* ergs in a time scale as short as of a few seconds.
The central role of neutron stars in the description of supernovae, as well as of black
holes and the electron—positron plasma, in the description of GRBs, pioneered by one
of us (RR) in 1975, are widely recognized. Only the theoretical basis to address these
topics are discussed in the present report.
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1 Introduction

The annihilation of electron—positron pair into two photons, and its inverse process — the
production of electron—positron pair by the collision of two photons were first studied in the
framework of quantum mechanics by P.A.M. Dirac and by G. Breit and J.A. Wheeler in the
1930s [1, 2].

A third fundamental process was pioneered by the work of Fritz Sauter and Oscar Klein,
pointing to the possibility of creating an electron—positron pair from the vacuum in a constant



electromagnetic field. This became known as the ‘Klein paradox’ and such a process named
as vacuum polarization. It would occur for an electric field stronger than the critical value

2.3
mzZc

E, = ~1.3-10" V/cm. (1)
where m., e, ¢ and h are respectively the electron mass and charge, the speed of light and
the Planck’s constant.

The experimental difficulties to verify the existence of such three processes became im-
mediately clear. While the process studied by Dirac was almost immediately observed [3]
and the electron—positron collisions became possibly the best tested and prolific phenomenon
ever observed in physics. The Breit—Wheeler process, on the contrary, is still today waiting a
direct observational verification. Similarly the vacuum polarization process defied dedicated
attempts for almost fifty years in experiments in nuclear physics laboratories and accelerators
all over the world, see Section 6.

From the theoretical point of view the conceptual changes implied by these processes
became immediately clear. They were by vastness and depth only comparable to the mod-
ifications of the linear gravitational theory of Newton introduced by the nonlinear general
relativistic equations of Einstein. In the work of Euler, Oppenheimer and Debye, Born and
his school it became clear that the existence of the Breit—-Wheeler process was conceptually
modifying the linearity of the Maxwell theory. In fact the creation of the electron—positron
pair out of the two photons modifies the concept of superposition of the linear electro-
magnetic Maxwell equations and impose the necessity to transit to a nonlinear theory of
electrodynamics. In a certain sense the Breit—Wheeler process was having for electrodynam-
ics the same fundamental role of Gedankenexperiment that the equivalence principle had
for gravitation. Two different attempts to study these nonlinearities in the electrodynamics
were made: one by Born and Infeld [4, 5, 6] and one by Euler and Heisenberg [7]. These
works prepared the even greater revolution of Quantum Electro-Dynamics by Tomonaga [8],
Feynman [9, 10, 11], Schwinger [12, 13, 14] and Dyson [15, 16].

In Section 2 we review the fundamental contributions to the electron—positron pair cre-
ation and annihilation and to the concept of the critical electric field. In Section 2.1 we
review the Dirac derivation [1] of the electron—positron annihilation process obtained within
the perturbation theory in the framework of relativistic quantum mechanics and his deriva-

tion of the classical formula for the cross-section aé’ibe, in the rest frame of the electron
2 ~9 ~ ~
lab ah . e+ s 1/2 y+3
o= 1 TR BNV D
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where 4 = £, /m. c* > 1 is the energy of the positron and a = €?/(fic) is as usual the fine
structure constant, and we recall the corresponding formula for the center of mass reference
frame. In Section 2.2 we recall the main steps in the classical Breit-Wheeler work [2] on
the production of a real electron—positron pair in the collision of two photons, following the
same method used by Dirac and leading to the evaluation of the total cross-section o, in
the center of mass of the system

AN 4y 1n (110 3
o—wzg(n‘;c) (=233 -2+ 6 Fm (D)), i 5= 2L

where B is the reduced velocity of the electron or the positron. In Section 2.3 we recall
the basic higher order processes, compared to the Dirac and Breit—Wheeler ones, leading to



pair creation. In Section 2.4 we recall the famous Klein paradox [17, 18] and the possible
tunneling between the positive and negative energy states leading to the concept of level
crossing and pair creation by analogy to the Gamow tunneling [19] in the nuclear potential
barrier. We then turn to the celebrated Sauter work [20] showing the possibility of creating
a pair in a uniform electric field E. We recover in Section 2.5.1 a JWKB approximation
in order to reproduce and improve on the Sauter result by obtaining the classical Sauter
exponential term as well as the prefactor

Lywks D ak? o~ TEe/E
VT 2n2h

Y

where D, = 2 for a spin-1/2 particle and Dy = 1 for spin-0, V' is the volume. Finally, in
Section 2.5.2 the case of a simultaneous presence of an electric and a magnetic field B is
presented leading to the estimate of pair production rate

r E. : .
JWKEB afe coth (ﬁ) exp (—W ) , spin — 1/2 particle
€ €
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where the scalar S and the pseudoscalar P are

S F,F" =E-B,

o | =

1
E,, F" = 5(E2 - B?; P=

o | =

where FH = ¢t A5 [\ is the dual field tensor.

In Section 3 we first recall the seminal work of Hans Euler [21] pointing out for the first
time the necessity of nonlinear character of electromagnetism introducing the classical Euler
Lagrangian
E?-B? 11

L= ——
87 +aE§
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where

ap = —1/(3607%), bp = —7/(3607?),

a first order perturbation to the Maxwell Lagrangian. In Section 3.2 we review the alternative
theoretical approach of nonlinear electrodynamics by Max Born [5] and his collaborators, to
the more ambitious attempt to obtain the correct nonlinear Lagrangian of Electro-Dynamics.
The motivation of Born was to attempt a theory free of divergences in the observable prop-
erties of an elementary particle, what has become known as ‘unitarian’ standpoint versus
the ‘dualistic’ standpoint in description of elementary particles and fields. We recall how the
Born Lagrangian was formulated

L=vV1+25—P2—1,



and one of the first solutions derived by Born and Infeld [6]. We also recall one of the in-
teresting aspects of the courageous approach of Born had been to formulate this Lagrangian
within a unified theory of gravitation and electromagnetism following Einstein program.
Indeed, we also recall the very interesting solution within the Born theory obtained by Hoff-
mann [22, 23]. Still in the work of Born [5] the seminal idea of describing the nonlinear
vacuum properties of this novel electrodynamics by an effective dielectric constant and mag-
netic permeability functions of the field arisen. We then review in Section 3.3.1 the work
of Heisenberg and Euler [7] adopting the general approach of Born and generalizing to the
presence of a real and imaginary part of the electric permittivity and magnetic permeability.
They obtain an integral expression of the effective Lagrangian given by

)72) + c.c.
)172) — c.c.
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where E, B are the dimensionless reduced fields in the unit of the critical field E.,

B
B
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obtaining the real part and the crucial imaginary term which relates to the pair production
in a given electric field. It is shown how these results give as a special case the previous result
obtained by Euler (78). In Section 3.3.2 the work by Weisskopf [24] working on a spin-0 field
fulfilling the Klein-Gordon equation, in contrast to the spin 1/2 field studied by Heisenberg
and Euler, confirms the Euler-Heisenberg result. Weisskopf obtains explicit expression of
pair creation in an arbitrary strong magnetic field and in an electric field described by E
and B expansion.

For the first time Heisenberg and Euler provided a description of the vacuum proper-
ties by the characteristic scale of strong field E. and the effective Lagrangian of nonlinear
electromagnetic fields. In 1951, Schwinger [25, 26, 27] made an elegant quantum field theo-
retic reformulation of this discovery in the QED framework. This played an important role
in understanding the properties of the QED theory in strong electromagnetic fields. The
QED theory in strong coupling regime, i.e., in the regime of strong electromagnetic fields,
is still a vast arena awaiting for experimental verification as well as of further theoretical
understanding.

In Section 4 after recalling some general properties of QED in Section 4.1 and some basic
processes in Section 4.2 we proceed to the consideration of the Dirac and the Breit—Wheeler
processes in QED in Secton 4.3. Then we discuss some higher order processes, namely double
pair production in Section 4.4, electron-nucleus bremsstrahlung and pair production by a
photon in the field of a nucleus in Section 4.5, and finally pair production by two ions in
Section 4.6. In Section 4.7 the classical result for the vacuum to vacuum decay via pair
creation in uniform electric field by Schwinger is recalled

' aF?X 1 nrE,
=)

This formula generalizes and encompasses the previous results reviewed in our report: the
JWKB results, discussed in Section 2.5, and the Sauter exponential factor (57), and the



Heisenberg-Euler imaginary part of the effective Lagrangian. We then recall the general-
ization of this formula to the case of a constant electromagnetic fields. Such results were
further generalized to spatially nonuniform and time-dependent electromagnetic fields by
Nikishov [28], Vanyashin and Terent’ev [29], Popov [30, 31, 32], Narozhny and Nikishov [33]
and Batalin and Fradkin [34]. We then conclude this argument by giving the real and imag-
inary parts for the effective Lagrangian for arbitrary constant electromagnetic field recently
published by Ruffini and Xue [35]. This result generalizes the previous result obtained by
Weisskopf in strong fields. In weak field it gives the Euler-Heisenberg effective Lagrangian.
As we will see in the Section 6.2 much attention has been given experimentally to the cre-
ation of pairs in the rapidly changing electric fields. A fundamental contribution in this
field studying pair production rates in an oscillating electric field was given by Brezin and
Itzykson [36] and we recover in Section 4.8 their main results which apply both to the case of
bosons and fermions. We recall how similar results were independently obtained two years
later by Popov [37]. In Section 4.10 we recall an alternative physical process considering the
quantum theory of the interaction of free electron with the field of a strong electromagnetic
waves: an ultrarelativistic electron absorbs multiple photons and emits only a single photon
in the reaction [38]:
e+nw—e +7.

This process appears to be of the great relevance as we will see in the next Section for the
nonlinear effects originating from laser beam experiments. Particularly important appears
to be the possibility outlined by Burke et al. [39] that the high-energy photon ~ created
in the first process propagates through the laser field, it interacts with laser photons nw to
produce an electron—positron pair

4w — et +e .

We also refer to the papers by Narozhny and Popov [40, 41, 42, 43, 44, 45] studying the
dependence of this process on the status of the polarization of the photons.

We point out the great relevance of departing from the case of the uniform electro-
magnetic field originally considered by Sauter, Heisenberg and Euler, and Schwinger. We
also recall some of the classical works of Brezin and Itzykson and Popov on time varying
fields. The space variation of the field was also considered in the classical papers of Nikishov
and Narozhny as well as in the work of Wang and Wong. Finally, we recall the work of
Khriplovich [46] studying the vacuum polarization around a Reissner-Nordstrém black hole.
A more recent approach using the worldline formalism, sometimes called the string-inspired
formalism, was advanced by Dunne and Schubert [47, 48].

In Section 5, after recalling studies of pair production in inhomogeneous electromagnetic
fields in the literature by [48, 49, 50, 51, 52, 53|, we present a brief review of our recent
work [54] where the general formulas for pair production rate as functions of either crossing
energy level or classical turning point, and total production rate are obtained in external
electromagnetic fields which vary either in one space direction F(z) or in time F(t). In
Sections 5.1 and 5.2, these formulas are explicitly derived in the JWKB approximation
and generalized to the case of three-dimensional electromagnetic configurations. We apply
these formulas to several cases of such inhomogeneous electric field configurations, which are

classified into two categories. In the first category, we study two cases: a semi-confined field
E(z) # 0 for z < ¢ and the Sauter field

E(z) = Ey/cosh® (z/0), V(2) = —o,mec*tanh(z/(),



where ¢ is width in the z-direction, and
oy = eEyl/mec® = (L) Ne)(Ey/E,).

In these two cases the pairs produced are not confined by the electric potential and can reach
an infinite distance. The resultant pair production rate varies as a function of space coordi-
nate. The result we obtained is drastically different from the Schwinger rate in homogeneous
electric fields without any boundary. We clearly show that the approximate application of
the Schwinger rate to electric fields limited within finite size of space overestimates the total
number of pairs produced, particularly when the finite size is comparable with the Compton
wavelength Ao, see Figs. 7 and 8 where it is clearly shown how the rate of pair creation far
from being constant goes to zero at both boundaries. The same situation is also found for
the case of the semi-confined field z(z) # 0 for |z| < ¢, see Eq. (327). In the second category,
we study a linearly rising electric field E(z) ~ z, corresponding to a harmonic potential
V(z) ~ 22, see Figs. 6. In this case the energy spectra of bound states are discrete and thus
energy crossing levels for tunneling are discrete. To obtain the total number of pairs created,
using the general formulas for pair production rate, we need to sum over all discrete energy
crossing levels, see Eq. (338), provided these energy levels are not occupied. Otherwise, the
pair production would stop due to the Pauli principle.

In Section 6 we focus on the phenomenology of electron—positron pair creation and anni-
hilation experiments. There are three different aspects which are examined: the verification
of the process (2) initially studied by Dirac, the process (3) studied by Breit and Wheeler,
and then the classical work of vacuum polarization process around a supercritical nucleus,
following the Sauter, Euler, Heisenberg and Schwinger work. We first recall in Section 6.1
how the process (2) predicted by Dirac was almost immediately discovered by Klemperer
[3]. Following this discovery the electron—positron collisions have become possibly the most
prolific field of research in the domain of particle physics. The crucial step experimentally
was the creation of the first electron—positron collider the “Anello d’Accumulazione” (AdA)
was built by the theoretical proposal of Bruno Touschek in Frascati (Rome) in 1960 [55].
Following the success of AdA (luminosity ~ 10?°/(cm? sec), beam energy ~0.25GeV), it was
decided to build in the Frascati National Laboratory a storage ring of the same kind, Adone.
Electron-positron colliders have been built and proposed for this purpose all over the world
(CERN, SLAC, INP, DESY, KEK and IHEP). The aim here is just to recall the existence
of this enormous field of research which appeared following the original Dirac idea. The
main cross-sections (345) and (346) are recalled and the diagram (Fig. 11) summarizing this
very great success of particle physics is presented. While the Dirac process (2) has been by
far one of the most prolific in physics, the Breit—Wheeler process (3) has been one of the
most elusive for direct observations. In Earth-bound experiments the major effort today is
directed to evidence this phenomenon in very strong and coherent electromagnetic field in
lasers. In this process collision of many photons may lead in the future to pair creation.
This topic is discussed in Section 6.2. Alternative evidence for the Breit—Wheeler process
can come from optically thick electron—positron plasma which may be created either in the
future in Earth-bound experiments, or currently observed in astrophysics, see Section 9.
One additional way to probe the existence of the Breit—Wheeler process is by establishing
in astrophysics an upper limits to observable high-energy photons, as a function of distance,
propagating in the Universe as pioneered by Nikishov [56], see Section 6.4. We then recall in
Section 6.3 how the crucial experimental breakthrough came from the idea of John Madey
[57] of self-amplified spontaneous emission in an undulator, which results when charges in-
teract with the synchrotron radiation they emit [58]. Such X-ray free electron lasers have



been constructed among others at DESY and SLAC and focus energy onto a small spot
hopefully with the size of the X-ray laser wavelength A ~ O(0.1)nm [59], and obtain a very
large electric field £ ~ 1/X, much larger than those obtainable with any optical laser of
the same power. This technique can be used to achieve a very strong electric field near to
its critical value for observable electron—positron pair production in vacuum. No pair can
be created by a single laser beam. It is then assumed that each X-ray laser pulse is split
into two equal parts and recombined to form a standing wave with a frequency w. We then
recall how for a laser pulse with wavelength A\ about 1um and the theoretical diffraction
limit oj.ser = A being reached, the critical intensity laser beam would be

c

If o = EES ~ 4.6 - 10*W/cm?.

In Section 6.2.1 we recall the theoretical formula for the probability of pair production in
time-alternating electric field in two limiting cases of large frequency and small frequency.
It is interesting that in the limit of large field and small frequency the production rate
approach the one of the Sauter, Heisenberg, Euler and Schwinger, discussed in Section 4.
In the following Section 6.2.2 we recall the actually reached experimental limits quoted by
Ringwald [60] for a X-ray laser and give a reference to the relevant literature. In Section
6.2.3 we summarize some of the most recent theoretical estimates for pair production by a
circularly polarized laser beam by Narozhny, Popov and their collaborators. In this case the
field invariants (69) are not vanishing and pair creation can be achieved by a single laser
beam. They computed the total number of electron—positron pairs produced as a function
of intensity and focusing parameter of the laser. Particularly interesting is their analysis
of the case of two counter-propagating focused laser pulses with circular polarizations, pair
production becomes experimentally observable when the laser intensity laser ~ 102°W/cm?
for each beam, which is about 1 ~ 2 orders of magnitude lower than for a single focused
laser pulse, and more than 3 orders of magnitude lower than the critical intensity (351).
Equally interesting are the considerations which first appear in treating this problem that
the back reaction of the pairs created on the field has to be taken into due account. We
give the essential references and we will see in Section 8 how indeed this feature becomes
of paramount importance in the field of astrophysics. We finally review in Section 6.2.4 the
technological situation attempting to increase both the frequency and the intensity of laser
beams.

The difficulty of evidencing the Breit—Wheeler process even when the high-energy photon
beams have a center of mass energy larger than the energy-threshold 2m.c?> = 1.02 MeV was
clearly recognized since the early days. We discuss the crucial role of the effective nonlinear
terms originating in strong electromagnetic laser fields: the interaction needs not to be
limited to initial states of two photons [61, 62]. A collective state of many interacting laser
photons occurs. We turn then in Section 6.3 to an even more complex and interesting
procedure: the interaction of an ultrarelativistic electron beam with a terawatt laser pulse,
performed at SLAC [63], when strong electromagnetic fields are involved. A first nonlinear
Compton scattering process occurs in which the ultrarelativistic electrons absorb multiple
photons from the laser field and emit a single photon via the process (229). The theory of this
process has been given in Section 4.10. The second is a drastically improved Breit—Wheeler
process (230) by which the high-energy photon ~, created in the first process, propagates
through the laser field and interacts with laser photons nw to produce an electron—positron
pair [39]. In Section 6.3.1 we describe the status of this very exciting experiments which give
the first evidence for the observation in the laboratory of the Breit—Wheeler process although



in a somewhat indirect form. Having determined the theoretical basis as well as attempts to
verify experimentally the Breit—Wheeler formula we turn in Section 6.4 to a most important
application of the Breit—Wheeler process in the framework of cosmology. As pointed out by
Nikishov [56] the existence of background photons in cosmology puts a stringent cutoff on
the maximum trajectory of the high-energy photons in cosmology.

Having reviewed both the theoretical and observational evidence of the Dirac and Breit—
Wheeler processes of creation and annihilation of electron—positron pairs we turn then to one
of the most conspicuous field of theoretical and experimental physics dealing with the process
of electron—positron pair creation by vacuum polarization in the field of a heavy nuclei. This
topic has originated one of the vastest experimental and theoretical physics activities in the
last forty years, especially by the process of collisions of heavy ions. We first review in Section
6.5 the Z = 137 catastrophe, a collapse to the center, in semi-classical approach, following
the Pomeranchuk work [64] based on the imposing the quantum conditions on the classical
treatment of the motion of two relativistic particles in circular orbits. We then proceed
showing in Section 6.5.3 how the introduction of the finite size of the nucleus, following
the classical work of Popov and Zeldovich [65], leads to the critical charge of a nucleus of
Z.. = 173 above which a bare nucleus would lead to the level crossing between the bound
state and negative energy states of electrons in the field of a bare nucleus. We then review
in Section 6.5.5 the recent theoretical progress in analyzing the pair creation process in a
Coulomb field, taking into account radial dependence and time variability of electric field.
We finally recall in Section 6.6 the attempt to use heavy-ion collisions to form transient
superheavy “quasimolecules”: a long-lived metastable nuclear complex with Z > Z,.. It was
expected that the two heavy ions of charges respectively Z; and Z, with Z, 4+ Z5 > Z., would
reach small inter-nuclear distances well within the electron’s orbiting radii. The electrons
would not distinguish between the two nuclear centers and they would evolve as if they
were bounded by nuclear “quasimolecules” with nuclear charge Z; + Z5. Therefore, it was
expected that electrons would evolve quasi-statically through a series of well defined nuclear
“quasimolecules” states in the two-center field of the nuclei as the inter-nuclear separation
decreases and then increases again. When heavy-ion collision occurs the two nuclei come into
contact and some deep inelastic reaction occurs determining the duration At, of this contact.
Such “sticking time” is expected to depend on the nuclei involved in the reaction and on
the beam energy. Theoretical attempts have been proposed to study the nuclear aspects of
heavy-ion collisions at energies very close to the Coulomb barrier and search for conditions,
which would serve as a trigger for prolonged nuclear reaction times, to enhance the amplitude
of pair production. The sticking time At, should be larger than 1 ~ 2-1072! sec [66] in order
to have significant pair production. Up to now no success has been achieved in justifying
theoretically such a long sticking time. In reality the characteristic sticking time has been
found of the order of At ~ 10723 sec, hundred times shorter than the needed to activate the
pair creation process. We finally recall in Section 6.6.2 the Darmstadt-Brookhaven dialogue
between the Orange and the Epos groups and the Apex group at Argonne in which the claim
for discovery of electron—positron pair creation by vacuum polarization in heavy-ion collisions
was finally retracted. Out of the three fundamental processes addressed in this report,
the Dirac electron—positron annihilation and the Breit—Wheeler electron—positron creation
from two photons have found complete theoretical descriptions within Quantum Electro-
Dynamics. The first one is very likely the best tested process in physical science, while the
second has finally obtained the first indirect experimental evidence. The third process, the
one of the vacuum polarization studied by Sauter, Euler, Heisenberg and Schwinger, presents
in Earth-bound experiments presents a situation “terra incognita”.



We turn then to astrophysics, where, in the process of gravitational collapse to a black
hole and in its outcomes these three processes will be for the first time verified on a much
larger scale, involving particle numbers of the order of 10%°, seeing both the Dirac process
and the Breit—-Wheeler process at work in symbiotic form and electron—positron plasma
created from the “blackholic energy” during the process of gravitational collapse. It is
becoming more and more clear that the gravitational collapse process to a Kerr-Newman
black hole is possibly the most complex problem ever addressed in physics and astrophysics.
What is most important for this report is that it gives for the first time the opportunity
to see the above three processes simultaneously at work under ultrarelativistic special and
general relativistic regimes. The process of gravitational collapse is characterized by the
timescale At, = GM/c® ~ 5-107°M /M, sec and the energy involved are of the order of
AE = 10" M /My, ergs. It is clear that this is one of the most energetic and most transient
phenomena in physics and astrophysics and needs for its correct description such a highly
time varying treatment. Our approach in Section 7 is to gain understanding of this process
by separating the different components and describing 1) the basic energetic process of an
already formed black hole, 2) the vacuum polarization process of an already formed black
hole, 3) the basic formula of the gravitational collapse recovering the Tolman-Oppenheimer-
Snyder solutions and evolving to the gravitational collapse of charged and uncharged shells.
This will allow among others to obtain a better understanding of the role of irreducible mass
of the black hole and the maximum blackholic energy extractable from the gravitational
collapse. We will as well address some conceptual issues between general relativity and
thermodynamics which have been of interest to theoretical physicists in the last forty years.
Of course in these brief chapter we will be only recalling some of these essential themes and
refer to the literature where in-depth analysis can be found. In Section 7.1 we recall the Kerr—
Newman metric and the associated electromagnetic field. We then recall the classical work
of Carter [67] integrating the Hamilton-Jacobi equations for charged particle motions in the
above given metric and electromagnetic field. We then recall in Section 7.2 the introduction
of the effective potential techniques in order to obtain explicit expression for the trajectory
of a particle in a Kerr—Newman geometry, and especially the introduction of the reversible—
irreversible transformations which lead then to the Christodoulou-Ruffini mass formula of

the black hole
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where M;,. is the irreducible mass of a black hole, () and L are its charge and angular
momentum. We then recall in Section 7.3 the positive and negative root states of the
Hamilton—Jacobi equations as well as their quantum limit. We finally introduce in Section
7.4 the vacuum polarization process in the Kerr-Newman geometry as derived by Damour
and Ruffini [68] by using a spatially orthonormal tetrad which made the application of the
Schwinger formalism in this general relativistic treatment almost straightforward. We then

recall in Section 7.5 the definition of a dyadosphere in a Reissner-Nordstrom geometry, a
region extending from the horizon radius

ry = 147-10°u(1 + /1 —£2) cm
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out to an outer radius
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where the dimensionless mass and charge parameters p = Mﬂ@v = M?FG) < 1. In Section
7.6 the definition of a dyadotorus in a Kerr-Newman metric is recalled. We have focused
on the theoretically well defined problem of pair creation in the electric field of an already
formed black hole. Having set the background for the blackholic energy we recall some
fundamental features of the dynamical process of the gravitational collapse. In Section 7.7
we address some specific issues on the dynamical formation of the black hole, recalling first
the Oppenheimer-Snyder solution [69] and then considering its generalization to the charged
nonrotating case using the classical work of W. Israel and V. de la Cruz [70, 71]. In Section
7.7.1 we recover the classical Tolman-Oppenheimer-Snyder solution in a more transparent
way than it is usually done in the literature. In the Section 7.7.2 we are studying using the
Israel-de la Cruz formalism the collapse of a charged shell to a black hole for selected cases
of a charged shell collapsing on itself or collapsing in an already formed Reissner—Nordstrom
black hole. Such elegant and powerful formalism has allowed to obtain for the first time all
the analytic equations for such large variety of possibilities of the process of the gravitational
collapse. The theoretical analysis of the collapsing shell considered in the previous section
allows to reach a deeper understanding of the mass formula of black holes at least in the case
of a Reissner—Nordstrom black hole. This allows as well to give in Section 7.8 an expression
of the irreducible mass of the black hole only in terms of its kinetic energy of the initial rest
mass undergoing gravitational collapse and its gravitational energy and kinetic energy 7', at
the crossing of the black hole horizon r

2
My = My — 5% + T

Similarly strong, in view of their generality, are the considerations in Section 7.8.2 which
indicate a sharp difference between the vacuum polarization process in an overcritical £ > F,
and undercritical £ < E. black hole. For EF > E. the electron—positron plasma created
will be optically thick with average particle energy 10 MeV. For ' <« E, the process of
the radiation will be optically thin and the characteristic energy will be of the order of 10%
eV. This argument will be further developed in a forthcoming report. In Section 7.9 we
show how the expression of the irreducible mass obtained in the previous Section leads to
a theorem establishing an upper limit to 50% of the total mass energy initially at rest at
infinity which can be extracted from any process of gravitational collapse independent of the
details. These results also lead to some general considerations which have been sometimes
claimed in reconciling general relativity and thermodynamics.

The conditions encountered in the vacuum polarization process around black holes lead to
a number of electron-positron pairs created of the order of 10°° confined in the dyadosphere
volume, of the order of a few hundred times to the horizon of the black hole. Under these
conditions the plasma is expected to be optically thick and is very different from the nuclear
collisions and laser case where pairs are very few and therefore optically thin. We turn
then in Section 8, to discuss a new phenomenon: the plasma oscillations, following the
dynamical evolution of pair production in an external electric field close to the critical value.
In particular, we will examine: (i) the back reaction of pair production on the external electric
field; (ii) the screening effect of pairs on the electric field; (iii) the motion of pairs and their
interactions with the created photon fields. In Secs. 8.1 and 8.2, we review semi-classical
and kinetic theories describing the plasma oscillations using respectively the Dirac-Maxwell
equations and the Boltzmann-Vlasov equations. The electron—positron pairs, after they are
created, coherently oscillate back and forth giving origin to an oscillating electric field. The
oscillations last for at least a few hundred Compton times. We review the damping due to



the quantum decoherence. The energy from collective motion of the classical electric field
and pairs flows to the quantum fluctuations of these fields. This process is quantitatively
discussed by using the quantum Boltzmann-Vlasov equation in Sections 8.4 and 8.5. The
damping due to collision decoherence is quantitatively discussed in Sections 8.6 and 8.7 by
using Boltzmann-Vlasov equation with particle collisions terms. This damping determines
the energy flows from collective motion of the classical electric field and pairs to the kinetic
energy of non-collective motion of particles of these fields due to collisions. In Section 8.7,
we particularly address the study of the influence of the collision processes ete™ = vy
on the plasma oscillations in supercritical electric field [72]. It is shown that the plasma
oscillation is mildly affected by a small number of photons creation in the early evolution
during a few hundred Compton times (see Fig. 32). In the later evolution of 10>~* Compton
times, the oscillating electric field is damped to its critical value with a large number of
photons created. An equipartition of number and energy between electron—positron pairs
and photons is reached (see Fig. 32). In Section 8.8, we introduce an approach based on the
following three equations: the number density continuity equation, the energy-momentum
conservation equation and the Maxwell equations. We describe the plasma oscillation for
both overcritical electric field £ > E. and undercritical electric field E < E, [73]. In
additional of reviewing the result well known in the literature for £ > E,. we review some
novel result for the case £ < E.. It was traditionally assumed that electron—positron pairs,
created by the vacuum polarization process, move as charged particles in external uniform
electric field reaching arbitrary large Lorentz factors. It is reviewed how recent computations
show the existence of plasma oscillations of the electron—positron pairs also for £ < E,.. For
both cases we quote the maximum Lorentz factors yy,.x reached by the electrons and positrons
as well as the length of oscillations. Two specific cases are given. For Ey = 10E, the length
of oscillations 10 h/(mec), and Ey = 0.15E, the length of oscillations 107 A/(m.c). We
also review the asymptotic behavior in time, ¢ — 0o, of the plasma oscillations by the phase
portrait technique. Finally we review some recent results which differentiate the case £ > F,
from the one F < E. with respect to the creation of the rest mass of the pair versus their
kinetic energy. For F > E. the vacuum polarization process transforms the electromagnetic
energy of the field mainly in the rest mass of pairs, with moderate contribution to their
kinetic energy.

We then turn in Section 9 to the last physical process needed in ascertaining the reaching
of equilibrium of an optically thick electron—positron plasma. The average energy of electrons
and positrons we illustrate is 0.1 < € < 10 MeV. These bounds are necessary from the one
hand to have significant amount of electron—positron pairs to make the plasma optically thick,
and from the other hand to avoid production of other particles such as muons. As we will see
in the next report these are indeed the relevant parameters for the creation of ultrarelativistic
regimes to be encountered in pair creation process during the formation phase of a black
hole. We then review the problem of evolution of optically thick, nonequilibrium electron—
positron plasma, towards an equilibrium state, following [74, 75]. These results have been
mainly obtained by two of us (RR and GV) in recent publications and all relevant previous
results are also reviewed in this Section 9. We have integrated directly relativistic Boltzmann
equations with all binary and triple interactions between electrons, positrons and photons
two kinds of equilibrium are found: kinetic and thermal ones. Kinetic equilibrium is obtained
on a timescale of few (orn.c)™!, where o7 and ny are Thomson’s cross-section and electron—
positron concentrations respectively, when detailed balance is established between all binary
interactions in plasma. Thermal equilibrium is reached on a timescale of few (aornic)™t,
when all binary and triple, direct and inverse interactions are balanced. In Section 9.1 basic



plasma parameters are illustrated. The computational scheme as well as the discretization
procedure are discussed in Section 9.2. Relevant conservation laws are given in Section
9.3. Details on binary interactions, consisting of Compton, Mgller and Bhabha scatterings,
Dirac pair annihilation and Breit—Wheeler pair creation processes, and triple interactions,
consisting of relativistic bremsstrahlung, double Compton process, radiative pair production
and three photon annihilation process, are presented in Section 9.5 and 9.6, respectively. In
Section 9.5 collisional integrals with binary interactions are computed from first principles,
using QED matrix elements. In Section 9.7 Coulomb scattering and the corresponding
cutoff in collisional integrals are discussed. Numerical results are presented in Section 9.8
where the time dependence of energy and number densities as well as chemical potential and
temperature of electron—positron-photon plasma is shown, together with particle spectra.
The most interesting result of this analysis is to have differentiate the role of binary and
triple interactions. The detailed balance in binary interactions following the classical work
of Ehlers [76] leads to a distribution function of the form of the Fermi-Dirac for electron—
positron pairs or of the Bose-Einstein for the photons. This is the reason we refer in the text
to such conditions as the Ehlers equilibrium conditions. The crucial role of the direct and
inverse three-body interactions is well summarized in fig. 41, panel A from which it is clear
that the inverse three-body interactions are essential in reaching thermal equilibrium. If the
latter are neglected, the system deflates to the creation of electron—positron pairs all the
way down to the threshold of 0.5MeV. This last result which is referred as the Cavallo-Rees
scenario [77] is simply due to improper neglection of the inverse triple reaction terms.

In Section 10 we present some general remarks.

Here and in the following we will use Latin indices running from 1 to 3, Greek indices
running from 0 to 3, and we will adopt the Einstein summation rule.

2 The fundamental contributions to the electron—positron
pair creation and annihilation and the concept of
critical electric field

In this Section we recall the annihilation process of an electron—positron pair with the pro-
duction of two photons
et +e =+, (2)

studied by Dirac in [1], the Breit-Wheeler process of electron—positron pair production by
light-light collisions [2]
YA+ —et +e. (3)

and the vacuum polarization in external electric field, introduced by Sauter [20]. These
three results, obtained in the mid-30’s of the last century [78, 79], played a crucial role in
the development of the Quantum FElectro-Dynamics (QED).

2.1 Dirac’s electron—positron annihilation

Dirac had proposed his theory of the electron [80, 81] in the framework of relativistic quantum
theory. Such a theory predicted the existence of positive and negative energy states. Only
the positive energy states could correspond to the electrons. The negative energy states had
to have a physical meaning since transitions were considered to be possible from positive
to negative energy states. It was proposed by Dirac [81] that nearly all possible states of



negative energy are occupied with just one electron in accordance with Pauli’s exclusion
principle and that the unoccupied states, ‘holes’ in the negative energy states should be
regarded as ‘positrons’. Historical review of this exciting discovery is given in [85].

Adopting his time-dependent perturbation theory [86] in the framework of relativistic
Quantum Mechanics Dirac pointed out in [1] the necessity of the annihilation process of
electron—positron pair into two photons (2). He considered an electron under the simultane-
ous influence of two incident beams of radiation, which induce transition of the electron to
states of negative energy, then he calculated the transition probability per unit time, using
the well established validity of the Einstein emission and absorption coefficients, which con-
nect spontaneous and stimulated emission probabilities. He obtained the explicit expression
of the cross-section of the annihilation process.

Such process is spontaneous, i.e. it occurs necessarily for any pair of electron and positron
independently of their energy. The process does not need any previously existing radiation.
The derivation of the cross-section, considering the stimulated emission process, was sim-
plified by the fact that the electromagnetic field could be treated as an external classical
perturbation and did not need to be quantized [87].

Dirac started from his wave equation [80] for the spinor field W:

FE
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where m, and e are electron’s mass and charge, A is electromagnetic vector potential, and
the matrices o and (p are:

a=(00) wa m=(f ) )

where o and [ are respectively the Pauli’s and unit matrices. By choosing a gauge in which
Ay vanishes he obtained:

A = a; eiwﬂt—h.x/d + a>{ e—iw1[t—11~x/c} + a, eiuz[t—lz.x/c} + a; e—iwz[t—lg-x/c]’ (6)

where w; and wy are respectively the frequencies of the two beams, 1; and 1, are the unit
vectors in their direction of motion and a; and ay are the polarization vectors, the modulus
of which are the amplitudes of the two beams.
Dirac solved Eq. (4) by a perturbation method, finding a solution of the form v =
Yo + Y1 + Yo + ..., where 1)y is the solution in the free case, and ; is the first order
perturbation containing the field A, or, explicitly —< a - A. He then computed the explicit
expression of the second order expansion term 5, which represents electrons that have made
the double photon emission process and decay into negative energy states. He evaluated the
transition amplitude for the stimulated transition process, which reads
16€*|a;|?|ag|® . 1 — cos(6Et/h)
Wete=—y1+y2 = |g,|me 2 12 (55/)2 s (7)

where £ = m,. c® — v; — 15, 11 and v, are the photons’ frequencies and
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! Actually initially [1, 81] Dirac believed that these ‘holes’ in negative energy spectrum describe protons,
but later he realized that these holes represent particles with the same mass as of electron but with opposite
charge, ‘anti-electrons’ [82]. The discovery of these anti-electrons was made by Anderson in 1932 [83] and
named by him ‘positrons’ [84].



is a dimensionless number depending on the unit vectors in the directions of the two photon’s
polarization vectors m; and my. The quantities n; and n, are respectively given by n; o =
l; 2 X my 5. Introducing the intensity of the two incident beams
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where kj 2 = wj2li 2. Dirac obtained from the above transition amplitude the transition

probability
P _ srrctet K 1 — cos(6E't/h)
et+e~—yi+y2 — |€,|7ne 021/121/22 12 (55/)2 .
In order to evaluate the spontaneous emission probability Dirac uses the relation between
the Einstein coefficients Ag and By which is of the form

(10)

Ap/Bp = 2wh/c*(v19/2m)>. (11)

Integrating on all possible directions of emission he obtains the total probability per unit
time in the rest frame of the electron

2 ~9 ~ ~
ot =n (21} -0 { I - - s

where 4 = &, /m,c* > 1 is the energy of the positron and a = €?/(hc) is the fine structure
constant. Again, historically Dirac was initially confused about the negative energy states
interpretation as we recalled. Although he derived the correct formula, he was doubtful
about the presence in it of the mass of the electron or of the mass of the proton. Of course
today this has been clarified and this derivation is fully correct if one uses the mass of the
electron and applied this formula to description of electron—positron annihilation. The limit
for high-energy pairs (4 > 1) is

ot =T ( o ) In (29) - 1]; (13)
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The corresponding center of mass formula is
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where B is the reduced velocity of the electron or the positron.

2.2 Breit—Wheeler pair production

We now turn to the equally important derivation on the production of an electron—positron
pair in the collision of two real photons given by Breit and Wheeler [2]. According to Dirac’s
theory of the electron, this process is caused by a transition of an electron from a negative
energy state to a positive energy under the influence of two light quanta on the vacuum.
This process differently from the one considered by Dirac, which occurs spontaneously, has
a threshold due to the fact that electron and positron mass is not zero. In other words
in the center of mass of the system there must be sufficient available energy to create an
electron—positron pair. This energy must be larger than twice of electron rest mass energy.



Breit and Wheeler, following the discovery of the positron by Anderson [84], studied
the effect of two light waves upon an electron in a negative energy state, represented by a
normalized Dirac wave function (). Like in the previous case studied by Dirac [1] the light
waves have frequencies w;, wave vectors k; and vector potentials (6). Under the influence of
the light waves, the initial electron wave function 1) is changed after some time t into a
final wave function ¥®. The method adopted is the time-dependent perturbation [86] (for
details see [88]) to solve the Dirac equation with the time-dependent potential eA(t) (6).
The transition amplitude was calculated by an expansion in powers of a; 5 up to O(a?). The
wave function ¥® contains a term representing an electron in a positive energy state. The
associated density is found to be

A 1 — exp(—itd€ /h)|?
Wy 4yg—et+e— = <WO; C) |al|2‘a2‘2K12 | eXIEESg; / )| (15>
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where K7 is the dimensionless number already obtained by Dirac, Eq. (8), depending on
initial momenta and spin of the wave function 1(*) and the polarizations of the quanta. This
quantity is actually the squared transition matrix in the momenta and spin of initial and
final states of light and electron—positron. The squared amplitudes |a;»|* in Eq. (15) are
determined by the intensities I; o of the two light beams as

2me
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The quantity §€ in Eq. (15) is the difference in energies between initial light states and
final electron—positron states. Indicating by £(7) = —¢(p? + m2c?)'/2, where p; is the four-
momentum of the positron, the negative energy of the electron in its initial state and the
corresponding quantity for the electron & = —c(p2 +m?2c?)1/2, where p, is the 4-momentum
of the electron, d€ is given by

0 = c(py +m2®)* + & — hwy — hwy,  where & = —E0), (18)

and ps = —p1 + ki + ko is the final momentum of the electron. From this energy and
momentum conservation it follows
1 P1 P2
d(5€ 202[‘ . ]dp. 19
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It is then possible to sum the probability densities (15) over all possible initial electron states
of negative energy in the volume V. An integral over the phase space [ 2|p1|2d|p:|dQ:,V/(27h)?
must be performed. The effective collision area for the head-on collision of two light quanta
was shown by Breit and Wheeler to be

ah\* [ c|p:]? Ip1|  P1-p2]?
O-'y'y:2 — / K12[81 - ] dQl, (20)
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where 2, is the solid angler, which fulfills the total energy conservation 6€ = 0.
In the center of mass of the system, the momenta of the electron and the positron are
equal and opposite p; = —ps. In that frame the momenta of the photons in the initial state



are k| = —k,. As a consequence, the energies of the electron and the positron are equal:
& = & = &, and so are the energies of the photons: hw; = hwy = &, = £. The total
cross-section of the process is then

ah \ ¢
Oqy = 2 <m) %/Klgdﬁl, (21)

where |p| = |pi| = |p2|, and & = (¢2|p|*> + m2c*)/2. Therefore, the necessary kinematic
condition in order for the process (3) taking place is that the energy of the two colliding
photons be larger than the threshold 2m.c?, i.e.,

E, > mec’. (22)
From Eq. (21) the total cross-section in the center of mass of the system is

A2 o Ton . 1+ 7 o
Uwzg<£ec) (1—52)[25(52—2)+(3—64)1n(1 @)} with 5=@~ (23)

In modern QED cross-sections (13) and (23) emerge form two tree-level Feynman diagrams
(see, for example, the textbook [89] and Section 4).
For £ > m.c?, the total effective cross-section is approximately proportional to

ah \? [ m.c®\>
O',Y,Yﬁﬂ'(mC) < 5 ) : (24)

The cross-section in line (23) can be easily generalized to an arbitrary reference frame,
in which the two photons k; and ko cross with arbitrary relative directions. The Lorentz
invariance of the scalar product of their 4-momenta (k1ks) gives wiwy = 53. Since &, =& =

mec?/4/1 — 32, to obtain the total cross-section in the arbitrary frame KC, we must therefore
make the following substitution [90]

B — /1 —m2ct/(wyws), (25)

in Eq. (23).

2.3 Collisional ete™ pair creation near nuclei: Bethe and Heitler,
Landau and Lifshitz, Sauter, and Racah

After having recalled in the previous sections the classical works of Dirac on the reaction
(2) and Breit-Wheeler on the reaction (3) it is appropriate to return for a moment on the
discovery of electron—positron pairs from observations of cosmic rays. The history of this
discovery sees as major actors on one side Carl Anderson [84] at Caltech and on the other side
Patrick Maynard Stuart Blackett and Giuseppe Occhialini [91] at the Cavendish laboratory.
A fascinating reconstruction of their work can be found e.g. in [85]. The scene was however
profoundly influenced by a fierce conceptual battle between Robert A. Millikan at Caltech
and Arthur Compton at Chicago on the mechanism of production of these cosmic rays. For
a refreshing memory of these heated discussions and a role also of Sir James Hopwood Jeans
see e.g. [92]. The contention by Millikan was that the electron—positron pairs had to come
from photons originating between the stars, while Jeans located their source on the stars.



Compton on the contrary insisted on their origin from the collision of charged particles in the
Earth atmosphere. Moreover, at the same time there were indications that similar process
of charged particles would occur by the scattering of the radiation from polonium-beryllium,
see e.g. Joliot and Curie [93].

It was therefore a natural outcome that out of this scenario two major theoretical develop-
ments occurred. One development inquired electron—positron pair creation by the interaction
of photons with nuclei following the reaction:

Y+Z —Z+e +e, (26)

major contributors were Oppenheimer and Plesset [94], Heitler [95], Bethe-Heitler [96],
Sauter [97] and Racah [98]. Heitler [95] obtained an order of magnitude estimate of the
total cross-section of this process

2 2
O gy Zete- ™ aZ2< ¢ ) ) (27)

MeC?

In the ultrarelativistic case e+ > m, the total cross-section for pair production by a photon
with a given energy w is [96]

28, L, 2w 109
o= Zar? <log T ) . (28)

The second development was the study of the reaction

Zl+Zg—>Zl+Z2+€++6_. (29)

with the fundamental contribution of Landau and Lifshitz [99] and Racah [98, 100]. This
process is an example of two photon pair production, see. Fig. 1. The 4-momenta of particles
Zy and Zy are respectively p; and py. The total pair production cross-section is [99]

P - D'}
a
_,..rk1
s — kp tf
42
P2 —- P2

Figure 1: The sketch of two photon particle production. Reproduced from [101].

28 2 213
OLandau — ﬂre (Z1Z206) L»yv (30>

where L., =log~y. Racah [100] gives next to leading terms

28
ORacal, = ﬁrg(ZlZQozﬁ(LE’; —2.2L2 4 3.84L, — 1.636). (31)
The differential cross-section is given in Section 4.5. The differential distributions of electrons

and positrons in a wide energy range was computed by Bhabha in [102].



In parallel progress on the reaction
e +Z—e +Z+7, (32)

was made by Sommerfeld [103], Heitler [95] and later by Bethe and Heitler [96].

Once the exact cross-section of the process (26) was known, the corresponding cross-
section for the process (32) was found by an elegant method, called the equivalent photons
method [101, 104]. The idea to treat the field of a fast charged particle in a way similar
to electromagnetic radiation with particular frequency spectrum goes back to Fermi [105].
In such a way electromagnetic interaction of this particle e.g. with a nucleus is reduced to
the interaction of this radiation with the nucleus. This idea was successfully applied to the
calculation of the cross-section of interaction of relativistic charged particles by Weizsacker
[106] and Williams [107]. In fact, this method establishes the relation between the high-
energy photon induced cross-section do., x_,y to the corresponding cross-section induced by
a charged particle do.x_,y by the relation which is expressed by

n(w
dan%Y:/%dO_'yX—ﬂ/dwa (33)

where n(w) is the spectrum of equivalent photons. Its simple generalization,

dwl dw2
Ocesy = | ———n(w1)n(w2)doy, 1,y (34)

w1 W2
Generally speaking, the equivalent photon approximation consists in ignoring that in such
a case intermediate (virtual) photons are a) off mass shell and b) no longer transversely
polarized. In the early years this spectrum was estimated on the ground of semi-classical

approximations [106, 108] as
2a0 E
Sl | et 35
n(w) —In (w) , (35)

where F is relativistic charged particle energy. This logarithmic dependence of the equivalent
photon spectrum on the particle energy is characteristic of the Coulomb field. Racah [98§]
applied this method to compute the bremsstrahlung cross-section in the process (32), which
is given in Section 4.5. Bethe and Heitler [96], obtained the same formula and computed the
effect of the screening of the electrons of the nucleus. They found the screening is significant
when the energy of relativistic particle is not too high (E ~ mc?), where m is the mass of
the particle. Finally, Bethe and Heitler discussed the energy loss of charged particles in a
medium.

Racah [100] used the equivalent photons method to compute from (34) the cross-section
of pair creation at collision of two charged particles (29). Unlike Landau and Lifshitz result
[99] o ~ log®(2E) which is valid only for log2F > 1 the cross-section of Racah contains
more terms of different powers of the logarithm, see Section 4.6.

2.4 Klein paradox and Sauter work

Every relativistic wave equation of a free particle of mass m., momentum p and energy
£, admits “positive energy” and “negative energy” solutions. In Minkowski space such a
solution is symmetric with respect to the zero energy and the wave function given by

VE(x,t) ~ e (ex—Ext) (36)



describes a relativistic particle, whose energy, mass and momentum satisfy,
E =m2ct + Apl3  Ex = £/ m2ct + clp|2. (37)

This gives rise to the familiar positive and negative energy spectrum (€4) of positive and
negative energy states 1*(x,t) of the relativistic particle, as represented in Fig. 2. In such
a situation, in absence of external field and at zero temperature, all the quantum states
are stable; that is, there is no possibility of “positive” (“negative”) energy states decaying
into “negative” (“positive”) energy states since there is an energy gap 2m.c® separating the
negative energy spectrum from the positive energy spectrum. This stability condition was
implemented by Dirac by considering all negative energy states as fully filled.

A scalar field described by the wave function ¢(z) satisfies the Klein—Gordon equation
109, 110, 111, 112]

{ 100, +  4,(2)] L m§c2} 6(x) = 0. (38)

If there is only an electric field F(z) in the z-direction and varying only as a function of
z, we can choose a vector potential with the only nonzero component Ag(z) and potential
energy

V() = —edo(2) = e / 4= (7). (39)
For an electron of charge —e by assuming

¢(ZL’) _ 6—i5t/hez’pLxJ_/h¢(Z)’

with a fixed transverse momentum p, in the z, y-direction and an energy eigenvalue £, and
Eq. (38) becomes simply

&2 1
~R s gt i - SE - VR o) = 0. (40)

Klein studied a relativistic particle moving in an external step function potential V(z) =
V0O(z) and in this case Eq. (40) is modified as

€ = Vo> =mic + &[pl% Ex = Vo £ Vm2ct + 2pl?, (41)

where |p|*> = |p.|> + p2. He solved his relativistic wave equation [109, 110, 111, 112]
by considering an incident free relativistic wave of positive energy states scattered by the
constant potential Vj, leading to reflected and transmitted waves. He found a paradox that
in the case Vy > & + m.c?, the reflected flux is larger than the incident flux jiet > Jine,
although the total flux is conserved, i.e. Jinc = Jref + Jiran. Lhis is known as the Klein
paradox [17, 18]. This implies that negative energy states have contributions to both the
transmitted flux ji., and reflected flux jief.

Sauter studied this problem by considering a potential varying in the z-direction corre-
sponding to a constant electric field F in the z = z/|z|-direction and considering spin 1/2
particles fulfilling the Dirac equation. In this case the energy £ is shifted by the amount
V(z) = —eFEz. He further assumed an electric field £ uniform between z; and zy and null
outside. Fig. 3 represents the corresponding sketch of allowed states. The key point now,
which is the essence of the Klein paradox [17, 18], is that a level crossing between the pos-
itive and negative energy levels occurs. Under this condition the above mentioned stability



positive continuum £, > m,c?
A

o2 LLLLLL LS LAY S

\ 4
I\

T

negative continuum £_ < mc?

Figure 2: The mass-gap 2m.c? that separates the positive continuum spectrum &£, from the
negative continuum spectrum &_.
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Figure 3: In presence of a strong enough electric field the boundaries of the classically
allowed states (“positive” or “negative”) can be so tilted that a “negative” is at the same
level as a “positive” (level crossing). Therefore a “negative” wave-packet from the left will
be partially transmitted, after an exponential damping due to the tunneling through the
classically forbidden states, as s “positive” wave-packet outgoing to the right. This figure is
reproduced from Fig. IT in Ref. [113], and g = m.c? eV =V (z),w = £.

of the “positive energy” states is lost for sufficiently strong electric fields. The same is true
for “negative energy” states. Some “positive energy” and “negative energy” states have the
same energy levels. Thus, these “negative energy” waves incident from the left will be both
reflected back by the electric field and partly transmitted to the right as a “‘positive energy”
wave, as shown in Fig. 3 [113]. This transmission represents a quantum tunneling of the
wave function through the electric potential barrier, where classical states are forbidden.
This quantum tunneling phenomenon was pioneered by George Gamow by the analysis of
alpha particle emission or capture in the nuclear potential barrier (Gamow wall) [19]. In the
latter case however the tunneling occurred between two states of positive energy while in
the Klein paradox and Sauter computation the tunneling occurs for the first time between
the positive and negative energy states giving rise to the totally new concept of the creation
of particle-antiparticle pairs in the positive energy state as we are going to show.
Sauter first solved the relativistic Dirac equation in the presence of the constant electric
field by the ansatz, .
bs(x, 1) = enlherthw=ety () (42)

where spinor function xs,(2) obeys the following equation (g, v; are Dirac matrices)

heyvs— + 7% (V(z) = ) + (mec® +icyapy +icvips) | Xss(2) =0, (43)

dz

and the solution xg,(z) can be expressed in terms of hypergeometric functions [20]. Using
this wave function 1,(x, t) (42) and the flux iciiv31)s, Sauter computed the transmitted flux
of positive energy states, the incident and reflected fluxes of negative energy states, as well
as exponential decaying flux of classically forbidden states, as indicated in Fig. 3. Using the
regular matching conditions of the wave functions and fluxes at boundaries of the potential,



Sauter found that the transmission coefficient |T'|? of the wave through the electric potential
barrier from the negative energy state to positive energy states:

\T|2 _ |tr%nsmission flux| N e‘“”ﬁgi_ "
lincident flux]|

This is the probability of negative energy states decaying to positive energy states, caused
by an external electric field. The method that Sauter adopted to calculate the transmission
coefficient |T'|? is indeed the same as the one Gamow used to calculate quantum tunneling of
the wave function through nuclear potential barrier, leading to the a-particle emission [19].

The simplest way to calculate the transmission coefficient |T'|? (44) is the JWKB (Jeffreys—
Wentzel-Kramers—Brillouin) approximation. The electric potential V' (z) is not a constant.
The corresponding solution of the Dirac equation is not straightforward, however it can be
found using the quasi-classical, JWKB approximation. Particle’s energy £, momentum p
and mass m, satisfy,

[Ex — V(z)]2 = mﬁc4 + 02|p|2; EL =V (z) £ /m2c* + A|p|?, (45)

where the momentum p,(z) is spatially dependent. The momentum p, > 0 for both nega-
tive and positive energy states and the wave functions exhibit usual oscillatory behavior of
propagating wave in the z-direction, i.e. exp %pzz. Inside the electric potential barrier where
are the classically forbidden states, the momentum p? given by Eq. (45) becomes negative,
and p, becomes imaginary, which means that the wave function will have an exponential
behavior, i.e. exp _7% [ Ip-|dz, instead of the oscillatory behavior which characterizes the
positive and negative energy states. Therefore the transmission coefficient |T'|? of the wave
through the one-dimensional potential barrier is given by

2 2 [
TP xesp—7 [ Ipaldz (46

where z_ and z, are roots of the equation p,(z) = 0 defining the turning points of the
classical trajectory, separating positive and negative energy states.

2.5 A semi-classical description of pair production in quantum
mechanics

2.5.1 An external constant electric field

The phenomenon of pair production can be understood as a quantum mechanical tunneling
process of relativistic particles. The external electric field modifies the positive and negative
energy spectrum of the free Hamiltonian. Let the field vector E point in the z-direction.
The electric potential is Ag = —|E|z where —¢ < z < 4+¢ and the length ¢ > h/(m.c), then
the positive and negative continuum energy spectra are

Ex = [eBlz £ 4/ (cp.)? + D2 + (mec?)?, (47)

where p. is the momentum in z-direction, p, transverse momenta. The energy spectra &1
(47) are sketched in Fig. 4. One finds that crossing energy levels £ between two energy
spectra £_ and £, (47) appear, then quantum tunneling process occurs. The probability



amplitude for this process can be estimated by a semi-classical calculation using JWKB
method (see e.g. [88, 54]):

9 [#(E+)
Powca(lpil) = espd =7 [ padsy, (15)

_(&0)

where

P = /Pl mic — (€~ |eF]2)/c (49)

is the classical momentum. The limits of integration zy(€1) are the turning points of the
classical orbit in imaginary time. They are determined by setting p, = 0 in Eq. (47). The
solutions are

c[p? + m?c? e,

&) = 50
Zi( i) |6E| ) ( )

At the turning points of the classical orbit, the crossing energy level
E=E.=E_, (51)

as shown by dashed line in Fig. 4. The tunneling length is
2mec h (FE

Er) — 2 (E- < 9 — 52
e - a6 = T~ 1 (Be), (52)

which is independent of crossing energy levels £. The critical electric field E. in Eq. (1) is
the field at which the tunneling length (52) is twice the Compton length Ac = h/mec.
Changing the variable of integration from z to y(z),

— |leE|z
z) = ———, 53
Y )
we obtain
y-(2o) =—1,  yi(z4) =+1 (54)

and the JWKB probability amplitude (48) becomes
2F. p2 +1
Pywks(|pi]) = exp l— i <1+ mztz)/ dy/1—y?
e -1
E 2
= exp[ - T2 <1+ P )} (55)

E m2c?

Summing over initial and final spin states and integrating over the transverse phase space
[ dz,dp, /(2rh)? yields the final result

Piwks =~ D,V e T 02/|5E\ﬁf d? PL e—“m/\eElﬁ

= DV, {4 ‘”EC/E, (56)

ﬂcﬁ

where the transverse surface V| = f dz, . For the constant electric field £ in —¢ < z < +/,
crossing energy levels £ vary from the maximal energy potential V(—¢) = +eFE/ to the
minimal energy potential V(+¢) = —eFE(. This probability Eq. (56) is independent of



crossing energy levels £. We integrate Eq. (56) over crossing energy levels [ d€/m.c* and
divide it by the time interval At ~ h/m.c* during which quantum tunneling occurs, and
find the transition rate per unit time and volume

I'ywxks aE? -
v ~ Dsme EC/E, (57)

where Dy = 2 for a spin-1/2 particle and Dy = 1 for spin-0, V' is the volume. The JWKB
result contains the Sauter exponential e=#</# [20] and reproduces as well the prefactor of
Heisenberg and Euler [7].

\</ £, = +/m2d + PP - |eL]:

O\

E_ = —\/m2ct+ 2|p|]? — |eE|z

Figure 4: Energy-spectra £+ with an external electric field E along z-direction (for —¢ <
z < £ and ¢ > 1). Crossing energy-levels appear, indicated by a dashed line between two
continuum energy-spectra £ and £,. The turning points z4(€) for the crossing energy-
levels £ of Eq. (51) are marked. This implies that virtual electrons at these crossing energy-
levels in the negative energy-spectrum can quantum-mechanically tunnel toward infinity
[z > 2, (€)] as real electrons; empty states left over in the negative energy-spectrum represent
real positrons. This is how quantum tunneling produces pairs of electrons and positrons.

Let us specify a quantitative condition for the validity of the above “semi-classical”
JWKB approximation, which is in fact leading term of the expansion of wave function in
powers of A. In order to have the next-leading term be much smaller than the leading term,
the de Broglie wavelength A(z) = 27h/p,(2) of wave function of the tunneling particle must



have only small spatial variations [88]:

1 [dX(2) h o |dp.(2)
— = 1. 58
2 | dz p2(2) | dz < (58)
with p,(2) of Eq. (49). The electric potential Ay = —e|z|Z must satisfy
ho|dAo| E
— < 1.
2pz dz EC < (59)

so that the result (57) is valid only for £ < E..

2.5.2 An additional constant magnetic field

The result (57) can be generalized to include a uniform magnetic field B. The calculation is
simplest by going into a Lorentz frame in which B and E are parallel to each other, which is
always possible for uniform and static electromagnetic field. This frame will be referred to
a center-of-fields frame, and the associated fields will be denoted by Ber and Ecp. Suppose
the initial B and E are not parallel, then we perform a Lorentz transformation with a velocity
determined by [114]

v/c ~ ExB
T (V/e?  BF + BP o
in the direction v = v/|v| as follows
Bor = (B-v)v+ == ([]f_x(“’\),|/cgz]</2) (62)

The fields Bor and Ecp are now parallel. As a consequence, the wave function factorizes
into a Landau state and into a spinor function, this last one first calculated by Sauter (see
Egs. (42),(43)). The energy spectrum in the JWKB approximation is still given by Eq. (47),
but the squared transverse momenta p? is quantized due to the presence of the magnetic
field: they are replaced by the Landau energy levels whose transverse energies have the
discrete spectrum

2
p = 2mec® x 217)7% — 2m.c? X gh% <n—i—;+a) ,n=0,1,2---, (63)
where g = 24a/7+. .. is the anomalous magnetic moment of the electron [115, 11, 116, 117,
118], wr, = e|Bcr|/mec the Landau frequency, 6 = +1/2 for a spin-1/2 particle (6 = 0 for a
spin-0 particle) are eigenvalues of spinor operator o, in the (z)-direction, i.e., in the common
direction of Ecr and Ber in the selected frame. The quantum number n characterizing
the Landau levels is associated with harmonic oscillations in the plane orthogonal to Ecg
and Bcp. Apart from the replacement (63), the JWKB calculation remains the same as
in the case of constant electric field (57). We must only replace the integration over the
transverse phase space [ dzdydp, /(27h)? in Eq. (56) by the sum over all Landau levels with
the degeneracy Ve|Bcr|/(2mhc) [88]:

VieBer| Z [_ 2chle||Ber|(n + 1/2 4+ &) + (mec?)?

4
- 2nhe e|Ecr|ch (64)



The results are

Vie|Ber| <7T|BCF|) ( Tk, ) . .
————— coth exp | — , spin — 1/2 particle 65
2mhe |Ecr| P |Ecr] p /2 p (65)
. V.e|Ber] Ber] E
1€|bcr| . ;1 [ T|DcF Tl . .
—————sinh exp| ———], spin— 0 particle. 66
Arhe ( |Ecr| ) p( \ECF\) P P (66)

We find the pair production rate per unit time and volume

Iywks  a|Ber||Ecr| (W|BCF\) ( TE, ) . .
~ coth exp| ———— ], spin — 1/2 particle 67
1% h |EcF| |Ecr]| P /2p (67)

and

Dywis  oBer|[Ecr| sinh (W\BCF|) exp ( mh.

~ — , spin — 0 particle. 68

We can now go back to an arbitrary Lorentz frame by expressing the result in terms of
the two Lorentz invariants that can be formed from the B and E fields: the scalar S and
the pseudoscalar P

1

1 ~
S=-F,F" = 5(E2 -B?); P= ZF,WFW = E-B, (69)

AN

where FH = ¢wA%Fy is the dual field tensor. We define the invariants e and [ as the
solutions of the invariant equations

e2-p*=E*-B?*=2S5, ¢B=EB=P, (70)

and obtain
e = \J(s2ePye s, (71)
5 = \J(s2+ P, (72)

In the special frame with parallel Ber and Ecp, we see that 8 = |Bcep| and € = |Ecg|, so
that we can replace (67) and (68) directly by the invariant expressions

r E.
JV‘;KB ~ thg coth <7;—ﬁ> exp <—7T€ ) , spin — 1/2 particle (73)
and r g
‘W‘;KB ~ gf; sinh™* (?) exp (—Wg c) ., spin — 0 particle, (74)

which are pair production rates in arbitrary constant electromagnetic fields. We would like
to point out that S and P in (69) are identically zero for any field configuration in which

IE[=|B|; ELB=0. (75)

As example, for a plane wave of electromagnetic field, ¢ = § = 0 and no pairs are produced.



3 Nonlinear electrodynamics and rate of pair creation

3.1 Hans Euler and light-light scattering

Hans Euler in his celebrated diplom thesis [21] discussed at the University of Leipzig called
attention on the reaction
Ny — eteT — Yy

He recalled that Halpern [119] and Debye [120] first recognized that Dirac theory of electrons
and the Dirac process (2) and the Breit—Wheeler one (3) had fundamental implication for the
light on light scattering and consequently implied a modifications of the Maxwell equations.

If the energy of the photons is high enough then a real electron—positron pair is created,
following Breit and Wheeler [2]. Again, if electron—positron pair does exist, two photons are
created following [1]. In the case that the sum of energies of the two photons are smaller
than the threshold 2m.c? then the reaction (above) still occurs through a virtual pair of
electron and positron.

Under this condition the light-light scattering implies deviation from superposition princi-
ple, and therefore the linear theory of electromagnetism has to be substituted by a nonlinear
one. Maxwell equations acquire nonlinear corrections due to the Dirac theory of the electron.

Euler first attempted to describe this nonlinearity by an effective Lagrangian representing
the interaction term. He showed that the interaction term had to contain the forth power
of the field strengths and its derivatives

F OF
Eint = const/ FFFF + Const'a—a—FF—l— ol (76)
Oxr Ox

F being symbolically the electromagnetic field strength. He also estimated that the constants
may be determined from dimensional considerations. Since the interaction Uj,; has the
dimension of energy density and contains electric charge in the forth power, the constants
up to numerical factors are

he 1 ) ho\°
const = eV const’ = <mec) ) (77)
-2
where F, = e (mfcz = o 'E,, namely “the field strength at the edge of the electron”.

From these general qualitative considerations Euler made an important further step tak-
ing into account that the Lagrangian (76) describing such a process had necessarily be built
from invariants constructed from the field strengths, such as E? — B? and E - B following
a precise procedure indicated by Max Born, see e.g. Pauli’s book [121]. Contrary to the
usual Maxwell Lagrangian which is only a function of F 5V Euler first recognized that virtual
electron—positron loops are represented by higher powers in the field strength corrections to
the linear action of electromagnetism and written down the Lagrangian with second order
corrections

E2-B? 11

e R 2 p2\2 . 2
L=— +aE§[aE(E B2)® + by (E B)], (78)

where

ap = —1/(3607%), by = —7/(3607?). (79)

The crucial result of Euler has been to determine the values of the coefficients (79) using
time-dependent perturbation technique, e.g. [88] in Dirac theory.



Euler computed only the lowest order corrections in o to Maxwell equations, namely “the
1/137 fraction of the field strength at the edge of the electron”. This perturbation method
did not allow calculation of the tunneling rate for electron—positron pair creation in strong
electromagnetic field which became the topic of the further work with Heisenberg [7].

3.2 Born’s nonlinear electromagnetism

A nonlinear theory of electrodynamics was independently proposed and developed by Max
Born [4, 5] and later by Born and Infeld [6]. The main motivation in Born’s approach
was the avoidance of infinities in an elementary particle description. Among the classical
discussions on the fundamental interactions this topic had attracted attention of a large
number of scientists. It was clear in fact from the considerations of J.J. Thomson, Abraham
Lorentz that a point-like electron needed to have necessarily an infinite mass. The existence
of a finite radius was attempted by Poincare by introduction of non-electromagnetic stresses.
Also among the attempts we have to recall the theory of Mie [122, 123, 124, 125] modifying
the Maxwell theory by nonlinear terms. This theory however had serious difficulty because
solutions of Mie field equations depend on the absolute value of the potentials.

Max Born developed his theory in collaboration with Infeld. This alternative to the
Maxwell theory is today called the Born-Infeld theory which still finds interest in the frame-
work of subnuclear physics. The coauthorship of Infeld is felt by the general premise of
the article in distinguishing the unitarian standpoint versus the dualistic standpoint in the
description of particles and fields. “In the dualistic standpoint the particles are the sources
of the field, are acted own by the field but are not a part of the field. Their characteristic
properties are inertia, measured by specific constant, the mass” [6]. The unitarian theory
developed by Thomson, Lorentz and Mie tends to describe the particle as a point-like singu-
larity but with finite mass-energy density fulfilling uniquely an appropriate nonlinear field
equations. It is interesting that this approach was later developed in the classical book by
Einstein and Infeld [126] as well as in the classical paper by Einstein, Infeld and Hoffmann
[127] on equations of motion in General Relativity.

In the Born-Infeld approach the emphasis is directed to a formalism encompassing Gen-
eral Relativity. But for simplicity the field equations are solved within the realm only of the
electromagnetic field. A basic tensor a,s = gap + faop is introduced. Its symmetric part g,s
is identified with a metric component and the antisymmetric part f,s with the electromag-
netic field. Formally therefore both the electromagnetic and gravitational fields are present
although the authors explicitly avoided to insert the part of the Lagrangian describing the
gravitational interaction and focused uniquely on the following nonlinear Lagrangian

L=VI+25—P?—1. (80)

The necessity to have the quadratic form of the P term is due to obtain a Lagrangian
invariant under reflections as pointed out by W. Pauli in his classical book [121]. For small
field strengths Lagrangian (80) has the same form as (78) obtained by Euler.

From the nonlinear Lagrangian (80) Born and Infeld calculated the fields D and H
through a tensor, P{ = D and PY = —e“*H* where

p Lo _ Fu—PE,
W oFm 1+25 - PpP?

and introduced therefore an effective electric permittivity and magnetic permeability which
are functions of S and P. It is very interesting that Born and Infeld managed to obtain

(81)



a solution for electrostatic field of a point particle (P = 0) in which the radial component
D, = e/r? becomes infinite as r — 0 but the radial component of E field is perfectly finite

and is given by the expression
e
E, = (52)

ray/1+ (7’/7’0)4’
where 7y is the “radius” of the electron.

Most important the integral of the electromagnetic energy is finite and given by

/ HpsormdV = / (P F™ = Lpgopn)dV = 1.236152, (83)
0
Equating this energy to m.c® they obtain ry = 1.2361e2?/(m.c?).

The attempt therefore is to have a theoretical framework explaining the mass of the
electron solely by a modified nonlinear electromagnetic field theory. This approach has not
been followed by the current theories in particle physics where the dualistic approach is
today adopted in which the charged particles are described by half-integer spin fields and
electro-magnetic interactions by integer-spin fields.

The initial goal to develop a fully covariant theory of electrodynamics within General
Relativity although not developed by Born himself was not abandoned. Hoffmann found an
analytic solution [22] to the coupled system of the Einstein-Born-Infeld equations.

3.3 The Euler-Heisenberg Lagrangian

The two different approaches of Born and Infeld and of Euler present strong analogies and
substantial differences. The attempt of Born and Infeld was to obtain at once a new nonlinear
Lagrangian for electromagnetic field replacing the Maxwell Lagrangian in order to avoid the
appearance of infinite self-energy for a classical point-like electron.

The attempt of Euler [128] was more conservative, to obtain the first order nonlinear
perturbation corrections to the Maxwell Lagrangian on the ground of the Dirac theory of
the electron.

Born and Infeld in addition introduced an effective dielectric constant and an effective
magnetic permeability of the vacuum out of their nonlinear Lagrangian (80). This approach
was adopted as well in the classical work of Heisenberg and Euler [7]. They introduced
an effective Lagrangian on the ground of the Dirac theory of the electron and expressed
the result in integral form duly taking away infinities, see Section 3.3.1. This integral was
explicitly performed in the weak field limit and the special attention was given to the real
part, see Section 3.3.2 and the imaginary part, see Section 3.3.3.

A successive work of Weisskopf [24] derived the same equations of Heisenberg and Euler
for the real part of the dielectric constant and magnetic permeability by using instead of
the spin 1/2 particle of the Dirac equation the scalar relativistic wave equation of Klein and
Gordon. The results differ from the one of spin 1/2 particle only by a factor 2 due to the Bose
statistics, see Section 3.3.1. The technique used by Weisskopf refers to the case of magnetic
field of arbitrary strengths and describes the electric field perturbatively, see Section 3.3.2.
As we will see in the following, the Heisenberg and Euler integral can be found in the case
of arbitrary large both electric and magnetic fields, see Section 4.7.3.

3.3.1 Real part of the effective Lagrangian

We now recall how Heisenberg and Euler adopted the crucial idea of Max Born to describe
the nonlinear Lagrangian by the introduction of an effective dielectric constant and magnetic



permeability [7]. They further extended this idea by adopting the most general case of a
dielectric constant containing real and imaginary part. Such an approach is generally followed
in the description of dissipative media. The crucial point was to relate electron—positron pair
creation process to imaginary part of the Lagrangian.

Let £ to be the Lagrangian density of electromagnetic fields E, B, a Legendre transfor-
mation produces the Hamiltonian density:

oL
H 5E, (84)
In Maxwell’s theory, the two densities are given by
1 1
Lor= —(E?—B?), Hy = —(E*+BY). (85)
8T 8T

To quantitatively describe nonlinear electromagnetic properties of the vacuum based on the
Dirac theory, Heisenberg and Euler introduced an effective Lagrangian L.g of the vacuum
state and an associated Hamiltonian density

Log=Ly+AL Heg=Hu+ AH. (86)

Here H.g and L.g are complex functions of E and B. In Maxwell’s theory, AL = 0 in the
vacuum, so that D = E and H = B.
Heisenberg and Euler derived the induced fields D, H as the derivatives

OL et 0L

' 0E; "’ ! 0B;

(87)

Consequently, the vacuum behaves as a dielectric and permeable medium [7, 24] in which,
D; = exFy, H;= pB, (88)

where €;; and p;, are complex and field-dependent dielectric and permeability tensors of the
vacuum.

The discussions on complex dielectric and permeability tensors (e and p;) can be
found for example in Ref. [129]. The effective Lagrangian and Hamiltonian densities in such
a medium are given by

1

1
st=—(E-D—-B-H), s =—(E-D+B-H).
Lo = - ) M=o (E-D+B H) (59)
In this medium, the conservation of electromagnetic energy has the form
oD OH
—divS=E-—+B-—, S=cExB 90
iv BT + BT cE x B, (90)

where S is the Poynting vector describing the density of electromagnetic energy flux. Con-
sider complex and monochromatic electromagnetic field

E = E(w)exp —i(wt); B = B(w)exp—i(wt), (91)

of frequency w, and dielectric and permeability tensors are frequency-dependent, i.e., €;(w)
and i (w). Substituting these fields and tensors into the right-hand side of Eq. (90), one
obtains the dissipation of electromagnetic energy per unit time into the medium

Quin = 5 {Im [eux ()] B+ m [ ()] BB} (92)



This is nonzero if €;(w) and px(w) contain an imaginary part. The dissipation of elec-
tromagnetic energy in a medium is accompanied by heat production. In the light of the
third thermodynamical law of entropy increase, the energy lost (Qg;s of electromagnetic fields
in the medium is always positive, i.e., Qqs > 0. As a consequence, Imle;(w)] > 0 and
Im[pig(w)] > 0. The real parts of €;(w) and u(w) represent an electric and magnetic
polarizability of the vacuum and leads, for example, to the refraction of light in an electro-
magnetic field, or to the elastic scattering of light from light. The n;;(w) = /€ (w)pr;(w)
is the reflection index of the medium. The field dependence of ¢, and p;;, implies nonlinear
electromagnetic properties of the vacuum as a dielectric and permeable medium.

The effective Lagrangian density (86) is a relativistically invariant function of the field
strengths E and B. Since (E? — B?) and E - B are relativistic invariants, one can formally
expand AL in powers of weak field strengths:

AL = Ry o(E? = B?)? + ko 2(E - B)® + kg o(E* — B?)® 4 k1 5(E* = B*)(E-B)* +... , (93)

where k; ; are field-independent constants whose subscripts indicate the powers of (E? — B?)
and E - B, respectively. Note that the invariant E - B appears only in even powers since it
is odd under parity and electromagnetism is parity invariant. The Lagrangian density (93)
corresponds, via relation (84), to

AH = kyo(E* — B*)(3E? + B?) + g (E - B)?
+r30(E* — B*)?(5E? + B?) + k1 2(3E* — B*)(E-B)* + ... . (94)

To obtain H.g in Dirac’s theory, one has to calculate

AH=Y" {¢;;, [a (—iheV + eA ) + ﬁngCQ] wk} , (95)
k

where {¢y(x)} are the wave functions of the occupied negative energy states. When per-
forming the sum, one encounters infinities which were removed by Dirac, Heisenberg, and
Weisskopf [24, 130, 131, 132] by a suitable subtraction.

Heisenberg [131] expressed the Hamiltonian density in terms of the density matrix p(z, ') =
> w Ui(@)r(2") [130]. Heisenberg and Euler [7] calculated the coefficients x; ;. They did so
by solving the Dirac equation in the presence of parallel electric and magnetic fields E and
B in a specific direction,

Uk(2) = Vpomss = €50, () x4 (1), n=0,1,2,... (96)

where {u,(y)} are the Landau states? depending on the magnetic field and x,,(z) are the
spinor functions calculated by Sauter [20]. Heisenberg and Euler used the Euler-Maclaurin
formula to perform the sum over n, and obtained for the additional Lagrangian in (86) the
integral representation

AL e? /°° 6_8@ [i52 EB(:os(s[JEZT2 — ?2 + 21:(??)]1/2) + c.c.
167%he J, 3 cos(s[E? — B% + 2i(EB)]'/?) — c.c.
m2cA\? s _
e Z (IB 2 E 2
w (M) 0Be - 1EP), (97)

2Landau determined the quantum states of a particle in an external magnetic field in 1930 [88, 90].



where E, B are the dimensionless reduced fields in the unit of the critical field E.,

_ |E _ B
s El B

E.’ E.

. (98)

Expanding this expression in powers of a up to o yields the following values for the four
constants:

a 9 20 4 13

260-2L =7 =k = —H30. 99
36072 © 0 02T (TR0 RS0 Rrsa e o fL2 T 0 (59)

The above results will receive higher corrections in QED and are correct only up to order
a?. Up to this order, the field-dependent dielectric and permeability tensors €;; and g (88)
have the following real parts for weak fields

Roo =

Re(e,-k) = 5zk + ﬁ [Q(Ez — Bz)dzk + 7B,Bk} + O(Oéz),
Re(pir) = O+ - 8§W2 [2(E* — B*)0i + TE B | + O(a?). (100)

3.3.2 Weisskopf effective Lagrangian

Weisskopf [24] adopted a simpler method. He considered first the special case in which
E = 0,B # 0 and used the Landau states to find AH of Eq. (94), extracting from this
koo and k3o. Then he added a weak electric field E # 0 to calculate perturbatively its
contributions to AH in the Born approximation (see for example [88]). This led again to
the coefficients (99), (100). In addition to the weak field expansion of real part of effective
Lagrangian, Weisskopf also obtained the leading order term considering very large field
strengths £ > 1 or B> 1,

e L. - e
Tl B Blan~ oo
We shall address this same problem in Section 4.7.3 in the framework of QED [35] and we
will compare and contrast our exact expressions with the one given by Weisskopf. The cru-
cial point stressed by Weisskopf is that if one limits to the analysis of the real part of the
dielectric constant and magnetic permeability then the nonlinearity of effective electromag-
netic Lagrangian represent only small corrections even for field strengths which are much
higher than the critical field strength E.. As we will show however, the contribution of the
imaginary part of the effective Lagrangian diverges as pointed out by Heisenberg and Euler
[7].

AL ~ B?In B, (101)

3.3.3 Imaginary part of the effective Lagrangian

Heisenberg and Euler [7] were the first to realize that for E # 0 the powers series expansion
(93) is not convergent, due to singularities of the integrand in (97) at s = n/E, 27 /E, ... .
They concluded that the powers series expansion (93) does not yield all corrections to the
Maxwell Lagrangian, calling for a more careful evaluation of the integral representation (97).
Selecting an integration path that avoids these singularities, they found an imaginary term.
Motivated by Sauter’s work [20] on Klein paradox [17, 18], Heisenberg and Euler estimated
the size of the imaginary term in the effective Lagrangian as

_ 3 =
Ly = — > Bm, e (5=) e, (102)
s



and pointed out that it is associated with pair production by the electric field. The expo-
nential in this expression is exactly reproducing the Sauter result (44). However, for the
first time the pre-exponential factor is determined. This imaginary term in the effective
Lagrangian is related to the imaginary parts of field-dependent dielectric € and permeability
1 of the vacuum.

In 1950’s, Schwinger [25, 26, 27] derived the same formula (97) within the Quantum
FElectro-Dymanics (QED). In the following sections, our discussions and computations will
focus on the Schwinger formula, the real and imaginary parts of effective Lagrangian for
arbitrary values of electromagnetic field strength.

The consideration of Heisenberg and Euler were applied to a uniform electric field. The
exponential factor e™/F in Egs. (44) and (102) characterizes the transmission coefficient of
quantum tunneling, Heisenberg and Euler [7] introduced the critical field strength (98). They
compared it with the field strength F, of an electron at its classical radius, E. = e/r? where
re = ah/(mec). They found the field strength E. is 137 time larger than the critical field
strength E,, i.e. B, = o 'E,. At a critical radius r, = a'/?h/(m.c) < r., the field strength
of the electron would be equal to the critical field strength E.. There have been various
attempts to reach the critical field: in Secs. 6.5 and 6.6 we will examine the possibility of
reaching such value around the bare nucleus. In Section 7.5 we will discuss the possibility
of reaching such a field in an astrophysical setting around a black hole.

In conclusion, if an electric field attempts to tear an electron out of the filled state the
gap energy must be gained over the distance of two electron radii. The virtual particles
give an electron a radius of the order of the Compton wavelength A\o. Thus we expect a
significant creation of electron—positron pairs if the work done by the electric field E over
twice the Compton wave length ii/m.c is larger than 2m,c?

2h
el < ) > 2mc?.
mecC

This condition defines a critical electric field (1) above which pair creation becomes abundant.
To have an idea how large this critical electric field is, we compare it with the value of the
electric field required to ionize a hydrogen atom. There the above inequality holds for twice
of the Bohr radius and the Rydberg energy

2h
eFion ( ) > oz2mec2,

amec

where B, = m2e®/h* = 5.14 x 10° V/cm, so that E, = E'°" /a3 is about 10° times as large,
a value that has so far not been reached in a laboratory on Earth.

4 Pair production and annihilation in QED

4.1 Quantum Electro-Dynamics

Quantum Electro-Dynamics (QED), the quantum theory of electrons, positrons, and pho-
tons, was established by by Tomonaga [8], Feynman [9, 10, 11}, Schwinger [12, 13, 14] and
Dyson [15, 16] and others in the 1940’s and 1950’s [133]. For decades, both theoretical com-
putations and experimental tests have been developed to great perfection. It is now one of
the fundamental pillars of the theory of the microscopic world. Many excellent monographs
have been written [134, 135, 136, 137, 138, 90, 89, 139, 25, 26, 27, 140, 141, 142, 143], so the



concepts of the theory and the techniques of calculation are well explained. On the basis of
this material, we review some aspects and properties of the QED that are relevant to the
subject of the present review.

QED combines a relativistic extension of quantum mechanics with a quantized electro-
magnetic field. The nonrelativistic system has a unique ground state, which is the state with
no particle, the vacuum state. The excited states contain a fixed number of electrons and an
arbitrary number of photons. As electrons are allowed to become relativistic, their number
becomes also arbitrary, and it is possible to create pairs of electrons and positrons.

In the modern functional integral description, the nonrelativistic system is described by a
given set of fluctuating particle orbits running forward in time. If the theory is continued to
an imaginary time, in which case one speaks of a Fuclidean formulation, the nonrelativistic
system corresponds to a canonical statistical ensemble of trajectories.

In the relativistic system, the orbits form worldlines in four-dimensional space-time which
may run in any time direction, in particular they may run backwards in time, in which case
the backward parts of a line correspond to positrons. The number of lines is arbitrary and
the Euclidean formulation corresponds to a grand-canonical ensemble. The most efficient
way of describing such an ensemble is by a single fluctuating field [143].

The vacuum state contains no physical particles. It does, however, harbor zero-point
oscillations of the electron and photon fields. In the worldline description, the vacuum is
represented by a grand-canonical ensemble of interacting closed world lines. These are called
virtual particles. Thus the vacuum contains the full complexity of a many-body problem so
that one may rightfully say that the vacuum is the world [144]. In the Fourier decomposition
of the fluctuating fields, virtual particles correspond to Fourier components, or modes, in
which the 4-vectors of energy and momentum k* = (k° k) = (€,k) do not satisfy the
mass-shell relation

k= (k°)? — k|]* = £ — A|k|)? = mic, (103)

valid for real particles.

The only way to evaluate physical consequences from QED is based on the smallness of the
electromagnetic interaction. It is characterized by the dimensionless fine structure constant
a. All theoretical results derived from QED are found in the form of series expansions in
powers of «, which are expansions around the non-interacting system. Unfortunately, all
these expansions are badly divergent (see e.g. Section 4.62 in [145]). The number of terms
contributing to the same order of o grows factorially fast, i.e., faster than any exponential,
leading to a zero radius of convergence. Fortunately, however, the coupling « is so small
that the series possess an apparent convergence up to order 1/« ~ 137, which is much higher
than will be calculable for a long time to come (see e.g. Section 4.62 in [145]). With this
rather academic limitation, perturbation expansions are well defined.

In perturbation expansions, all physical processes are expressible in terms of Feynman
diagrams. These are graphic representations of the interacting world lines of all particles.
Among these lines, there are some which run to infinity. They satisfy the mass shell relation
(103) and describe real particles observable in the laboratory. Those which remain inside a
finite space-time region are virtual.

The presence of virtual particles in the perturbation expansions leads to observable ef-
fects. Some of these have been measured and calculated with great accuracy. The most
famous examples are

1. the electrostatic polarizability of quantum fluctuations of the QED vacuum has been
measured in the Lamb shift [146, 147].



2. the anomalous magnetic moment of the electron [115, 11, 116, 117, 118].

3. the dependence of the electric charge on the distance. It is observed by measuring
cross-sections of electron—positron collisions, most recently in the L3-experiments at
the Large Electron-Positron Collider (LEP) at CERN [148].

4. the Casimir effect caused by virtual photons, i.e., by the fluctuations of the electromag-
netic field in the QED vacuum [149, 150]. It causes an attractive force [151, 152, 153]
between two uncharged conducting plates in the vacuum (see also [154, 155, 156, 157,
158, 159, 160)).

There are, of course, many other discussions of the effects of virtual particles caused
either by external boundary conditions or by external classical fields [161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175].

An interesting aspect of virtual particles both theoretically and experimentally is the
possibility that they can become real by the effect of external fields. In this case, real
particles are excited out of the vacuum. In the previous Section 2.4 and 3.3.1, we have
shown that this possibility was first pointed out in the framework of quantum mechanics
by Klein, Sauter, Euler and Heisenberg [17, 18, 20, 7] who studied the behavior of the
Dirac vacuum in a strong external electric field. Afterward, Schwinger studied this process
and derived the probability (Schwinger formula) in the field theory of Quantum Electro-
Dynamics, which will be described in this chapter. If the field is sufficiently strong, the
energy of the vacuum can be lowered by creating an electron—positron pair. This makes
the vacuum unstable. This is the Sauter-FEuler-Heisenberg-Schwinger process for electron—
positron pair production. There are many reasons for the interest in the phenomenon of pair
production in a strong electric field. The most compelling one is that now both laboratory
conditions and astrophysical events provide possibilities for observing this process.

In the following chapters, in addition to reviewing the Schwinger formula and QED-
effective Lagrangian in constant electromagnetic fields, we will also derive the probability of
pair production in an alternating field, and discuss theoretical studies of pair production in
(i) electron-beam—laser collisions and (ii) superstrong Coulomb potential. In addition, the
plasma oscillations of electron—positron pairs in electric fields will be reviewed in Section 8.
The rest part of this chapter, we shall use natural units h =c¢ = 1.

4.2 Basic processes in Quantum Electro-Dynamics

The total Lagrangian describing the interacting system of photons, electrons, and positrons
reads, see e.g. [90]
L=L+Ly + Lin, (104)

where the free Lagrangians £8+57 and L] for electrons and photons are expressed in terms
of quantized Dirac field ¢(z) and quantized electromagnetic field A, (x) as follows:

£(6]+67 = @(x)(zfy‘ua,u - me)w('r)a (105)
Ly = —iFW(x)F‘“’(x) + gauge—fixing term. (106)

Here 4* are the 4 x 4 Dirac matrices, ¥ (x) = ¥'(2)4°, and F,, = 9,4, — 9, A, denotes the
electromagnetic field tensor. Minimal coupling gives rise to the interaction Lagrangian

Ling = —ej"(x)Au(2),  j"(x) = (@) (). (107)



After quantization, the photon field is expanded into plane waves as

Au(r) = / % ; [a® (k)M (k)e ™™ + aM (k)eM* (k)e'*] (108)

where e,([\) are polarization vectors, and ¢V, a™T are annihilation and creation operators of

photons. The quantized fermion field ¢(x) has the expansion

d®*k m () —ikz | gt () ika
P(x) = 2r P I [ba(k, sg)u' (k, s3)e” " + d! (k, s3)v'Y (k, s3)e"™ |,
a=1,2

(109)

where the four-component spinors u(®(k, s3), v(®)(k, s3) are positive and negative energy
solutions of the Dirac equation with momentum k and spin component s3. The operators
b(k, s3), bf(k, s3) annihilate and create electrons, the operators d(k, s3) and d'(k, s3) do the
same for positrons [90].

In the framework of QED the transition probability from an initial to a final state for a
given process is represented by the imaginary part of the unitary S-matrix squared

Prei = |(f,out [Im S|1,in)|* (110)

where

ImS = (2m)*0*(P; — P)) | My, (111)

My; is called matrix element and d-function stays for energy-momentum conservation in the
process.

When initial state contains two particles with energies €; and €;, and final state contain
arbitrary number of particles having 3-momenta p;, the transition probability per unit time
and unit volume is given by

dpf<—i
dvdt

1 d3p!
= (2m)*6*(P; — P) | My,|? L 112
)5y = Pl 3Tt (12
The Lorentz invariant differential cross-section for a given process is then obtained from
(112) by dividing it on the flux density of initial particles

1 a*p;
do = (215" (Py = P) My = o (113)

where p; and py are particles’ 4-momenta, m; and msy are their masses respectively, Ii;, =

(p1p2)2 - m%m%.

It is useful to work with Mandelstam variables which are kinematic invariants built from
particles 4-momenta. Consider the process A + B — C' + D. Lorentz invariant variables
can be constructed in the following way

s=(pa +PB)2 = (pc +pD)2>
t=(pa+pc) = ps+pn), (114)
u= (pp+pc)’ = (pa+pp).



Since any incoming particle can be regarded as outgoing antiparticle, it gives rise to the
crossing symmetry property of the scattering amplitude, which is best reflected in the Man-
delstam variables. In fact, reactions A+B — C+D, A+C — B+Dor A+D — C+B
where the bar denotes the antiparticle are just different cross-channels of a single general
reaction. The meaning of the variables s, t, u changes, but the amplitude is the same.

The S-matrix is computed through the interaction operator as

S =Texp <i/£mtd4x) , (115)

where 7 is the chronological operator. Perturbation theory is applied, since the fine structure
constant is small, while any additional interaction in collision of particles contains the factor
a.

A simple and elegant way of computation of the S-matrix and consequently of the matrix
element My, is due to Feynman, who discovered a graphical way to depict each QED process,
in momentum representation.

In what follows we consider briefly the calculation for the case of Compton scattering
process [90], which is given by two Feynman diagrams. Conservation law for 4-momenta
is p+ k =p + k', where p and k are 4-momenta of electron and photon respectively, and
invariant Iy;, = (s —m?)2. After the calculation of traces with gamma-matrices, the final

4
result, expressed in Mandelstam variables, is

2
|Mf'|2:2777'264[ me i me —I—( me T m; )

—m2  u—m2 —m2 oy —m2
s—mZ u—m2 \s—mZ u—m?

1/s—m? u—m?
4 (u—m2 * s—m2)]’ (116)

e

s=(p+k)* t=(p—p)*and u= (p—k')% Since the differential cross-section is independent
of the azimuth of p} relative to py, it is obtained from (116) as

B 1
 64n

dt
2

kin

do M;y|? (117)

In the laboratory frame, where s —m? = 2m.w, u —m? = —2m.w’ and electron is at rest

before the collision with photon, the differential cross-section of Compton scattering is thus
given by the Klein—Nishina formula [176]

1/e2\*/W\* (0w
W W w

where w and w’ are frequencies of photon before and after the collision, 1} is the angle at
which the photon is scattered.

4.3 The Dirac and the Breit—Wheeler processes in QED

We turn now to the formulas obtained within framework of quantum mechanics by Dirac
[1] and Breit and Wheeler [2] within QED. The crossing symmetry allows to readily write
the matrix element for the pair production (2) and pair annihilation (3) processes with the
energy-momentum conservation written as p, +p_ = ky+ko, where p, and p_ are 4-momenta



of the positron and the electron, k; and ks are 4-momenta of two photons. It is in fact given
by the same formula (116) with the substitution p — p_, p’ — p., k — k1, k' — ks, but with
different meaning of the kinematic invariants s = (p_ — k1)?, t = (p_ +p4)? u = (p_ — ko)>.
Matrix elements for Dirac and Breit—~Wheeler processes are the same. The differential cross-
section of the Dirac process is obtained from (116) with the exchange s <+ ¢ and the invariant
Tin = $t(t — 4m2), which leads to (12). For the case of the Breit-Wheeler process with the
invariant Iy, = 1¢%, the result is reduced to (23).

Since the Dirac pair annihilation process (2) is the inverse of Breit~Wheeler pair pro-
duction (3), it is useful to compare the cross-section of the two processes. We note that
the squared transition amplitude |My;|*> must be the same for two processes, due to the
CPT invariance. The cross-sections could be different only by kinematics and statistical
factors. Let us consider the pair annihilation process in the center of mass system where
E =&+ & = & + & is the total energy, the initial and final momenta are equal and
opposite, p; = —p2 = p and p} = —p,, = p’. The differential cross-section is given by (117).
For the Breit and Wheeler process (3) of two colliding photons with 4-momenta k; and ko,
the scalar I2. = (kik)®. For the Dirac process (2) of colliding electron and positron with

4-momenta p; and ps, the scalar 1%, = (pi1p2)® — mZ. As results, one has
2
doyy, _ Lere- _ 2kike) —dmg & —2mg _ (IP]\" _ 5 (119)
dO'EJref ]37 2(]€1]€2) 82 E

where momenta and energies are related by
(p1+p2)? = (ki + ko) = 2(k1 ko) = 262

Integrating Eq. (119) over all scattering angles yields the total cross-section. Whereas the
previous o, required division by a Bose factor 2 for the two identical photons in the final
state, the cross-section o.+.- has no such factor since the final electron and positron are not

identical. Hence we obtain .

2—320'77. (120)

Octe- =
By re-expressing the kinematic quantities in the laboratory frame, one obtains the Dirac
cross-section (12).

As shown in Eq. (120) in the center of mass of the system, the two cross-sections g+ -
and o, of the above described phenomena differ only in the kinematics and statistical factor
1/(253?), which is related to the fact that the resulting particles are massless or massive. The
process of electron and positron production by the collision of two photons has a kinematic
energy threshold, while the process of electron and positron annihilation to two photons has
not such kinematic energy threshold. In the limit of high energy neglecting the masses of
the electron and positron, 8 — 1, the difference between two cross-sections o.+.- and 0., is
only the statistical factor 1/2.

The total cross-sections (14) of Breit—-Wheeler’s and Dirac’s process are of the same
order of magnitude ~ 107*cm? and have the same energy dependence 1/£? above the
energy threshold. The energy threshold (2m.c?) have made until now technically impossible
to observe the pair production by the Breit—Wheeler process in laboratory experiments at
the intersection of two beams of X-rays. Another reason is of course the smallness of the
total cross-section (24) (0., < 107*cm?) and the experimental limitations on the intensities
I; (17) of the light beams. We shall see however, that this Breit-Wheeler process occurs
routinely in the dyadosphere of a black hole. The observations of such phenomena in the



astrophysical setting are likely to give the first direct observational test of the validity of the
Breit-Wheeler process, see e.g. [177].

4.4 Double-pair production

Following the Breit-Wheeler pioneer work on the process (3), Cheng and Wu [178, 179, 180,
181, 182, 183] considered the high-energy behavior of scattering amplitudes and cross-section
of two photon collision, up to higher order O(a?) [184],

Tty —e e +et e, (121)

For this purpose, they calculated the two photon forward scattering amplitude M., (see
Eq. (112)) by taking into account all relevant Feynman diagrams via two electron loops up
to the order O(a*). The total cross-section o, for photon-photon scattering is related to the
photon-photon scattering amplitude M,, in the forward direction by the optical theorem,

1
0y(8) = gIme’ (122)

where s is the square of the total energy in the center of mass system. They obtained the
total cross-section of double pair production (121) at high energy s > 2m,,

Oé4

Sli_glo 04y (8) = W[175<(3) — 38] ~ 6.5ub, (123)
which is independent of s as well as helicities of the incoming photons. Up to the a* order,
Eq. (123) is the largest term in the total cross-section for photon-photon scattering at very
high energy. This can be seen by comparing Eq. (123) with the cross-section (23,24) of the
Breit—Wheeler process (3), which is the lowest-order process in a photon-photon collision
and vanishes as s — oco. Thus, although the Breit—Wheeler cross-section is of lower order
in a, the Cheng-Wu cross-section (123) is larger as the energy becomes sufficiently high.
In particular, the Cheng-Wu cross-section (123) exceeds the Breit—Wheeler one (23) as the
center of mass energy of the photon £ > 0.24GeV. Note that in the double pair production
(121), the energy threshold is € > 2m, rather than £& > m, in the one pair production of
Breit—Wheeler.

In Ref. [185, 186], using the same method Cheng and Wu further calculated other
cross-sections for high-energy photon-photon scattering to double pion, muon and electron—
positron pairs:

e the process of double muon pair production v; +vo — u* + = + ™+~ and its cross-
section can be obtained by replacing m, — m,, in Eq. (123), thus o,,(s) ~ 1.5-10"ub.

e the process of double pion pair production v; + v — 77 + 7~ + 77 + 7~ and its
extremely small cross-section

4

lim 0., (s) = S

lim P [7¢(3) 4 10] ~ 0.23 - 105 b, (124)

e the process of one pion pair and one electron—positron pair production v; + v —
et +e” + 7" + 7 and its small cross-section

20/} 2\? 16, m2 163
lim 0. (s) = —r [(ln%) v om0 0.26-107 b, (125)

500 ~ 27rm2 m2 3 mZ | 18

which is more than one hundred times larger than (124).



e the process of one pion pair and one muon-antimuon pair production v, + v — ™ +
p~ + 7t + 7~ and its small cross-section can be obtained by replacing m. — m,, in
Eq. (125) everywhere.

4.5 Electron-nucleus bremsstrahlung and pair production by a
photon in the field of a nucleus

The other two important QED processes, related by the crossing symmetry are the electron-
nucleus bremsstrahlung (32) and creation of electron—positron pair by a photon in the field
of a nucleus (26). These processes were considered already in the early years of QED. They
are of higher order, comparing to the Compton scattering and the Breit—Wheeler processes,
respectively, and contain one more vertex connecting fermions with the photon.

The nonrelativistic cross-section for the process (32) was derived by Sommerfeld [103].
Here we remind the basic results obtained in the relativistic case by Bethe and Heitler
[96] and independently by Sauter [97]. The Feynman diagram for bremsstrahlung can be
imagined considering for the Compton scattering, but treating one of the photons as virtual
one corresponding to an external field. We consider this process in Born approximation, and
the momentum recoil of the nucleus is neglected. Integrating the differential cross-section
over all directions of the photon and the outgoing electron one has, see e.g. [90]

dU:Z2ar2d—“’p—{%—2e’p+p + m? <l6 + U E”,>+

/-

cwr - P i (126)
+L [??;;’ p3p" (€% e 4t mgee ) 20 (legljp =l Eeljf ﬂ } ’
where ) ) )
L—log EFPP e 100 CTP 6“7, (127)
ee’ — pp! — m? €—Dp e —p

and w is photon energy, p and p’ are electron momenta before and after the collision, respec-
tively, € and € are its initial and final energies.

The averaged cross-section for the process of pair production by a photon in the field of
a nucleus may be obtained by applying the transformation rules relating the processes (26)
and (32), see e.g. [90]. The result is

do = Zzarg%d@r{—— — 26.,.6_% + m? (l_;—; + l+3671+l) +
pyp- - +_p+p,
+L [5;1; + pi;i (2€2 + pip2 —mleje ) — (128)

2 _ _n2
_miw (g €€ 10Jr l €re_—p?
2pip- <+ p3 T '

ere +pip. +ml €+ + Pt
bR l:l: = 10g ’

€4€- — P4p— + Mg €+ — P+
and p4 and €4 are momenta and energies of positron and electron respectively.

The total cross-section for this process is given in Section 2.3, see (28). In the ultrarela-
tivistic approximation relaxing the condition Z«a < 1 the pair production by the process (26)
was treated by Bethe and Maximon in [187, 188]. The total cross-section (28) is becoming
then

where

L =log

(129)

28 2w 109
=z log— ———f(z 1
o=5Zar, ( og ST f( a)) (130)



where

f(Za) = b + Re¥(1 +iZa) = (Za)?y m (131)

n=1

4.6 Pair production in collision of two ions

The process of the pair production by two ions (29) in ultrarelativistic approximation was
considered by Landau and Lifshitz [99] and Racah [100]. For the modern review of these
topics see [189]. The corresponding differential cross-section with logarithmic accuracy can
be obtained from the differential cross-section (128) taking its ultrarelativistic approximation
~v > 1 for the Lorentz factor of the relative motion of the two nuclei with charges Z; and
Zs respectively, and treating the real photon line in the process (26) as a virtual photon
corresponding to the external field of the nucleus. One should then multiply the cross-
section by the spectrum of these equivalent photons, see Section 2.3, and the result is

8 o deqpde_

2 €Er€_ me?y
do = ;T?(lega) ot (e%r + € + §e+e_) log

1 .
me(€er +€_) ©8 (4 +€-)

(132)

The total cross-section is given in Section 2.3, see (30) and (31). More recent results
containing higher order in « corrections are obtained in [190, 191], see also [192, 193].
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Figure 5: Classification of the eTe™ pair production by the number of photons attached to
a nucleus. Reproduced from [189].

Lepton pair production in relativistic ion collision to all orders in Za with logarithmic
accuracy is studied in [194] where the matrix elements are separated in different classes, see
Fig. 5, according to numbers of photon lines attached to a given nucleus

M = M(i) + M(ﬁ) + M(iii) + M(iv). (133)
The Born amplitude ‘M(i) ‘2 corresponding to the lowest order in Za with one photon line
attached to each nucleus was computed by Landau and Lifshitz [99] who obtained the famous
LE)’Y dependence of the cross-section in (30). It should be mentioned that the Racah formula
(31) in contrast with the Landau and Lifshitz result (30) contains also terms proportional
to L?/ and L,. These terms come from the absolute square of M) and M) and their
interference with the Born amplitude M) [191]. Their result for the Coulomb corrections
which is defined as the difference between the full cross-section and the Born approximation,
in order L2 is of the “Bethe-Maximon” type [191]

70 = o (120 [[(Z20)f (Z20)] (2 + O(L)). (134)



The Coulomb corrections here are up to L?/—term in the Racah formula (31).

The calculations mentioned above were all made as early as in the 1930s. Clearly, at
that time only eTe™ pair production was discussed. However, these calculations can be
considered for any lepton pair production, for example p* ™ pair production, as long as the
total energy in the center of mass of the system is large enough. However, simple substitution
me. — my, where [ stands for any lepton is not sufficient since when the energy reaches the
inverse radius A = 1/R ~ 30MeV of the nucleus the electric field of the nucleus cannot be
approximated as a Coulomb field of a point-like particle [195]. The review of computation
for lepton pair production can be found in [196] and [101].

Another effect of large enough collision energy is multiple pair production. Early work
on this subject started with the observation that the impact-parameter-dependent total pair
production probability computed in the lowest order perturbation theory is larger than one.
The analysis of Ref. [190] devoted to the study of the corresponding Feynman diagrams
in the high-energy limit leads to the probability of N lepton pair production obeying the
Poisson distribution. For a review of this topic see [189].

Two photon particle pair production by collision of two electrons or electron and positron
(see Fig. 1, where 4-momenta p; and p, correspond to their momenta) were studied in storage
rings in Novosibirsk (ee™ — eTe~ete™ [197]) and in Frascati at ADONE (ete™ — efeete”
[198], ete™ — eTe putpu™ [199], efe™ — eTe~ntn™ [200]), see also [201]. At high energy the
total cross-section of two photon production of lepton pairs is given by [99, 101]

28a* s \? S
Ot yete—[t]- = T2 (ln —) In ot l=e or pu. (135)

see c.f. Eq. (30).

4.7 QED description of pair production

We turn now to a Sauter-Heisenberg-Euler process in QED. An external electromagnetic
field is incorporated by adding to the quantum field A, in (107) an unquantized external
vector potential A}, so that the total interaction becomes

Ling + L5y, = —ev(@)y"y (@) [Au() + A ()] . (136)

Instead of an operator formulation, one can derive the quantum field theory from a functional
integral formulation, see e.g. [202], in which the quantum mechanical partition function is
described by

Z[A°] = / [DyYDYDA,] exp [Z / d4x(£+£fnt)] : (137)

to be integrated over all fluctuating electromagnetic and Grassmannian electron fields. The
normalized quantity Z[A®] gives the amplitude for the vacuum to vacuum transition in the
presence of the external classical electromagnetic field:

Z[A°]

(out, 0]0,in) = 200

(138)

where |0,in) is the initial vacuum state at the time ¢ = ¢ — —oo, and (out, 0| is the final
vacuum state at the time t = ¢, — 4o00. By selecting only the one-particle irreducible



Feynman diagrams in the perturbation expansion of Z[A®] one obtains the effective action

as a functional of A°:
AA][A°] = —iln{out, 00, in). (139)

In general, there exists no local effective Lagrangian density AL.g whose space-time integral
is AAcg[A°]. An infinite set of derivatives would be needed, i.e., AL.s would have the ar-
guments A°(z),0,A°(z),0,0,A°%(x), ..., containing gradients of arbitrary high order. With
presently available methods it is possible to calculate a few terms in such a gradient expan-
sion, or a semi-classical approximation a la JWKB for an arbitrary but smooth space-time
dependence (see Section 3.21ff in Ref. [202]). Under the assumption that the external field
A®(x) varies smoothly over a finite space-time region, we may define an approximately local
effective Lagrangian AL.g[A%(z)],

Ao |A%] ~ / T ALog[A°(2)] = VALA Lo [A°], (140)

where V' is the spatial volume and time interval At =t, —t_.
For a large time interval At = t, —t_ — oo, the amplitude of the vacuum to vacuum
transition (138) has the form,

(out, 0]0, in) = e~ Af—T/2)AL (141)

where A&y = &E(A°®) — &(0) is the difference between the vacuum energies in the presence
and the absence of the external field, I' is the vacuum decay rate, and At the time over
which the field is nonzero. The probability that the vacuum remains as it is in the presence
of the external classical electromagnetic field is

|(out, 0[0, in)|? = e~ 2mAA« AT, (142)
This determines the decay rate of the vacuum in an external electromagnetic field:

' 2ImAAg[A°]

—=—————— =~ 2ImALg[A%]. 143

o= T mAL gl A° (143)
The vacuum decay is caused by the production of electron and positron pairs. The external

field changes the energy density by
A& — ReAAs [A°]

172 VAt

~ — ReALeg[A°]. (144)

4.7.1 Schwinger formula for pair production in uniform electric field

The Dirac fields appears quadratically in the partition functional (137) and can be integrated
out, leading to

214 = [ DADet(ig — e} £~ +in} P=0 A=7"As (105)

where Det denotes the functional determinant of the Dirac operator. Ignoring the fluctua-
tions of the electromagnetic field, the result is a functional of the external vector potential
Ac(x):

Z|A°] = const x Det{i@ — e A°(x) — m. + in}. (146)



The infinitesimal constant in with n > 0 specifies the treatment of singularities in energy
integrals. From Egs. (138)—(146), the effective action (142) is given by

AAOH[AC] = —Irln {[Zﬁ — 6%(1’) — Me + Z’f]] m} s (147)

where Tr denotes the functional and Dirac trace. In physical units, this is of order . The
result may be expressed as a one-loop Feynman diagram, so that one speaks of one-loop
approximation. More convenient will be the equivalent expression

el __ Z . e 2 2 . 1
AA[A°] = ~3 Trln <{[zé9 —eA(x)]* —mZ +in} o in) : (148)
where .
[i9 — e 4°(2)]* = [i0, — eAj ()] + 50" Es (149)
where o = L[v*,7¥], Ft, = 8,45 — 9, A¢. Using the identity
% / ~ds [eistontin) _ gistestin)] (150)
aq 0 S
Eq. (148) becomes
AAGH[Ae] _ %/ @e—is(mZ—in)Tr<z|eis{[iau—eAfL(m)P—i-%o“”FﬁV} N 6_i562|l’>, (151)
0o S

where (x|{---}|z) are the diagonal matrix elements in the local basis |z). This is defined by
the matrix elements with the momentum eigenstates |k) being plane waves: (z|k) = e~
The symbol Tr denotes integral f d*z in space-time and the trace in spinor space. For
constant electromagnetic fields, the integrand in (151) does not depend on z, and o F},
commutes with all other operators. This will allows us to calculate the exponential in
Eq. (151) explicitly. The presence of —in in the mass term ensures convergence of integral
for s — oc.

If only a constant electric field E is present, it may be assumed to point along the z-axis,
and one can choose a gauge such that A7 = —Ft is the only nonzero component of Af,. Then
one finds .

trexpis [iauyFﬁu} = 4 cosh(seF), (152)

where the symbol tr denotes the trace in spinor space. Using the commutation relation
[00, 2°] = 1, where 2° = t, one computes the exponential term in the effective action (151)

(c.e.g. [89])

: : - e 2 E pv e — 23
(x| expis [(18“ el (r))” + 57 FW] |z) 2n)is coth(eEs). (153)

The second term in Eq. (151) is obtained by setting £ = 0 in Eq. (153), so that the effective
action (151) yields,

1
2(2m)?

% 4 . .
AAg = /d4:£/ S—j leEs coth(eEs) — 1] e is(me—in), (154)
0



Since the field is constant, the integral over x gives a volume factor, and the effective action
(151) can be attributed to the space-time integral over an effective Lagrangian (140)

1 > ds o,
- - = _ —is(mg—in)
AL 2(27?)2/0 3 leE's coth(eEs) — 1] e . (155)

By expanding the integrand in Eq. (155) in powers of e, one obtains,

1 , . 2 4 , ,
S5 [eBs coth(eBs) — 1] 0 — {%ﬁ - Z—;E‘l + O(eb) | emistm=in), (156)
The small-s divergence in the integrand,
2 00
€ 2 1 dS —1s mz—i
ERdbTorSe /0 PR (157)

is proportional to the electric term in the original Maxwell Lagrangian. The divergent term
(157) can therefore be removed by a renormalization of the field £. Thus we subtract a
counterterm in Eq. (155) and form

Al = —— / T eEscoth(eEs)—1—6—2E252 e~ istmE=in) (158)
202 ), B 3 ’

Remembering Eq. (143), we find from (158) the decay rate of the vacuum per unit volume
r 1 > ds e’ 2 2| —is(m2—i
V= Wlm/o 3 [eEs coth(eEs) — 1 — gE §% | etstme=in) (159)

The integral (159) can be evaluated analytically by the method of residues. Since the
integrand is even, the integral can be extended to the entire s-axis. After this, the integration
contour is deformed to enclose the negative imaginary axis and to pick up the contributions
of the poles of the coth function at s = nw/eE. The result is

r 2N 1 E.
el —exp(—m;? ) (160)

This result, i.e. the Schwinger formula [25, 26, 27] is valid to lowest order in A for arbitrary
constant electric field strength.
An analogous calculation for a charged scalar field yields

I aBf? SN (—1) ! nrkE,
V. o2 . CP\TTE ) (161)

n=1

which generalizes the Weisskopf treatment being restricted to the leading term n = 1. These
Schwinger results complete the derivation of the probability for pair productions. The leading
n = 1 -terms of (160) and (161) agrees with the JWKB results we discuss in Section 2.5,
and thus the correct Sauter exponential factor (44) and Heisenberg-Euler imaginary part of
the effective Lagrangian (102).

Narozhny and Nikishov [33] have expressed Eq. (142) through the probability of one pair
production P, of n pair production P, with n =1,2,3,--- as well as the average number of
pair productions

|(out, 0[0,in)|> =1—P, — P, — Py — - - -, (162)



where P,, (n =1,2,3,---) is the probability of n pair production, and the probability of one
pair production is,

ak? mm 2V AHIMAL o5 [A°
Pr= VAt In1—e" & e tmA Lot [A%] (163)
The average number N of pair productions is then given by

L = E? E,

N = g npP, = VAta—z exp (—WE ) , (164)
T

n=1

which is the quantity directly related to the experimental measurements.

4.7.2 Pair production in constant electromagnetic fields

Since the QED theory is gauge and Lorentz invariant, effective action AA.s and Lagrangian
AL are expressed as functionals of the scalar and pseudoscalar invariants S, P (69). Thus
they must be invariant under the discrete duality transformation:

IB| = —i[E|, [E| =B, (165)

ie.,
g — —ig, &—if. (166)

This implies that in the case E = 0 and B # 0, results can be simply obtained by replacing
|E| — i|B| in Egs. (153), (158), (159):

; ; _ e 2 E uv e _
(r|expis [(z@u eAl ()" + 57 Fo | o) R cot(eBs), (167)
and ) ~ g )
_ s € 2 2| —is(m2—i
AECH = WA E |i€BS COt(eBS) -1+ gB S :| (& ( 77). (168)

In the presence of both constant electric and magnetic fields E and B, we adopt parallel
Ecr and Ber pointing along the z-axis in the center-of-fields frame, as discussed after
Eqgs. (60), (61), (62). We can choose a gauge such that only A = —Ecpt, A = Bepz'
are nonzero. Due to constant fields, the exponential in the effective action Eq. (151) can
be factorized into a product of the magnetic part and the electric part. Following the same
method used to compute the electric part (152,153), one can compute the magnetic part by
using the commutation relation [0y, x'] = 1, where z! = x. Or one can make the substitution
(165) to obtain the magnetic part, based on the discrete symmetry of duality. As results,
Egs. (152), (153) become

trexp is [ga‘“’Fﬁy] = 4 cosh(seEcr) cos(seBcr), (169)
and
(x| expis {[iaﬂ — e Al (z)* + ga“"Fﬁy} |z)
1 ek B
= cocr coth(seEcp)6 F cot(seBcr). (170)
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In this special frame, the effective Lagrangian is then given by

1 < d
AL = —— / 4 [62ECFBCFS2 coth(seEcr) cot(seBgr)
0

2(2m)? s3
2
1 %(EéF - BgF)s2] . gmis(me—in) (171)

Using definitions in Egs. (69), (70), (71), we obtain the effective Lagrangian

ALeg= 1 / ds [eQEﬁSQ coth(ees) cot(efs)
0

202m)2 J, &
—-1- %2(52 — 52)82] eistme=in), (172)
and the decay rate
g = ﬁlm /000 g [628582 coth(ees) cot(efs)
1- 6—32(52 - 52)32} g istm?=in) (173)

in terms of the invariants ¢ and § (71) for arbitrary electromagnetic fields E and B.
The integral (173) is evaluated as in Eq. (160) by the method of residues, and yields
25, 26, 27]

I ae? 1 nmB/e nrE,
oo il A — 174
Vo w2 ; n? tanhnw /e P ( 5 ) ’ (174)
which reduces for 5 — 0 (B = 0) correctly to (160). The n = 1 -term is the JWKB
approximation (73).

The analogous result for bosonic fields is

L ae (=)™ nwf/e nrE,
Loy exp (_ :

Vo oor n? sinhnnf/e

n=

) (175)

where the first term n = 1 corresponds to the Euler-Heisenberg result (102). Note that
the magnetic field produces in the fermionic case an extra factor (nw(/e)/tanh(nrf/e) > 1
in each term which enhances the decay rate. The bosonic series (175), on the other hand,

carries in each term a suppression factor (nwf/e)/sinhnnf/e < 1. The average number N
(164) is given by

7 tanh 73 /e P € ) ’ (176)

The decay rate I'/V gives the number of electron—positron pairs produced per unit volume
and time. The prefactor can be estimated on dimensional grounds. It has the dimension of
E?/h, i.e., m*c®/h*. This arises from the energy of a pair 2m.c? divided by the volume whose
diameter is the Compton wavelength i/m.c, produced within a Compton time %/m.c?. The
exponential factor suppresses pair production as long as the electric field is much smaller
than the critical electric field E., in which case the JWKB results (73) and (74) are good
approximations.

The general results (174),(175) was first obtained by Schwinger [25, 26, 27] for scalar and
spinor electrodynamics (see also Nikishov [28], Batalin and Fradkin [29]). The method was
extended to special space-time-dependent fields in Refs. [30, 31, 32, 33, 34]. The monographs
[89, 145, 203, 204, 205] can be consulted about more detailed calculation, discussion and
bibliography.
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4.7.3 Effective nonlinear Lagrangian for arbitrary constant electromagnetic field

Starting from the integral form of Heisenberg and Euler Lagrangian (172) we find explic-
itly real and imaginary parts of the effective Lagrangian AL (172) for arbitrary constant
electromagnetic fields E and B [35]. The essential step is to reach a direct analytic form
resulting from performing the integration. We use the expressions [206],

0 2

ecs coth(ees) = n;oo (82j—77‘3); T, = nm/ee, (177)
o0 2
efscot(efis) = m:Z_OO (SQiiT,%)’ T = mm/ef, (178)
and obtain for the finite effective Lagrangian of Heisenberg and Euler integral representation,
1 > & S 5 0 g 0 o 2.
AL 3 (PR R U TR
e, X, Rl e )

where divergent terms n # 0,m = 0, n = 0,m # 0 and n = m = 0 are excluded from
the sum, as indicated by a prime. The symbol &-j = 1 — 0;; denotes the complimentary
Kronecker-§ which vanishes for ¢ = j. The divergent term with n = m = 0 is eliminated
by the zero-field subtraction in Eq. (172), while the divergent terms n # 0,m = 0 and
n=0,m%#0

. 1 & dS : 2. - 1 = 1
A div _ - —Zs(me_”?)Q - J— 1
LY = 50 /0 e > nz::l = (180)

m=1 ™

are eliminated by the second subtraction in Eq. (172). This can be seen by performing the

sums i
=1 ec\k =1 ep
— = (=) ¢(k); — =22 ¢k 181
Sh=(5) s Yg=(%) w. (181)
where ((k) =Y, 1/n* is the Riemann function.

The infinitesimal in accompanying the mass term in the s-integral (179) is equivalent to
replacing e~ (me=in by e~is=immZ Thig implies that s is to be integrated slightly below
(above) the real axis for s > 0 (s < 0). Equivalently one may shift the 7, (—7,,) variables
slightly upwards (downwards) to 7,, + in (—7,, — in) in the complex plane.

In order to calculate the finite effective Lagrangian (179), the factor e=#(="mZ is divided
into its sin and cos parts:

sin __ —1 / sds ng . SnO . o 21

ALY = 4(2m)? an::_oo/—oo T+ T [(82 —-72)  (s2+ 73)] sins(1 —in)mc];  (182)
cos __ 1 - ! > SdS gm() gnO . 2

S Sy mz_:_oo/o EREE) [(52 -2) (& +T,%)} cos[s(1 —in)m].  (183)

The sin part (182) has an even integrand allowing for an extension of the s-integral over the
entire s-axis. The contours of integration can then be closed by infinite semicircles in the



half plane, the integration receives contributions from poles +7,,, +i7,, so that the residue
theorem leads to,

ALSY = iO;—éf Z % coth (@) exp(—nmE./¢) (184)
- 2'0;—57? mZ::l % coth <m77r5) exp(immE./[3) (185)

The first part (184) leads to the exact non-perturbative Schwinger rate (174) for pair pro-
duction.

The second term, as we see below, is canceled by the imaginary part of the cos term. In
fact, shifting s — s — in, we rewrite the cos part of effective Lagrangian (183) as

cos sm $0m0 $0n0
ALSE = - : 186
In the first term of magnetic part, singularities s = 7,,,,(m > 0) and s = —7,,, (m < 0)

appear in integrating s-axis. We decompose

S T LT S
PR —— - — 155(3 — Tm) + 155(8 + 7o) + 7782 —

(187)
where P indicates the principle value under the integral. The integrals over the J-functions
give

L = O‘Eﬁ mZ_ ( ) exp(imnE,/B). (188)

which exactly cancels the second part (185) of the sin part ALSR.
It remains to find the principle-value integrals in Eq. (186), which corresponds to the real
part of the effective Lagrangian

cos 1 = ! 1 > 2 ng() SSnO
(AL p 2(27r)2 nmg_oon? n Tr2n7)/0 ds cos(sm) <32 e s (189)

We rewrite the cos function as cos(sm?) = (€ + e¢~™¢)/2 and make the rotations of
integration contours by £7/2 respectively,
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Using the formulas (see Secs. 3.354, 8.211.1 and 8.211.2 in Ref. [206])
J(z)=P oods __:2 = —% e “Ei(z) + ¢’Ei(—2) |, (191)
0

where Ei(z) is the exponential-integral function,

P/ dt— log(— Z;— (192)
k=1



we obtain the principal-value integrals (190),
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(AL = 5y 2 g (B0 0T) = o () (193)
Having so obtained the real part of an effective Lagrangian for an arbitrary constant

electromagnetic field we recover the usual approximate results by suitable expansion of the

exact formula. With the help of the series and asymptotic representation (see formula 8.215

in Ref. [206]) of the exponential-integral function Ei(z) for large z, corresponding to weak

electromagnetic fields (e < 1,8 < 1),
1 6 120 5040 B 362880 n

) =-Z-a-% % "t (194)
and Eq. (193), we find,
1 = 1 _ 1 6 120
A cos — / {5n e
(ALe)p 2(2m)? nmz::_wn% e [Tgmﬁ * TAmg - Tim}? "
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Applying the summation formulas (181), the weak field expansion (195) is seen to agree with
the Heisenberg and Euler effective Lagrangian [7],

2c
(ALcg)p = 907 E? {(E*-B** + 7(E-B)*}
20 o2 _R2ys 2_R2\(E.RB1Z ...
+3157T2E§ {2(E*-B*)® + 13(E’~B*)(E-B)*} + - - -, (196)

which is expressed in terms of a powers series of weak electromagnetic fields up to O(a?).
The expansion coefficients of the terms of order n have the general form m!/(E.)". As long
as the fields are much smaller than F., the expansion converges.

On the other hand, we can address the limiting form of the effective Lagrangian (193)
corresponding to electromagnetic fields (¢ > 1,8 > 1). We use the series and asymp-
totic representation (formulas 8.214.1 and 8.214.2 in Ref. [206]) of the exponential-integral
function Ei(z) for small z < 1,

J(z) = —% [ In(2) + ¢ In(=2)] + 76+ O(2), (197)

with vg = 0.577216 being the Euler-Mascheroni constant, we obtain the leading terms in
the strong field expansion of Eq. (193),
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In the case of vanishing magnetic field B = 0 and m = 0 in Eq. (198), we have,

1 &1 ab? N1 nrkE,
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for a strong electric field E. In the case of vanishing electric field E = 0 and n = 0 in
Eq. (198), we obtain for the strong magnetic field B,

cos\  __ 1 — 1 2 . aB? =1 mmnE,
(B3P = ~ g5y 3= g M) 4+ = ! ( - )+ (200)

o2 m2 t
m=1

The (m = 1) term is the one obtained by Weisskopf [24].

We have presented in Eqgs. (184), (185), (188), (193) closed form results for the one-loop
effective Lagrangian AL.g (172) for arbitrary strength of constant electromagnetic fields.
The results will receive fluctuation corrections from higher loop diagrams. These carry one
or more factors o, o?, ... and are thus suppressed by factors 1/137. Thus results are valid
for all field strengths with an error no larger than roughly 1%. If we include, for example, the
two-loop correction, the first term in the Heisenberg and Euler effective Lagrangian (196)
becomes [145]

2« 40 2 a2\2 1315c R\2
(Aﬁog)p—gowEg {<1+ 97T)(E B?) +7(1+ 2527T)(E B)?}. (201)

Readers can consult the recent review article [207], where one finds discussions and com-
putations of the effective Lagrangian at the two-loop level, and [208] for discussion of pair
production rate.

4.8 Theory of pair production in an alternating field

When the external electromagnetic field F, is space-time-dependent, i.e., Fy, = Fy (x,t)
the exponential in Eq. (151) can no longer be calculated exactly. In this case, JWKB methods
have to be used to calculate pair production rates [36, 30, 31, 32, 37, 209, 210, 30, 31, 32].
The aim of this section is to show how one can use a semi-classical JWKB approach to
estimate the rate of pair production in an oscillating electric field as first indicated by Brezin
and Itzykson in Ref. [36]. They evaluated the production rate of charged boson pairs. The
results they obtained can be straightforwardly generalized to charged fermion case, since the
spins of charged particles contribute essentially with a counting factor to the final results
(see Secs. 2.5 and 4.7.1). Thus, let the electromagnetic potential be z directed, uniform in
space and periodic in time with frequency wy:

E
Al (z) = (0,0,0,A(t)), A(t) = — coswot. (202)
Wo
Then the electric field is z directed, uniform in space and periodic in time as well. The
electric field strength is given by E(t) = —A(t) = Esinwpt. It is assumed that the electric
field is adiabatically switched on and damped off in a time 7, which is much larger than
the period of oscillation Ty = 27 /wy. Suppose also that T} is much larger than the Compton
time 27 /w of the created particle , i.e.,
2 27
T°>Th>» — ~ —, (203)
W me
where w = /|p|? + m2, p being the 3-momentum of the created particle. Furthermore, eF
is assumed to be much smaller than m?, i.e., E < E, (see Eq. (59)).
We have to study the time evolution of a scattered wave function () representing the
production of particle and antiparticle pairs in the electromagnetic potential (202). As usual,



an antiparticle can be thought of as a wave-packet moving backward in time. Therefore,
for large positive time (forward) only positive energy modes (~ e~®!) contribute to (t).
Similarly, for large negative times both positive energy and negative energy modes (~ ™)
contribute to 1 (t) which satisfies the differential equation [36]:

d? 9
[ﬁ +w (t)] Y(t) =0, (204)
where the “variable frequency” is defined as
w(t) = {m2+p.> + [p. — eA(t)2}2. (205)
The JWKB method suggests a general solution of the from
t
ult) = a(t)e X0+ SO, x(0) = [ drult), (206)
0
where the boundary conditions at large positive and negative times are:
a(—o0) =1, p(+00)=0; x(xo0)=w. (207)

The backward scattering amplitude [(t) for large negative time (¢t — —oo) represents the
probability of antiparticle production.

The normalization condition |t (#)|?

= 1 implies
a(t)e™™® 4 g(t)eXx® =, (208)

Eq. (204) can be written in terms of the scattering amplitudes as

aft)e” XM _ B(t)eiX(t) = —% [a(t)e_iX(t) — ﬁ(t)eiX(t)} , (209)

or, which is the same,

a(0) =~k alt) = BB (210)
Bt) = —% [B(t) — a(t)e D] . (211)

It follows from assumption (203) that w(t) vanishes as [t| — oo, i.e.,

a(t) eElp. — eA(t)]
W) {m2+pi2+ [p. — eA()]2}

< 1. (212)

More precisely

)
< — <K 1. 213
m2+p 2 m? (213)

w(t) )
w(t)

Therefore, a(t) and B(t) slowly vary in time and tend to constants as |t| — oo. The phase
"X oscillates very rapidly as compared to the variation of a(t) and B(t), for x(t) = w(t) >
|w(t)/w(t)|. In the zeroth order the oscillating terms in Eqgs. (210), (211) are negligible and

one finds
aO(t) = [w/wt)]? ~1;  BOt) =0, (214)



which duly satisfy the boundary conditions, and
(t/> et !
o = /t W oold) A (215)

where (203) and (213) have been used. |3 (—o00)|? gives information about the probability
of particle-antiparticle pair production. Namely, the probability of pair production per unit
volume and time is given by
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Since w(t) is a periodic function with the same frequency wy as A(t) one can make a Fourier
series expansion:
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Z €. (217)
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Defined a renormalized frequency €2 via x(t) = t£2 one finds
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Consequently, the probability of pair production (216) is,

~ d3k d3k
/ Z(S nwoy — |Cn|2 /W|Cn |2 (220)

where n°® = 2Q/wy and ¢, are determined via Eq. (217) as

T dx @(x) 2 [*
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¢ /_ﬂ 27 2w(x) *Xp wWo /0 o

The expression for c,. contains a very rapidly oscillating phase factor with frequency of
the order of m./wy, and it decreases very rapidly in terms of imaginary time 7 = —it.
Its evaluation requires the application of the steepest-descent method in the complex time
x = wot plane. This is done by selecting a proper contour turning in a neighborhood of the
saddle point and following the steepest-descent line, so as to find the main contributions
to the integral in Eq. (221). The saddle point originates from branch points and poles in
Eq. (221), which are the zeros of w(x). Mathematical details can be found in Ref. [36]. One
finds

> 97 1/2
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where
2 [0 eF ks
—A+iB=— de’ |m2+p*+ <pz - — cos(z/)) ] : (223)
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and the saddle point is 2o = 1/7 + isinh™![(wo/eE)(m2 + p.2)"/?].

The exponential factor e=24 in Eq. (222) indicates that particle-antiparticle pairs tend to
be emitted with small momenta. This allows one to estimate the right-hand side of Eq. (222)
as follow: (i) p, is set equal to zero, moreover, the range of the p.-integration is of the order
of 2eF Jwy as suggested by the classical equation of motion (204); (ii) cos® B is replaced by

its average value 1/2. As a result, one obtains [36],

- (eR)? [ ek
P ~ T /771 duuexp |— 2 u?g(u)| , (224)

where 71 = mewo/(eE), u = (m? + p,?)w2/(eE)? and

4 1 1—y? q1/2 11
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where F(1/2,1/2;2; —272) = 3F1(1/2,1/2;2; —272) is the Gauss hypergeometrical function.
The function u?g(u) is monotonically increasing:

eE eE m?
e > — e 1 226
wgug(U)_ 2" g(n) eEg(n)>> , (226)

which indicates that the integral in (224) is strongly dominated by values in a neighborhood
of u = n~!. This allows one to approximately perform the integration and leads to the rate
of pair production of charged bosons [36],

aE? 1 l m?
exp |—
21 g(n) + 279'(n) 22

Analogously, the rate of pair production of charged fermions can be approximately obtained
from Eq. (227) by taking into account two helicity states of fermions (see Secs. 2.5 and 4.7.1),

7Dboson =

g<n>] . (227)
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This formula has played an important role in recent studies of electron and positron pair
production by laser beams, which we will discuss in some details in Section 6.2. Momentum
spectrum of electrons and positrons, produced from the vacuum, was calculated in [30, 31,
37, 32]. For nn > 1 this distribution is concentrated along the direction of electric field, while
for n < 1 it approaches isotropic one.

Unfortunately, it appears very difficult to produce a macroscopic electric field with
strength of the order of the critical value (1) and lifetime long enough (> h/(m.c?)) in
any ground laboratory to directly observe the Sauter-Euler-Heisenberg-Schwinger process of
electron—positron pair production in vacuum. The same argument applies for the production
of any other pair of fermions or bosons. In the following Section, we discuss some ideas to
experimentally create a transient electric field £ < E, in Earth-bound laboratories, whose
lifetime is expected to be long enough (larger than fi/m,.c?) for the pair production process
to take place.

7Dfermion =

g<n>] . (228)



4.9 Nonlinear Compton scattering and Breit-Wheeler process

In Section 2.2, we have discussed the Breit—Wheeler process [2] in which an electron—positron
pair is produced in the collision of two real photons 71+, — e™ +e~ (3). The cross-section
they obtained is O(r?), where r, is the classical electron radius, see Eq. (24). This lowest
order photon-photon pair production cross-section is so small that it is difficult to observe
creation of pairs in the collision of two high-energy photon beams, even if their center of
mass energy is larger than the energy-threshold 2m.c? = 1.02 MeV.

In the previous Sections we have seen that in strong electromagnetic fields in lasers the
effective nonlinear terms (196) become significant and therefore, the interaction needs not
to be limited to initial states of two photons [61, 62]. A collective state of many interacting
laser photons occurs.

We turn now to two important processes [38, 39] emerging in the interaction of an ultra-
relativistic electron beam with a terawatt laser pulse, performed at SLAC [63], when strong
electromagnetic fields are involved. The first process is the nonlinear Compton scattering,
in which an ultrarelativistic electron absorbs multiple photons from the laser field, but emits
only a single photon via the process

e+ nw — e +17, (229)

where w represents photons from the strong electromagnetic wave of the laser beam (its
frequency being w), n indicates the number of absorbed photons and v represents a high-
energy emitted photon (see Eq. (230) for cross symmetry). The theory of this nonlinear
Compton effect (229) is given in Section 4.10. The same process (229) has been expressed
by Bamber et al. [211] in a semi-classical framework. The second is the nonlinear Breit—
Wheeler process

y+nw—et +e . (230)

between this very high-energy photon v and multiple laser photons: the high-energy photon
v, created in the first process, propagates through the laser field and interacts with laser
photons nw to produce an electron—positron pair [39].

In the electric field E of an intense laser beam, an electron oscillates with the frequency
w of the laser and its maximum velocity in unit of the speed of light is given by

ek

UmaxYmax = — Ymax = 1/ V 11— Urznax' (231>

mw

In the case of weak electric field, v, < 1 and the nonrelativistic electron emits the dipole
radiation well described in linear and perturbative QED. On the other hand, in the case
of strong electric fields, vy, — 1 and the ultrarelativistically oscillating electron emits
multi-pole radiation. The radiated power is then a nonlinear function of the intensity of the
incident laser beam. Using the maximum velocity vy,a, of oscillating electrons in the electric
field of laser beam, one can characterize the effect of nonlinear Compton scattering by the
dimensionless parameter

2
eBms  MeC” Frpg

7 = UmaxVYmax = (232)

mw wh E,’
where the subscript ‘rms’ means root-mean-square, with respect to the number of interacting
laser photons with scattered electron. The parameter 1 can be expressed as a Lorentz
invariant,

e2|(A, A"
2 = A0 (233)



where A, is the gauge potential of laser wave, 0" A, = 0 and the time-average is taken over
one period of laser wave, (A4,) = 0 and

<AMAM> = <(Au - <Au>)2>- (234)

Eq. (233) shows that 7% is the intensity parameter of laser fields, and 7 in (232) coincides with
the parameter 7 introduced in Eq. (224) for the pair production in an alternating electric
field (see Section 4.8).

4.10 Quantum description of nonlinear Compton effect

In Refs. [61, 62, 40, 41, 42, 43, 44, 45, 212, 213, 214, 215, 216, 90], the quantum theory of the
interaction of free electrons with the field of a strong electromagnetic wave has been studied.
The application of quantum perturbation theory to such interaction requires not only that
the interaction constant « should be small but also that field should be sufficiently weak.
The characteristic quantity in this respect is the dimensionless invariant ratio 7, see (233).
The photon emission processes occurring in the interaction of an electron with the field of a
strong electromagnetic wave have been discussed in Ref. [90] for any 7 value. The method
used is based on an exact treatment of this interaction, while the interaction of the electron
with the newly emitted photons regarded as a perturbation.

Laser beam is considered as a monochromatic plane wave, described by the gauge po-
tential A,(¢) and ¢ = kx, where wave vector k = (w,k) (k* = 0) (see Eq. (6)). The Dirac
equation can be exactly solved [217] for an electron moving in this field of electromagnetic
plane wave of an arbitrary polarization and the normalized wave function of the electron
with momentum p is given by (c.e.g. [90]),

} up) i (235)
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where u(p) is the solution of free Dirac equation (p — m.)u(p) = 0 and the time-average
value of 4-vector,

e2(A?%) .
2(kp)
is the kinetic momentum operator in the electron state ¢, (235) and the “effective mass”
m, of the electron in the field is

¢ =m? my=m./1+n2 (238)

where n? is given by (233). The electron becomes “heavy” in an oscillating electromagnetic
field.

The S-matrix element for a transition of the electron from the state v, to the state 1,,,
with emission of a photon having momentum &’ and polarization €’ is given by (c.e.g. [90])

q=p— (237)

S = —ze/ibp ve'™* d (239)
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where the integrand in Eq. (239) is expanded in Fourier series and expansion coefficients are
in terms of Bessel functions .J,,, the scattering amplitude M }?) in Eq. (240) is obtained® by
integrating over x. Eq. (240) shows that Sy; is an infinite sum of terms, each corresponds to
an energy-momentum conservation law nk + ¢ = ¢’ + £/, indicating an electron (g) absorbs
n-photons (nk) and emits another photon (k') of frequency
, nw
W = )
1+ (nw/my)(1 — cos @)

(241)

in the frame of reference where the electron is at rest (q = 0,qy = m,), and @ is the angle
between k and k’. Given the nth term of the S-matrix Sy; (240), the differential probability
per unit volume and unit time yields,

d?’k, d3 q/
(2m)6 - 2w - 2qy - 2q},

dP = (M2 (2m) 46 (nk + g — ¢ — k). (242)
Integrating over the phase space of final states [ d°k’d*q’, one obtains the total probability
of emission from unit volume in unit time (circular polarization),
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where k = (kk')/(kp'), K, = 2n(kp)/m? and Bessel functions J,(z),
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for any n value. A systematic investigation of various quantum processes in the field of a
strong electromagnetic wave can be found in [40, 41, 42, 43, 44, 45], in particular photon
emission and pair production in the field of a plane wave with various polarizations are
discussed.

We now turn to the Breit—Wheeler process for multi-photons (230). In this process, the
pair production is attributed to the interaction of a high-energy photon with many laser
photons in the electromagnetic laser wave. Actually, the Breit-Wheeler process for multi-
photons, see Eq. (230), is related to the nonlinear Compton scattering process, see Eq.
(229), by crossing symmetry. By replacement p — —p and k" — —[ and reverse the common
sign of the expression in Eq. (240), one obtains the probability of pair production (230) by
a photon 7 (momentum /) colliding with n laser photons (momentum k) per unit volume in
unit time (circular polarization) [40, 41, 42, 43, 44, 45,

e2m? & vn dv
o — e -
i 161, Z /1 v3/2(1 + v)1/2 %

n>no

X [275(2) + 7 (20 = 1) (ppy + oy = 207)] (245)
where v = (kl)?/4(kq)(kq'), v, = n/ng, ng = 2m2/(kl) and Bessel functions J,(z),
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In Eq. (245), the number n of laser photons must be larger than ny (n > ng), which is the
energy threshold ng(kl) = 2m? for the process (230) of pair production to occur.

3The explicit expression M (.?) is not given here for its complexity, see for example [90].



5 Semi-classical description of pair production in a gen-
eral electric field

As shown in previous sections, the rate of pair production may be split into an exponential
and a pre-exponential factor. The exponent is determined by the classical trajectory of the
tunneling particle in imaginary time which has the smallest action. It plays the same role as
the activation energy in a Boltzmann factor with a “temperature” h. The pre-exponential
factor is determined by the quantum fluctuations of the path around that trajectory. At the
semi-classical level, the latter is obtained from the functional determinant of the quadratic
fluctuations. It can be calculated in closed form only for a few classical paths [202]. An
efficient technique for doing this is based on the JWKB wave functions, another on solving
the Heisenberg equations of motion for the position operator in the external field [202].

Given the difficulties in calculating the pre-exponential factor, only a few nonuniform
electric fields in space or in time have led to analytic results for the pair production rate:
(1) the electric field in the z-direction is confined in the space x < zy, i.e., E = E(z)z where
E(z) = EyO(zg — x) [218, 219]; (ii) the electric field in the z-direction depends only on the
light-cone coordinate z; = (t + 2)/V/2, i.e., E = E(z;)z [220, 221]. If the nonuniform field
has the form E(z) = Ey/cosh®(z), which will be referred as a Sauter field, the rate was
calculated by solving the Dirac equation [33] in the same way as Heisenberg and Euler did
for the constant electric field. For general space and time dependencies, only the exponential
factor can be written down easily — the fluctuation factor is usually hard to calculate [65].
In the Coulomb field of heavy nucleus whose size is finite and charge Z is supercritical, the
problem becomes even more difficult for bound states being involved in pair production, and
a lot of effort has been spent on this issue [65, 203, 222].

If the electric field has only a time dependence E = E(t), both exponential and pre-
exponential factors were approximately computed by Brezin and Itzykson using JWKB
methods for the purely periodic field E(t) = Ejycoswot [36]. The result was generalized
by Popov in Ref. [209, 223] to more general time-dependent fields E(t). After this, several
time-independent but space-dependent fields were treated, for instance an electric field be-
tween two conducting plates [224], and an electric field around a Reissner—Nordstrom black
hole [46].

The semi-classical expansion was carried beyond the JWKB approximation by calculating
higher order corrections in powers of & in Refs. [51, 52] and [53]. Unfortunately, these terms
do not comprise all corrections of the same orders & as explained in [54].

An alternative approach to the same problems was recently proposed by using the world-
line formalism [47], sometimes called the “string-inspired formalism”. This formalism is
closely related to Schwinger’s quantum field theoretic treatment of the tunneling problem,
where the evaluation of a fluctuation determinant is required involving the fields of the
particle pairs created from the vacuum. The worldline approach is a special technique for
calculating precisely this functional determinant. Within the worldline formalism, Dunne
and Schubert [48] calculated the exponential factor and Dunne et al. [49] gave the associated
prefactor for various field configurations: for instance a spatially uniform, and single-pulse
field with a temporal Sauter shape oc 1/ cosh?wt. For general z-dependencies, a numerical
calculation scheme was proposed in Ref. [225, 226, 227, 228] and applied further in [229].
For a multidimensional extension of the techniques see Ref. [50].

In this Section, a general expression is derived for the pair production rate in nonuniform
electric fields F(z) pointing in the z-direction recently derived in [230, 54]. A simple variable



change in all formulas leads to results for electric fields depending also on time rather than
space. As examples, three cases will be treated: (i) a nonzero electric field confined to a
region of size ¢, i.e., E(z) # 0, |z] < £ (Sauter field see Eq. (297)); (ii) a nonzero electric field
in a half space, i.e., E(z) # 0,z 2 0 (see Eq. (318)); (iii) an electric field increasing linearly
like E(z) ~ z. In addition, the process of negative energy electrons tunneling into the bound
states of an electric potential with the emission of positrons will be studied, by considering
the case: the electric field E(z) ~ z of harmonic potential V(z) ~ 22

5.1 Semi-classical description of pair production

The phenomenon of pair production in an external electric field can be understood as a
quantum mechanical tunneling process of Dirac electrons [80, 1]. In the original Dirac
picture, the electric field bends the positive and negative energy levels of the Hamiltonian,
leading to a level crossing and a tunneling of the electrons in the negative energy band
to the positive energy band. Let the field vector E(z) point in the z-direction. In the
one-dimensional potential energy (39) the classical positive and negative energy spectra are

Ei(p.,pr;2) = i\/(cpz)2 + 2p% + (mec?)? + V(z2), (246)

where p. is the momentum in the z-direction, p; the momentum orthogonal to it, and
p1L = |p1|. For a given energy £, the tunneling takes place from z_ to z; determined by
p. = 0in Eq. (246)

E=E,0,p1;24)=E_(0,p1;2). (247)
The points z4 are the turning points of the classical trajectories crossing from the positive
energy band to the negative one at energy £. They satisfy the equations

V(ze) = Fr/2p? + m2ct+ E. (248)

This energy level crossing £ is shown in Fig. 6 for the Sauter potential V' (z) oc tanh(z//).
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Figure 6: Positive- and negative-energy spectra £;(z) of Eq. (246) in units of m.c?, with
p. =p1 = 0 as a function of 2 = z/¢ for the Sauter potential V4 (z) (297) for o, = 5.



5.1.1 JWKB transmission probability for Klein—-Gordon Field

The probability of quantum tunneling in the z-direction is most easily studied for a scalar
field which satisfies the Klein-Gordon equation (38). If there is only an electric field in the z-
direction which varies only along z, a vector potential with the only nonzero component (39)
is chosen, and the ansatz ¢(z) = e~ ®!/heP1x1/hg o(2), is made with a fixed momentum
p. in the z, y-direction and an energy £, and Eq. (38) becomes simply
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By expressing the wave function ¢p ¢(2) as an exponential
Op, £(2) = CePre/ (250)

where C is some normalization constant, the wave equation becomes a Riccati equation for

Spbgi
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where the function p,(z) is the solution of the equation

P(e) = 5 [€ - VP - gt - mie (252)

The solution of Eq. (251) can be found iteratively as an expansion in powers of h:

0 o : 2
Spe(2) = S o(2) —ihSY) o(2) + (—ih)2SP o(2) + ... . (253)
Neglecting the expansion terms after Sl()lj,g(z) = —logpy ?(2) leads to the JWKB approxi-
mation for the wave functions of positive and negative energies (see e.g. [88, 202])
C [ (0) z
%Y,%B(Z) = ¢ TG, (254)
2 (2)
where SI()OL) £(2) is the eikonal
S0 e = [ putiz (255)

Between the turning points z_ < z < z,, whose positions are illustrated in Fig. 6, the
momentum p,(z) is imaginary and it is useful to define the positive function

1
K.(2) = \/]92L +mze? — < [€ - V()] > 0. (256)
c
The tunneling wave function in this regime is the linear combination

C 1 [* C 1 [?
W exXp [—ﬁ /Z Klde + W exXp |:+ﬁ /Z Klde:| . (257)

Outside the turning points, i.e., for z < z_ and z > z,, there exist negative energy and
positive energy solutions for £ < £_ and & > &, for positive p,. On the left-hand side of z_,




the general solution is a linear combination of an incoming wave running to the right and
outgoing wave running to the left:

Cy i [F C_ 1 [F
7(]92)1/2 exp {ﬁ/ pzdz] + 7(]32)1/2 exp {—7—1/ pzdz] . (258)
On the right-hand of z,, there is only an outgoing wave
T 1 [F
7(])2)1/2 exp [ﬁ /Z+ pzdz} , (259)
The connection equations can be solved by
_ ) 1 4
C=0, Cy=cm1C/2, T =C,exp l—ﬁ/ Iizd2:| . (260)
The incident flux density is
. h D ‘C+|2
z = . * 2P — z * = —¢ P = — 261
i = gy [6°0.0 = (0.0)0] = P = (261)
which can be written as
J:(2) = v(2)n-(2), (262)

where v,(z) = p,(z)/me is the velocity and n_(z) = ¢*(z)¢(z) the density of the incoming
particles. Note that the z-dependence of v,(z) and n_(z) cancel each other. By analogy, the
outgoing flux density is |77]?/m..

5.1.2 Rate of pair production

From the considerations given above, the transmission probability

transmitted fux

= 2
Powie incident flux (263)
is found to be the simple exponential
9 [
Prwks(pL,€) = exp [_ﬁ/ /{Zdz] : (264)

In order to derive from (263) the total rate of pair production in the electric field, it must
be multiplied with the incident particle flux density at the entrance z_ of the tunnel. The
particle velocity at that point is v, = O£ /Jp., where the relation between £ and z_ is given
by Eq. (248):

E-V(z)

V(epL)? + mgc‘l.

This must be multiplied with the particle density which is given by the phase space density
d®p/(2mh)3. The incident flux density at the tunnel entrance is therefore

0 d*p, dp. D / d& d*p,

(» )= p. | £& P e e 2P
o) *J] Op. (2wh)? 27h 27th (2wh)?’

1=

(265)

(266)



and the extra factor D; is equal to 2 for electrons with two spin orientations?.
It is useful to change the variable of integration from z to ((z) defined by

E-V(2)
(epr)? + m§c47

C(p1,&;2) = (267)

and to introduce the notation for the electric field E(py,&;¢) = E[Z(pL,&;()], where
Z(p1,&; Q) is the inverse function of (267), the equations in (248) reduce to

(-(pr.&2-) = =1, Culpr,&24) = +1. (268)
In terms of the variable ¢, the JWKB transmission probability (264) can be rewritten as
2m2c? (epy 1 — C2
= M 2
Prwks(ps, €) exp{ ehEq { mzct } / C E(pL,&;¢)/Eo (269)

Here a standard field strength Ej has been introduced to make the integral in the exponent
dimensionless, which is abbreviated by

G(pl,é’)z%/_lldc (V1_<2 . (270)

E(p.,&;:¢)/Eq

The first term in the exponent of (269) is equal to 2E./Ep.

At the semi-classical level, tunneling takes place only if the potential height is larger than
2m.c? and for energies £ for which there are two real turning points z+. The total tunneling
rate is obtained by integrating over all incoming momenta and the total area V|, = [ dady
of the incoming flux. The JWKB-rate per area is

F d?
AL - / / PL PJWKB (pb 5) (271)
2mh

Using the relation following from (265)

d€ = eE(z_)dz_, (272)

the alternative expression is obtained

FJWKB B dz_ d’*p
/ orh / 27 h)?2 2 )Pywis(p1, €(22)), (273)

where £(z_) is obtained by solving the differential equation (272).

The integral over p, cannot be done exactly. At the semi-classical level, this is fortu-
nately not necessary. Since E. is proportional to 1/A, the exponential in (269) restricts the
transverse momentum p, to be small of the order of v/A, so that the integral in (273) may
be calculated from an expansion of G(p, &) up to the order p?:

N V1-¢2 1dE(0,£,¢)/d¢
G(pL, &) ~ / S aYIoA F0.8 0B, 1—5 B(0.6.0) Co+...

= G(0,6)+Gs(0,)5 + .. (274)

4By setting D, equal to 1 one can obtain the tunneling result also for spin-0 particles although the Dirac
picture is no longer applicable.



where 6 = §(p.) = (cp1)?/(m2c*), and

I C/1 -2
Gs(0,E) = — d E'(0,&;
5(7 ) 71_/_1 CE2(0,87C)/E0 (7 7C)
1 1/t ¢? d¢
= —G(0,& +—/ d . 275
00T | AR e O/ (275)
The integral over p, in (273) is approximately performed as follows:
/ d*p, o~ (Ee/Eo)(1+8)[G(0,€)+C5(0.6)8] _ (276)
(2mwh)?
2.2 o8] ~ E
_ meC / A5 o~ Ee/E0)[G(0.€)+3G(0.€) € ~0 o~ (Ee/E0)G(0.)
Ah? J, 472heG(0, E) ’
where ~
G(0,&) =G(0,&) + Gs(0,€). (277)

The electric fields E(py,E&; () at the tunnel entrance z_ in the prefactor of (273) can be
expanded similarly to first order in 6. If 2% denotes the solutions of (265) at p; = 0, it is
found that for small o:

20
Az =z — 0 n € O 2
S T D) (278)
so that
E'(2°)4
E(z_) ~ E(z)) — mec B) 2 (279)

Here the extra term proportional to 0 can be neglected in the semi-classical limit since it
gives a contribution to the prefactor of the order . Thus the JWKB-rate (273) of pair
production per unit area is obtained

lswks _ / g, O ks (2) / po DsCEER) s macoee) (280)
Vi 8m3h2c G(0,E(2)) ’

Vi

where z is short for 2. At this point it is useful to return from the integral [ dz_eE(z_)
introduced in (273) to the original energy integral [ d€ in (271), so that the final result is

I'swks / Oslywkn (Z) ek / ot 1 —n(E
= [ a& ~ D, _ 7(Ec/Eo)G(0,E) 281
vV, Vi 4r2he J 27h G(0,€) ‘ ’ (281)

where E-integration is over all crossing energy levels.

These formula can be approximately applied to the three-dimensional case of electric
fields E(x,y, z) and potentials V' (z,y, z) at the points (z,y, z) where the tunneling length
(52) is much smaller than the variation lengths dz | of electric potentials V(x,y, z) in the
xy-plane,

1 10V
2, —z  Vixy

(282)

At these points (x,y, z), one can arrange the tunneling path dz and momentum p,(z, 2, z) in
the direction of electric field, corresponding perpendicular area d?V, = dxdy for incident flux



and perpendicular momentum p,. It is then approximately reduced to a one-dimensional
problem in the region of size (O(a) around these points. The surfaces z_(z_,y_,€&) and
2y = (x4,y4, E) associated with the classical turning points are determined by Egs. (267)
and Eqgs. (268) for a given energy £. The JWKB-rate of pair production (280) can then be
expressed as a volume integral over the rate density per volume element

Tiwks = / dxdydzdgr‘]ﬂ = / dtdxdydzmﬂ. (283)
dx dydz dt dz dy dz

On the right-hand side it is useful to rewrite the rate I'jwkp as the time derivative of the
number of pair creation events dNjwgg/dt, so that one obtains an event density in four-space

4 2
LNy, CT0BE) _ —wimsmmcoec (284)
dt dz dy dz 8m3h G(0,E(2))

Here z,y and z are related by the function z = z_(x, y, £) which is obtained by solving (272).
It is now useful to observe that the left-hand side of (284) is a Lorentz invariant quantity.
In addition, it is symmetric under the exchange of time and z, and this symmetry will be
exploited in the next section to relate pair production processes in a z-dependent electric
field E(z) to those in a time-dependent field E(t).
Attempts to go beyond the JWKB results (280) or (281) require a great amount of work.
Corrections will come from three sources:

I from the higher terms of order in (k)™ with n > 1 in the expansion (253) solving the
Riccati equation (251).

IT from the perturbative evaluation of the integral over p; in Egs. (271) or (273) when
going beyond the Gaussian approximation.

III from perturbative corrections to the Gaussian energy integral (281) or the correspond-
ing z-integral (280).

All these corrections contribute terms of higher order in A.

5.1.3 Including a smoothly varying B(z)-field parallel to E(z)

The results presented above can easily be extended for the presence of a constant magnetic
field B parallel to E(z). Then the wave function factorizes into a Landau state and a spinor
function first calculated by Sauter [20]. In the JWKB approximation, the energy spectrum
is still given by Eq. (246), but the squared transverse momenta p% is quantized and must
be replaced by discrete values corresponding to the Landau energy levels. From the known
nonrelativistic levels for the Hamiltonian p? /2m, one extracts immediately the replacements
(63). Apart from the replacement (63), the JWKB calculations remain the same. Thus one
must only replace the integration over the transverse momenta [ d*p, /(27h)? in Eq. (276)
by the sum over all Landau levels with the degeneracy eB/(2rhc). Thus, the right-hand side
becomes

eB A
—m(E./Ep)G(0,E) —m(B/Ep)(n+1/2+96)G(0,E) 9
5 Z e , (285)

n,o



where g and ¢ are as in (63). The result is, for spin-0 and spin-1/2:

€E0

— 2 e m(Be/E0)G(0£) BG(0,€)/E, 286
47r2th(o,5)e fo1/2(BG(0, &)/ Ep) (286)

where

T T TG
= = 2
fo(®) sinh 7z’ f1/2 () =2 sinh 7z cosh 2 (287)

In the limit B — 0, Eq. (66) reduces to Eq. (276).

The result remains approximately valid if the magnetic field has a smooth z-dependence
varying little over a Compton wavelength As.

In the following only nonuniform electric fields without a magnetic field are considered.

5.2 Time-dependent electric fields

The semi-classical considerations given above can be applied with little change to the different
physical situation in which the electric field along the z-direction depends only on time rather
than z. Instead of the time t itself it is better to work with the zeroth length coordinate
xro = ct, as usual in relativistic calculations. As an intermediate step consider for a vector
potential

AH = (AO(Z)70707A2(5(:0>>7 (288>

with the electric field
E = —0ZA0(Z) — 80AZ(:1:0), Ty = ct. (289)

The associated Klein—-Gordon equation (38) reads
- € 2 o0 » € 2 2 2
[m&o + = Ao(=)] + 202, — [iho. + EAZ(:CO)] —m2  ¢(z) = 0. (290)

The previous discussion was valid under the assumption A, (z¢) = 0, in which case the ansatz

¢(l,) — e_igt/heiple¢pl7g(Z),

led to the field equation (249). For the present discussion it is useful to write the ansatz as
¢(x) = e~troro/heipixi/hg o (2) with py = €/c, and Eq. (249) in the form

2

1 : ? d?
{ {5 — e/ dz/E(z')} —pi —mi + hz@} Pp, po(2) = 0. (291)

Now assume that the electric field depends only on zy = c¢t. Then the ansatz ¢(z) =
eP=2/hePixL/hg . (x0) leads to the field equation

d2 € 0 / / 2
{—h2 dz? p —mic® — [—pz - E/ d%E(%)} } bp, p.(T0) = 0. (292)

If Eq. (292) is compared with (291) it can be seen that one arises from the other by
interchanging
Z 4 x9, pL—ipy, c¢—ic, FE— —iF. (293)

With these exchanges, it may easy to calculate the decay rate of the vacuum caused by a
time-dependent electric field E(zg) using the formulas derived above.



5.3 Applications

Now formulas (281) or (280) are applied to various external field configurations capable of
producing electron—positron pairs.

5.3.1 Step-like electric field

First one checks the result for the original case of a constant electric field E(z) = eEy where
the potential energy is the linear function V(z) = —eEyz. Here the function (270) becomes
trivial

1
G0, €) = %/_1 dVT=C =1, Gy(0.€) =0, (204)

which is independent of £ (or z_). The JWKB-rate for pair production per unit time and
volume is found from Eq. (280) to be

LVEKB ~ Ds—g‘fie—”’fa/%. (295)
s

where V' = dz_V,. This expression contains the exponential e~"F</Fo found by Sauter
[20], and the correct prefactor as calculated by Heisenberg and Euler [7], and by Schwinger
[25, 26, 27].

In order to apply the transformation rules (293) to obtain the analogous result for the
constant electric field in time, one can rewrite Eq. (295) as

dNJWKB aE02 —nE./Eo
ZUWKB D, mBe/Eo 296
dxoV 27r277,c6 (296)

where dNjwkp/dxy = F?VP\I,KB /c and Njwgp is the number of pairs produced. Applying the
transformation rules (293) to Eq. (296), one obtains the same formula as Eq. (295).

5.3.2 Sauter electric field

Let us now consider the nontrivial Sauter electric field localized within finite slab in the
xy-plane with the width ¢ in the z-direction. A field of this type can be produced, e.g.,
between two opposite charged conducting plates. The electric field F(z)z in the z-direction
and the associated potential energy V' (z) are given by

E(z) = Ey/cosh® (z/0), V(z) = —oymec®tanh(z/0), (297)
where
oy = eEol/mec® = (/Mo)(Eo/E.). (298)

From now on natural units, in which energies are measured in units of m.c?, are used.
Figure 6 shows the positive and negative energy spectra £.(z) of Eq. (246) for p, =p, =0
in particular the energy gap and energy level crossings. From Eq. (248) one finds the classical

turning points
ExVI+d U, o, +EE£VIHI
zy = ¢ arctanh———— = —1In

Os 2 Us—g:F\/1+6

Tunneling is possible for all energies satisfying

—V1+d+0,>2E>V1+06— o0, (300)

(299)



for the strength parameter o, > /1 + 4.
One may invert Eq. (267) to find the relation between ¢ and z:

_ A E+CVI+o L. o, +E+(VIFO
z-z(pl,é',(’)—farctanha—s—§ln08_€_<\/m. (301)
In terms of the function z(p,,E&; (), the Eq. (299) reads simply z4 = 2z(p1,E; £1).
Inserting (301) into the equation for E(z) in Eq. (297), one obtains
2
1+6-¢&
B =5 [1- (P25 = B0, (302)
G(0,&) and G4(0,€) of Egs. (270), (274) and (275) are calculated:
G(0,6) =202 — 0, [(0.— €)* —1]"* — 0, [(0.+ &> —1]"* (303)
and
G(0,8) + G5(0,8) = % { (0o —&)2 =1+ [(0.+6)? - 1}‘1/2} . (304)

Substituting the functions G(0,&) and G;(0,E) into Egs. (280) and (281), one obtains the
general expression for the pair production rate per volume slice at a given tunnel entrance
point z_(&) or the associated energy £(z_). The pair production rate per area is obtained
by integrating over all slices permitted by the energy inequality (300).

In Fig. 7, the slice dependence of the integrand in the tunneling rate (280) for the Sauter
potential (297) is shown and compared with the constant field expression (295) of Euler and
Heisenberg, if it is evaluated at the z-dependent electric field E(z). This is done once as a
function of the tunnel entrance point z and once as a function of the associated energy £. On
each plot, the difference between the two curves illustrates the nonlocality of the tunneling
process’. The integral is dominated by the region around £ ~ 0, where the tunneling length
is shortest [see Fig. 6] and tunneling probability is largest. Both functions G(0,&) and

G5(0, &) have a symmetric peak at £ = 0. Around the peak they can be expanded in powers
of £ as

G(0,6) = 2[0? —ay(0? -1+ T g2 o) =

17
= Goloy) + %Gg(as) E2+0O(&Y), (305)
and
G0.8)+Gi0.6) = fsl)m + % &ti@ﬁ L OEY =
~ Golow) + %@@—s) £2 + O(&"). (306)

The exponential e~"¢(O€)E/Fo hag a Gaussian peak around £& = 0 whose width is of the
order of 1/E. o h. This implies that in the semi-classical limit, one may perform only a

®Note that omitting the z-integral in the rate formula (280) does not justify calling the result a “local
production rate”, as done in the abstract of Ref. [229]. The result is always nonlocal and depends on all
gradients of the electric field.
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Figure 7: The slice dependence of the integrand in the tunneling rate (280) for the Sauter
potential (297) is plotted: left, as a function of the tunnel entrance z (compare with numeric
results plotted in Fig. 1 of Ref. [229]); right, as a function of the associated energy &,
which is normalized by the Euler-Heisenberg rate (295). The dashed curve in left figure
shows the Euler-Heisenberg expression (295) evaluated for the z-dependent field E(z) to
illustrate the nonlocality of the production rate. The dashed curve in right figure shows
the Euler-Heisenberg expression (295) which is independent of energy-level crossing £. The
dimensionless parameters are o, = 5, Ey/E, = 1.

Gaussian integral and neglect the £-dependence of the prefactor in (281). Recalling that £
in this section is in natural units with m.c® = 1, one should replace [ d& by m.c® [ d€ and
can perform the integral over £ approximately as follows

Lywks o eEymec? ie_w(Ec/EO)Go/ﬁe—w(Ec/Eo)Gg52/2:
Vi * Amhe G, 27h
eBy 1 e T(Ee/Eo)Go

D5 — :
dr2hc Gy 2nhy/GEE./2Ey

For convenience, the limits of integration over F is extended from the interval (—1+40, 1—0y)
to (—o00,00). This introduces exponentially small errors and can be ignored.
Using the relation (298) one may replace e Egm.c?/he by e?E22(/c,, and obtain

(307)

Lwiltotal] _ ) oF [Eo (07 = )™ wgyoem, (308)

This approximate result agrees ¢ with that obtained before with a different, somewhat more
complicated technique proposed by Dunne and Schubert [48] after the fluctuation determi-
nant was calculated exactly in [49] with the help of the Gelfand—Yaglom method, see Section
2.2 in Ref. [202]. The advantage of knowing the exact fluctuation determinant could not,
however, be fully exploited since the remaining integral was calculated only in the saddle
point approximation. The rate (308) agrees with the leading term of the expansion (42) of
Kim and Page [53]. Note that the higher expansion terms calculated by the latter authors
do not yet lead to proper higher order results since they are only of type II and III in the
list after Eq. (284). The terms of equal order in 4 in the expansion (253) of the solution of
the Riccati equation are still missing.

Using the transformation rules (293), it is straightforward to obtain the pair production
rate of the Sauter type of electric field depending on time rather than space. According to
the transformation rules (293), one has to replace ¢ — ¢dT, where 0T is the characteristic

6See Eq. (63) of Dunne and Schubert [48], and replace there ¥ — 1/0. It agrees also with the later paper
by Dunne et al. [49] apart from a factor 2.



time over which the electric field acts—the analog of £ in (297). Thus the field (297) becomes
E(t) = Ey/cosh® (t/6T),  V(t) = —&,mec*tanh (t/6T). (309)
According to the same rules, one must also replace o4, — G, where
Gs = eEgdT /mec. (310)
This brings Gy(os) of Eq. (303) to the form

Go(os) — Gb(5,) = 2[5,(6% — 1)Y2 — 57, (311)

S S

and yields the pair production rate

. N 5/4
Ijwksl[total] ~D aLg Eqo o +1 / —nGt(55)Ee/Eo 3192
vioT  2mn\ B\ &2 ‘ ’ (312)

where I'iykpltotal] = ONywkp/0z is the number of pairs produced per unit thickness in a
spatial shell parallel to the xy-plane. This is in agreement with Ref. [49].

Note also that the constant field result (295) of Euler and Heisenberg cannot be deduced
from (308) by simply taking the limit £ — oo as one might have expected. The reason is
that the saddle point approximation (307) to the integral (281) becomes invalid in this limit.
Indeed, if ¢ o is large in Egs. (303) and (304), these become

1

and the integral in (281) becomes approximately
nmyEe) [0 dE 2/ 2\ —m(Ee/Eo)(2/o2)
e %(1—5 Jo2)e : (314)

For not too large ¢ < oy, the integral can be evaluated in the leading Gaussian approximation

< g ooy 1 [E
N S = N £ 1
/_ T oni\ E,7* (315)

corresponding to the previous result (308) for large-os. For a constant field, however, where
the integrands becomes flat, the Gaussian approximation is no longer applicable. Instead
one must first set o — 0o in the integrand of (314), making it constant. Then the integral
(314) becomes”

e ™ E/E) 9 Jonh = e ™ B/ B9 By fm . 2mh. (316)

Inserting this into (281) one recovers the constant field result (295). One must replace 2¢ by
L to comply with the relation (272) from which one obtains

/dé’ = /dzeE(z) = eEO/dz/ cosh?(z/l) = 2leFEy = LeE,.

"This treatment is analogous to that of the translational degree of freedom in instanton calculations in
Section 17.3.1 of [202] [see in particular Eq. (17.112)].



In order to see the boundary effect on the pair production rate, this section is closed
with a comparison between pair production rates in the constant field (295) and Sauter field
(308) for the same field strength Ej in the volume V) /. The ratio R of pair production
rates (308) and (295) in the volume V¢ is defined as

E 2 _ 1)5/4
Rone = | rettn T2 DT ntotene /e, (317)
c OJs

The soft boundary of the Sauter field (297) reduces its pair production rate with respect to
the pair production rate (295) computed in a constant field of width L = 2¢. The reduction
is shown quantitatively in Fig. 8, where curves are plotted for the rates (295) and (308),
and and for their ratio (317) at Ey = E, and 0, = {/A¢ [recall (298)]. One can see that
the reduction is significant if the width of the field slab shrinks to the size of a Compton
wavelength A\q.

1 s FWKE [totall /%
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Figure 8: Left: Ratio R defined in Eq. (317) is plotted as function of o, in the left figure.
Right: Number of pairs created in slab of Compton width per area and time as functions of
os. Upper curve is for the constant field (295), lower for the Sauter field (308)). Both plots
are for Fy = E. and 0, = {/\¢.

5.3.3 Constant electric field in half space

As a second application consider an electric field which is zero for z < 0 and goes to —FEj
over a distance ¢ as follows:

z

E(z) = _Io [tanh <€

5 ) + 1} , V()= —2m562 {lncosh <E> + i} ; (318)

2 14 14

where o, = eEyl/m.c?. In Fig. 9, the positive and negative energy spectra £.(z) defined by
Eq. (246) for p, = p, = 0 are plotted to show energy gap and level crossing. From Eq. (248)
one finds now the classical turning points [instead of (299)]

1 55
=g In [26(5jE L+o)/os _ 1] . (319)
For tunneling to take place, the energy € has to satisfy

E<VI+0—0,In2, (320)

and o, must be larger than v/1 + d¢. Expressing z/¢ in terms of ¢ as

¢
2= 2(p1, £5¢) = 5 In |26V 1] , (321)
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Figure 9: Energies (246) for a soft electric field step FE(z) of Eq. (318) and the potentials
Vi(z) (318) for o, = 5. Positive and negative-energies £ (z) of Eq. (246) are plotted for
p. = p1 = 0 as functions of Z = z//.

so that zy = z(py,&; £1), one finds the electric field in the form
1
E(2) = E, [1 _ Ee(é’x/m-@/as} = E(p., &;C). (322)

Inserting this into Eq. (270) and expanding Ey/E(p.,E; () in powers one obtains

e—m‘,’/as 2

1 .
_/ dC /1 — 2 /s —
-1

2 o7

n=1
= 14> e/ L(nV1+6/0y), (323)
n=1

where [;(z) is a modified Bessel function. Expanding I;(nv/1 + /o) in powers of 4:
Li(nV1+6d/0s) = Li(n/os)+ (n/dos)[lo(n/os) + Ia(n/os)]d + ..., (324)

one can identify

G(0,€) =1+ ie_"g/"sll(n/as), (325)
G(0,€)+Gs5(0,8) =1+ % Z e /% (n)oy)y(n)os) — I(n)oy)]. (326)

The integral over £ in Eq. (281) starts at £ = 1 — o41log 2 where the integrand rises from
0 to 1 as £ exceeds a few units of o,. The derivative of e~ ™(Fe/P)G(0:8) drops from 1 to



e~ ™(Ee/Eo) oyer this interval. Hence the derivative Oge™(Fe/Fo)G(0€) i5 peaked around some

value €. Thus the integral [ dEe~TEe/E0)G0£) s performed by parts as

o0

/dge—w(Ec/Eo)G(O,S) — ge—ﬂ(Ec/Eo)G(O,é') . /dggage—w(Ec/Eo)G(O,é’). (327)

E<

The first term can be rewritten with the help of d€ = eEydz as e ™Fe/Bo)|eEy|¢/2, thus
giving rise to the decay rate (295) in the volume V,¢/2 | and the second term gives only
a small correction to this. The second term in Eq. (327) shows that the boundary effects
reduce the pair production rate compared with the pair production rate (295) in the constant
field without any boundary.

5.4 Tunneling into bound States

We turn now to the case in which instead of an outgoing wave as given by (259) there is a
bound state. A linearly rising electric field whose potential is harmonic is considered:

E(z) = E, (%) . V(z) = eE;AC (%)2 (328)

It will be convenient to parametrize the field strength Ej in terms of a dimensionless reduced
electric field € as Fy = ehic/e % = €E,. In Fig. 10, the positive and negative energy spectra
E+(z) defined by Eq. (246) for p, = p, = 0 are plotted to show energy gap and level crossing
for e > 0 (left) and € < 0 (right). If € is positive, Eq. (248) yields for z > 0,
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Figure 10: Positive- and negative-energy spectra £, (z) of Eq. (246) for p, = p; = 0 as a
function of Z = z/A¢ for the linearly rising electric field E(z) with the harmonic potential
(328). The reduced field strengths are € = 2 (left figure) and € = —2 (right figure). On the
left, bound states are filled and positrons escape to z = +o0o. On the right, bound electrons
with negative energy tunnel out of the well and escape with increasing energy to z = +oo.

1/2
zi:)\c\/§<€¢\/1+5) Lz <z, (329)

and mirror-reflected turning points for z < 0, obtained by exchanging z. — —z4 in (329).
Negative energy electrons tunnel into the potential well —z, < 2z < +2z,, where £ > &,
forming bound states. The associated positrons run off to infinity.



5.4.1 JWKB transmission probability

Due to the physical application to be discussed in the next section, here only the tunneling
process for € > 0 on the left-hand side of Fig. 10 will be studied. One can consider the
regime z < 0 with the turning pints —z_ < —z,. The incident wave and flux for z < —z_
pointing in the positive z-direction are given by Egs. (258) and (261). The wave function for
—z_ < z < —z; has the form Eq. (257) with the replacement z_ — —z_. The transmitted
wave is now no longer freely propagating as in (259), but describes a bound state of a positive
energy electron:

e (2) = ﬁ cos [% /_ podz — ﬂ . (330)

24
The Sommerfeld quantization condition

1 [ 1
ﬁ/ pde:ﬂ'(n—l—§), n=0,1,2,.... (331)
.

fixes the energies &,. The connection rules for the wave functions (257) and (330) at the
turning point —z, determine

. 1 [
B=+V2C,e ™ exp {—ﬁ/

—Z_

I{Zd2:| . (332)

Assuming the states ¢, (z) to be initially unoccupied, the transmitted flux to these states
at the classical turning point —z, is

h B _ |G 2 [
M e ()00 . _ -2 .dz| 333
e 9005, ()| = s = e |7 [ wds (333)
From Egs. (261), (333), and (263) one then finds the JWKB transmission probability for
positrons to fill these bound states leaving a positron outside:

—z4

2
PJWKB(pJ_agn) = €Xp {_ﬁ/

—Z—

szz} , (334)

which has the same form as Eq. (56). The same result is obtained once more for z > 0
with turning points z; < z_, which can be obtained from (334) by the mirror reflection
—Z4 > 2.

5.4.2 Energy spectrum of bound states

From Eq. (252) for p, and Eq. (328) for the potential V'(z), the eikonal (331) is calculated
to determine the energy spectrum &, of bound states

1 [T e [*
7_1/ p.dz = 2>\—3/0 [(2* = 23)(* - z%)}l/z dz
- c

- 2ez4 2 2 2 2
- o (22 + 22)E(t) — (22 — 22)K(1)], (335)



where F(t), K(t) are complete elliptical integrals of the first and second kind, respectively,
and t = z, /z_. The Sommerfeld quantization rule (331) becomes

8 {2(& —V1+49)
3

€

(336)

1/2
} [EnE(tn) — (V14 0)K(t,) zw(n+%),

. (Sn—\/1+5)1/2
"T\E, + V1T o '

For any given transverse momentum p, = /9, this determines the discrete energies &,,.

5.4.3 Rate of pair production

By analogy with Eqgs. (271) and (281), the transmission probability (334) must now be
integrated over all incident particles with the flux (266) to yield the rate of pair production:

Lowks o Z / d2pi DL kn(pi, ) (337)
A JWKB\PL, )
|€Eo| 1 1 (Ee/E)G(0.€n)
m(Be 338
47r2hc Z 21 G(0,&,) + G5(0, 5n)6 (338)

In obtaining these expressions one has used the energy conservation law to perform the
integral over £. This receives only contributions for £ = &, where f d€ =w,h=¢&, —&E,_1.
The factor 2 accounts for the equal contributions from the two regimes z > 0 and z < 0.
The previous relation (272) is now replaced by

= |eE(2")|AZ". (339)
Using Eq. (267) and expressing z/A¢ > 0 in terms of ¢ as
2 1/2
Z:Z(pbgn;@2)\0\/?(5}—&/1—1-5) : (340)
one calculates z4 = z(py, Ey; £1), and find the electric field in the form
2 1/2
B(z) = Eo\/g (&0 = ¢VT+3) " = B(ps, £2:0). (341)

Inserting this into Eq. (270) one obtains

_ Vi ¢
G(pJ_75n) - \/7/ Cg _C\/ﬁ]l/y

56 +1)/? VK (g S 6
where £ = £,/(1 +6)V% and ¢} = \/2/(52 +1). Expanding G(p_,&,) in powers of d one
finds the zeroth order term

8
GO.6) = ao[5(En+ (0~ EIK (@) + &5 (343
and the derivative
€ dn

+ (1 — & — 7513)((% - 1>K(Qn>} . (344)
where ¢, = +/2/(E, + 1).



6 Phenomenology of electron—positron pair creation
and annihilation

6.1 eTe annihilation experiments in particle physics

The ete™ — 7 + 7 process predicted by Dirac was almost immediately observed [3]. The
ete™ annihilation experiments have since became possibly the most prolific field of research
in the active domain of particle physics. The Dirac pair annihilation process (2) has no
energy threshold and the energy release in the ete~ collision is larger than 2m.c?. This
process is the only one in the limit of low energy. As the ete™ energy increases the collision
produces not only photons through the Dirac process (230) but also other particles. For early
work in this direction, predicting resonances for pions, K-mesons etc., see [231]. Production
of such particles are achievable and precisely conceived in experimental particle physics, but
hardly possible with the vacuum polarization process . In particular when the energy in
the center of mass is larger than twice muon mass m, about 100 times electron mass, the
electron and positron electromagnetically annihilate into two muons ete™ — ™y~ via the
intermediation of a virtual photon. The cross-section in the center of mass frame is given by
[232] 2 205 )2 2(5.)2
167 (he dra” (he 86.8nb
Octe—putpu— — % Imw,ﬁ,f (qgm> = ?)Qém ) = qgm(GeV)Q (345>
where @,+,-(¢%,) is the muon part of the vacuum polarization tensor and ¢2, = *(p4 +
p_)?/4 the square of energy of the center of mass frame, where p. are 4-momenta of positron
and electron. At very high energy m’,/qZ, — 0, Im @+, (¢2,) — 1/(127).
At very high energies of the order of several GeV, electron and positron electromag-
netically annihilate into hadrons, whose cross-section has the same structure as the cross-
section (345) with @+, (¢2,) replaced by the hadron part of the vacuum polarization tensor

whadrons (qgm) )

16m2a?(he)?
G
The two cross-sections (345) and (346) are comparable, of the order of a few tens of nanobarns

(10733cm?). Tt is traditional to call R the ratio of hadronic to electromagnetic annihilation
cross-sections [232],

Im @hardrons (qgm) . (346)

O¢+e——hadron —

R(qgm) = M = 12W1mwhadrons(qgm)' (347)
Octe——putu—

As the energy ¢, of electron and positron collision increases and reaches the mass—energy
thresholds of constituents of hadrons, i.e. “quarks”, narrow resonances occurs, see Fig. 11
for the ratio R as a function of /2 measured at SLAC [233]. These resonances correspond
to production of particles such as J/1, T etc. This provides a fruitful investigation of hadron
physics. For a review of this topic see [101].

As the center of mass energy 2 reaches the electroweak scale (several hundred GeVs),
electron and positron annihilation process probes a rich domain of investigating electroweak
physics, see for instance Refs. [234, 235]. Recent experiments on ete™ collisions at LEP,
SLAC and the Tevatron allowed precision tests of the electroweak Standard Model. In
[236, 237] the results of these precision tests together with implications on parameters,
in particular Higgs boson mass, as well as constraints for possible new physics effects are
discussed.
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Figure 11: The total cross section of ete™ — hadron (346) and the ratio R =
Oete——shadron/ Tcte-—p+u- (347), where s = ¢2,. Reproduced from Ref. [C. Amsler et al.
(Particle Data Group), Physics Letters B667, 1 (2008)].

Electron and positron collisions are used to produce many particles in the laboratory,
which live too short to occur naturally. Several electron—positron colliders have been built
and proposed for this purpose all over the world (CERN, SLAC, INP, DESY, KEK and
IHEP), since the first electron—positron collider the “Anello d’Accumulazione” (AdA) was
built by the theoretical proposal of Bruno Touschek in Frascati (Rome) in 1960 [55]. Fol-
lowing the success of AdA (luminosity ~ 10%/(cm? sec), beam energy ~0.25GeV), it was
decided to build in the Frascati National Laboratory a storage ring of the same kind, Adone
and then Daphne (luminosity ~ 10%3/(cm?sec), beam energy ~0.51GeV), with the aim of
exploring the new energy range in subnuclear physics opened by the possibility of observing
particle-antiparticle interactions with center of mass at rest. The biggest of all is CERN’s
Large Electron Positron (LEP) collider [148], which began operation in the summer of 1989
and have reached a maximal collision energy of 206.5 GeV. The detectors around the LEP
ring have been able to perform precise experiments, testing and extending our knowledge
of particles and their strong, electromagnetic and weak interactions, as described by the
Standard Model for elementary particle physics.

All these clearly show how the study of ete™ reaction introduced by Dirac have grown to
be one of the most prolific field in particle physics and have received remarkable verification
in energies up to TeV in a succession of machines increasing in energy.



6.2 The Breit—Wheeler process in laser physics

While the Dirac process (2) has been by far one of the most prolific in physics, the Breit—
Wheeler process (3) has been one of the most elusive for direct observations. In Earth-
bound experiments the major effort today is directed to evidence this phenomenon in very
strong and coherent electromagnetic field in lasers. In this process collision of many photons
may lead in the future to pair creation. This topic is discussed in the following Sections.
Alternative evidence for the Breit—Wheeler process can come from optically thick electron—
positron plasma which may be created in the future either in Earth-bound experiments, or
currently observed in astrophysics, see Section 9. One additional way to probe the existence
of the Breit—Wheeler process is by establishing in astrophysics an upper limits to observable
high-energy photons, as a function of distance, propagating in the Universe as pioneered by
Nikishov [56], see Section 6.4.

We first briefly discuss the phenomenon of electron—positron pair production at the focus
of an X-ray free electron laser, as given in the review articles [60, 238, 239]. In the early
1970’s, the question was raised whether intense laser beams could be used to produce a
very strong electric field by focusing the laser beam onto a small spot of size of the laser
wavelength A, so as to possibly study electron—positron pair production in vacuum [240, 36].
However, it was found that the power density of all available and conceivable optical lasers
[241] is too small to have a sizable pair production rate for observations [240, 36, 30, 31, 32,
242, 37, 209, 210, 243, 244, 245, 246], since the wavelength of optical lasers and the size of
focusing spot are too large to have a strong enough electric field.

Definite projects for the construction of X-ray free electron lasers (XFEL) have been set
up at both DESY and SLAC. Both are based on the principle pioneered by John Madey [57]
of self-amplified spontaneous emission in an undulator, which results when charges interact
with the synchrotron radiation they emit [58]. At DESY the project is called XFEL and is
part of the design of the electron—positron collider TESLA [247, 248, 249, 250] but is now
being build as a stand-alone facility. At SLAC the project so-called Linac Coherent Light
Source (LCLS) has been proposed [251, 252, 253]. It has been pointed out by several authors
[254, 255, 256, 257] that having at hand an X-ray free electron laser, the experimental study
and application of strong field physics turn out to be possible. One will use not only the
strong energy and transverse coherence of the X-ray laser beam, but also focus it onto a small
spot hopefully with the size of the X-ray laser wavelength A ~ O(0.1)nm [59], and obtain a
very large electric field £ ~ 1/X, much larger than those obtainable with any optical laser
of the same power.

Using the X-ray laser, we can hopefully achieve a very strong electric field near to its
critical value for observable electron—positron pair production in vacuum. Electron-positron
pair production at the focus of an X-ray laser has been discussed in Ref. [254], and an estimate
of the corresponding production rate has been presented in Ref. [255]. In Ref. [60, 238, 239],
the critical laser parameters, such as the laser power and focus spot size, are determined in
order for achieving an observable effect of pair production in vacuum.

The electric field produced by a single laser beam is the light-like static, spatially uniform
electromagnetic field, and field invariants S and P (69) vanish [242]

S=0, P=0, (348)

leading to ¢ = § = 0 and no pair production [25, 26, 27], this can be seen from Egs. (69),
(73) and (174). It is then required that two or more coherent laser beams form a standing
wave at their intersection spot, where a strong electric field can hypothetically be produced
without magnetic field.



We assume that each X-ray laser pulse is split into two equal parts and recombined to
form a standing wave with a frequency w, whose electromagnetic fields are then given by

E(t) = [0,0, Epeax cos(wt)], B(t) = (0,0,0), (349)

where the peak electric field is[60, 238, 239],

Plaser 17 Plaser 12 0 dnm V
Eoex = ~1.1-10 — —, 350
pek 7T012aser <1TW> Olaser m ( )

as expressed in terms of the laser power P (1 TW=10?W), with the focus spot radius
Olaser- Fiq. (350) shows that the peak electric energy density Egeak /2 is created in a spot of
area mot .. by an X-ray laser of power Plg. The laser beam intensity on the focused spot
is then given by

Ji . Piaser -~ C 2
laser — 2 — i _“peak-*
Olaser 4w

For a laser pulse with wavelength A about 1um and the theoretical diffraction limit ojager >~ A
being reached, the critical intensity laser beam can be defined as,

I, = 4iE§ ~ 4.6 - 102°W/cm?, (351)
s

which corresponds to the peak electric field approximately equal to the critical value E. in

(1).

6.2.1 Phenomenology of pair production in alternating fields

To compute pair production rate in an alternating electric field (349) of laser wave in a
semi-classical manner, one assumes the conditions that the peak electric field Epeax is much
smaller than the critical field E. (1) and the energy 7w of the laser photons is much smaller
than the rest energy of electron m.c?,

Bpeare < B, hw < mec?. (352)

These conditions are well satisfied at realistic optical as well as X-ray lasers [60, 238, 239].

The phenomenon of electron—positron pair production in alternating electric fields was
studied in Refs. [36, 30, 31, 32, 37, 209, 210, 243, 244, 245, 246, 258]. By using generalized
JWKB method [36] and imaginary time method [30, 31, 32, 244, 246] the rate of pair pro-
duction was computed. In Ref. [36], the rate of pair production was estimated to be (see
Section 4.8),

P=— (Epeak)2 i ex {—WEP‘”“ ()} (353)
B 47T3X(11 E. 9(77)“'%9/(77) P E. amy

where the complex function g(n) is given in Refs. [36, 30, 31, 32] (see Eq. (225)),

4 1 1—u? 7172 1—+00n™"), n>1
_ = - — U
9(n) - /0 dU[l n n—zuz} { D (L) + 0, n<1 (354)



and the parameter 7 is defined as the work done by the electric force e Epeax in the Compton
wavelength A¢ in unit of laser photon energy hw,
6Ejpeauk)\c Wlec2 Epeak

= = £ (355)

which is the same as 7 in (224) in Section 4.8 and agrees with its time-average (232) and
(233), over one period of laser wave. The exponential factor in Eq. (353) has been confirmed
by later works [30, 31, 32, 244, 246], which determine more accurately the pre-exponential
factor by taking into account also interference effects. The parameter n is related to the
adiabaticity parameter v = 1/7.

In the strong field and low frequency limit (n > 1), formula (353) agrees to the Schwinger
non-perturbative result (160) for a static and spatially uniform field, apart from an “inessen-
tial” (see Ref. [36]) pre-exponential factor of 7. This is similar to the adiabatic approximation
of a slowly varying electric field that we discuss in Section 6.5.5. On the other hand, for
n < 1, i.e. in high frequency and weak field limit, Eq. (353) yields [36],

2 2me c2

P o (22 gt (D) 1+ 0w @56)

corresponding to the nth order perturbative result, where n is the minimum number of
quanta of laser field required to create an ete™ pair:

2mec?
> c 1. 357

Y

The pair production rate (353) interpolates analytically between the adiabatic, non-perturbative
tunneling mechanism (160) (n > 1,y < 1) and the anti-adiabatic, perturbative multi-photon
production mechanism (356) (n < 1,7 > 1).

In Refs. [244, 246], it was found that the pair production rate, under the condition (352),
can be expressed as a sum of probabilities w,, of many photon processes,

Mmec?

75]) = Z Wn, with Ng = HAm,

n>no

(358)

where A,, indicates an effective energy gap m.c?A,,, due to the transverse oscillations of the
electron propagating in a laser wave (see Section 4.10 and Eq. (245)). In the limiting cases
of small and large 7, the result is given by [246],

5/2
s oo} () ew|-w () (- o). wxt
P AN Vi [ e )2 o2 " (359)
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where n > (2m.c?/hw), ¢ = 2(n — %) and Erfi(z) is the imaginary error function [259].
The range of validity of results (353), (356), (358) and (359) is indicated by the conditions

(352).

6.2.2 Pair production in X-ray free electron lasers

According to Eq. (350) for the electric field £ of an X-ray laser, in order to obtain an
observable effect of pair production we need to have a large power P, a small laser focusing



spot radius op.ser and a long duration time At of the coherent laser pulse. The power of
an X-ray free electron laser is limited by the current laser technology. The focusing spot
radii oj,e; are limited by the diffraction to the order of the X-ray laser beam wavelength. In
Ref. [60, 238, 239], it was estimated that to produce at least one pair of electron and positron,
we need the minimum power of the X-ray laser to be ~ 2.5 — 4.5TW corresponding to an
electric field of ~ 1.7 — 2.3 - 10"V /cm ~ 0.1E,, provided the laser wavelength is A ~ 0.1nm
and the theoretical diffraction limit oj,se; >~ A is actually reached and the laser coherent
duration time At ~ 10-(13~19) gecond. Based on these estimations, Ringwald concluded
[60, 238, 239] that with present available techniques, the power density and electric fields
of X-ray laser are far too small to produce a sizable Sauter-Euler-Heisenberg-Schwinger
effect. If the techniques for X-ray free electron laser are considerably improved, so that
the XFEL power can reach the terawatt regime and the focusing spot radii can reach the
theoretical diffraction limit, we will still have the possibility of investigating the Sauter-
Euler-Heisenberg-Schwinger phenomenon by a future XFEL.

6.2.3 Pair production by a circularly polarized laser beam

Instead of a time varying electric field (349) that is created by an intersection of more than
two coherent laser beams, it was suggested [260, 261] to use a focused circularly polarized
laser beam having nonvanishing field invariants S, P (69) and strong electromagnetic fields
E, B for pair production. It is well known that the electromagnetic field of a focused light
beam is not transverse, however, one can always represent the field of a focused beam as
a superposition of fields with transverse either electric (e-polarized) field or magnetic (h-
polarized) field only, see e.g., [262].

In Ref. [261], the e-polarized electric and magnetic fields (E¢, B¢) propagating in the
z-direction is described by the following exact solution of Maxwell equations [263],

E° = B, e ¥ [Fi(e, &) — Fre™(e, Fe,)]; (360)
e —1 : 9
B = j:Epeake w{ (]. - 252a)
+2i¢ A 200 8Fl
[Fi(e, =€) + Foe™(e, Fe,)] + 2ile 8—582}’ (361)

where 1 = w(t — z/c), e¥?® = (z +iy)/p, x = 2A/R, € = p/R and p = /22 + y2. The
focusing parameter A = \/(27R) is expressed in terms of laser’s wavelength A and the
focal spot radius R. The functions Fi (&, x, A) obey differential equations [263], go to zero
sufficiently fast when &, |x| — oo and conditions F3 (0,0, A) = 1; F»(0,0, A) = 0 are satisfied
for A — 0 [261]. The h-polarized electric and magnetic fields E" = £iB¢ and B" = FiE®
[263].

Corresponding to electromagnetic fields (360), (361), field invariants S¢, P¢ are given by
Eq. (69) and ¢, 8 by Eq. (71) in Section 2.5. The total number of electron and positron pairs
is given by Eq. (174) for n =1 (see also Eq. (176),

g E
Ny, ~2 / dv / dte B coth ™ exp <—7T ) (362)
v 0 g 9
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where the integral is taken over the volume V' and duration 7 of the laser pulse. The
qualitative estimations and numerical calculations of total number N,+.- of electron and
positron pairs in terms of laser intensity [, and focusing parameter A are presented in
Ref. [261]. Two examples for e-polarized electromagnetic fields are as follows:



1. for Epeax = By A = 1pum, 7 = 10fs and A = 0.1 (the theoretical diffraction limit), the
laser beam intensity [ =~ 1.5 - 10%W/cm? ~ 0.31I¢,., the critical intensity (351).
The total number of pairs created N,+.- ~ 5-10?° according to the Schwinger formula

Eq. (362) for pair production rate;

2. with the same values of laser parameters A, A and 7, while the laser pulse intensity
Daser = 5 - 102"W/em? ~ 1072I¢,,, corresponding to Epeax ~ 0.18E,, Eq. (362) gives
Negte— ~ 20.

Because the volume V' and duration 7 of the laser pulse is much larger than the Compton
volume and time occupied by one pair, the average number of pairs N.+.- =~ 20 is large
and possibly observable even if the peak value of electric field is only 18% of the critical
value. In addition, pair production is much more effective by the e-polarized electric and
magnetic fields E¢, B¢ than by the h-polarized fields E” B". The detailed analysis of the
dependence of the number of pairs N.+.- on the laser intensity [j,s.; and focusing parameter
A is given in [264], and results are presented in Fig. (12). In particular, it is shown that
for the case of two counter-propagating focused laser pulses with circular polarizations, pair
production becomes experimentally observable when the laser intensity g ~ 10251/ /cm?
for each beam, which is about 1 ~ 2 orders of magnitude lower than for a single focused
laser pulse, and more than 3 orders of magnitude lower than the critical intensity (351). In
these calculations the “imaginary time” method is useful [246, 265, 264], which gives a clear
description of tunneling of a quantum particles through a potential barrier. Recently the
process of electron—positron pair creation in the superposition of a nuclear Coulomb and a
strong laser field was studied in [266].

It was pointed [261, 264] that the exploited method becomes inconsistent and one should
take into account back reaction of the pair production effect on the process of laser pulse
focusing at such high laser intensity and Epeax ~ E.. It has already been argued in Refs. [209,
210, 244, 246] that for the superstrong field regime E 2 0.1FE,., such back reaction of the
produced electron—positron pairs on the external field and the mutual interactions between
these particles have to be considered. These back reaction effects on pair production by laser
beams leading to the formation of plasma oscillation have been studied in Refs. [267, 268,
269]. Our studies [72, 73] show that the plasma oscillation and electron—positron-photon
collision are important for electric fields £ = 0.1F,, see Section 8.7.

6.2.4 Availability of laser technology for pair production

There are several ways to increase the electromagnetic fields of a laser beam. One way is
to increase the frequency of the laser radiation and then focus it onto a tiny region. X-
ray lasers can be used [60, 238, 239, 268, 257]. Another way is, clearly, to increase the
intensities of laser beams. The recent development of laser technology and the invention of
the chirped pulse amplification (CPA) method have led to a stunning increase of the light
intensity (102W/cm?) in a laser focal spot [270, 271]. To achieve intensities of the order
10%=%W /cm?, a scheme was suggested in Ref. [272], where a quasi-soliton wave between
two foils is pumped by the external laser field up to an ultrahigh magnitude. Using the
method based on the simultaneous laser frequency upshifting and pulse compression, another
scheme for reaching critical intensities has also been suggested in Ref. [273, 274], where the
interaction of the laser pulse with electron density modulations in a plasma produced by
a counter-propagating breaking wake plasma wave, results in the frequency upshift and
pulse focusing. In addition, it has been suggested [270] a path to reach the extremely high
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Figure 12: Logarithm of the number of pairs N.+.- produced by the field of two counter-
propagating laser-pulses (circular polarization) is shown as functions of: (a) the beam inten-
Sity laser for the focusing parameters A = 0.1,0.075,0.05 and 0.01 (the curves 1,2,3 and 4
correspondingly); (b) the focusing parameter A for the beam intensity laser = 4+ 102°W /cm?
and laser-pulse duration 7 = 1074 sec. This figure is reproduced from Fig. 6 in Ref. [264].



intensity level of 1026728W /cm? already in the coming decade. Such field intensities are very
close to the value of critical intensity If... (351). For a recent review, see Ref. [275]. This
technological situation has attracted the attention of the theorists who involved in physics
in strong electromagnetic fields.

Currently available technologies allow for intensities of the order of 102 W/cm? leading
to abundant positron production essentially through the Bethe-Heitler process (26) with

number densities of the order of 106 cm™3 [276].

6.3 Phenomenology of pair production in electron beam-laser col-
lisions
6.3.1 Experiment of electron beam-laser collisions

After the availability of high dense and powerful laser beams, the Breit—Wheeler process
(3) has been reconsidered in Refs. [61, 62, 40, 41, 42, 43, 44, 45] for high-energy multiple
photon collisions. The phenomenon of ete™ pair production in multi-photon light-by-light
scattering has been reported in [38, 39, 254, 211] on the experiment SLAC-E-144 [277, 63].

As described in Ref. [39], such a large center of mass energy (2m.c®* = 1.02 MeV) can
be possibly achieved in the collision of a laser beam against another high-energy photon
beam. With a laser beam of energy 2.35 eV, a high-energy photon beam of energy 111 GeV
is required for the Breit—Wheeler reaction (3) to be feasible. Such a high-energy photon
beam can be created for instance by backscattering the laser beam off a high-energy electron
beam, i.e., by inverse Compton scattering. With a laser beam of energy 2.35 eV (wavelength
527nm) backscattering off a high-energy electron beam of energy 46.6 GeV, as available at
SLAC [63], the maximum energy acquired by Compton-backscattered photon beam is only
29.2GeV. This is still not enough for the Breit—~Wheeler reaction (3) to occur, since such
photon energy is four times smaller than the needed energetic threshold.

Nevertheless in strong electromagnetic fields and a long coherent time-duration At =
27 /w of the laser pulse, the number n of laser photons interacting with scattered electron
becomes large, when the intensity parameter of laser fields 7 (232) approaches or even exceeds
unity. Once this number n is larger than the critical number ng defined after Eq. (245) in
Section 6.3, pair production by the nonlinear Breit—Wheeler reaction (230) for high-energy
multiple photon collisions becomes feasible.

The probability of pair production by the processes (229) and (230) is given by Eqs. (243)
and (245) for any values of 7 in Section 4.10. In high frequency and weak field limit n < 1,
the probability P., (243) and P, (245) for fairly small n are proportional to n?", i.e.

Pey x 7" Py o (363)

(see Egs. (356), (359)). This corresponds to the anti-adiabatic, perturbative multi-photon
production mechanism (356), (359) for (n < 1). In low frequency and strong field limit
1n > 1, it essentially refers to process in a constant and uniform field where E and B are
orthogonal and equal in magnitude. This corresponds to the adiabatic limit of a slowly
varying electromagnetic field discussed in Section 6.2.1.

For n > 5 laser photons of energy 2.35eV colliding with a photon of energy 29 GeV,
the process of nonlinear Breit—-Wheeler pair production becomes energetically accessible. In
Refs. [38, 39, 211], it is reported that nonlinear Compton scattering (229) and nonlinear
Breit—Wheeler electron—positron pair production (230) have been observed in the collision of
46.6 GeV and 49.1 GeV electrons of the Final Focus Test Beam at SLAC with terawatt pulse
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Figure 13: Dependence of the positron rate per laser shot on the laser field-strength pa-
rameter 7. The line shows a power law fit to the data. The shaded distribution is the
95% confidence limit on the residual background from showers of lost beam particles after
subtracting the laser-off positron rate. This figure is reproduced from Fig. 4 in Ref. [39]

of 1053 nm (1.18 eV) and 527 nm (2.35 ¢V) wavelengths from a Nd:glass laser. The rate of
pair production, i.e., R.+ of positrons/(laser shot) is measured in terms of the parameter 7
(n < 1), as shown in Fig. 13, where line represents a power law fit to the data which gives
[39],

Ro+ oc ™, with n = 5.14 0.2(stat) )5 (syst). (364)

These experimental results are found to be in agreement with theoretical predictions (363),
i.e., (243), (245) for small n; as well as with (359) and (356) for w — 7w in the frame
of reference where the electron beam is at rest. This shows that the pair production of
Breit—Wheeler type by the anti-adiabatic, perturbative multi-photon production mechanism,
described by Egs. (243), (245) or (356), (359) for small n < 1, has been experimentally
confirmed. However, one has not yet experimentally observed the pair production by the
adiabatic, non-perturbative tunneling mechanism, described by Egs. (243), (245) or (356),
(359) for large n > 1, i.e. for static and constant electromagnetic fields. Nevertheless, pair
production probabilities Eqgs. (353), (359) and Egs. (243), (245) interpolates between both
n < 1 and n > 1 regimes. Based on such analyticity of these probability functions in terms
of the laser intensity parameter 7, we expect the pair production to be observed in n > 1
regime.

6.3.2 Pair production viewed in the rest frame of electron beam

In the reference frame where the electron beam is at rest, one can discuss [254] pair produc-
tion in the processes (229) and (230) by using pair production rate Egs. (353), (356), (359) in
Section 6.2. In the experiment of colliding 46.6GeV electron beam with 2.35¢V (527nm) laser
wave, the field strength in the laboratory is Fi,;, ~ 6-10'°V /cm and intensity I ~ 10T /cm?



for n =1 [39]. The Lorentz gamma factor of the electron beam v = &, /m.c* ~ 9.32 - 10* for
E. ~ 46.6GeV. In the rest frame of the electron beam, the electric field is given by

Erest = V(Eiab + Vv X Blap) = 7Epab(1 + |v]) ~ 27E (365)
where laser’s electromagnetic fields E- B = 0, |E[ = |B|, B x k = E, and laser’s wave vector
k = —v, thus one has

Frest =~ 2VEp ~ 2 - 10°Eja, ~ 0.86E... (366)

The field of 2.35eV laser wave is well defined coherent wave field with wavelength Ay, =
5.27-107%cm and frequency wy,, = 3.57-10% /sec (the period Aty = 27/w = 1.76- 10 sec).
In the rest frame of electron beam, A\est = YAp = 4.91cm and Aty = Atp/7 =
1.9-107%sec. Comparing these wavelength and frequency of laser wave field with the spatial
length hi/m.c = 3.86 - 107 tcm and timescale h/m.c®> = 1.29 - 10~ 2!sec of spontaneous pair
production in vacuum, we are allowed to apply the homogeneous and adiabatic approxima-
tion discussed in Section 6.5.5, and use the rate of pair production (353), (356), (359) in
Section 6.2.

6.4 The Breit—Wheeler cutoff in high-energy ~-rays

Having determined the theoretical basis as well as attempts to verify experimentally the
Breit—Wheeler formula we turn to a most important application of the Breit—-Wheeler process
in the framework of cosmology. As pointed out by Nikishov [56] the existence of background
photons in cosmology puts a stringent cutoff on the maximum trajectory of the high energy
photons.

The Breit—Wheeler process for the photon-photon pair production is one of most relevant
elementary processes in high-energy astrophysics. In addition to the importance of this
process in dense radiation fields of compact objects [278], the essential role of this process
in the context of intergalactic absorption of high-energy ~-rays was first pointed out by
Nikishov [56, 279]. The spectra of TeV radiation observed from distant (d > 100 Mpc)
extragalactic objects suffer essential deformation during the passage through the intergalactic
medium, caused by energy-dependent absorption of primary ~-rays interacting with the
diffuse extragalactic background radiation, for the optical depth 7., most likely significantly
exceeding one [279, 280, 281, 282]. A relevant broad-band information about the cosmic
background radiation (CBR) is important for the interpretation of the observed high-energy
v spectra [283, 284, 285, 286]. For details, readers are referred to Refs. [287, 288]. In
this section, we are particularly interested in such absorption effect of high-energy ~-ray,
originated from cosmological sources, interacting with the Cosmic Microwave Background
(CMB) photons. Fazio and Stecker [289, 290] were the first who calculated the cutoff energy
versus redshift for cosmological v-rays. This calculation was applied to further study of
the optical depth of the Universe to high-energy ~-rays [291, 292, 293]. With the Fermi
telescope, such study turns out to be important to understand the spectrum of high-energy
~v-ray originated from sources at cosmological distance, we therefore offer the details of
theoretical analysis as follow [294].

We study the Breit—Wheeler process (3) in the case that high-energy photons wy, origi-
nated from sources at cosmological distance z, on their way to us, collide with CMB photons
wy in the rest frame of CMB photons, leading to electron—positron pair production. We cal-
culate the opacity and mean free path of these high-energy photons, find the energy range
of absorption as a function of the cosmological redshift z.



In general, a high-energy photon with a given energy w;, collides with background pho-
tons having all possible energies wy. We assume that i-type background photons have the
spectrum distribution f;(ws), the opacity is then given by

: Fody [ widw, wiwa
)= [ L, S e (G5 ) (967

where m2c? /w; is the energy threshold (22) above which the Breit—~Wheeler process (3) can
occur and the cross-section o, is given by Eqs. (23); H(2) is the Hubble function, obeyed
the Friedmann equation

H(2) = Ho[Q(z +1)% + Q]2 (368)
We will assume €2, ~ 0.3 and Qy; ~ 0.7 and Hy = 75Km/s/Mpc. The total opacity is then

given by
total Z Wl ’ 7 (369)

which the sum is over all types of photon backgrounds in the Universe.
In the case of CMB photons the ir distribution is black-body one fonp(ws/T) = 1/(e?/T—
1) with the CMB temperature T', the opacity is given by

2 dY o dwy w3 )
T’Y’Y(wb Z) - A H(Z/) / 72 ew2/T — 1077( )7 (370)

2.4
m2ct/wy mec

wWiw2

where the Boltzmann constant kg = 1. To simply Eq. (370), we set x = . In terms of

CMB temperature and high-energy photons energy at the present time, e
T=0z+0)T% wpo= (241w, (371)
we obtain,
z / 2 4\ 3 poo 2
et = [ ey (i) [ Seemmie@ @
where 0T
0=x0(z+1)% m= mlgc4’ (373)

and zg is the energy w? in unit of m.c?(mec 2/TO) =1.11-10%eV.

The 7., (w?, z) = 1 gives the relationship w) = w)(z) that separates the optically thick
Ty (W), z) > 1 and optically thin 7., (w), z) < 1 regimes in the w) — z plane.

The integral (372) is evaluated numerically and the result is presented in Fig. 14. It
clearly shows the following properties:

1. for the redshift z smaller than a critical value z. ~ 0.1 (z < z.), the CMB is transparent
to photons with arbitrary energy, this indicates a minimal mean free path of high-
energy photons;

2. for the redshift z larger than the value (z > z.), there are two branches of solutions
for 7., (w}, 2) = 1, respectively corresponding to the different energy dependence of the
cross-section (23): the cross-section o.,(z) increases with the center of mass energy
r = wiwy?/(mec?)? from the energy threshold « = 1 to z ~ 1.97, and decreases (24)
from z ~ 1.97 to x — co. The energy of the CMB photon corresponding to the critical



Figure 14: This is a Log-Log plot for high energy photon energy x( in units of 1.11-10% eV
versus redshift z. The grey region represents optically thick case, while the white one is for
optically thin case. The boundary between the two is the two-branch solution of Eq. 372 for
T,y = 1. There is a critical redshift z, ~ 0.1 for a photon with arbitrary energy, which can

reach the observer. The value of the photon energy corresponding to this critical redshift is
U~ 1.11-10%eV
wi ~ 1. eV.

redshift z ~ 0.1,w? is ~ 1.15 - 10'°eV which separates two branches of the solution.
The position of this point in Fig. 14 is determined by the maximal cross-section at
x ~ 1.97. Due to existence of these two solutions for a given redshift z, photons having
energies in the grey region of Fig. 14 cannot reach the observer, while photons from
the white region of Fig. 14 are observable.

3. above the critical redshift z. low-energy photons can reach us since their energies are
smaller than the energetic threshold for the Breit—Wheeler process (3). In addition,
high-energy photons are also observable due to the fact that the cross-section of Breit—
Wheeler process (3) decreases with increasing energy of photons. For large redshifts
z ~ 103, the Universe is opaque and we disregard this regime.

In Section 4.4 we considered another relevant process which is double pair production
(121). This process contributes to the opacity at very high energies and its effect has been
computed in [295]. We also computed the effect of this process on our diagram in Fig. 14.
This process becomes relevant at very high redshift z ~ 103,

Due to the fact that there are other radiation backgrounds contributing into (369), the
background of CMB photons gives the lower limit for opacity for high-energy photons with
respect to the Breit—Wheeler process (3). Finally, we point out that the small-energy solution
for large redshift in Fig. (14) agrees with the one found by Fazio and Stecker [289, 290].

6.5 Theory of pair production in Coulomb potential

By far the major attention to build a critical electric field has occurred in the physics of
heavy nuclei and in heavy-ion collisions. We recall in the following some of the basic ideas,



calculations, as well as experimental attempts to obtain the pair creation process in nuclear
physics.

6.5.1 The Z = 137 catastrophe

Soon after the Dirac equation for a relativistic electron was discovered [80, 296], Gordon
[297, 298] (for all Z < 137) and Darwin [299] (for Z = 1) found its solution in the point-like
Coulomb potential V(r) = —Za/r, 0 < r < oco. Solving the differential equations for
the Dirac wave function, they obtained the well-known Sommerfeld’s formula [300] for the
energy spectrum,

Za 2] 71/?
N — 2
En,j) =mec” |1+ <n TR+ (K2 = Z2a2)1/2) ] . (374)
Here the principle quantum number n =1,2,3,-- - and
=42 =—(+1), if j=I1+1 1>0
K—{(j+1/2):la if j:l_; I1>1 (375)

where [ = 0,1, 2, ... is the orbital angular momentum corresponding to the upper component
of Dirac bi-spinor, 7 is the total angular momentum, and the states with K = F1, F2, F3, - -
-, F(n — 1) are doubly degenerate®, while the state K = —n is a singlet [297, 298, 299]. The
integer values n and K label bound states whose energies are £(n, j) € (0,m.c?). For the
example, in the case of the lowest-energy states, one has

E(151) = mec*\/1 — (Za)?, (376)
£(25y) = E(2P) = mec2\/1 Y 12_ (Za)® (377)

£(2Ps) = mec?y /1 — i(Za)Z. (378)

For all states of the discrete spectrum, the binding energy m.c®> — £(n,j) increases as the
nuclear charge Z increases, as shown in Fig. 15. When Z = 137, £(15,/2) = 0, £(251)2) =
E(2Py5) = (mec?)/V2 and E(2S35) = mec*v/3/2. Gordon noticed in his pioneer paper
[297, 298] that no regular solutions withn =1,j =1/2,1 = 0, and K = —1 (the 15; /5 ground
state) are found beyond Z = 137. This phenomenon is the so-called “Z = 137 catastrophe”
and it is associated with the assumption that the nucleus is point-like in calculating the
electronic energy spectrum.

In fact, it was shown since the pioneering work of Pomeranchuk [64] that in nature there
cannot be a point-like charged object with effective coupling constant Za > 1 since the
entire electron shell will collapse to the center r = 0.

6.5.2 Semi-Classical description

In order to have further understanding of this phenomenon, we study it in the semi-classical
scenario. For simplicity we treat relativistic electron as a scalar particle fulfilling the Klein—
Gordon equation, but still obeying Fermi-Dirac statistics. Setting the origin of spherical

8This degeneracy is removed by radiative corrections [133, 90]. The shift of the level 25 1 up, compared

to the level 2P, (the famous Lamb shift) was discovered out of the study of fine structure of the hydrogen
spectrum.
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Figure 15: Atomic binding energies as function of nuclear charge Z. This figure is reproduced
from Fig. 1 in Ref. [66].

coordinates (1, 0, ¢) at the point-like charge, we introduce the vector potential A, = (A, Ay),
where A = 0 and Ay is the Coulomb potential. The motion of a relativistic “electron” with
mass m and charge e is described by its radial momentum p,, angular momenta p4 and the

Hamiltonian
pr\’ ps
Hy = +m.? 1+( ) +< ¢ ) + V(r), (379)
meC mecr

where the potential energy V(r) = eAy, and £ corresponds for positive and negative so-
lutions. The states corresponding to negative energy solutions are fully occupied. The
angular momentum py is conserved, when the Hamiltonian is spherically symmetric. For a
given angular momentum p,, the Hamiltonian (379) describes electron’s radial motion in the
following effective potential

2
By = +m.? 1+( P ) LV (). (380)

mecr

The Coulomb potential energy V(r) is given by

Vir)=-2=. (381)



In the classical scenario, given different values of angular momenta py, the stable circu-
lating orbits (states) are determined by the minimum of the effective potential £, (r) (380).
Using dE(r)/dr = 0, we obtain the stable orbit location at the radius R, in the unit of the
Compton length g,

RL(p¢) = ZO&)\C 1-— <]%) y (382)

where o = €?/hc and p, > Za. Substituting Eq. (382) into Eq. (380), we find the energy of
the electron at each stable orbit,

Za \’
E(py) = min(E.) = m.c? 1—<—). 383
(py) = min(E,) - (383)
The last stable orbits (minimal energy) are given by
Py — Zah + 0+, RL(p¢) — 0+, 5(p¢) —0t. (384)

For stable orbits with p,/h > 1, the radii Rz/Ac > 1 and energies & — m.c* + 07;
electrons in these orbits are critically bound since their binding energy goes to zero. As the
energy spectrum (374), see Egs. (376,377,378), Eq. (383) shows, only positive or null energy
solutions (states) exist in the presence of a point-like nucleus.

In the semi-classical scenario, the discrete values of angular momentum py are selected
by the Bohr-Sommerfeld quantization rule

1

/pﬂgb:h(l—l—%), = p¢(l)2h(l+§), 1=0,1,2,3,... (385)

describing the semi-classical states of radius and energy

(Za)_l)\c\/l - (221?‘1)2, (386)

2Za \’
mec2\/1 - (21 +0‘1) . (387)

Other values of angular momentum p,, radius R, and energy £ given by Egs. (382,383) in
the classical scenario are not allowed. When these semi-classical states are not occupied
as required by the Pauli Principle, the transition from one state to another with different
discrete values (ly,ls and Al = Iy —1; = £1) is possible by emission or absorption of a spin-1
(h) photon. Following the energy and angular-momentum conservations, photons emitted
or absorbed in the transition have angular momentum py(ly) — ps(ly) = hA(ls — 1) = £h
and energy £(l) — £(l1). As required by the Heisenberg uncertainty principle AgAp, =~
4mtps(l) 2 h, the absolute ground state for minimal energy and angular momentum is given
by the | = 0 state, py ~ h/2, R, ~ Zalcy/1 — (2Za)? > 0 and € ~ m.c*\/1 — (2Za)? > 0
for Za < 1/2. Thus the stability of all semi-classical states [ > 0 is guaranteed by the
Pauli principle. In contrast for Za > 1/2, there is not an absolute ground state in the
semi-classical scenario.

We see now how the lowest-energy states are selected by the quantization rule in the semi-
classical scenario out of the last stable orbits (384) in the classical scenario. For the case of

Ri(1)

12

()

12



Za < 1/2, equating (384) to (385), we find the selected state [ = 0 is only possible solution
so that the ground state [ = 0 in the semi-classical scenario corresponds to the last stable
orbits (384) in the classical scenario. On the other hand for the case Za > 1/2, equating
(384) to (385), we find the selected state | = I = (Za—1)/2 > 0 in the semi-classical scenario
corresponds to the last stable orbits (384) in the classical scenario. This state | = [>0is
not protected by the Heisenberg uncertainty principle from quantum mechanically decaying
in A-steps to the states with lower angular momentum and energy (correspondingly smaller
radius Ry, (386)) via photon emissions. This clearly shows that the “Z = 137-catastrophe”
corresponds to Ry, — 0, falling to the center of the Coulomb potential and all semi-classical
states () are unstable.

6.5.3 The critical value of the nuclear charge 7. = 173

A very different situation is encountered when considering the fact that the nucleus is not
point-like and has an extended charge distribution [64, 301, 302, 303, 304, 305, 306, 307, 65].
In that case the Z = 137 catastrophe disappears and the energy levels £(n, j) of the bound
states 15, 2P and 25, --- smoothly continue to drop toward the negative energy continuum as
Z increases to values larger than 137, as shown in Fig. 15. The reason is that the finite size R
of the nucleus charge distribution provides a cutoff for the boundary condition at the origin
r — 0 and the energy levels £(n, j) of the Dirac equation are shifted due to this cutoff. In
order to determine the critical value Z,., when the negative energy continuum (£ < —m.c?)
is encountered (see Fig. 15), Zeldovich and Popov[304, 305, 306, 307, 65] solved the Dirac
equation corresponding to a nucleus of finite extended charge distribution, i.e., the Coulomb
potential is modified as
_ze r>R
vin={ ’ (389

wf (7)., r<R

where R ~ 1072cm is the size of the nucleus. The form of the cutoff function f(x) depends
on the distribution of the electric charge over the volume of the nucleus (z =r/R,0 < z < 1,
with f(1) = 1). Thus, f(z) = (3—2?%)/2 corresponds to a constant volume density of charge.

Solving the Dirac equation with the modified Coulomb potential (388) and calculating the
corresponding perturbative shift AEx of the lowest-energy level (376) Popov obtains[304, 65]

2(2¢e~M)2: 1
AER = m.c? ()7 [1 - 272/ flz :L'QVde] , 389

5 Y2(1 +272) 0 (@) (389)
where £ = Za, v, = /1 —&? and A = In(h/m.cR) > 1 is a logarithmic parameter in the

problem under consideration. The asymptotic expressions for the 151/, energy that were
obtained are[307, 65]

V1 —=¢&%coth(Ay/1—-E2), 0<E<1,

E(181)9) =mec* ¢ AL, £=1, (390)
VE —lceot(A/E2—1), ¢>1.
As a result, the “Z = 137 catastrophe” in Eq. (374) disappears and £(1.51/2) = 0 gives
2

& =1+ ;T_A + O, (391)



the state 15}, energy continuously goes down to the negative energy continuum since Za >
1, and £(151/2) = —1 gives

L™
2A(A +2)

as shown in Fig. 15. In Ref. [304, 65] Popov and Zeldovich found that the critical value

én) = Z.a for the energy levels nS, and nP/, reaching the negative energy continuum is
equal to

Er =1 + O(A™) (392)

n2m?

2A2
The critical value increases rapidly with increasing n. As a result, it is found that 7., ~ 173
is a critical value at which the lowest-energy level of the bound state 15/, encounters
the negative energy continuum, while other bound states encounter the negative energy
continuum at Z., > 173 (see also Ref. [302] for a numerical estimation of the same spectrum).
The change in the vacuum polarization near a high-Z nucleus arising from the finite extent
of the nuclear charge density was computed in [308, 309, 310] with all calculations done
analytically, and to all orders in Za. Note that for two nuclei with charges Z; and Z
respectively, if Z; > Zs and K-shell of the Z;-nucleus is empty, then Z, may be a neutral
atom. In this case two nuclei make a quasimolecular state for which the ground term (1so) is
unoccupied by electrons: so spontaneous production of positrons is also possible [311, 312].
We refer the readers to Ref. [304, 305, 306, 307, 65, 313] for mathematical and numerical
details.
When Z > Z,, = 173, the lowest-energy level of the bound state 157/, enters the negative
energy continuum. Its energy level can be estimated as follows
E(181/9) = mec® — Z__a < —mec?, (394)

g

€M =1+ +O(A™?). (393)

where 7 is the average radius of the 1.5}/, state’s orbit, and the binding energy of this state
satisfies Za /7 > 2m.c?. If this bound state is unoccupied, the bare nucleus gains a binding
energy Za/T larger than 2m.c?, and becomes unstable against the production of an electron—
positron pair. Assuming this pair production occurs around the radius 7, we have energies
for the electron (e_) and positron (e, ) given by

Z Z
epPmict = = ey = Ve P mie 4+ =, (395)

where p4 are electron and positron momenta, and p_ = —p.. The total energy required
for the production of a pair is

e+ =¢€_+e=2y|cp_|? + mict, (396)

which is independent of the potential V(7). The potential energies +eV (7) of the electron
and positron cancel out each other and do not contribute to the total energy (396) required
for pair production. This energy (396) is acquired from the binding energy (Za/T > 2m.c?)
by the electron filling into the bound state 1.5,/,. A part of the binding energy becomes the
kinetic energy of positron that goes out. This is analogous to the familiar case when a proton
(Z = 1) catches an electron into the ground state 15/, and a photon is emitted with the
energy not less than 13.6 eV. In the same way, more electron—positron pairs are produced,
when Z > Z., = 173 and the energy levels of the next bound states 2P, /5, 2S55/,, . . . enter the
negative energy continuum, provided these bound states of the bare nucleus are unoccupied.



6.5.4 Positron production

Gershtein and Zeldovich [314, 315 proposed that when Z > Z,,. the bare nucleus produces
spontaneously pairs of electrons and positrons: the two positrons® run off to infinity and the
effective charge of the bare nucleus decreases by two electrons, which corresponds exactly
to filling the K-shell'® A more detailed investigation was made for the solution of the Dirac
equation at Z ~ Z.., when the lowest electron level 157/, merges with the negative energy
continuum, in Refs. [304, 305, 306, 307, 316]. It was there further clarified the situation,
showing that at Z 2 Z.., an imaginary resonance energy of Dirac equation appears,

Fnuc
€=e—i—2d (397)
2
where
€ = —me—alZ—Z), (398)
ZCT’
Fnucl ~ H(Z — Zm«) exp <—b m) y (399)

and a,b are constants, depending on the cutoff A (for example, b = 1.73 for Z = Z.. =
173 [305, 306, 65]). The energy and momentum of emitted positrons are |¢| and |p| =

v |€o] — mec?.

The kinetic energy of the two positrons at infinity is given by
g, = leol —me® =a(Z — Zop) + -+ -, (400)

which is proportional to Z — Z,,. (as long as (Z — Z.,) < Z,.) and tends to zero as Z — Z,,.
The pair production resonance at the energy (397) is extremely narrow and practically all
positrons are emitted with almost same kinetic energy for Z ~ Z,., i.e. nearly mono-energetic
spectra (sharp line structure). Apart from a pre-exponential factor, I'y,q in Eq. (399) co-
incides with the probability of positron production, i.e., the penetrability of the Coulomb
barrier (see Section 2.5). The related problems of vacuum charge density due to electrons
filling into the K-shell and charge renormalization due to the change of wave function of
electron states are discussed in Refs. [317, 318, 319, 320, 321]. An extensive and detailed
review on this theoretical issue can be found in Refs. [65, 313, 322, 66].

On the other hand, some theoretical work has been done studying the possibility that
pair production, due to bound states encountering the negative energy continuum, is pre-
vented from occurring by higher order processes of quantum field theory, such as charge
renormalization, electron self-energy and nonlinearities in electrodynamics and even Dirac
field itself [222, 323, 324, 325, 326, 327, 328]. However, these studies show that various
effects modify Z.. by a few percent, but have no way to prevent the binding energy from
increasing to 2m.c? as Z increases, without simultaneously contradicting the existing precise
experimental data on stable atoms [329]. Contrary claim [330] according to which bound
states are repelled by the lower continuum through some kind of self-screening appear to be
unfounded [66].

It is worth noting that an overcritical nucleus (Z > Z..) can be formed for example
in the collision of two heavy nuclei [303, 316, 314, 315, 331, 332, 333, 334]. To observe the

9Hyperfine structure of 19, /2 state: single and triplet.
10 An assumption was made in Ref. [314, 315] that the electron density of 15, /o state, as well as the vacuum
polarization density, is delocalized at Z — Z,,.. Later it was proved to be incorrect [305, 306, 65].



emission of positrons originated from pair production occurring near to an overcritical nucleus
temporally formed by two nuclei, the following necessary conditions have to be full filled:
(i) the atomic number of an overcritical nucleus is larger than Z.. = 173; (ii) the lifetime of
the overcritical nucleus must be much longer than the characteristic time (h/m.c?) of pair
production; (iii) the inner shells (K-shell) of the overcritical nucleus should be unoccupied.

The collision of two Uranium nuclei with Z = 92 was considered by Zeldovich, Popov
and Gershtein [65, 311]. The conservation of energy in the collision reads

M2 = (Ze)*/ Rpin, (401)

where vy is the relative velocity of the nuclei at infinity, R,,;, is the smallest distance, and
M, is the Uranium atomic mass. In order to have R,,;, ~ 30fm a fine tuning of the initial
velocity narrowly peaked around vy =~ 0.034c is needed. The characteristic collision time
would be then At, = Rin/vo =~ 107%s. The interesting possibility then occurs, that the
typical velocity of an electron in the inner shell (r ~ 115.8fm) is v ~ ¢ and therefore its
characteristic time A7y ~ r/v ~ 4-107??s. This means that the characteristic collision
time At. in which the two colliding nuclei are brought into contact and separated again
can be in principle much larger than the timescale A7y of electron evolution. This would
give justification for an adiabatic description of the collision in terms of quasimolecules.
The formation of “quasimolecules” could also be verified by the characteristic molecular-
orbital X-rays radiation due to the electron transitions between “quasimolecules” orbits
(329, 335, 336, 337, 338, 339, 340, 341]. However, this requires the above mentioned fine
tuning in the bombarding energies (M, v3/2) close to the nuclear Coulomb barrier.

However, we notice that the above mentioned condition (ii) has never been fulfilled in
heavy-ion collisions. There has been up to now various unsuccessful attempts to broaden
this time of encounter by ‘sticking’ phenomena. Similarly, the condition (iii) is not sufficient
for pair production, since electrons that occupied outer shells of high energies must undergo
a rapid transition to occupy inner shells of lower energies, which is supposed to be vacant
and encountering the negative energy continuum. If such transition and occupation take
place faster than pair production, the pair production process is blocked. As a consequence,
it needs a larger value of Z > Z.. = 173 to have stronger electric field for vacant out shells
encountering the negative energy continuum (see Eq. (393)) so that electrons produced can
occupy outer shells. This makes pair production even less probable to be observed, unless
the overcritical charged nucleus is bare, i.e. all shells are vacant.

6.5.5 Homogeneous and adiabatic approximation

There is a certain analogy between positron production by a nucleus with Z > Z.,. and pair
production in a homogeneous electrostatic field. We note that in a Coulomb potential of a
nucleus with Z = Z,, the corresponding electric field E.,. = Z..|e|/r? is comparable with the
critical electric field E., (1), when r ~ Ac. However, the condition E > E, is certainly the
necessary condition in order to have the pair creation but not a sufficient one: the spatial
extent of the region where £/ > E,. occurs must be larger than the de Broglie wavelength of the
created electron—positron pair. If a pair production takes place, electrons should be bound
into the K-shell nucleus and positrons should run off to infinity. This intuitive reasoning
builds the connection between the phenomena of pair production in the Coulomb potential
at charge Z > Z.. and the one in an external constant electric field which was treated in
Section 4.7. The exact formula for pair production probability W in an overcritical Coulomb
potential has not yet been obtained in the framework of QED. We cannot expect a literal



coincidence of formulas for the probability W of pair production in these different cases, since
the Schwinger formula (160) is exactly derived for a homogeneous field, while the Coulomb
potential is strongly inhomogeneous at small distances. Some progress in the treatment of
this problem is presented in Section 5.

All the discussions dealing with pair production in an external homogeneous electric field
or a Coulomb potential assume that the electric field be static. Without the feedback of the
particles created on the field this will clearly lead to a divergence of the number of pairs
created. In the real description of the phenomenon at ¢ — —oo we have an initial empty
vacuum state. We then have the turned on of an overcritical electric field and ongoing pro-
cess of pair creation with their feedback on a time 7 on the electric field and a final state at
remote future t — 400 with the electron and positron created and the remaining subcritical
electric field. To describe this very different regimes a simplified “adiabatic approximation”
can be adopted by assuming the existence of a homogeneous field only during a finite time
interval [—7,T]. That time 7 should be of course shorter than the feedback time 7. During
that time interval the Schwinger formula (160) is assumed to be applicable and it is appro-
priate to remark that the overcritical electric fields are related to very high energy densities:
E?/2 = 9.53 - 10%%ergs/cm?. In the adiabatic approximation an effective spatial limitation
to the electric field is also imposed. Therefore the constant overcritical electric field and the
application of the Schwinger formula is limited both in space and time. Progress in this
direction has been presented in [73], see Section 8.8. A significant amount of pairs is only
produced if the finite lifetime of the overcritical electric field is larger than the characteristic
time of pair production (/m.c?) and the spatial extent of the electric field is larger than
the tunneling length a (52).

We have already discussed in Secs. 6.2 and 6.3 the experimental status of electron—
positron pair creation in X-ray free electron laser and an electron-beam-laser collision,
respectively. We now turn in Section 6.6 to the multiyear attempts in creating electron—
positron pairs in heavy-ion collisions.

6.6 Pair production in heavy-ion collisions
6.6.1 A transient super heavy ‘“quasimolecules”

There has been a multiyear effort to observe positrons from pair production associated with
the overcritical field of two colliding nuclei, in heavy-ion collisions [316, 329, 314, 315, 333,
334, 342]. The hope was to use heavy-ion collisions to form transient superheavy “quasi-
molecules”: a long-lived metastable nuclear complex with Z > Z... It was expected that
the two heavy ions of charges respectively Z; and Zy with Z; + Zs > Z,.,. would reach small
inter-nuclear distances well within the electron’s orbiting radii. The electrons would not dis-
tinguish between the two nuclear centers and they would evolve as if they were bounded by
nuclear “quasimolecules” with nuclear charge Z; + Z,. Therefore, it was expected that elec-
trons would evolve quasi-statically through a series of well defined nuclear “quasimolecules”
states in the two-center field of the nuclei as the inter-nuclear separation decreases and then
increases again.

When heavy-ion collision occurs the two nuclei come into contact and some deep inelastic
reaction occurs determining the duration At of this contact. Such “sticking time” is ex-
pected to depend on the nuclei involved in the reaction and on the beam energy. Theoretical
attempts have been proposed to study the nuclear aspects of heavy-ion collisions at energies
very close to the Coulomb barrier and search for conditions, which would serve as a trigger



for prolonged nuclear reaction times, to enhance the amplitude of pair production. The
sticking time At, should be larger than 1 ~ 2-1072! sec [66] in order to have significant pair
production, see Fig. 16. Up to now no success has been achieved in justifying theoretically
such a long sticking time. In reality the characteristic sticking time has been found of the
order of At ~ 10723 sec, hundred times shorter than the one needed to activate the pair
creation process. Moreover, it is recognized that several other dynamical processes can make
the existence of a sharp line corresponding to an electron—positron annihilation very unlikely
(66, 329, 343, 344, 345].
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Figure 16: Energy expectation values of the 1so state in a U+U collision at 10 GeV /nucleon.
The unit of time is i/m.c?. This figure is reproduced from Fig. 4 in Ref. [66].

It is worth noting that several other dynamical processes contribute to the production of
positrons in undercritical as well as in overcritical collision systems [323, 324, 222, 325]. Due
to the time-energy uncertainty relation (collision broadening), the energy spectrum of such
positrons has a rather broad and oscillating structure, considerably different from a sharp
line structure that we would expect from pair production positron emission alone.

6.6.2 Experiments

As remarked above, if the sticking time At, could be prolonged, the probability of pair
production in vacuum around the superheavy nucleus would be enhanced. As a consequence,
the spectrum of emitted positrons is expected to develop a sharp line structure, indicating the
spontaneous vacuum decay caused by the overcritical electric field of a forming superheavy
nuclear system with Z > Z,.. If the sticking time At, is not long enough and the sharp line
of pair production positrons has not yet well developed, in the observed positron spectrum
it is difficult to distinguish the pair production positrons from positrons created through



other different mechanisms. Prolonging the “sticking time” and identifying pair production
positrons among all other particles [346, 335] created in the collision process has been an
object of a very large experimental campaign [347, 348, 349, 350, 351, 352, 353, 354].

For nearly 20 years the study of atomic excitation processes and in particular of positron
creation in heavy-ion collisions has been a major research topic at GSI (Darmstadt) [355,
356, 357, 358]. The Orange and Epos groups at GSI (Darmstadt) discovered narrow line
structures (see Fig. 17) of unexplained origin, first in the single positron energy spectra and
later in coincident electron—positron pair emission. Studying more collision systems with
a wider range of the combined nuclear charge Z = Z; 4+ Z5 they found that narrow line
structures were essentially independent of Z. This has ruled out the explanation as a pair
production positron, since the line was expected to be at the position of the 1so resonance,
i.e., at a kinetic energy given by Eq. (400), which is strongly Z dependent. Attempts to link
this positron line to spontaneous pair production have failed. Other attempts to explain this
positron line in term of atomic physics and new particle scenario were not successful as well

[66].
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Figure 17: Two typical example of coincident electron—positron spectra measured by the
Epose group in the system U+Th (left) and by the Orange group in U+Pb collisions (right).
When plotted as a function of the total energy of the electron and positron, very narrow line
structures were observed. This figure is reproduced from Fig. 7 in Ref. [66].

The anomalous positron line problem has perplexed experimentalists and theorists alike
for more than a decade. Moreover, later results obtained by the Apex collaboration at
Argonne National Laboratory showed no statistically significant positron line structures
[359, 360]. This is in strong contradiction with the former results obtained by the Orange
and Epos groups. However, the analysis of Apex data was challenged in the comment by
Ref. [361, 362 pointing out that the Apex measurement would have been less sensitive to
extremely narrow positron lines. A new generation of experiments (Apex at Argonne and
the new Epos and Orange setups at GSI) with much improved counting statistics has failed
to reproduce the earlier results [66].

To overcome the problem posed by the short timescale of pair production (1072 sec),
hopes rest on the idea to select collision systems in which a nuclear reaction with sufficient



sticking time occurs. Whether such a situation can be realized still is an open question
[66]. In addition, the anomalous positron line problem and its experimental contradiction
overshadow the field of the pair production in heavy-ion collisions.

In summary, clear experimental signals for electron—positron pair production in heavy-
ion collisions are still missing [66] at the present time. For more recent information on the
pair production in the heavy-ion collisions see [363, 364, 365] and for complete references
the resource letter [366].

Having reviewed the situation of electron—positron pair creation by vacuum polarization
in Earth-bound experiments we turn now to the corresponding problems in the realm of
astrophysics. The obvious case is the one of black holes where the existence of critical field
is clearly predicted by the analytic solutions of the Einstein-Maxwell field equations.

7 The extraction of blackholic energy from a black hole
by vacuum polarization processes

It is becoming more and more clear that the theoretical description of the gravitational
collapse process to a Kerr-Newman black hole, with all the aspects of nuclear physics and
electrodynamics involved, is likely the most complex problem in physics and astrophysics.
Specific to this report is the opportunity given by the process of gravitational collapse to
study for the first time the above mentioned three quantum processes simultaneously at work
under ultrarelativistic special and general relativistic regimes. The process of gravitational
collapse is characterized by the gravitational timescale At, = GM/c® ~5-107%(M /M) sec,
where G is the gravitational constant, M is the mass of a collapsing object, and the energy
involved is of the order of AE = 10 M /M, ergs. This is one of the most energetic and most
transient phenomena in physics and astrophysics and needs for its correct description the
identification of the basic constitutive processes occurring in a highly time varying regime.
Our approach in this Section is to proceed with an idealized model which can give us esti-
mates of the basic energetics and some leading features of the real phenomenon. We shell
describe: (1) the basic energetic process of an already formed black hole; (2) the vacuum
polarization process a la Schwinger of an already formed Kerr—-Newman black hole; (3) the
basic formula of the dynamics of the gravitational collapse. We shall in particular recover
the Tolman-Oppenheimer-Snyder solutions in a more explicit form and give exact analytic
solution for the description of the gravitational collapse of charged and uncharged shells.
This will allow, among others, to recall the mass formula of the black hole, to clarify the
special role of the irreducible mass in that formula, and to have a general derivation of the
maximum extractable energy in the process of gravitational collapse. We will as well address
some conceptual issues between general relativity and thermodynamics which have been of
interest to theoretical physicists in the last forty years. Of course in this brief Section we will
be only recalling some of these essential themes and refer to the literature where in-depth
analysis can be found. Since we are interested in the gravitational collapse we are going to
examine only processes involving masses larger than the critical mass of neutron stars, for
convenience established in 3.2 M, [367]. We are consequently not addressing the research on
mini-black-holes [368] which involves energetics 10*! times smaller than the ones involved in
gravitational collapse and discussed in this report. This problematics implies a yet unknown
physics of applying quantum mechanics in conditions where the curvature of space-time is
comparable to the wavelength of the particle.

We recall here the basic steps leading to the study of the electrodynamics of a Kerr—



Newman black hole, indicating the relevant references. In this Section we use the system of
units c=G =h=1.

7.1 Test particles in Kerr—-Newman geometries

According to the uniqueness theorem for stationary, regular black holes (see Ref. [369]), the
process of gravitational collapse of a core whose mass is larger than the neutron star critical
mass [367] will generally lead to a black hole characterized by all the three fundamental pa-
rameters: the mass-energy M, the angular momentum L, and the charge @ (see [370]). The
creation of critical electric fields and consequent process of pair creation by vacuum polariza-
tion are expected to occur in the late phases of gravitational collapse when the gravitational
energy of the collapsing core is transformed into an electromagnetic energy and eventually in
electron—positron pairs. As of today no process of the gravitational collapse either to a neu-
tron star or to a black hole has reached a satisfactory theoretical understanding. It is a fact
that even the theory of a gravitational collapse to a neutron star via a supernova is not able
to explain even the ejection of a supernova remnant [371]. In order to estimate the funda-
mental energetics of these transient phenomena we recall first the metric of a Kerr—-Newman
black hole, the role of the reversible and irreversible transformations in reaching the mass
formula as well as the role of the positive and negative energy states in a quantum analog.
We will then estimate the energy emission due to vacuum polarization process. As we will
see, such a process occurs on characteristic quantum timescale of ¢t ~ h/(m.c*) ~ 1072
sec, which is many orders of magnitude shorter than the characteristic gravitational collapse
timescale. Of course the astrophysical progenitor of the black hole will be a neutral one,
as all the astrophysical systems. Only during the process of the gravitational collapse and
for the above mentioned characteristic gravitational timescale a process of charge separa-
tion will occur. The positively charged core would give rise to the electrodynamical process
approaching asymptotically in time the horizon of a Kerr-Newman black hole.

A generally charged and rotating, black hole has been considered whose curved space-time
is described by the Kerr-Newman geometry [372]. In Kerr-Newman coordinates (u,r, 6, ¢)
the line element takes the form,

ds* = Xd#* — 2asin? Odrde + 2drdu — 2aX"(2Mr — Q?) sin? dodu
+ X7(r? + a*)? — Aa®sin® 0] sin® Od¢® — [(1 — S (2Mr — Q?)]du? (402)
where A = 72 —2Mr +a®> + Q% and ¥ = 7% + a®cos?6, a = L/M being the angular
momentum per unit mass of the black hole. The Reissner—-Nordstrom and Kerr geometries

are particular cases for a nonrotating, a = 0, and uncharged, ) = 0, black holes respectively.
The Kerr—Newman space—time has a horizon at

r=ry =M+ (M - Q*—a*)"? (403)

where A = 0.
The electromagnetic vector potential around the Kerr—Newman black hole is given by
[372]
A = —Y7'Qr(du — asin® 0dg), (404)

the electromagnetic field tensor is then

F = dA =2Q%7?[(r* — a*cos® 0)dr A du — 2a*r cos § sin 0df A du
— asin® 0(r* — a® cos® 0)dr A d¢ + 2ar(r* + a*) cos 0 sin 0d6 A dg). (405)



The equation of motion of a test particle of mass m and charge e in the Kerr-Newman
geometry reads

utVu” = (e/m)utF,", (406)

where u* is the 4—velocity of the particle. These equations may be derived from the La-
grangian
L = smg,u'u” + eAu, (407)

or, equivalently, from the Hamiltonian
H = 39" (p, — eAy)(py — eAy), (408)
where we have introduced the 4—momentum of the particle
Pp = mu, +eA,. (409)
Note that Hamiltonian (408) is subject to the constraint

H=-1m% (410)

Carter [67] firstly recognized that the corresponding Hamilton—Jacobi equations

oS oS
go‘ﬁ (% + 6Aa) (w + 6145) +m? = 0, (411)

are separable. Correspondingly four integrals of the equation of motion (406) can be found.
Indeed, in addition to the constant of motion (410) which corresponds to conservation of the
rest mass we have the two first integrals

Pu=—& (412)
Py =P (413)

associated with the stationarity and the axial symmetry of Kerr—Newman space-time respec-
tively. £ and ® are naturally interpreted as the energy and the angular momentum about
the symmetry axis of the test particle. It follows from the separability of Eq. (411) that the
quantities

ps + (a€sin® — dsin~' 0) + a’m? cos® ) = K (414)
Ap? = 2[(r* + a®)€ + eQr — a®lp, + m*r* = —K (415)

are conserved as well. Together with £ and ® they form a complete set of first integrals of
the motion and allow one to integrate Eq. (406). As an example consider the proper time
derivative 7 of the radial coordinate of the test particle. It follows from Egs. (412), (413),
(414) and (415), that

Y22 = (E(r? + a®) + eQr — ®a)* — A(m*r* + K) (416)

which can be numerically integrated using the effective potential technique [373].



7.2 Reversible and irreversible transformations of a black hole:
the Christodoulou-Ruffini mass formula

In 1969 Roger Penrose [374] pointed out for the first time the possibility to extract rotational
energy from a Kerr black hole. The first example of such an energy extraction was obtained
by Ruffini and Wheeler who also introduced the concept of the ergosphere (375, 177, 370],
the region between the horizon of the black hole and the surface of infinite redshift. These
works has been generalized by Denardo and Ruffini in 1973 [376] and Denardo, Hively and
Ruffini in 1974 [377] to the case of a Kerr-Newman black hole. The process described by
Denardo, Hively and Ruffini can be described as follows. A neutral particle P, approaches
the black hole with positive energy & and decays into two oppositely charged particles P;
and P, whose energies are & < 0 and & > & respectively. P; falls into the black hole while
P, is accelerated towards spatial infinity. Correspondingly, a positive energy

5E = & — & (417)

has been extracted from the black hole and deposited on P,. The region around the black hole
where the energy extraction processes can occur is named effective ergosphere in Refs. [376],
[377]. Note that, as the particle P, is swallowed, the black hole undergoes a transformation
since its energy, angular momentum and charge change accordingly. When is the extracted
energy maximal? In order to answer this question note that the energy £ of a particle of
angular momentum @, charge e and rest mass m moving around a Kerr-Newman black hole
and having a turning point at r is given by (see Eq. (416)) the quadratic equation

(r* + a*)2E% + 2(eQr — ®a)(r* + a®)€ + (eQr — ®a)® — A(m*r* + K) = 0. (418)

As recalled in [114, p. 352], in the case of Q = 0 which corresponds to a pure Kerr solution,
the explicit integration of this equation was performed by Ruffini and Wheeler [378]. They
introduced the effective potential energy defined by

(r* + a*)2E* — 2(®a)(r* + a®)€ + (Pa)* — A(m?*r* + K) = 0. (419)

The radii of stable orbits are determined by minimum of function £(r), i.e. by simultaneous
solution of equations £(r) = &, £'(r) = 0 for £’(r) > 0. The orbit closest to the center
corresponds to " (r)min = 0; for r < rpiy,, the function £(r) has no minima. As a result

e When ® < 0 (motion opposite to the direction of rotation of the collapsing object)
T'min 9 80 ) d 11

— €0 _ = . 420
2M 27 m 33 2mM 33 (420)

e For & > 0 (motion in the direction of rotation of the collapsing object) as a — M the
radius 7y, tends towards the radius of the horizon. Setting a = M(1 + 9), we find in
the limit 6 — 0:

Thor 1 / T'min 1
2}}\4 - 5(1 +V20), 2m - 5[1 + (45)1/3]- (421)
Then
bt d 1
m = 2t = gl t e (422)



We call attention to the fact that rupi, /7o remainsgreater than one throughout, i.e. the orbit
does not go inside the horizon. This is as it should be: the horizon is a null hypersurface,
and no time-like world lines of moving particles can lie on it. Although no general formula
exists in the case of the Kerr—-Newman geometry the energy and the angular velocity of a
test particle in a circular orbit with radius R in the Reissner-Nordstrom geometry has been
given by Ruffini and Zerilli [373]
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and the limiting cases are there treated.

Eq. (418) is not only relevant for understanding the fully relativistic stable circular orbit
but it also defines the “positive root states” and the “negative root states” for the particle
[379]. Such states were first interpreted as limits of states of a quantum field by Deruelle
and Ruffini [380]. Such an interpretation will be discussed in the next section. Note that
in the case eQr — ®a < 0 there can exist negative energy states of positive root solutions
and, as a direct consequence, energy can be extracted from a Kerr-Newman black hole via
the Denardo-Ruffini process. Such a process is most efficient when the reduction of mass is
greatest for a given reduction in angular momentum. To meet this requirement the energy
&1 must be as negative as possible. This happens when r = r,, that is the particle has a
turning point at the horizon of the black hole. When r = r,;, A = 0 and the separation
between negative and positive root states vanishes. This implies that capture processes from
such an orbit are reversible since they can be inverted bringing the black hole to its original
state. Correspondingly the energy of the incoming particle is

_a® +eQry
a4

& (425)

If we apply the conservation of energy, angular momentum and charge to the capture of
the particle P; by the black hole, we find that M, L and @) change as for the quantities

dM =&, dL=®, dQ =e. (426)
Thus Eq. (425) reads
dM = w_ (427)
a +T+

Integration of Eq. (427) gives

22\ 2 2 8
CQ)+LC (428)
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provided the condition is satisfied

2
(16572]%4) (Q*+4L%c*) <1, (429)



where M, is an integration constant and we restored the physical constants ¢ and G.
Eq. (428) is the Christodoulou-Ruffini mass formula [379] and it expresses the contribu-
tions to the total energy of the black hole. Extreme black holes satisfy equality (429). The
irreducible mass M, satisfies the equation [379]

S, = 167 G2 M2 (430)

4

where S, is the surface area of the horizon of the black hole, and cannot be decreased by
classical processes. Any transformation of the black hole which leaves fixed the irreducible
mass (for instance, as we have seen, the capture of a particle having a turning point at the
horizon of the black hole) is called reversible [379]. Any transformation of the black hole
which increases its irreducible mass, for instance, the capture of a particle with nonzero
radial momentum at the horizon, is called irreversible. In irreversible transformations there
is always some kinetic energy that is irretrievably lost behind the horizon. Note that energy
can be extracted approaching arbitrarily close to reversible transformations which are the
most efficient ones. Namely, from Eq. (428) it follows that up to 29% of the mass-energy
of an extreme Kerr black hole (M? = a?) can be stored in its rotational energy term 25;;”
and can in principle be extracted. Gedankenexperiments have been conceived to extract
such energy [374, 381, 382, 383, 384]. The first specific example of a process of energy
extraction from a black hole can be found in R. Ruffini and J. A. Wheeler, as quoted in
[385], see also [386]. Other processes of rotational energy extraction of astrophysical interest
based on magnetohydrodynamic mechanism occurring around a rotating Black Hole have
also been advanced [381, 382, 383, 384] though their reversibility as defined in Ref. [379],
and consequently their efficiency of energy extraction, has not been assessed. From the same
mass formula (428) follows that up to 50% of the mass energy of an extreme black hole
with (@ = M) can be stored in the electromagnetic term 406261\2 and can be in principle
extracted. These extractable energies either rotational or electromagnetic will be indicated
in the following as blackholic energy and they can be the source of some of the most energetic
phenomena in the Universe like jets from active galactic nuclei and GRBs.

7.3 Positive and negative root states as limits of quantum field
states

In 1974 Deruelle and Ruffini [380] pointed out that negative root solutions of Eq. (418) can
be interpreted in the framework of a fully relativistic quantum field theory as classical limits
of antimatter solutions. In this section we briefly review their analysis. The equation of
motion of a test particle in a Kerr-Newman geometry can be derived by the Hamilton—
Jacobi Eq. (411). The first quantization of the corresponding theory can be obtained by
substituting the Hamilton—Jacobi equation with the generalized Klein—-Gordon equation

9°% (Vo +ied,) (Vg +ieAs) @+ m?® =0 (431)

for the wave function ®. For simplicity we restrict to the Kerr case: @) = 0, when Eq. (431)
reduces to
9’V Vs® +m’® = 0. (432)

In order to solve Eq. (432) we can separate the variables as follows:

d = e~ MBS (0)R(r) (433)



where Sy, (0) are spheroidal harmonics. We thus obtain the radial equation
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dr*2

— L Bay 2 [Mr® —r*(a® 4+ 2M?) + 3Ma*r — aﬂ}u,
where u = R(r)r and dr/dr+ = A/r% Tt is natural to look for “resonances” states of the
Klein-Gordon equation corresponding to classical bound states (circular or elliptic orbits).
Then, impose as boundary conditions (a) an exponential decay of the wave function for r —
oo and (b) a purely ingoing wave at the horizon » — . The solutions of the corresponding
problem can be found numerically [380]. The main conclusions of the integration can be
summarized as follows:

1. The continuum spectrum of the classical stable bound states is replaced by a discrete
spectrum of resonances with tunneling through the potential barrier giving the finite
probability of the particle to be captured by the horizon.

2. In the classical limit (GM/c?)/(h/m.c) — oo the separation of the energy levels of the
resonances tends to zero. The leakage toward the horizon also decreases and the width
of the resonance tends to zero.

3. The negative root solutions of Eq. (418) correspond to the classical limit (GM/c?)/(h/me.c) —
oo of the negative energy solutions of the Klein-Gordon Eq. (432) and consequently
they can be thought of as antimatter solutions with an appropriate interchange of the
sign of charge, the direction of time and the angular momentum.

4. We can have positive root states of negative energy in the ergosphere, see e.g. [375].
In particular we can have crossing of positive and negative energy root states. This
corresponds, at the second quantized theory level to the possibility of particle pair
creation a la Klein, Sauter, Heisenberg, Euler and Schwinger [17, 18, 20, 7, 25, 26, 27].

Similar considerations can be made in the Kerr—Newman case, () # 0, when the gener-
alized Klein Gordon Eq. (431) has to be integrated. The resonance states can be obtained
imposing the same boundary conditions as above. Once again we can have level crossing
inside the effective ergosphere [376, 377] and therefore possible pair creation.

7.4 Vacuum polarization in Kerr-Newman geometries

We discussed in the previous Sections the phenomenon of electron—positron pair production
in a strong electric field in a flat space-time. Nere we study the same phenomenon occurring
around a black hole endowed with mass M, charge () and the angular momentum a.

The space-time of a Kerr—Newman geometry is described by a metric which in Boyer—
Lindquist coordinates (t,7,0, ) acquires the form

sin’ @

ds® = %dﬁ + %do? — %(dt — asin®0dg)” + —— [(r* + a*)do — adt] ’, (434)

where A and ¥ are defined following (402). We recall that the Reissner—Nordstrgm geometry
is the particular case a = 0 of a nonrotating black hole.



The electromagnetic vector potential around the Kerr—-Newman black hole is given in
Boyer—Lindquist coordinates by

A = —QX'r(dt — asin?0dg). (435)
The electromagnetic field tensor is then

F = dA = 2Q%7?[(r? — a® cos® 0)dr A dt — 2a*r cos 0 sin 0dO A dt
— asin®0(r* — a® cos® 0)dr A d¢ + 2ar(r* + a*) cos 0 sin 0df A dd). (436)
After some preliminary work in Refs. [387, 388, 389], the occurrence of pair production in
a Kerr-Newman geometry was addressed by Deruelle [390]. In a Reissner—Nordstrém geom-
etry, QED pair production has been studied by Zaumen [391] and Gibbons [392]. The corre-
sponding problem of QED pair production in the Kerr-Newman geometry was addressed by

Damour and Ruffini [68], who obtained the rate of pair production with particular emphasis
on:

e the limitations imposed by pair production on the strength of the electromagnetic field
of a black hole [373];

e the efficiency of extracting rotational and Coulomb energy (the “blackholic” energy)
from a black hole by pair production;

e the possibility of having observational consequences of astrophysical interest.

In the following, we recall the main results of the work by Damour and Ruffini.

In order to study the pair production in the Kerr-Newman geometry, they introduced at
each event (¢,r,0,¢) a local Lorentz frame associated with a stationary observer O at the
event (t,r,60,¢). A convenient frame is defined by the following orthogonal tetrad [67]

w® = (A/S)V2(dt — asin® 0d), (437)

w = (B/8)"2dr, (438)

w? =240, (439)

w® = sin O V2((r? + a?)dp — adt). (440)
In this Lorentz frame, the electric potential Ay, the electric field E and the magnetic field B
are given by the following formulas (c.e.g. Ref. [393]),

AQ = ng)A“,
a _, (0) pap
EY =w; F°,
1
B? = w(O)Ea’YMFw.

5 ¥
We then obtain
Ay = —Qr(ZA)~Y2, (441)

while the electromagnetic fields E and B are parallel to the direction of w® and have
strengths given by
Eqy = QX 7?(r* — a®cos®0), (442)
By = QX *2ar cos b, (443)



respectively. The maximal strength F,,.. of the electric field is obtained in the case a = 0
at the horizon of the black hole: r = r,. We have

Buax = Q/72. (444)

In the original paper a limit on the black hole mass My, ~ 7.2 - 105M, was established
by requiring that the pair production process would last less than the age of the Universe.
For masses much smaller than this absolute maximum mass the pair production process can
drastically modify the electromagnetic structure of black hole.

Both the gravitational and the electromagnetic background fields of the Kerr—Newman
black hole are stationary when considering the quantum field of the electron. Since m M =~
10'* > 1 the gravitational field of the background black hole is practically constant over
the Compton wavelength of the electron characterizing the quantum field. As far as purely
QED phenomena such as pair production are concerned, it is possible to consider the electric
and magnetic fields defined by Eqs. (442,443) as constants in the neighborhood of a few
wavelengths around any events (r, 6, ¢,t). Thus, the analysis and discussion on the Sauter-
Euler-Heisenberg-Schwinger process over a flat space-time can be locally applied to the case
of the curved Kerr-Newman geometry, based on the equivalence principle.

The rate of pair production around a Kerr—-Newman black hole can be obtained from the
Schwinger formula (174) for parallel electromagnetic fields e = E) and 8 = By as:

f OéE(l)B(l) > 1 mrB(l) nﬂ'EC
_- =" —coth [ ——— — . 445
v o 2y o (e Eq (445)

n=1 1

The total number of pairs produced in a region D of the space-time is

T
N:/ d*r/—g—, (446)
D Vv

where \/—g = ¥sinf. In Ref. [68], it was assumed that for each created pair the particle
(or antiparticle) with the same sign of charge as the black hole was expelled to infinity
with charge e, energy w and angular momentum [, while the antiparticle was absorbed by
the black hole. This implies the decrease of charge, mass and angular momentum of the
black hole and a corresponding extraction of all three quantities. These considerations,
however, were profoundly modified later by the introduction of the concept of dyadosphere
which is presented in the next section. The rates of change of the charge, mass and angular
momentum were estimated by

Q = —Re,
M = —R{w), (447)
L =—R{ly),

where R = N is the rate of pair production and (w) and (l,) represent some suitable mean
values for the energy and angular momentum carried by the pairs.

Supposing the maximal variation of black hole charge to be AQ) = —@Q), one can estimate
the maximal number of pairs created and the maximal mass-energy variation. It was con-
cluded in Ref. [68] that the maximal mass-energy variation in the pair production process
is larger than 10*erg and up to 10°%erg, depending on the black hole mass, see Table 1 in
[68]. They concluded at the time “this work naturally leads to a most simple model for the
explanation of the recently discovered ~y-ray bursts”.



7.5 The “Dyadosphere” in Reissner—Nordstrom geometry

After the discovery in 1997 of the afterglow of GRBs [394] and the determination of the
cosmological distance of their sources, at once of the order of 10® theories explaining them
were wiped out on energetic grounds. On the contrary, it was noticed [395, 396] the coin-
cidence between their observed energetics and the one theoretically predicted by Damour
and Ruffini [68] of 10%* ergs per burst for M = M. Ruffini and collaborators therefore,
indirectly motivated by GRBs, returned to these theoretical results with renewed interest
developing some additional basic theoretical concepts [395, 397, 398, 399, 400, 401, 402] such
as the dyadosphere and, more recently, the dyadotorus. In this Section we restore constants
G, c and h for clarity.

As a first simplifying assumption the case of absence of rotation was considered. The
space-time is then described by the Reissner—-Nordstrom geometry, see (434) whose spheri-
cally symmetric metric is given by

d’s = gtt(r)th + grr(r)d2r + 72d%0 + r* sin? 0d%¢ | (448)
where g, (r) = — [1 - 252]7\1/[ + ﬁzﬁ] = —a?(r) and g,.(r) = a7%(r).

The first result obtained is that the pair creation process does not occur at the horizon
of the black hole: it extends over the entire region outside the horizon in which the electric
field exceeds the value E* of the order of magnitude of the critical value given by Eq. (1).
We recall the pair creation process is a quantum tunneling between the positive and negative
energy states, which needs a level crossing, can occur for E* < E, as well, if the field extent
to spatial dimension D* such that D*E* = 2m.c?/e. The probability of such pair creation
process will be exponentially damped by exp(—mD*/\.). Clearly, very intense process of
pair creation will occur for £* > E.. In order to give a scale of the phenomenon, and for
definiteness, in Ref. [398] it was considered the case of E* = E,, although later in order to
take into due account the tunneling effects we have considered dyadosphere for electric field
in the range

E* = kE,, (449)

with x in the range 0.1-10. Since the electric field in the Reissner—Nordstrom geometry has
only a radial component given by [403]

E(T):%

: (450)

this region extends from the horizon radius, for k = 1

ry = 1.47-10°u(1+ /1 —£2) cm (451)

out to an outer radius [395]

) B2 a2 my 12 7 o\ 1/2 ) 1/2
=) (F) G0 () Gew) -

= 1.12- 10*\/ i€ cm, (452)

where we have introduced the dimensionless mass and charge parameters pu = MMQ, £ =

Q .
e <1, see Fig. 19.




The second result gave the local number density of electron and positron pairs created
in this region as a function of radius

nﬁeooz———g—jz{l—(i)ﬂ, (453)

*
42 (—ﬁ r
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and consequently the total number of electron and positron pairs in this region is
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(454)
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where ). = E.r7.
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Figure 18: The energy extracted by the process of vacuum polarization is plotted (solid lines)
as a function of the mass M in solar mass units for selected values of the charge parameter
¢ =1,0.1,0.01 (from top to bottom) for a Reisner-Nordstrom black hole, the case £ = 1
reachable only as a limiting process. For comparison we have also plotted the maximum
energy extractable from a black hole (dotted lines) given by Eq. (428). Details in Ref. [397].

The total number of pairs is larger by an enormous factor 7*/ (h/me.c) > 10'® than the
value @)/e which a naive estimate of the discharge of the black hole would have predicted.
Due to this enormous amplification factor in the number of pairs created, the region between
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Figure 19: The dyadosphere of a Reissner-Nordstrém black hole can be represented as
equivalent to a concentric set of capacitor shells, each one of thickness i/m.c and producing
a number of eTe™ pairs of the order of ~ Q/e on a time scale of 107! s, where @ is the
black hole charge. The shells extend in a region of thickness Ar, from the horizon r, out
to the Dyadosphere outer radius rgs (see text). The system evolves to a thermalized plasma
configuration.

the horizon and r* is dominated by an essentially high density neutral plasma of electron—
positron pairs. This region was defined [395] as the dyadosphere of the black hole from
the Greek duas, duados for pairs. Consequently we have called r* the dyadosphere radius
™ = rqs [395, 397, 398]. The vacuum polarization process occurs as if the entire dyadosphere
is subdivided into a concentric set of shells of capacitors each of thickness i/m.c and each
producing a number of eTe™ pairs on the order of ~ Q/e (see Fig. 19). The energy density
of the electron—positron pairs is there given by
Q? Y

= 1—[ — 455
8mrt Tds ’ (455)

e(r)

(see Figs. 2-3 of Ref. [397]). The total energy of pairs converted from the static electric



energy and deposited within the dyadosphere is then

B 1Q? T4 T4 :
Edya = QE (1 — 7”_ds> [1 - <7‘_ds) ] . (456)

In the limit % — 0, Eq. (456) leads to Eqya — %?—j, which coincides with the energy

extractable from black holes by reversible processes (M, = const.), namely Epy — M;, =
%%[379], see Fig. 18. Due to the very large pair density given by Eq. (453) and to the

sizes of the cross-sections for the process ete™ < v + v, the system has been assumed to
thermalize to a plasma configuration for which

n6+ = ’)’Le, ~ ’)’L_y ~ ’)’LZ+67’ (457)

where n2,__ is the total number density of e*e™-pairs created in the dyadosphere [397, 398].

In Fig. 20 we show the average energy per pair as a function of the black hole mass in solar
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Figure 20: The average energy per pair is shown here as a function of the black hole mass in
solar mass units for £ = 1 (solid line), £ = 0.5 (dashed line) and £ = 0.1 (dashed and dotted
line).

mass units [398]. This assumption has been in the meantime rigorously proven by Aksenov,
Ruffini and Vereshchagin [74], see Section 9.

The third result, again introduced for simplicity, is that for a given &gy, it was assumed
either a constant average energy density over the entire dyadosphere volume, or a more
compact configuration with energy density equal to its peak value. These are the two possible
initial conditions for the evolution of the dyadosphere (see Fig. 21).

The above theoretical results permit a good estimate of the general energetics processes
originating in the dyadosphere, assuming an already formed black hole and offer a theoretical
framework to estimate the general relativistic effect and characteristic time scales of the
approach to the black hole horizon [405, 406, 407, 408, 409, 410].
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Figure 21: Left) Selected lines corresponding to fixed values of the &y, are given as a
function of the two parameters p &, only the solutions below the continuous heavy line
are physically relevant. The configurations above the continuous heavy lines correspond to
unphysical solutions with rqs < ;. Right) There are two different approximations for the
energy density profile inside the Dyadosphere. The first one (dashed line) fixes the energy
density equal to its peak value, and computes an “effective” Dyadosphere radius accordingly.
The second one (dotted line) fixes the Dyadosphere radius to its correct value, and assumes a
uniform energy density over the Dyadosphere volume. The total energy in the Dyadosphere
is of course the same in both cases. The solid curve represents the real energy density profile.
Details in [404].

7.6 The “dyadotorus”

We turn now to examine how the presence of rotation modifies the geometry of the surface
containing the region where electron—positron pairs are created as well as the conditions
forthe existence of such a surface. Due to the axial symmetry of the problem, this region
was called the “dyadotorus” [411, 412].

We shall follow the treatment of [411, 412]. As in Damour [413, 383] we introduce at
each point of the space-time the orthogonal Carter tetrad (437-440).

From Eq. (442) we define the dyadotorus by the condition |E(;)| = kE,, where 107" <
k < 10, see Fig. 22. Solving for r and introducing the dimensionless quantities £ =
Q/(WGM), up = M/My, & = ac®/(GM), & = kE. Myc*/G¥? and 7 = rc2/(GM) we

get

d 2\ 2 2

(Tic ) = i — &%cos? 0 + 3 — — 2—£~d2 cos? @, (458)
GM 2uE 4u2E?  u€

where the + signs correspond to the two different parts of the surface.
The two parts of the surface join at the particular values 8* and m — 0* of the polar angle

where
6* = arccos 1 §
= ar = 1.
2v2a \| p€

The requirement that cos#* < 1 can be solved for instance for the charge parameter &,
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Figure 22: The projections of the dyadotorus on the X-Z plane corresponding to different
values of the ratio £/E,. = k are shown (upper panel) for ;1 = 10 and A\ = 1.49 x 10*. The
corresponding plot for the dyadosphere with the same mass energy and charge to mass ratio
is shown in the lower panel for comparison. Reproduced from [412].

giving a range of values of ¢ for which the dyadotorus takes one of the shapes (see fig.23)

{wmmmnm if € > ¢,
surface =

. : (459)
thorus-like  if £ < &,

where &, = 8uEaZ.

In Fig. 23 we show some examples of the dyadotorus geometry for different sets of pa-
rameters for an extreme Kerr—-Newman black hole (a%c®/G? + Q?/G = M?), we can see the
transition from a toroidal geometry to an ellipsoidal one depending on the value of the black
hole charge.

Fig. 24 shows the projections of the surfaces corresponding to different values of the ratio
|Eq)|/E. = k for the same choice of parameters as in Fig. 23 (b), as an example. We see
that the region enclosed by such surfaces shrinks for increasing values of k.

Equating (442) and (449) for § = 7/2 and & = 1 we get

u:%x5x1m. (460)

7.7 Geometry of gravitationally collapsing cores

In the previous Sections we have focused on the theoretically well defined problem of pair
creation in the electric field of an already formed black hole. In this section we shall follow
the treatment of Cherubini et al. [405] addressing some specific issues on the dynamical
formation of the black hole, recalling first the Oppenheimer-Snyder solution and then con-
sidering its generalization to the charged case using the classical work of W. Israel and V.
de la Cruz [70, 71].

7.7.1 The Tolman-Oppenheimer-Snyder solution

Oppenheimer and Snyder first found a solution of the Einstein equations describing the
gravitational collapse of spherically symmetric star of mass greater than ~ 0.7M. In this
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Figure 23: The projection of the dyadotorus on the X — Z plane (X = rsinf, Z = r cosf
are Cartesian-like coordinates built up simply using the Boyer-Lindquist radial and angular
coordinates) is shown for an extreme Kerr-Newman black hole with g = 10 and different
values of the charge parameter £ = [1,1.3,1.49,1.65] x 10™* (from (a) to (d) respectively).
The black circle represents the black hole horizon. Details in [411, 412].



Figure 24: The projections of the surfaces corresponding to different values of the ratio
|Eq)|/E. = k are shown for the same choice of parameters as in Fig. 23 (b), as an example.
The gray shaded region is part of the “dyadotorus” corresponding to the case kK = 1 as
plotted in Fig. 23 (b). The region delimited by dashed curves corresponds to k = 0.8, i.e.,
to a value of the strength of the electric field smaller than the critical one, and contains the
dyadotorus; the latter in turn contains the white region corresponding to x = 1.4, i.e., to a
value of the strength of the electric field greater than the critical one. Details in [411].

section we briefly review their pioneering work as presented in Ref. [69].
In a spherically symmetric space-time such coordinates can be found (¢, r, 6, ¢) that the
line element takes the form

ds? = e’dt* — e dr® — r?dQ?, (461)

dQ? = do* + sin® 0d¢?, v = v(t,r), A = A(t,r). However the gravitational collapse problem
is better solved in a system of coordinates (7, R, 6, ¢) which are comoving with the matter
inside the star. In comoving coordinates the line element takes the form

ds® = dr? — e°dR* — e¥d?,

w=w(r, R), w=w(r, R). Einstein equations read

87T = e — e_‘”’T/Q +6+ 30? (462)
8nTy = 87Ty = —<~ (2" + w"? — 0'w)

+ (26 + 6° + 20 + w? + 6w) (463)

81Ty = e — ™7 (W' + 3w — CW) 4 &y oo (464)

8me’ Ty = =81} = $uw'(w —6) + . (465)

Where T}, is the energy-momentum tensor of the stellar matter, a dot denotes a derivative
with respect to 7 and a prime denotes a derivative with respect to R. Oppenheimer and



Snyder were only able to integrate Eqs. (462)—(465) in the case when the pressure p of the
stellar matter vanishes and no energy is radiated outwards. In the following we thus put
p = 0. Under this hypothesis

T =T, =T, =T, =T} =0, T;=p

where p is the comoving density of the star. Eq. (465) was first integrated by Tolman in Ref.
[414]. The solution is

e? = e“w?/4f*(R), (466)
where f = f(R) is an arbitrary function. In Ref. [69] the case of f(R) = 1 was studied.

In Section 7.7.2 below the hypothesis f(R) = 1 is relaxed in the case of a shell of dust.
Substitution of Eq. (466) into Eq. (462) with f(R) = 1 gives

W+ 20% =0, (467)
which can be integrated to give 3
e = (Fr+G)Y3, (468)

where F' = F(R) and G = G(R) are arbitrary functions. Substitution of Eq. (466) into
Eq. (463) gives Eq. (467) again. From Egs. (464), (466) and (468) the density p can be
found as

smp =14 (7 + %)_1 (r+ %)_1. (469)

There is still the gauge freedom of choosing R so to have
G =R

Moreover, arbitrary initial density profile can be chosen, i.e., for the density at the initial
time 7 =0, pp = po(R). Eq. (469) then becomes

FF' =91 R?py(R)

whose solution contains only one arbitrary integration constant. It is thus seen that the
choice of Oppenheimer and Snyder of f(R) = 1 allows one to assign only a l-parameter
family of functions for the initial values pg = po(R) of p. However in general one should be
able to assign the initial values of p arbitrarily. This will be done in Section (7.7.2) in the
case of a shell of dust.

Choosing, for instance,

_ J const >0 if R< R,
o= 0 #fR>R,’

Ry, being the comoving radius of the boundary of the star, gives

/2
if R< Ry

it R> R,

1/2

3 R 3
2"+ \ &,
1/2
+

F =
3
27”

where r, = 2M is the Schwarzschild radius of the star.
We are finally in the position of performing a coordinate transformation from the comov-
ing coordinates (7, R, 0, ¢) to new coordinates (¢, 7,6, ¢) in which the line elements looks like



(461). The requirement that the line element be the Schwarzschild one outside the star fixes
the form of such a coordinate transformation to be

r=(Fr+G)*3
%r;lm(}zg’/? _ ri/2y3/2) — 2 yY? 4+ 1 log % if R< Ry

t = rl/24pl/2 . ’
(R = 19) =20 ) 2 ey log T R R

1/2_,.1/2
T/ 7‘+

2
_ 1 R Ryr
Yy=s3 [(R_b> —1:| +7‘+bR'

7.7.2 Gravitational collapse of charged and uncharged shells

where

It is well known that the role of exact solutions has been fundamental in the development
of general relativity. In this section, we present these exact solutions for a charged shell of
matter collapsing into a black hole. Such solutions were found in Ref. [405] and are new with
respect to the Tolman—Oppenheimer—Snyder class. For simplicity we consider the case of zero
angular momentum and spherical symmetry. This problem is relevant on its own account
as an addition to the existing family of interesting exact solutions and also represents some
progress in understanding the role of the formation of the horizon and of the irreducible
mass as will be discussed in Section 7.8.1, see e.g. [406]. It is also essential in improving the
treatment of the vacuum polarization processes occurring during the formation of a black
hole discussed in [408, 415, 416, 417, 418] and references therein.

W. Israel and V. de La Cruz [70, 71] showed that the problem of a collapsing charged
shell can be reduced to a set of ordinary differential equations. We reconsider here the
following relativistic system: a spherical shell of electrically charged dust which is moving
radially in the Reissner—Nordstrom background of an already formed nonrotating black hole
of mass M, and charge @)1, with )1 < M;. The Einstein-Maxwell equations with a charged
spherical dust as source are

G =87 [T + T, V,F" =dnj", V.F,, =0, (470)

where
T;Eg) = Euuum T/E,ejm) = ﬁ (FuprV - iguquUFpg) 5 j” = oul. (471)

Here T, ,ES), T ,E,‘im) and j* are respectively the energy-momentum tensor of the dust, the energy-
momentum tensor of the electromagnetic field F),, and the charge 4—current. The mass and
charge density in the comoving frame are given by ¢, o and u® is the 4-velocity of the dust.
In spherical-polar coordinates the line element is

ds* = gudatde” = —e""Vdt? 4 XD dr? 4 r2dQ?, (472)

where dQ? = df? + sin? 0d¢?.
We describe the shell by using the four-dimensional Dirac distribution §® normalized as

/ oW (z,2") /—gdiz = 1 (473)



where g = det ||g,,||. We then have
e(x) = M, / 6W (x, o) r’drdQ, (474)
o (1) = Qo / ) (2, 20) rdrdS2 (475)

My and @y respectively are the rest mass and the charge of the shell and 7 is the proper

time along the world surface S : xy = x¢ (7, §2) of the shell. S divides the space-time into two

regions: an internal one M _ and an external one M. As we will see in the next section

for the description of the collapse we can choose either M _ or M. The two descriptions,

clearly equivalent, will be relevant for the physical interpretation of the solutions.
Introducing the orthonormal tetrad

W) = £t Wl = P WP =rdd, W =rsingdg; (476)

we obtain the tetrad components of the electric field
(1) :
B - ol — TQ21 wJE ) (?ut'81de the shell (477)
T ow inside the shell

where ) = Qo+ ()1 is the total charge of the system. From the Gy Einstein equation we get

_ 2 —-174.2 2 2 .
ds? — { fedts + fodr® +r2dQ outside the shell (475)

—f_dt?> + f7rdr? +r%dQ?  inside the shell ’

where fi =1— 24 4 7“2 , fo=1— 2M1 + and t_ and t, are the Schwarzschild-like time
coordinates in ./\/l and M respectlvely Here M is the total mass-energy of the system
formed by the shell and the black hole, measured by an observer at rest at infinity.

Indicating by r¢ the Schwarzschild-like radial coordinate of the shell and by ¢4 its time
coordinate, from the Gy, Einstein equation we have

Yo | (o) e - (o) | = M 0 g e (479)

2rg ()

The remaining Einstein equations are identically satisfied. From (479) and the normalization
condition u,u* = —1 we find

(f0)” = g (M~ 2y + 28— @) g ()

Mg 2rg 2ro 0
1 M2 Q2 2
= (M= by - - ) g () (480)
dto+ _ 1 M2 Q3 Q:1Q
ar T Mof:(ro) ( —MiF g e ) (481)

We now define, as usual, r. = M + /M? — Q?: when Q < M, ry are real and they
correspond to the horizons of the new black hole formed by the gravitational collapse of the
shell. We similarly introduce the horizons 7L = M; + /M2 — Q? of the already formed
black hole. From (479) we have that the inequality

M~ M~ & 2% g (482)



holds for ro > ry if @ < M and for ro > r} if @ > M since in these cases the left-hand
side of (479) is clearly positive. Eqgs. (480) and (481) (together with (478), (477)) completely
describe a 5-parameter (M, Q, My, ()1, M) family of solutions of the Einstein-Maxwell
equations.

For astrophysical applications [408] the trajectory of the shell rq = rg (to4) is obtained as
a function of the time coordinate t(, relative to the space-time region M. In the following
we drop the + index from ¢o,. From (480) and (481) we have

dr dro dt
fo =t~ 2fVT 153
where 240?02

Since we are interested in an 1mplod1ng shell, only the minus sign case in (483) will be studied.
We can give the following physical interpretation of I'. If M — M; > M, I' coincides with
the Lorentz v factor of the imploding shell at infinity; from (483) it satisfies

r=——21_  >1, (485)

d
1‘(#
to TQ=00

= 0. In this case
ro=r}

When M — M; < M, then there is a turning point rg, defined by 4 dm

I' coincides with the “effective potential” at r :

= VI + Mt (-3 B+ 2@ <, (486)

To

The solution of the differential equation (483) is given by:

The functional form of the integral (487) crucially depends on the degree of the polynomial
P (ro) = r2 (9% — F), which is generically two, but in special cases has lower values. We
therefore distinguish the following cases:

1. M = My + M;; Q1 = M;; Q = M: P(rg) is equal to 0, we simply have
ro(to) = const. (488)
2. M = My + My; M? — Q* = M? — Q% Q # M: P(ry) is a constant, we have

to = const + ———— [(ro + 2) 7o + r7 log ("57%) + r? log (==)] . (489)

2,/M2-Q?
3. M = My + My; M? — Q? # M? — Q?%: P (ry) is a first order polynomial and

to = const + 2rgv Q% — F { Moro

3(M2-Q*—M?+Q3)

N

2
MZ2+Q2-Q32)" —9M Mo ( M3+Q?—Q3 ) +12M2 M2 +2Q2 M2
3(M2-Q>-M2+Q3)”

— \/Mii_Qz [riarctanh (:—i@) T arctanh( m)] ; (490)

where Q. = Q (ry).




4. M # My + M;: P(r) is a second order polynomial and

to = const — L {2F Y M2_Q2To\/ 02— F

2\/M2—Q2 r2-1
+ 72 log |2=F | T rg (22— F) 41303 —(I°~1) (ro—r+)*
+ g rTo—T+ 2(7,0 T+)T0\/Qz

.2 roV/Z—F ( F)—i—r%ﬂz F2 1(7’0 r_
= 10g|i To—T— + 2(ro—r_)rovVQ2—F

[2MM0(2F3—3F)+M§+Q2—Q%]\/M2—Q21 og [m\/i

Mo(T2—1)3/2

_'_2Mo(Fz—l)ro—(M§+Q2—Q%)F+2MOM:| } _ (491)

2MoM~+/T2-1

In the case of a shell falling in a flat background (M; = @1 = 0) it is of particular interest
to study the turning points r§ of the shell trajectory. In this case equation (480) reduces to

(42)" = 3 (M + 32 - Q—Q) - 1. (492)

2rg 2ro

Case (2) has no counterpart in this new regime and Eq. (482) constrains the possible solutions
to only the following cases:

1. M = My; Q = My. rg =1y (0) constantly.

2. M = My; Q < M. There are no turning points, the shell starts at rest at infinity
and collapses until a Reissner—Nordstrom black hole is formed with horizons at rq =

ry = M £ /M? — (Q? and the singularity in ro = 0.

3. M # M. There is one turning point ;.

(a) M < My, then necessarily is Q < Mo Positivity of the right-hand side of (492)

requires ry < 73, where r; = ;% MO is the unique turning point. Then the shell

starts from r; and collapses until the singularity at ro = 0 is reached.
(b) M > M. The shell has finite radial velocity at infinity.

i. Q < M. The dynamics are qualitatively analogous to case (2).

ii. @ > My. Positivity of the right-hand side of (492) and (482) requires that

2_M2
ro > 13, where rj = %%—MS'

ro = rg, reversing its motion.

The shell starts from infinity and bounces at

In this regime the analytic forms of the solutions are given by Eqs. (490) and (491),
simply setting M; = @), = 0.

Of course, it is of particular interest for the issue of vacuum polarization the time varying
electric field E,, = (2) on the external surface of the shell. In order to study the variability of
E,, with time 1t is useful to consider in the tridimensional space of parameters (ro, to, E,,)
the parametric curve C : (ro =\ to=ti(N), E, = /@) In astrophysical applications
[408] we are specially interested in the family of solutlons such that dro is 0 when 7y = o0
which implies that I' = 1. In Fig. 25 we plot the collapse curves in the plane (to,79) for
different values of the parameter £ = M, 0 < & < 1. The initial data are chosen so that the
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Figure 25: Collapse curves in the plane (T, R) for M = 20M, and for different values of
the parameter £&. The asymptotic behavior is the clear manifestation of general relativistic
effects as the horizon of the black hole is approached. Details in [405].



integration constant in Eq. (490) is equal to 0. In all the cases we can follow the details of

the approach to the horizon which is reached in an infinite Schwarzschild time coordinate.
In Fig. 26 we plot the parametric curves C in the space (7o, ty, E,,) for different values

of £&. Again we can follow the exact asymptotic behavior of the curves C, E,, reaching the

asymptotic value T% The detailed knowledge of this asymptotic behavior is of relevance for
+

the observational properties of the black hole formation, see e.g. [406], [408].

& (esu/cmz) _
8.0x10% |
7.0x10% | 1
6.0x10% 1
4.0x10% L |
3.0x10% | 0
2.0x10% A
5.0x10’ , ‘ . , 20 97
1.0x10 T L L
- o e 29.98
1.5x10° " T 39.99
R (cm) 2.0x10 P 30.00
2.5x10° 30.01 T(s)

3.0x10% 30.02

Figure 26: Electric field behaviour at the surface of the shell for M = 20M, and for different
values of the parameter £&. The asymptotic behavior is the clear manifestation of general
relativistic effects as the horizon of the black hole is approached. Details in [405].

7.8 The maximum energy extractable from a black hole

The theoretical analysis of the collapsing shell considered in the previous section allows to
reach a deeper understanding of the mass formula of black holes at least in the case of a
Reissner—Nordstrom black hole. This allows as well to give an expression of the irreducible



mass of the black hole only in terms of its kinetic energy of the initial rest mass undergoing
gravitational collapse and its gravitational energy and kinetic energy at the crossing of the
black hole horizon. It also allows to create a scenario for acceleration of the ultrahigh energy
cosmic rays with energy typically 10?* eV from black holes, as opposed to the process of
vacuum polarization producing pairs with energies in the MeV region. We shall follow in
this Section the treatment by Ruffini and Vitagliano [407].

7.8.1 The formula of the irreducible mass of a black hole

The main objective of this section is to clarify the interpretation of the mass-energy formula
[379] for a black hole. For simplicity we study the case of a nonrotating black hole using
the results presented in the previous section. As we saw there, the collapse of a nonrotating
charged shell can be described by exact analytic solutions of the Einstein—-Maxwell equations.
Consider to two complementary regions in which the world surface of the shell divides the
space-time: M_ and M,. They are static space-times; we denote their time-like Killing
vectors by £ and &} respectively. M is foliated by the family {Zj tty = t} of space-like
hypersurfaces of constant ¢,.

The splitting of the space-time into the regions M_ and M allows two physically equiv-
alent descriptions of the collapse and the use of one or the other depends on the question one
is studying. The use of M_ proves helpful for the identification of the physical constituents
of the irreducible mass while M is needed to describe the energy extraction process from
black hole. The equation of motion for the shell, Eq. 480, reduces in this case to

ro') 2 Mz @22
(Myf2)* = (M + 38 - )" - 013 (493)
in M_ and
o\ 2 M2 22

(Mote)* = (M — 38 — )" — a3, (494)

in M. The constraint (482) becomes

Q2

M- >0 (495)
Since M_ is a flat space-time we can interpret —]2\/[—5 in (493) as the gravitational binding
energy of the system. % is its electromagnetic energy. Then Eqs. (493), (494) differ by

the gravitational and electromagnetic self-energy terms from the corresponding equations of
motion of a test particle.

Introducing the total radial momentum P" = Myu" = MO%‘) of the shell, we can express
the kinetic energy of the shell as measured by static observers in M_ as T' = —Myu,&" —

My = /(Pr)?2 4+ MZ — My. Then from Eq. (493) we have

M= @ (P2 e Mi=M+T 38+ &

- % 2ro 2rg”

(496)

where we choose the positive root solution due to the constraint (495). Eq. (496) is the mass
formula of the shell, which depends on the time-dependent radial coordinate ro and kinetic
energy 1. If M > @, a black hole is formed and we have

M=M+T, - M 4 & (497)

2r4 2r4 ?



where T, =T (ry) and r,. = M + \/M? — Q% is the radius of the external horizon of that
2
M = My + 5%, (498)

so it follows that ,
M, = My — ;\f_?r + T—‘m (499)

namely that M, is the sum of only three contributions: the rest mass My, the gravitational
potential energy and the kinetic energy of the rest mass evaluated at the horizon. M;, is
independent of the electromagnetic energy, a fact noticed by Bekenstein [419]. We have
taken one further step here by identifying the independent physical contributions to M;,.
This has important consequences for the energetics of black hole formation (see [406]).

Next we consider the physical interpretation of the electromagnetic term %, which can
be obtained by evaluating the Killing integral

27
/ gLTiomds” = / r2dr / d cos 0 / dep T 0 :2@_ (500)

where ¥ is the space-like hypersurface in M. described by the equation t, = t = const,
with d¥¥ as its surface element vector. The quantity in Eq. (500) differs from the purely
electromagnetic energy
em v 2
/E+ nh T dy” = %/ Ary/gm s, (501)
t T0

where nf = ;1/ 25 't is the unit normal to the integration hypersurface and g,, = f4. This

is similar to the analogous situation for the total energy of a static spherical star of energy
density e within a radius ro, m (ro) = 4x [;° dr r?¢, which differs from the pure matter energy

0
my (ro) = 47r/ dr\/Grrr2e
0

by the gravitational energy (see [393]). Therefore the term % in the mass formula (496)
is the total energy of the electromagnetic field and includes its own gravitational binding

energy. This energy is stored throughout the region M, extending from ry to infinity.

7.8.2 Extracting electromagnetic energy from a subcritical and overcritical
black hole

We now turn to the problem of extracting the electromagnetic energy from a black hole
(see [379]). We can distinguish between two conceptually physically different processes,
depending on whether the electric field strength £ = 7% is smaller or greater than the
critical value E.. The maximum value E, = T% of the electric field around a black hole is

reached at the horizon. In what follows we restgre G, h and c.

For E, < E. the leading energy extraction mechanism consists of a sequence of discrete
elementary decay processes of a particle into two oppositely charged particles. The condition
E, < E. implies

(502)

78 2%
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where A¢ is the Compton wavelength of the electron. Denardo and Ruffini [376] and Denardo,
Hively and Ruffini [377] have defined as the effective ergosphere the region around a black
hole where the energy extraction processes occur. This region extends from the horizon r

up to a radius
1+\/1—52(

The energy extraction occurs in a finite number Npp of such discrete elementary processes,
each one corresponding to a decrease of the black hole charge. We have

_ GM
T'Eerg = o2

(ﬁig)] ~ 2§, (503)

Npp ~ 2. (504)
Since the total extracted energy is (see Eq. (498)) £ = 2=, we obtain for the mean energy
per accelerated particle (£)pp = %
(E)pp = gi = % \/m\/—m Mec? lg\/aeme mec?, (505)
which gives Ny Ny
21 6
@ms{%if/iﬁigﬁ (506

One of the crucial aspects of the energy extraction process from a black hole is its back
reaction on the irreducible mass expressed in [379]. Although the energy extraction processes
can occur in the entire effective ergosphere defined by Eq. (503), only the limiting processes
occurring on the horizon with zero kinetic energy can reach the maximum efficiency while
approaching the condition of total reversibility (see Fig. 2 in [379] for details). The farther
from the horizon that a decay occurs, the more it increases the irreducible mass and loses
efficiency. Only in the complete reversibility limit [379] can the energy extraction process
from an extreme black hole reach the upper value of 50% of the total black hole energy.

For £, > FE. the leading extraction process is the collective process based on the gen-
eration of the optically thick electron—positron plasma by the vacuum polarization. The
condition E, > E, implies

oM/ (e \ ' M
e () =210 <e<1 (507)

This vacuum polarization process can occur only for a black hole with mass smaller than
5-10°M,. The electron—positron pairs are now produced in the dyadosphere of the black
hole. We have

Tdya <K T'Berg- (508)

The number of particles created [398] is then

Naa =4 (52) (1- ) [4+&+(@)}§:§(7”;—§)% (509)

The total energy stored in the dyadosphere is [398]

o r r 4 2 2
e = (1 ) [1 (=) } ¢ g (510)




tot
dya

The mean energy per particle produced in the dyadosphere (£) dya = W 18 then
ya

() :§ﬂ<%)%gé<AC>% (511)
dya 24-1-7’—++(r—+)2 Tdya ) T+ 8 \ Tdya ’

Tdya Tdya

which can be also rewritten as

s\t M/ Mg

() gpa = <—) Mec® ~ )5 10%keV . (512)

We stress again that the vacuum polarization around a black hole has been observed to reach
theoretically the maximum efficiency limit of 50% of the total mass-energy of an extreme
black hole (see e.g. [398]).

Let us now compare and contrast these two processes. We have

) Nep,  (€)aya = ( o ) (€)pp - (513)

Tdya Tdya
TEerg = ( pye ) Tdya, Ndya = ( pve Tdya

Moreover we see (Egs. (506), (512)) that (£)pp is in the range of energies of UHECR (see
[420] and references therein), while for £ ~ 0.1 and M ~ 10Mpg, (£),, is in the y-ray range.
In other words, the discrete particle decay process involves a small number of particles with
ultrahigh energies (~ 10%'eV), while vacuum polarization involves a much larger number of
particles with lower mean energies (~ 10MeV).

7.9 A theorem on a possible disagreement between black holes
and thermodynamics

This analysis of vacuum polarization process around black holes is so general that it allows
as well to look back to traditional results on black hole physics with an alternative point
of view. We quote in particular a result which allows to overcome a claimed inconsistency
between general relativity and thermodynamics in the field of black holes.

It is well known that if a spherically symmetric mass distribution without any electromag-
netic structure undergoes free gravitational collapse, its total mass-energy M is conserved
according to the Birkhoff theorem: the increase in the kinetic energy of implosion is balanced
by the increase in the gravitational energy of the system. If one considers the possibility
that part of the kinetic energy of implosion is extracted then the situation is very different:
configurations of smaller mass-energy and greater density can be attained without violating
Birkhoff theorem in view of the radiation process.

From a theoretical physics point of view it is still an open question how far such a sequence
can go: using causality nonviolating interactions, can one find a sequence of braking and
energy extraction processes by which the density and the gravitational binding energy can
increase indefinitely and the mass-energy of the collapsed object be reduced at will? This
question can also be formulated in the mass formula language [379] (see also Ref. [406]):
given a collapsing core of nucleons with a given rest mass-energy M, what is the minimum
irreducible mass of the black hole which is formed?

Following the previous two sections, consider a spherical shell of rest mass M, collapsing
in a flat space-time. In the neutral case the irreducible mass of the final black hole satisfies
Eq. 499. The minimum irreducible mass M.™™ is obtained when the kinetic energy at the
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Figure 27: Collapse curves for neutral shells with rest mass M, starting at rest at selected
radii R* computed by using the exact solutions given in Ref. [405]. A different value of M,
(and therefore of ) corresponds to each curve. The time parameter is the Schwarzschild
time coordinate t and the asymptotic behaviour at the respective horizons is evident. The
limiting configuration M, = 2 (solid line) corresponds to the case in which the shell is

2
trapped, at the very beginning of its motion, by the formation of the horizon.

horizon T is 0, that is when the entire kinetic energy 7', has been extracted. We then
obtain, form Eq. 499, the simple result

M) — Mo (514)

We conclude that in the gravitational collapse of a spherical shell of rest mass M, at rest at
infinity (initial energy M; = M), an energy up to 50% of Myc? can in principle be extracted,
by braking processes of the kinetic energy. In this limiting case the shell crosses the horizon
with 7, = 0. The limit % in the extractable kinetic energy can further increase if the
collapsing shell is endowed with kinetic energy at infinity, since all that kinetic energy is in
principle extractable.

We have represented in Fig. 27 the world lines of spherical shells of the same rest mass
M, starting their gravitational collapse at rest at selected radii 7. These initial conditions
can be implemented by performing suitable braking of the collapsing shell and concurrent
kinetic energy extraction processes at progressively smaller radii (see also Fig. 28). The
reason for the existence of the minimum (514) in the black hole mass is the “self-closure”
occurring by the formation of a horizon in the initial configuration (thick line in Fig. 27).

Is the limit M., — % actually attainable without violating causality? Let us consider
a collapsing shell with charge Q. If M > @ a black hole is formed. As pointed out in the
previous section the irreducible mass of the final black hole does not depend on the charge
Q). Therefore Egs. (499) and (514) still hold in the charged case. In Fig. 28 we consider the
special case in which the shell is initially at rest at infinity, i.e. has initial energy M; = M,
for three different values of the charge (). We plot the initial energy M;, the energy of the
system when all the kinetic energy of implosion has been extracted as well as the sum of

2
the rest mass energy and the gravitational binding energy —]2\/[7‘; of the system (here ry is

the radius of the shell). In the extreme case Q = My, the shell is in equilibrium at all radii
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Figure 28: Energetics of a shell such that M; = M, for selected values of the charge. In the
first diagram () = 0; the dashed line represents the total energy for a gravitational collapse
without any braking process as a function of the radius R of the shell; the solid, stepwise
line represents a collapse with suitable braking of the kinetic energy of implosion at selected
radii; the dotted line represents the rest mass energy plus the gravitational binding energy.
In the second and third diagram Q/M, = 0.7, Q/My = 1 respectively; the dashed and
the dotted lines have the same meaning as above; the solid lines represent the total energy
minus the kinetic energy. The region between the solid line and the dotted line corresponds
to the stored electromagnetic energy. The region between the dashed line and the solid line
corresponds to the kinetic energy of collapse. In all the cases the sum of the kinetic energy
and the electromagnetic energy at the horizon is 50% of Mj. Both the electromagnetic and
the kinetic energy are extractable. It is most remarkable that the same underlying process
occurs in the three cases: the role of the electromagnetic interaction is twofold: a) to reduce
the kinetic energy of implosion by the Coulomb repulsion of the shell; b) to store such an
energy in the region around the black hole. The stored electromagnetic energy is extractable
as shown in Ref. [406]

(see Ref. [405]) and the kinetic energy is identically zero. In all three cases, the sum of the
extractable kinetic energy T and the electromagnetic energy %Z reaches 50% of the rest mass
energy at the horizon, according to Eq. (514).

What is the role of the electromagnetic field here? If we consider the case of a charged
shell with Q ~ M, the electromagnetic repulsion implements the braking process and the
extractable energy is entirely stored in the electromagnetic field surrounding the black hole

(see Ref. [406]). We emphasize here that the extraction of 50% of the mass-energy of a black

o



hole is not specifically linked to the electromagnetic field but depends on three factors: a)
the increase of the gravitational energy during the collapse, b) the formation of a horizon, c)
the reduction of the kinetic energy of implosion. Such conditions are naturally met during
the formation of an extreme black hole with ) = M, but as we have seen, they are more
general and can indeed occur in a variety of different situations, e.g. during the formation
of a Schwarzschild black hole by a suitable extraction of the kinetic energy of implosion (see
Fig. 27 and Fig. 28).

Before closing let us consider a test particle of mass m in the gravitational field of an
already formed Schwarzschild black hole of mass M and go through such a sequence of
braking and energy extraction processes. Kaplan [421] found for the energy £ of the particle
as a function of the radius r

E=my/1—- 2L (515)

It would appear from this formula that the entire energy of a particle could be extracted in the
limit » — 2M. Such 100% efficiency of energy extraction has often been quoted as evidence
for incompatibility between General Relativity and the second principle of Thermodynamics
(see Ref. [422] and references therein). J. Bekenstein and S. Hawking have gone as far as
to consider General Relativity not to be a complete theory and to conclude that in order
to avoid inconsistencies with thermodynamics, the theory should be implemented through
a quantum description [422, 423, 424, 425|. Einstein himself often expressed the opposite
point of view (see, e.g., Ref. [426] and references therein).

The analytic treatment presented in Section 7.7.2 can clarify this fundamental issue. It
allows to express the energy increase £ of a black hole of mass M; through the accretion of
a shell of mass M starting its motion at rest at a radius ry in the following formula which
generalizes Eq. (515):

E=M— M =251 0y /1 20 (516)

ro

where M = M, + £ is clearly the mass-energy of the final black hole. This formula differs
from the Kaplan formula (515) in three respects: (a) it takes into account the increase of
the horizon area due to the accretion of the shell; (b) it shows the role of the gravitational
self-energy of the imploding shell; (c) it expresses the combined effects of (a) and (b) in an
exact closed formula.

The minimum value &,,;, of € is attained for the minimum value of the radius ro = 2M:
the horizon of the final black hole. This corresponds to the maximum efficiency of the energy
extraction. We have

M2 / M, M2 / M

or solving the quadratic equation and choosing the positive solution for physical reasons

Emin = 5 (, [ ME+ ME — Ml) : (518)

The corresponding efficiency of energy extraction is

—& . / Mg
,r/max — MOMimln — 1 — %M{l) < ]_ _I_ v% —_ ) , (519)

which is strictly smaller than 100% for any given My # 0. It is interesting that this an-
alytic formula, in the limit M; < My, properly reproduces the result of equation (514),




corresponding to an efficiency of 50%. In the opposite limit M; > M, we have

Mnax =~ 1 — 332 (520)

Only for My — 0, Eq. (519) corresponds to an efficiency of 100% and correctly represents the
limiting reversible transformations. It seems that the difficulties of reconciling General Rel-
ativity and Thermodynamics are ascribable not to an incompleteness of General Relativity
but to the use of the Kaplan formula in a regime in which it is not valid.

7.10 Astrophysical gravitational collapse and black holes

The time evolution of the gravitational collapse (occurring on characteristic gravitational
timescale 7 = GM/c® ~ 5 x 107° M /M, s) and the associated electrodynamical process are
too complex for direct description. We addressed here a more confined problem: the vacuum
polarization process around an already formed Kerr—Newman black hole. This is a well
defined problem which deserves attention. It is theoretically expected to represent a physical
state asymptotically reached in the process of gravitational collapse. Such an asymptotic
configuration will be reached when all multipoles departing from the Kerr—-Newman geometry
have been radiated away either by process of vacuum polarization or electromagnetic and
gravitational waves. What is most important is that by performing this theoretical analysis
we can have a direct evaluation of the energetics and of the spectra and dynamics of the
ete” plasma created on the extremely short timescale due to the quantum phenomena of
At = h/(m.c*) = 102! s. This entire transient phenomena, starting from an initial neutral
condition of the core in the progenitor star, undergoes the formation of the Kerr-Newman
black hole by the collective effects of gravitation, strong, weak, electromagnetic interactions
during a fraction of the above mentioned gravitational characteristic timescale of collapse.

After the process of vacuum polarization all the electromagnetic energy of incipient Kerr—
Newman black hole will be radiated away and almost neutral Kerr solution will be left and
reached asymptotically in time. In a realistic gravitational collapse the theoretical picture
described above will be further amplified by the presence of high-energy processes including
neutrino emission and gravitational waves emission with their electromagnetic coupling: the
gravitationally induced electromagnetic radiation and electromagnetically induced gravita-
tional radiation [427, 428].

Similarly, in the next Section we proceed to a deeper understanding of other collective
plasma phenomena also studied in idealized theoretically well defined cases. They will play
an essential role in the astrophysical description of the dynamical phase of gravitational
collapse.

8 Plasma oscillations in electric fields

We have seen in the previous Sections the application of the Sauter-Heisenberg-Euler-
Schwinger process for electron—positron pair production in the heavy nuclei, in the laser
and in the last Section in the field of black holes. The case of black holes is drastically
different from all the previous ones. The number of electron—positron pairs created is of the
order of 10, the plasma expected is optically thick and is very different from the nuclear
collisions and laser case where pairs are very few and therefore optically thin. The following
dynamical aspects need to be addressed.

1. the back reaction of pair production on the external electric field;



2. the screening effect of pairs on the external electric field strengths;

3. the motion of pairs and their interactions.

When these dynamical effects are considered, the pair production in an external electric
field is no longer only a process of quantum tunneling in a constant static electric field.
In fact, it turns out to be a much more complex process during which all the three above
mentioned effects play an important role. More precisely, a phenomenon of electron—positron
oscillation, plasma oscillation, takes place. We are going to discuss such plasma oscillation
phenomenon in this Section. As we will see in this Section these phenomena can become also
relevant for heavy-ion collisions. After giving the basic equations for description of plasma
oscillations we give first some applications in the field of heavy ions. In this Section in all
formulas we use ¢ = h = 1.

8.1 Semiclassical theory of plasma oscillations in electric fields

In the semi-classical QED [429, 430], one quantizes only the Dirac field ¢ (z), while an
external electromagnetic field A*(z) is treated classically as a mean field. This is the self-
consistent mean field or Gaussian approximation that can be formally derived as the leading
term in the large-N limit of QED, where N is the number of charged matter fields [430, 431,
432, 433, 434]. The motion of these electrons can be described by a Dirac equation in an
external classical electromagnetic potential A*(x)

(0" — eA") = mlp(x) = 0 (521)

and the semi-classical Maxwell equation

v 2 v € v

0" = (5"(2)),  3"(2) = igld(2), 7" ¥(2)], (522)
where j”(x) is the electron and positron current and the expectation value is with respect to
the quantum states of the electron field. The dynamics that these equations describe is not
only the motion of electron and positron pairs, but also their back reaction on the external
electromagnetic field. The resultant phenomenon is the so-called plasma oscillation that
we will discuss based on both a simplified model of semi-classical scalar QED and kinetic
Boltzmann-Vlasov equation as presented in Refs. [429, 430, 435, 436, 437].

A scheme for solving the back reaction problem in scalar QED was offered in Refs. [429,
430]. Based on this scheme, a numerical analysis was made in (141)-dimensional case [435].
Egs. (521), (522) are replaced by the scalar QED coupled equations for a charged scalar field
O(x)

[(i0" — eAM)? — m?2]®(x) = 0. (523)
The current j”(x) of the charged scalar field in the semi-classical Maxwell equations (522) is
e

() = 5[ ()0 (x) — B(2)0" " (x)]. (524)

Now, consider a spatially homogeneous electric field E = F,(t)z in the z-direction. A
corresponding gauge potential is A = A,(t)z, Ag = 0. Defining E = FE,, A=A, and j = j,,
the Maxwell equations (522) reduce to the single equation

T4 (. (525)



for the potential and £ = —dA/dt.
The quantized scalar field ®(x) in Eq. (523) can be expanded in terms of plane waves
with operator-valued amplitudes fi (t)a and f* (t)b

D) = g St + Fult)le ™ (526)
k

where V' is the volume of the system and the time-independent creation and annihilation
operators obey the commutation relations

lax, aly] = [bi, bly] = S, (527)
and each k-mode function fi obeys the Wronskian condition,

fifi = hfi=1i. (528)

The time dependency in this basis (ay, bl.) (526,527) is carried by the complex mode functions
fx(t) that satisfy the following equation of motion, as demanded from the QED coupled
Eq. (523) of Klein-Gordon type

(55 +2)) o) = (529)

where the time-dependent frequency w(t) is given by
wi(t) =k —eA]* + m? = [k — eA(t)]* + k7 +m? (530)

Here k is the constant canonical momentum in the Z-direction which should be distinguished
from the gauge invariant, but time-dependent kinetic momentum
dp

p(t) =k —eA(t), pri ek, (531)
which reflects the acceleration of the charged particles due to the electric field, while in the
directions transverse to the electric field the kinetic and canonical momenta are the same
k, =p..

The mean value of electromagnetic current (524) in the z-direction is then

G0) =2 [ 55l = cAWNALOFT -+ N () + N (<) (532)

where N, (k) = (afai) and N_(k) = (b.by) are the mean numbers of particles and antipar-
ticles in the time-independent basis (526,527). The mean charge density must vanish

G = e [ a0 - N 0. [ S =

by the Gauss law for a spatially homogeneous electric field (i.e., V-E = 0). As a result,
Ny (k) = N_(=k) = Ni. For the vacuum state, Ny = 0. The Maxwell equation (525) for
the evolution of electric field becomes

A <2 [ Dl A RO, o= (120 (533)
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Figure 29: Time evolution of scaled electric field E and current j, with initial value E = 1.0
and coupling €?/m? = 0.1. The solid line is semi classical scalar QED, and the dashed line
is the Boltzmann-Vlasov model. This figure is reproduced from Fig. 1 (a) in Ref. [435].

These two scalar QED coupled Egs. (529) and (533) in (1+41)-dimensional case were numer-
ically integrated in Ref. [435]. The results are shown in Fig. 29, where the time evolutions
of the scaled electric field E = E/E, and current j = jh/(E.mcc?) are shown as functions
of time 7 = (m.c?/h)t in unit of Compton time (i/m.c?). Starting with a strong electric
field, one clearly finds the phenomenon of oscillating electric field E(t) and current j(t), i.e.,
plasma oscillation.

This phenomenon of plasma oscillation is shown in Fig. 29 and is easy to understand as
follows. In a classical kinetic picture, we have the electric current j = 2en(v) where n is
the density of electrons (or positrons) and (v) is their mean velocity. Driven by the external
electric field, the velocity (v) of electrons (or positrons) continuously increases, until the
electric field of electron and positron pairs screens the external electric field down to zero,
and the kinetic energy of electrons (or positrons) reaches its maximum. The electric cur-
rent j saturates as the velocity (v) is close to the speed of light. Afterward, these electrons
and positrons continuously move apart from each other further, their electric field, whose
direction is opposite to the direction of the external electric field, increases and decelerates
electrons and positrons themselves. Thus the velocity (v) of electrons and positrons de-
creases, until the electric field reaches negative maximum and the velocity vanishes. Then
the velocity (v) of electrons and positrons starts to increase in backward direction and the
electric field starts to decrease for another oscillation cycle.



8.2 Kinetic theory of plasma oscillations in electric fields

In describing the same system as in the previous section it can be used, alternatively
to the semi-classical theory, a phenomenological model based on the following relativistic
Boltzmann-Vlasov equation [435]

dF _9F | OF 4N
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where the x-independent function F(p,t) is a classical distribution function of particle and
antiparticle pairs in phase space. The source term in the right-hand side of Eq. (534) is
related to the Schwinger rate Pposon (161) for the pair production of spin-0 particle and
antiparticle

i = 1 27 (0. 0] Pocen*(p). (535)
where the d-function 63(p) expresses the fact that particles are produced at rest and the
factor [1 + 2F(p,t)] accounts for stimulated pair production (Bose enhancement). The
Boltzmann-Vlasov equation (534) for the distribution function F(p,t) is in fact attributed
to the conservation of particle number in phase space.

In the field equation (525) for the classical gauge potential A, the electric current (j(z))
is contributed from the conduction current

joma =26 [ £ B L= A 1) (536)

and the polarization current [438]

. 2 d*p dN
el =5 / (2r )3 “Pdtdvdip (537)

The relativistic Boltzmann-Vlasov equation (534) and field equation (525) with the con-
duction current (536) and the polarization current (537) were numerically integrated [435]
in (1+1)-dimensional case. The numerical integration shows that the system undergoes
plasma oscillations. In Fig. 29 the results of the semi-classical analysis and the numerical
integration of the Boltzmann equation are compared. We see that they are in good quanti-
tative agreement. The discrepancies are because in addition to spontaneous pair production,
the quantum theory takes into account pair production via bremsstrahlung (“induced” pair
production), which are neglected in Eq. (534)).

In Refs. [439, 440], the study of plasma oscillation was extended to the fermionic case.
On the basis of semi-classical theory of spinor QED, expressing the solution of the Dirac
equation (521) as

$(2) = (0" — eA") + m,Jo(a),

where ¢(x) is a four-component spinor, one finds that ¢(z) satisfies the quadratic Dirac
equation,
[(i@” —eAM? - ga’“’FW - mg] () = 0. (538)

The electric current of spinor field ¢(z) couples to the external electric field that obeys the
field equation (525).



The source term in the right-hand side of the kinetic Boltzmann-Vlasov equation (534)
is changed to the Schwinger rate Prermion (160) for the pair production of electrons and
positrons,

AN
dtdVd3p

where the Pauli blocking is taken into account by the factor [1—2F(p, t)]. Analogously to the
scalar QED case, both semi-classical theory of spinor QED and kinetic Boltzmann-Vlasov
equation have been analyzed and numerical integration was made in the (1+1)-dimensional
case [439, 440]. The numerical results show that plasma oscillations of electric field, electron
and positron currents are similar to that plotted in Fig. 29.

[1 - 2F(pa t)]Pfermion(sg(p)a (539)

8.3 Plasma oscillations in the color electric field of heavy ions

The Relativistic Heavy-Ion Collider (RIHC) at Brookhaven National Laboratory and Large
Hadron Collider (LHC) at CERN are designed with the goal of producing a phase of decon-
fined hadronic matter: the quark-gluon plasma. A popular theoretical model for studying
high-energy heavy-ion collisions begins with the creation of a flux tube containing a strong
color electric field [441]. The field energy is converted into particles such as quark and anti-
quark pairs and gluons that are created by the Sauter—Euler—Heisenberg—Schwinger quantum
tunneling mechanism. A relativistic Boltzmann—Vlasov equation coupling to such particle
creation source is phenomenologically adopted in a kinetic theory model for the hydrody-
namics of quark and gluon plasma [438, 442, 443, 444, 445, 446, 447).

In the collision of heavy-ion beams, one is clearly dealing with a situation that is not
spatially homogeneous. However, particle production in the central rapidity region can
be modeled as hydrodynamical system with longitudinal boost invariance [448, 449, 450,
451, 452]. To express the longitudinal boost invariance of the hydrodynamical system, one
introduces the comoving coordinates: fluid proper time 7 and rapidity 7 by the relationships
[453]

z = 7sinh(n), t=7coshn, (540)

in terms of the Minkowski time ¢ and the coordinate z along the beam direction Z in the
ordinary laboratory frame. The line element and metric tensor in these coordinates are given
by

ds* = dr* — da® — dy* — 72dn?, g, = diag(1, -1, -1, —7%), (541)

and
G = V;V,jbnab, Vi =diag(1,1,1,7).

where the vierbein V; transforms the curvilinear coordinates to Minkowski coordinates and
det(V) = \/—g = 7. The covariant derivative on fermion field 1(z) is given by [454]

V,u(x) = [(i0, — eA,) + Tl (z) (542)
and the spin connection I',, is
1 1
Ly = 55"V O,V + T3, = = 2079

with I}y the usual Christoffel symbols and 7* the usual coordinate-independent Dirac gamma
matrices. The coordinate-dependent gamma matrices ¥ are obtained via

=V



In the curved space time (541), the Dirac equation (521) and semi-classical Maxwell equation
(522) are modified as

159" — meJu() = 0 (543)
and ]

=0T = (M @)), (@) = 510, 70w, (544)

The phenomenological Boltzmann—Vlasov equation in (3+1)-dimensions can be also writ-

ten covariantly as

DF oF —_ oF dN

Dr Og+ "op,  /—gd¢®d®qdp’
where D /D7 is the total proper time derivative. This kinetic transport equation is written
in the comoving coordinates and their conjugate momenta:

(545)

¢ = (1, 2,9.m), Pu= (PrDz,Py>Dn)-

Due to the longitudinal boost invariance, energy density and color electric field are spatially
homogeneous, i.e., they are functions of the proper time 7 only [453]. Consequently, the
approach for spatially homogeneous electric field presented in Refs. [430, 435, 439, 440] and
discussed in the previous Section 8.2 is applicable to the phenomenon of plasma oscillations
in ultrarelativistic heavy-ion collisions [453] using Eq. 543 (resp. Eq. 545) in the place of
Eq. 521 (resp. Eq. 534).

8.4 Quantum Vlasov equation

To understand the connection between the two frameworks of semi-classical field theory
and classical kinetic theory, both of which describe the plasma oscillations, one can try to
study a quantum transport equation in the semi-classical theory [437, 455, 456, 457|. For
. . . . . . 1
this purpose, a Bogoliubov transformation from the time-independent number basis (a, by )
(526, 527) to a time-dependent number basis [ay(t), bl (¢)] is introduced [437, 455, 456],

fk(t) = Oék(t)fk(t)fﬁk(t)fﬁ(tﬁ ) (546)
f(t) = —iwan(t) fict) + i Bic(t) fie (1), (547)
and
ax(t) = og(t)a(t) — Bu(t)bl, (¢); (548)
() = on(t)by (t) — B(t)ax(t), (549)

where oy (t) and Px(t) are the Bogoliubov coefficients. They obey

| (8)]* = |B(t)|* = 1,

for each mode k. In the limit of very slowly varying wy(t) as a function of time ¢ (530),
ie., W < wf and O < w, the adiabatic number basis [ax(t), bl (t)] is defined by first
constructing the adiabatic mode functions,

~ 1/2 t
fk(t) = (i) exp [—iOk(t)], ©Ox(t) :/ wi () dt'. (550)

2wk



The particle number Ny (t) in the time-dependent adiabatic number basis is given by

Nt) = (@l (t)ax(t)) = BL (£)b_x(t))
= Jouc(t) PNk + |Bi(®)|[1 + My, (551)

which though time-dependent, is an adiabatic invariant of the motion. Consequently, it is
a natural candidate for a particle number density distribution function F(p,t) in the phase
space, that is needed in a kinetic description.

By differentiating NV (¢) (551) and using the basic relationships (530,547,550), one ob-
tains,

Nie(t) = i—tRe {Ci(t) exp[—2i0x ()]}, Cil(t) = (14 2Ni)axc () BE(2), (552)
and
Cul(t) = Q“jk[ + 2Ni(t)] exp[2i04 (1)), (553)

These two equations give rise to the quantum Vlasov equations [437, 455, 456],

Nt) = S(t), (554)
Se(t) = X a1 £ 2N ()] cos[20k(£) — 20k (t)], (555)

20k Jo0o Wk

describing the time evolution of the adiabatic particle number Ny (t) of the mean field theory.
Sk(t) describes the quantum creation rate of particle number in an arbitrary slowly vary-
ing mean field. The Bose enhancement and Pauli blocking factors [1 £+ 2NV (t')] appear in
Eq. (555) so that both spontaneous and induced particle creation are included automatically
in the quantum treatment. The most important feature of Eq. (555) is that the source term
Sk (t) is nonlocal in time, indicating the particle creation rate depending on the entire history
of the system. This means that the time evolution of the particle number Ny (t) governed
by the quantum Vlasov equation is a non-Markovian process.

The mean electric current (j(¢)) (532) in the basis of adiabatic number [ay(t), bl (t)]
(547,549) can be rewritten as,

<j<t>> = .jcond +.jp017 (556)
Jomd = 2 / (gwl;g i ‘jf(t”Nk@), (557)
Jool = % / %wk/\'fk(t), (558)

by using Egs. (551), (552). This means electric current (j(¢)) enters into the right-hand side
of the field equation (525).

For the comparison between the quantum Vlasov equation (555) and the classical Boltzmann—
Vlasov equation (534), the adiabatic particle number N (t) has to be understood as the
counterpart of the classical distribution function F(p,t) of particle number in the phase
space. The source term, that is composed by the Schwinger rate of pair production and the
factor [1£2Ny(t')] for either the Bose enhancement or Pauli blocking, is phenomenologically
added into in the Boltzmann—Vlasov equation (534). Such source term is local in time, in-
dicating that the time evolution of the classical distribution function F(p,t) is a Markovian
process. In the limit of a very slowly varying uniform electric field E and at very large time



t the source term Si(t) (555) integrated over momenta k reduces to the source term in the
Boltzmann—Vlasov equation (534) [437, 455, 456]. As a result, the conduction current jeona
and the polarization current j,, in Eq. (556) are reduced to their counterparts Eqs. (536),
(537) in the phenomenological model of kinetic theory. In Ref. [437, 458, 459, 460, 267], the
quantum Vlasov equation has been numerically studied to show the plasma oscillations and
the non-Markovian effects. They are also compared with the Boltzmann—Vlasov equation
(534) that corresponds to the Markovian limit.

8.5 Quantum decoherence in plasma oscillations

As showed in Fig. 29, the collective oscillations of electric field E(t) and associate electric
current (j(t)) are damped in their amplitude. Moreover, as time increases, a decoherence in
their oscillating frequency occurs [435, 461]. This indicates that plasma oscillations decay in
time. This effective energy dissipation or time irreversibility is the phenomenon of quantum
decoherence [462] in the process of creation and oscillation of particles, in the sense that
energy flows from collective motion of the classical electromagnetic field to the quantum
fluctuations of charged matter fields without returning back over times of physical interest
[461, 463]. This means that the characteristic frequency wy of the quantum fluctuation mode
“k” is much larger than the frequency w,; of the classical electric field: wy > wy,; and wf,l ~
2e*hin,/(m.c?) [437, 461], where n, is the number density of particles and antiparticles. The
study of quantum decoherence and energy dissipation associated with particle production to
understand the plasma oscillation frequency and damping can be found in Refs. [437, 461,
463].

To understand the energy dissipation from the collective oscillation of classical mean fields
to rapid fluctuations of quantum fields, it is necessary to use the Hamiltonian formalism of
semi-classical theory. One defines the quantum fluctuation & (t) upon classical mean field
(®k(t)) in the semi-classical scalar theory [437, 461, 463],

&c(t) = ([Pxc(t) — (D1 (1)]?) = (Puc(t) D (1)) — [(Drc(t))]*, (559)

where @y (t) is the Fourier k—component of the quantized scalar field ®(z) (526). In the
time-independent basis (527,528), one has (see Section 8),

&e(t) = owl fc(t)?, (560)
and the mode equation (529) for fi(t) can be rewritten as

h?o}

4Gi(1)°

M(t) = &(t) = —wi(Dé(t) + (561)

where 7 (t) = &(t) is the momentum canonically conjugate to &c(t). Moreover, the semi-
classical Maxwell equation (533) is rewritten as

% = 2¢ / (gﬂl; [k — eA(t)]& (1) (562)

Egs. (561) and (562) actually are Hamilton equations of motion,

(563)



for a closed system with Hamiltonian,

E? Pk (5 5 .., hoi
Heﬂ(Av PAvé-vnv U) = v? + V/ (271')3 <nk + wk(A)gk + 4—61%) ) (564>
where P, = A = —F is the momentum canonically conjugate to A, wi(A) is the field-

dependent frequency of quantum fluctuations given by Eq. (530) and the value of mean field
(559) vanishes, (P (t)) = 0, for each k-mode. In Eq. (564), the first term is the electric
energy and the second term is the energy of quantum fluctuations of charged matter field,
interacting with electric field.

Quantum decoherence can be studied within this Hamiltonian framework. If one consid-
ers only the time evolution of classical electric field A(t), that is influenced by the quantum
fluctuating modes fi(¢), the latter can be treated as a heat bath “environment”. Quanti-
tative information about the quantum decoherence is contained in the so-called influence
functional, which is a functional of two time evolution trajectories A;(t) and As(t) [461]

Fia(t) = explil'ia(t)] = Tr(|Aw () (Aa(2)]), (565)

where |A;2(t)) are different time evolution states determined by Eq. (563), starting with the
same initial state |A(0)) and initial vacuum condition Ny = 0,0 = 1 (533). One finds [461]

o ih ffs )}
I'is =——1 - - , 66
() =—5m Lflfz‘ <f1f2*—f1fz* (566)

in terms of the two sets of mode functions {fi(¢)} and {f>(¢)} (the subscript k is omitted).
This T'12 (566) is precisely the closed time path (CTP) effective action functional which
generates the connected real n-points vertices in the quantum theory [464, 465, 466, 467,
468, 469, 470, 471]. The absolute value of Fjs (565) measures the influence of quantum
fluctuations fi(t) on the time evolution of the classical electric field A(t), i.e., the effect
of quantum decoherence. If there is no influence of quantum fluctuations on A(t), then
|A1(t)) = |A2(t)) and |Fi2| = 1, otherwise Ay(t) deviates from A;(t), |A1(t)) # |As(t)) and
|F12| < 1. Numerical results about the damping and the decoherence of the electric field are
presented in Refs. [435, 461] (see Figs. 29 and 30).

The effective damping discussed above is certainly collisionless, since the charged particle
modes fi(t) interact only with the electric field but not directly with each other. The
damping of plasma oscillation attributed to the collisions between charged particle modes
fi(t) will be discussed in the next section.

8.6 Collision decoherence in plasma oscillations

If there are interactions between different modes k and species of particles, the time evolu-
tions of electric field and the distribution function F(p,t) of particle number in the phase
space are certainly changed. This can be phenomenologically studied in the relativistic
Boltzmann-Vlasov equation (534) by adding collision terms C(p, t),

dF _ OF oOF
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These collision terms C(p,t) describe not only the interactions of different modes k of parti-
cles, but also interactions of different species of particles, for example, electron and positron
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Figure 30: Absolute values of the decoherence functional |Fj,| as a function of time. The two
field values are £ and E — A. The top figure shows (for fixed A) the sharp dependence of
decoherence on particle production when |E| > 0.2E,.. The second illustrates the relatively
milder dependence on A. These figures are reproduced from Fig. 2 in Ref. [461].

annihilation to two photons and wvice versa. In Refs. [458, 460], the following equilibrating
collision terms were considered,

1
C(p,t) = —[Fp,t.T) — F(p,1)], (568)
where F*I(p,t,T) is the thermal (Fermi or Bose) distribution function of particle number
(fermions or bosons) at temperature T', the relaxation time 7, is determined by the mean
free path A(t) and mean velocity o(t) of particles, through

At
=(t) = TCQ, (569)
t)
and 7, is a dimensionless parameter. A(¢) is computed from the number density n(t) of
particles,

1]

)\(t):W, n(t) = / (;l;;f(p,t). (570)

Whereas, the mean velocity of particles is given by o(t) = p(t)/€(t), expressed in terms of

mean kinetic momentum p(t) and energy €(t) of particles. The mean values of momentum
p(t) and energy €(t) are computed [460] by using distribution function F(p,t) regularized



via the procedure described in Ref. [458] that yields the renormalized electric current (556).
The temperature 7'(t) in Eq. (568) is the “instantaneous temperature”, which is determined
by requiring that at each time ¢ the mean particle energy €(¢) is identical to that in an
equilibrium distribution F¢i(k,¢,T") at the temperature T'(t),

&(t) = / %e(k)m[k, £, T(1)]. (571)

This system of two coupled equations: (i) the field equation (525) with renormalized elec-
tric currents (556); (ii) the relativistic Boltzmann-Vlasov equation (567) with the source
term Sp(t) (555) and equilibrating collision term C(p,t) (568), are numerically integrated in
Refs. [458, 460]. One of these numerical results is presented in Fig. 31. It shows [458] that
when the collision timescale 7, (569) is much larger than the plasma oscillation timescale
Tol, Tr > Ty, the plasma oscillations are unaffected. On the other hand, when 7, ~ 7
the collision term has a significant impact on both the amplitude and the frequency of the
oscillations that result damped. There is a value of 7. below which no oscillations arise and
the system evolves quickly and directly to thermal equilibrium. It is worthwhile to contrast
this collision damping of plasma oscillation with the collisionless damping effect due to rapid
quantum fluctuations described in Section 8.5.
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Figure 31: Time evolution for electric field obtained using different relaxation times 7, in the
collision term of Eq. (568) and with the impulse external field E,,(t) = —Ag[bcosh®(t/b)] !,
where Ag = 0.7 and b = 0.5. All dimensioned quantities are given in units of the mass-scale
m. This Figure is reproduced from Fig. 6 in Ref. [458].



8.7 ete v interactions in plasma oscillations in electric fields

In this section, a detailed report of the studies [72] of the relativistic Boltzmann-Vlasov equa-
tions for electrons, positrons and photons with collision terms originated from annihilation
of electrons and positrons pair into two photons and wvice versa is presented. These collision
terms lead to the damping of plasma oscillation and possibly to energy equipartition between
different types of particles.We focus on the evolution of a system of eTe™ pairs created in
a strongly overcritical electric field (E ~ 10E,), explicitly taking into account the process
ete” 2 ~v. Since it is far from equilibrium the collisions cannot be modeled by an effective
relaxation time term in the transport equations, as discussed in the previous section. Rather
the actual, time varying, collision integrals have to be used.

Furthermore we are mainly interested in a system in which the electric field varies on
macroscopic length scale and therefore one can approximate an electric field as a homoge-
neous one. Also, transport equations are used for electrons, positrons and photons, with
collision terms, coupled to Maxwell equations, as introduced in Section 8.1 and 8.2. There
is no free parameter here: the collision terms can be exactly computed, since the QED
cross-sections are known. Starting from a regime which is far from thermal equilibrium,
one finds that collisions do not prevent plasma oscillations in the initial phase of the evolu-
tion and analyze the issue of the timescale of the approach to an ete™v plasma equilibrium
configuration.

As discussed in Section 8.1 and 8.2 one can describe positrons (electrons) created by vac-
uum polarization in a strong homogeneous electric field E through the distribution function
fet (fe-) in the phase space of positrons (electrons). Because of homogeneity f.+ (f.-) only
depend on the time ¢ and the positron (electron) 3—-momentum p:

fe*v* = fe*v* (ta p) . (572)
Moreover, because of particle-antiparticle symmetry, one also has
.fe+ (t> p) = fe* (ta _p) = .fe (t> p) . (573)

Analogously photons created by pair annihilation are described through the distribution
function f, in the phase space of photons. k is the photon 3-momentum , then

f'y = f'y (t, k) : (574)

fe and f, are normalized so that

/ (;ljf))s e (ta p) = Ne (t) 5 (575)
[ =0, (570)

where n. and n, are number densities of positrons (electrons) and photons, respectively. For
any function of the momenta, one can denote by

(F (P1s ooy Pa)), = n;"/ LBy LR F (D1, Pu) e (P1) e fe (D2), (577)

or

(G (ki, ... k), =nJ / R 8 G k) Sy () - fy (), (578)



its mean value in the phase space of positrons (electrons) or photons, respectively.

The motion of positrons (electrons) is the result of three contributions: the pair creation,
the electric acceleration and the annihilation damping. The probability density rate S (E, p)
for the creation of a pair with 3-momentum p in the electric field E is given by the Schwinger
formula (see also Refs. [435, 439)):

S (E,p) = (2n)° T

= — |eE|log [1 — exp (—%)} o(py); (579)

where p| and p, are the components of the 3-momentum p parallel and orthogonal to E,
respectively. Also the energy is introduced

— (p-p+m?)" (580)
of an electron of 3-momentum p and the energy
a = (k- k)72 (581)

of a photon of 3-momentum k. Then, the probability density rate C. (¢,p) for the creation
(destruction) of a fermion with 3-momentum p is given by

Ce(t,p) =~ / o i e (2m)' 50 (p - py— ky — k)

2m) epy (27) €y (27) €xy
‘M6+ Ye~ (p1)—v(k1)v(kz) ‘ [fe ( ) fe (pl) - f'y (kl) f'y (k2)] ’ (582)

where
Met(pr)e- (p2)—v(ki)v(ks) = Met(pr)e- (p2)er(kr(ka) = M (583)

is the matrix element for the process

TP e (p2) = v (ki) y (ko) (584)

and as a first approximation, Pauli blocking and Bose enhancement (see, for instance,
Ref. [439]) are neglected. Analogously the probability density rate C, (¢, p) for the creation
(annihilation) of a photon with 3-momentum k is given by

(27r) €py (27r) €py (27r) €k,
X [ Mt pr)e- (pa)montan | Lfe (P1) fe (P2) = £ (K) £, (k1)) (585)

Finally the evolution of the pairs is governed by the transport Boltzmann—Vlasov equations

C, (t,k) ~ / Ppr__dpa 1 (on) 5@ (p) 4 py — k — k1)

at.fe +ecE - foe =S (Ea p) - Ce (ta p) ) (586)

8tf’¥ = 2C‘f (tv k) ) (587>

Note that the collisional terms (582) and (585) are negligible, when created pairs do not
produce a dense plasma.

Because pair creation back reacts on the electric field, as seen in Section 8.1 and 8.2,
Vlasov equations are coupled with the homogeneous Maxwell equations, which read

OE = —j, (E) = jc (1), (588)



where
iy (B) =28 [ £26,5 (E.p) (5%9)

is the polarization current and
. 3
je (t) = 2en, / (;lT‘)’ggfe (p) (590)

is the conduction current (see Ref. [438]).

Egs. (586), (587) and (588) describe the dynamical evolution of the electron—positron
pairs, the photons and the strong homogeneous electric field due to the Schwinger process of
pair creation, the pair annihilation into photons and the two photons annihilation into pairs.
It is hard to (even numerically) solve this system of integral and partial differential equations.
It is therefore useful to introduce a simplification procedure of such a system through an
approximation scheme. First of all note that Eqs. (586) and (587) can be suitably integrated
over the phase spaces of positrons (electrons) and photons to get differential equations for
mean values. The following exact equations for mean values are obtained:

4ne = S (E) —n? (o), +n? (o20").,
finy =202 (o0v'), — 2n] <0'2U”>w
%ne (€p), = en.E - (V) + 1E “Jp— n2 (epov” N+ ni <€k0'2’U//>,y,
inv <€k>

ane (p), = en.E —n; <P0'10>

4E = —2en, (v), —j, (E), (591)

= 2n? (epalv) —2n (exoov”)

where

S = [ &S (E.p) (592)
= 4 (593)

dtd3x”’

is the total probability rate for Schwinger pair production. In Egs. (591), v” = ¢ the velocity
of light and v" = 2|p/e;°™] is the relative velocity between electrons and positrons in the
reference frame of the center of mass, where p = |pet|, P~ = —Pe+ are 3—momenta of
electron and positron and €p,s = ESOM are their energies. o; = o0y (ESOM) is the total cross-
section for the process ete™ — v, and 09 = 0y (GEOM) is the total cross-section for the
process 7y — ete™, here €“°M is the energy of a particle in the reference frame of the center
of mass.

In order to evaluate the mean values in system (591) some further hypotheses on the

distribution functions are needed. One defines py, €, and p? such that

{p1), = DIl (594)
(€p)e = &p (p” + PL + m )1/2 (595)

It is assumed
fe(t.p) < ne ()8 (p —p)) 0 (P1 — BL) - (596)

Since in the scattering ete™ — 47 the coincidence of the scattering direction with the
incidence direction is statistically favored, it is also assumed

fry (k) ocny (8)6 (K3 —K3) [0 (ky — Fy) +6 (ky +Ky)] (597)



where k| and k; have analogous meaning as p; and p, and the terms 4 (kll — l?;”) and
) (k” + l_c”) account for the probability of producing, respectively, forwardly scattered and
backwardly scattered photons. Since the Schwinger source term (579) implies that the
positrons (electrons) have initially fixed p, namely p; = 0, assumption (596) ((597)) means
that the distribution of p| (k) does not spread too much with time and, analogously, that the
distribution of energies is sufficiently peaked to be describable by a d—function. Aslong as this
condition is fulfilled, approximations (596) and (597) are applicable. The actual dependence
on the momentum of the distribution functions has been discussed in Ref. [439, 437]. If
Egs. (596) and (597) are substituted into the system (591) one gets a new system of ordinary
differential equations. One can introduce the inertial reference frame which on average
coincides with the center of mass frame for the processes e*e™ = v+, and has €M ~ ¢ for
each species, and therefore substituting Eqs. (596) and (597) into Eqs. (591) one finds

Ine =S (E) —2niop, " |me| + 2n,2ya2,

%nﬁ, = 4ngalpe_1 ‘71'6”‘ — 4”’2y‘72’

%pe = eneEpe_1 ‘7‘(6”‘ + %Ejp — Qnepealpe_l ‘7?6”‘ + 2n,p,09,

Loy = dnepeoip, |me| — 4npy0s,

el = eneE — 2nemyonp; ey

4E = —2en.p, " |me)| — jp (E), (598)

where

Pe = NeEp, (599)
Py = T, (600)
Te| = Nep)| (601)

are the energy density of positrons (electrons), the energy density of photons and the density
of “parallel momentum” of positrons (electrons), E is the electric field strength and j, the
unique component of j, parallel to E. oy and oy are evaluated at ¢“°M = € for each species.
Note that Eqgs. (598) are “classical” in the sense that the only quantum information is
encoded in the terms describing pair creation and scattering probabilities. Finally Egs. (598)
are duly consistent with energy density conservation:

i (pe + py + 5E%) = 0. (602)

Egs. (598) have to be integrated with the following initial conditions

ne = 0,
n, =0,
Pe =Y,
py =0,
e =0,
E = E,.

In Fig. 32 the results of the numerical integration for Ey = 9F, is showed. The integration
stops at t = 150 7¢ (where, as usual, 7¢c = h/m.c? is the Compton time of the electron).
Each quantity is represented in units of m, and A¢c = h/m.c, the Compton length of the
electron.
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Figure 32: Plasma oscillations in a strong homogeneous electric field: early times behavior.
Setting Fy = 9E., t < 1507¢ and it is plotted, from the top to the bottom panel: a)
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The numerical integration confirms [435, 439] that the system undergoes plasma oscilla-
tions:

1. the electric field does not abruptly reach the equilibrium value but rather oscillates
with decreasing amplitude;

2. electrons and positrons oscillates in the electric field direction, reaching ultrarelativistic
velocities;

3. the role of the ete™ = 7 scatterings is marginal in the early time of the evolution.

This last point can be easily explained as follows: since the electrons are too extremely
relativistic, the annihilation probability is very low and consequently the density of photons
builds up very slowly (see details in Fig. 32).

At late times the system is expected to relax to an equilibrium configuration and assump-
tions (596) and (597) have to be generalized to take into account quantum spreading of the
distribution functions. It is nevertheless instructive to look at the solutions of Egs. (598) in
this regime. Moreover, such a solution should give information at least at the order of mag-
nitude level. In Fig. 33 the numerical solution of Eqs. (598) is plotted, but the integration
extends here all the way up to ¢ = 7000 7¢ (the timescale of oscillations is not resolved in
these plots).

It is interesting that the leading term recovers the expected asymptotic behavior:

1. the electric field is screened to about the critical value: E ~ E. for t ~ 10% — 10%*r¢ >
TC;

2. the initial electromagnetic energy density is distributed over electron—positron pairs
and photons, indicating energy equipartition;

3. photons and electron—positron pairs number densities are asymptotically comparable,
indicating number equipartition.

At such late times a regime of thermalized electrons—positrons—photons plasma is ex-
pected to begin (as qualitatively indicated by points 2 and 3 above) during which the system
is describable by hydrodynamic equations [408, 399].

Let us summarize the results in this section. A very simple formalism is provided to
describe simultaneously the creation of electron—positron pairs by a strong electric field
E 2 FE. and the pairs annihilation into photons. As discussed in literature, one finds plasma
oscillations. In particular the collisions do not prevent such a feature. This is because the
momentum of electrons (positrons) is very high, therefore the cross-section for the process
ete” — ~v is small and the annihilation into photons is negligible in the very first phase
of the evolution. As a result, the system takes some time (¢ ~ 10* — 10%7¢) to reach an
equilibrium e*™e” v plasma configuration.

8.8 Electro-fluidodynamics of the pair plasma

In the previous section, collisional terms in the Vlasov-Boltzmann equation are introduced,
describing interaction of pairs and photons via the reaction ete™ <> ~7. These results
have been considered of interest in the studies of pair production in free electron lasers
[60, 238, 239, 264, 261], in optical lasers [472], of millicharged fermions in extensions of the
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standard model of particle physics [473], electromagnetic wave propagation in a plasma [269],
as well in astrophysics [408].

In this section, following [73, 474], the case of undercritical electric field is explored. It
is usually expected that for £ < E. back reaction of the created electrons and positrons on
the external electric field can be neglected and electrons and positrons would move as test
particles along lines of force of the electric field. Here it is shown that this is not the case in
a uniform unbounded field. This work is important since the first observation of oscillations
effects should be first detectable in experiments for the regime F < E., in view of the rapid
developments in experimental techniques, see e.g. [270, 273, 274].

An approach is introduced based on continuity, energy-momentum conservation and
Maxwell equations in order to account for the back reaction of the created pairs. This
approach is more simple than the one, presented in the previous section. However, the final
equations coincide with (598) when the interaction with photons can be neglected. By this
treatment one can analyze the new case of undercritical field, £ < FE,., and recover the old
results for overcritical field, £ > E.. In particular, the range 0.15E. < F < 10FE, is focused.

It is generally assumed that electrons and positrons are created at rest in pairs, due to
vacuum polarization in uniform electric field with strength £ [20, 7, 25, 26, 27, 33, 203, 204],
with the average rate per unit volume and per unit time (164)

AN mt (E\? E
)= — = € — _ ¢ .
SE) = v~ (E) eXp( 7TE) (603)
This formula is derived for uniform constant in time electric field. However, it still can

be used for slowly time varying electric field provided the inverse adiabaticity parameter
[203, 204, 36, 30, 31, 32, 244], see Eq. (355), is much larger than one,

N = %% = TEpea, > 1, (604)
where w is the frequency of oscillations, T = m. /w is dimensionless period of oscillations.
Equation (604) implies that time variation of the electric field is much slower than the rate of
pair production. In two specific cases considered in this section, £ = 10E,. and E = 0.15F,
one finds for the first oscillation 1 = 334 and 1 = 3.1 x 10° respectively. This demonstrates
applicability of the formula (603) in this case.

From the continuity, energy-momentum conservation and Maxwell equations written for
electrons, positrons and electromagnetic field one can have

oa(nu")
oTH
— _pw
o g, (606)
oF™
L
o rJ", (607)

where n is the comoving number density of electrons, T* is energy-momentum tensor of
electrons and positrons

T = mein (UL Uy + UL L)) (608)

F™ is electromagnetic field tensor, J* is the total 4-current density, U* is four velocity
respectively of positrons and electrons

U(u_,_) =U* :7(177]7070)7 U(u_) = 7(17_7)7070)7 (609)



v is the average velocity of electrons, v = (1 — 1)2)_1/ ? is relativistic Lorentz factor. Electrons
and positrons move along the electric field lines in opposite directions.

One can choose a coordinate frame where pairs are created at rest. FElectric field in
this frame is directed along x-axis. In spatially homogeneous case from (605) one has for
coordinate number density n = ny

n=>:. (610)
With definitions (608) from (606) and equation of motion for positrons and electrons
ou’!
(£)
e = FelF}, 611
Me— o = Feby (611)
one finds
@——*(U” —Ul) Fi+meS (UL, + U ) = —FrJ” (612)
o MW Vo) Be mmed (Vi) TYG) ) = TR
where the total 4-current density is the sum of conducting J* . and polarization J;Lol currents
[438] densities
JE= T T (613)
JZmd =en (U(MJ,_) - U(M_)) ) (614)
2m.S
J;ol = - Y (Oa ]-7 Oa O) : (615)

Energy-momentum tensor in (606) and electromagnetic field tensor in (607) change for
two reasons: 1) electrons and positrons acceleration in the electric field, given by the term
J! . 2) particle creation, described by the term J;ol‘ Equation (605) is satisfied separately
for electrons and positrons.

Defining energy density of positrons

1
p= 2T = momy (616)
one can find from (606)
p=envE + m.yS. (617)

Due to homogeneity of the electric field and plasma, electrons and positrons have the same
energy and absolute value of the momentum density p, but their momenta have opposite
directions. The definitions also imply for velocity and momentum densities of electrons and
positrons

p
v="=, (618)
p

and
pP = p’ +min?, (619)
which is just relativistic relation between the energy, momentum and mass densities of
particles.
Gathering together the above equations one then has the following equations

W=, (620)
p=E (env + m”S) , (621)
p = enE +moyS, (622)
E=—8r (env + mg & ) . (623)



From (621) and (623) one obtains the energy conservation equation

E? — E?

+2p =0, (624)
8

where Ej is the constant of integration, so the particle energy density vanishes for initial
value of the electric field, Ejy.

These equations give also the maximum number of the pair density asymptotically at-
tainable consistently with the above rate equation and energy conservation

2
_ EO
N

STme

(625)

For simplicity dimensionless variables n = m2n, p = mip, p = mip, E = E.E, and
t = m_ 't are introduced. With these variables the system of equations (620)-(623) takes the
form

dii
dt
dp
dt
dp
dt

dE 35
— = 81« ﬁf}—l—ﬁ),
E

Il
\.CQI

Il
il
sl
4}
+
N
\.CQI

(626)
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=il
esfl
+
N
<
\.CQI

s

z and 7 = (1 — 92) %, a = €2/(hc) as before.

The system of equations (626) is solved numerically with the initial conditions n(0) =
p(0) = v(0) = 0, and the electric field E(0) = Ej.

In fig. 34, electric field strength, number density, velocity and Lorentz gamma factor of
electrons as functions of time, are presented for initial values of the electric field Ey = 10E,
(left column) and Ey = 0.15E, (right column). Slowly decaying plasma oscillations develop
in both cases. The half-life of oscillations to be 103t for £y, = 10E, and 10°t, for E, = 0.8E,
are estimated respectively. The period of the fist oscillation is 50¢. and 3 x 107¢,, the Lorentz
factor of electrons and positrons in the first oscillation equals 75 and 3 x 10° respectively for
Ey=10E, and Ey = 0.15F,. Therefore, in contrast to the case £ > E., for £ < E, plasma
oscillations develop on a much longer timescale, electrons and positrons reach extremely
relativistic velocities.

In fig. 35 the characteristic length of oscillations is shown together with the distance
between the pairs at the moment of their creation. For constant electric field the forma-
tion length for the electron—positron pairs, or the quantum tunneling length, is not simply
me/(eF), as expected from a semi-classical approximation, but [28, 46]

. Me Ec 1/2

Thus, given initial electric field strength one can define two characteristic distances: D*,
the distance between created pairs, above which pair creation is possible, and the length of
oscillations, D = ¢, above which plasma oscillations occur in a uniform electric field. The

RStisH

where S = ﬁEQexp <— >, 0=
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gamma factor depending on time with Fy = 10E. (left column) and Ey, = 0.15E, (right
column). Electric field, number density and velocity of positron are measured respectively

3
in terms of the critical field E,, Compton volume A\, = (miec) , and the speed of light c.

The length of oscillation is defined as D = c7, where 7 is the time needed for the first
half-oscillation, shown above.



length of oscillations is the maximal distance between two turning points in the motion of
electrons and positrons (see fig. 35). From fig. 35 it is clear that D > D*. In the oscillation
phenomena the larger electric field is, the larger becomes the density of pairs and therefore
the back reaction, or the screening effect, is stronger. Thus the period of oscillations becomes
shorter. Note that the frequency of oscillation is not equal to the plasma frequency, so it
cannot be used as the measure of the latter. Notice that for £ < E. the length of oscillations
becomes macroscopically large.
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Figure 35: Maximum length of oscillations (black curves) together with the distance between
electron and positron in a pair (red curve) computed from (627), depending on initial value
of electric field strength. The solid black curve is obtained from solutions of exact equations
(626), while the dotted black curve corresponds to solutions of approximate equation (629).

At fig. 36 maximum Lorentz gamma factor in the first oscillation is presented depending
on initial value of the electric field. Since in the successive oscillations the maximal value
of the Lorentz factor is monotonically decreasing (see fig. 34) It is concluded that for every
initial value of the electric field there exists a maximum Lorentz factor attainable by the
electrons and positrons in the plasma. It is interesting to stress the dependence of the
Lorentz factor on initial electric field strength. The kinetic energy contribution becomes
overwhelming in the £ < E, case. On the contrary, in the case F > FE. the electromagnetic
energy of the field goes mainly into the rest mass energy of the pairs.

This diagram clearly shows that never in this process the test particle approximation
for the electrons and positrons motion in uniform electric field can be applied. Without
considering back reaction on the initial field, electrons and positrons moving in a uniform
electric field would experience constant acceleration reaching v ~ ¢ for £ = FE,. on the
timescale t. and keep that speed thereafter. Therefore, the back reaction effects in a uniform
field are essential both in the case of £ > FE, and F < FE..

The average rate of pair creation is compared for two cases: when the electric field value
is constant in time (an external energy source keeps the field unchanged) and when it is
self-regulated by equations (626). The result is represented in fig. 37. It is clear from fig.
37 that when the back reaction effects are taken into account, the effective rate of the pair
production is smaller than the corresponding rate (603) in a uniform field Ey. At the same



time, discharge of the field takes much longer time. In order to quantify this effect we need
to compute the efficiency of the pair production defined as € = n(tg)/ng where tg is the time
when pair creation with the constant rate S(Fy) would stop, and ng is defined above, see
(625). For Ey = E. one finds € = 14%, while for Ey = 0.3E. one has ¢ = 1%.

It is clear from the structure of the above equations that for £ < E. the number of pairs
is small, electrons and positrons are accelerated in electric field and the conducting current
dominates. Assuming electric field to be weak, the polarization current is neglected in energy
conservation (621) and in Maxwell equation (623). This means energy density change due
to acceleration is much larger than the one due to pair creation,

Eenv > m.vS. (628)

In this case oscillations equations (620)-(623) simplify. From (621) and (622) one has p = vp,
and using (618) obtains v = £1. This is the limit when rest mass energy is much smaller
than the kinetic energy, v > 1.

One may therefore use only the first and the last equations from the above set. Taking
time derivative of the Maxwell equation one arrives to a single second order differential

equation
. 2em! (E\|FE
E+ = (E) )E exp (—7‘(‘ i ) = 0. (629)

Equation (629) is integrated numerically to find the length of oscillations shown in fig. 35
for ' < E.. Notice that condition (628) means ultrarelativistic approximation for electrons
and positrons, so that although according to (620) there is creation of pairs with rest mass
2m for each pair, the corresponding increase of plasma energy is neglected, as can be seen
from (628).

Now one can turn to qualitative properties of the system (620)—(623). These nonlinear
ordinary differential equations describe certain dynamical system which can be studied by
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Figure 36: Maximum Lorentz gamma factor ~ reached at the first oscillation depending on
initial value of the electric field strength.
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Figure 37: The average rate of pair production n/t is shown as function of time (thick curve),
comparing to its initial value S(Ejp) (thin line) for Ey = E.. The dashed line marks the time
when the energy of electric field would have exhaused if the rate kept constant.

using methods of qualitative analysis of dynamical systems. The presence of the two integrals
(619) and (624) allows reduction of the system to two dimensions. It is useful to work with
the variables v and E. In these variables one has

dv

- E 630
=0 ~ (630)
dE 1. N2 (m2 p2 S
Introducing the new time variable 7
dr oy —1/2
=== / (632)
one arrives at
d’l‘} ~2\2 7
dE 1 L S
C— i (1-%) <E02 - E2> . 8m%. (634)
-

Clearly the phase space is bounded by the two curves © = £1. Moreover, physical require-
ment p > 0 leads to existence of two other bounds E = +F,. This system has only one
singular point in the physical region, of the type focus at £ =0 and & = 0.

The phase portrait of the dynamical system (633),(634) is represented at fig. 38. Thus,
every phase trajectory tends asymptotically to the only singular point at £ = 0 and & = 0.
This means oscillations stop only when electric field vanishes. At that point clearly

= MN. 635
p (

is valid. i.e. all the energy in the system transforms just to the rest mass of the pairs.
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Figure 38: Phase portrait of the two-dimensional dynamical system (633),(634). Tildes
are omitted. Notice that phase trajectories are not closed curves and with each cycle they
approach the point with £ =0 and v = 0.



Figure 39: Phase trajectory for 1.5 cycles (thick curve) compared with solutions where the

Schwinger pair production is switched off (dashed curves).
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Figure 40: Losses of the energy due to classical bremsstrahlung radiation. The energy density
of the system of electrons, positrons and the electric field normalized to the initial energy
density is shown without (solid line) and with (dashed line) the effect of bremsstrahlung.

In order to illustrate details of the phase trajectories shown at fig. 38 only 1.5 cycles are
plotted at fig. 39. One can see that the deviation from closed curves, representing undamped
oscillations and shown by dashed curves, is maximal when the field peaks, namely when the
pair production rate is maximal.

The above treatment has been done by considering uniquely back reaction of the electron—
positron pairs on the external uniform electric field. The only source of damping of the
oscillations is pair production, i.e. creation of mass. As analysis shows the damping in this
case is exponentially weak. However, since electrons and positrons are strongly accelerated in
electric field the bremsstrahlung radiation may give significant contribution to the damping
of oscillations and further reduce the pair creation rate. Therefore, the effective rate shown
in fig. 37 will represent an upper limit. In order to estimate the effect of bremsstrahlung,
the classical formula for the radiation loss in electric field is recalled

2 ¢l 2 E\?
I= §%E2 = o (E) . (636)

Thus the equations (621) and (622), generalized for bremsstrahlung, are

S 2
p= I (env + m; ) — Ze'm,E?, (637)
2
p = enkl + mevyS — §e4meE2v. (638)

while equations (620) and (623) remain unchanged. Assuming that new terms are small,
relations (619) and (624) are still approximately satisfied.
Now damping of the oscillations is caused by two terms:

5 9
#E2exp (—%) and gaEQ. (639)

The modified system of equations is integrated, taking into account radiation loss, start-
ing with Fy = 10E,.. The results are presented in Fig. 40 where the sum of the energy



of electric field and electron—positron pairs normalized to the initial energy is shown as a
function of time. The energy loss reaches 20 percent for 400 Compton times. Thus the effect
of bremsstrahlung is as important as the effect of collisions considered in [72] for £ > E.,
leading to comparable energy loss for pairs on the same timescale. For £ < E. one expects
that the damping due to bremsstrahlung dominates, but the correct description in this case
requires Vlasov—Boltzmann treatment [74].

The damping of the plasma oscillations due to electron—positron annihilation into pho-
tons has been addressed in [72]. There it was found that the system evolves towards an
electron—positron-photon plasma reaching energy equipartition. Such a system undergoes
self-acceleration process following the work of [399].

Therefore the following conclusions are reached:

e [t is usually assumed that for F < FE. electron—positron pairs, created by the vac-
uum polarization process, move as charged particles in external uniform electric field
reaching arbitrary large Lorentz factors. The existence of plasma oscillations of the
electron—positron pairs also for £ < E. is demonstrated. The corresponding results for
E > FE, are well known in the literature. For both cases the maximum Lorentz factors
Ymax reached by electrons and positrons are determined. The length of oscillations is 10
h/(mec) for Ey = 10E,, and 107 hi/(mec) for Ey = 0.15E,. The asymptotic behavior in
time, t — oo, of the plasma oscillations by the phase portrait technique is also studied.

e For F > F,. the vacuum polarization process transforms the electromagnetic energy of
the field mainly in the rest mass of pairs, with moderate contribution to their kinetic
energy: for Fy = 10FE, one finds V.« = 76. For E' < E, the kinetic energy contribution
is maximized with respect to the rest mass of pairs: Yma.e = 8 x 10° for Fy = 0.15E,.

e In the case of oscillations the effective rate of pair production is smaller than the rate
in uniform electric field constant in time, and consequently, the discharge process lasts
longer. The half-life of oscillations is 103t, for Ey = 10E, and 10°¢, for E, = 0.8E,.
The efficiency of pair production is computed with respect to the one in a uniform
constant field. For ' = 0.3E, the efficiency is reduced to one percent, decreasing
further for smaller initial electric field.

All these considerations apply to a uniform electric field unbounded in space. The pres-
ence of a boundary or a gradient in electric field would require the use of partial differential
equations, in contrast to the ordinary differential equations used here. This topic needs
further study. The effect of bremsstrahlung for £ > E. is also estimated, and it is found
that it represents comparable contribution to the damping of the plasma oscillations caused
by collisions [72]. It is therefore clear, that the effect of oscillations introduces a new and
firm upper limit to the rate of pair production which would be further reduced if one takes
into account bremsstrahlung, collisions and boundary effects.

9 Thermalization of the mildly relativistic pair plasma

An electron—positron plasma is of interest in many fields of physics and astrophysics. In
the early Universe [454, 475] during the lepton era, ultrarelativistic electron—positron pairs
contributed to the matter contents of the Universe. In GRBs electron—positron pairs play an
essential role in the dynamics of expansion [476, 477],[399]. Indications exist on the presence



of the pair plasma also in active galactic nuclei [478], in the center of our Galaxy [479],
around hypothetical quark stars [480]. In the laboratory pair plasma is expected to appear
in the fields of ultraintense lasers [472].

In many stationary astrophysical sources the pair plasma is thought to be in thermody-
namic equilibrium. A detailed study of the relevant processes [481, 482, 483, 484, 485, 486],
radiation mechanisms [487], possible equilibrium configurations [483, 488] and spectra [489]
in an optically thin pair plasma has been carried out. Particular attention has been given to
collisional relaxation process [490, 491], pair production and annihilation [492], relativistic
bremsstrahlung [493, 494], double Compton scattering [495, 496].

An equilibrium occurs if the sum of all reaction rates vanishes. For instance, electron—
positron pairs are in equilibrium when the net pair production (annihilation) rate is zero.
This can be achieved by variety of ways and the corresponding condition can be represented
as a system of algebraic equations [497]. However, the main assumption made in all the
above mentioned works is that the plasma is in thermodynamic equilibrium.

At the same time, in some cases considered above the pair plasma can be optically thick.
Although moderately thick plasmas have been considered in the literature [498], only quali-
tative description is available for large optical depths. Assumption of thermal equilibrium is
often adopted for rapidly evolving systems without explicit proof [476, 477],[399, 499]. Then
hydrodynamic approximation is usually applied both for leptons and photons. However, par-
ticles may not be in equilibrium initially. Moreover, it is very likely situation, especially in
the early Universe or in transient events when the energy is released on a very short timescale
and there is not enough time for the system to relax to thermal equilibrium configuration.

Ultrarelativistic expansion of GRB sources is unprecedented in astrophysics. There are
indications that relativistic jets in X-ray binaries have Lorentz factors v ~ 2 — 10 while in
active galactic nuclei v ~ 10 — 20 [500], but some bursts sources have v ~ 400 and possibly
larger [501]. There is a consensus in the literature that the acceleration required to reach
ultrarelativistic velocity in astrophysical flows comes from the radiation pressure, namely
from photons and electron—positron pairs. Therefore, the source does not move as a whole,
but expands from a compact region, almost reaching the speed of light. The bulk of radiation
is emitted far from the region of formation of the plasma, when it becomes transparent for
photons, trapped initially inside by the huge optical depth. Thus the plasma is optically
thick at the moment of its formation and intense interactions between electrons, positrons
and photons take place in it. Even if initially the energy is released in the form of only
photons, or only pairs, the process of creation and annihilation of pairs soon redistribute the
energy between particles in such a way that the final state will be a mixture of pairs and
photons. The main question arises: what is the initial state, prior to expansion, of the pair
plasma? Is it in a kind of equilibrium and, if so, is it thermal equilibrium, as expected from
the optically thick plasma? Stationary sources in astrophysics have enough time for such
an equilibrium to be achieved. On the contrary, for transient sources with the timescale of
expansion of the order of milliseconds it is not at all clear that equilibrium can be reached.

In the literature there is no consensus on this point. Some authors considered thermal
equilibrium as the initial state prior to expansion [476, 399], while others did not [77]. In fact,
the study of the pair plasma equilibrium configurations in detail, performed in [488], cannot
answer this question, because essentially nonequilibrium processes have to be considered.

Thus, observations provide motivation for theoretical analysis of physical conditions tak-
ing place in the sources of GRBs, and more generally, in nonequilibrium optically thick pair
plasma. Notice that there is substantial difference between the ion-electron plasma on the
one hand and electron—positron plasma on the other hand. Firstly, the former is collisionless



in the wide range of parameters, while collisions are always essential in the latter. Secondly,
when collisions are important relevant interactions in the former case are Coulomb scattering
of particles which are usually described by the classical Rutherford cross-section. In contrast,
interactions in the pair plasma are described by quantum cross-sections even if the plasma
itself can be still considered as classical one.

The study reported in [74, 75] in the case of pure pair plasma clarified the issue of initial
state of the pair plasma in GRB sources. The numerical calculations show that the pair
plasma quickly reach thermal equilibrium prior to expansion, due to intense binary and
triple collisions. In this Section details about the computational scheme adopted in [74] are
given. Generalization to the presence of proton loading is given in [502].

9.1 Qualitative description of the pair plasma

First of all the domain of parameters characterizing the pair plasma considered in this
Section is specified. It is convenient to use dimensionless parameters usually adopted for
this purpose.

Mildly relativistic pair plasma is considered, thus the average energy per particle € brack-
ets the electron rest mass energy

0.1 MeV < e <10 MeV. (640)

The lower boundary is required for significant concentrations of pairs, while the upper bound-
ary is set to avoid substantial production of other particles such as muons.

The plasma parameter is g = (n_d®)~!, where d = /22— = £,/0_ is the Debye

4me2n_
length, kg is Boltzmann’s constant, n_ and 7" are electron number density and temperature
respectively, 0_ = kgT_/(m.c®) is dimensionless temperature, w = \/4mwe2n_/m, is the
plasma frequency. To ensure applicability of kinetic approach it is necessary that the plasma
parameter is small, g < 1. This condition means that kinetic energy of particles dominates
their potential energy due to mutual interaction. For the pair plasma considered in this
Section this condition is satisfied.

Further, the classicality parameter, defined as s» = €?/(hv,) = a/f,, where v, = B,c is
mean relative velocity of particles, see (749). The condition s > 1 means that particles
collisions can be considered classically, while for s < 1 quantum description is required.
Both for pairs and protons quantum cross-sections are used since s < 1.

The strength of screening of the Coulomb interactions is characterized by the Coulomb
logarithm A = mcdv,/h. Coulomb logarithm varies with mean particle velocity, and it
cannot be set a constant as in most of studies of the pair plasma.

Finally, pair plasma is considered with linear dimensions R exceeding the mean free path
of photons [ = (n_a)_l, where n_ is concentration of electrons and ¢ is the corresponding
total cross-section. Thus the optical depth 7 = noR > 1 is large, and interactions between
photons and other particles have to be taken in due account. These interaction are reviewed
in the next section.

Note that natural parameter for perturbative expansion in the problem under consider-
ation is the fine structure constant a.

Pure pair plasma composed of electrons e, positrons e™, and photons v is considered.
It is assumed that pairs or photons appear by some physical process in the region with
a size R and on a timescale ¢t < R/c. We assume that distribution functions of particles
depend on neither spatial coordinates nor direction of momentum f; = f;(e, t), i.e. isotropic
in momentum space and uniform plasma is considered.




To make sure that classical kinetic description is adequate the dimensionless degeneracy

temperature is estimated
n\’ 2
Op = [( ) (37°n_)® +1
meC

and compared with the estimated temperature in thermal equilibrium. With initial condi-
tions (640) the degeneracy temperature is always smaller than the temperature in thermal
equilibrium and therefore the classical kinetic approach is applied. Besides, since ideal
plasma is considered with the plasma parameter g ~ 1073 it is possible to use one-particle
distribution functions. These considerations justify the computational approach based on
classical relativistic Boltzmann equation. At the same time the right-hand side of Boltzmann
equations contains collisional integrals with quantum and not classical matrix elements, as
discussed above.
Relativistic Boltzmann equations [503],[504] in spherically symmetric case are

10f; o Ofi 1—p?of; B ofi q_ 4
C ot + 5 (M ar + - ou VUap = ;(m Xifl>7 (642>

1/2
~1, (641)

where p = cos, 9 is the angle between the radius vector r from the origin and the particle
momentum p, U is a potential due to some external force, §; = v;/c are particles velocities,
fi(e, t) are their distribution functions, the index i denotes the type of particle, € is their
energy, and 1! and ! are the emission and the absorption coefficients for the production
of a particle of type “” via the physical process labeled by ¢. This is a coupled system of
partial-integro-differential equations. For homogeneous and isotropic distribution functions

of electrons, positrons and photons Eqgs. (642) reduce to

Ofi
oS-, (643

q

which is a coupled system of integro-differential equations. In (643) the Vlasov term VU g—fg
is explicitly neglected.

Therefore, the left-hand side of the Boltzmann equation is reduced to partial derivative
of the distribution function with respect to time. The right-hand side contains collisional
integrals, representing interactions between electrons, positrons and photons.

Differential probability for all processes per unit time and unit volume [90] is defined as

he dp!, hc
HerV H(%h)é’»@]’ (644)

b a

dw = c(2rh)*6" (py — p;) [Mpl* V x

where p/, and €, are respectively momenta and energies of outgoing particles, €, are energies
of particles before interaction, My; are the corresponding matrix elements, 5@ stands for
energy-momentum conservation, V' is the normalization volume. The matrix elements are
related to the scattering amplitudes by

hc
M i =
f [];[ 2€bv

Ty, (645)
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As example consider absorption coefficient for Compton scattering which is given by

/.t

¢ f’y :/dk/dpdp/wk’,p’;k,pf’y(ka t)f:l:(pat)v (646)

yeE =y

where p and k are momenta of electron (positron) and photon respectively, dp = derdoe: B3+ /c?,
dk' = de.€e?dol, /c* and the differential probability wi . p is given by (687).
In (646) one can perform one integration over dp’

/ dp's(k+p—kK —p) =1, (647)

but it is necessary to take into account the momentum conservation in the next integration
over dk’, so

/de’yé(q +er—€ —€y)= (648)
:/d(e'+el) ! d(e, +ex—e —€)— ! =J
TUENA( ) foe [ T T T T A €y foe ] T O
where the Jacobian of the transformation is
Jom 1 (649)
11— pLbl bl
where b; = p;/p, b; = p;/p', by, = (Brerbs +e,b, — € bl)/(BLel).
Finally, for the absorption coefficient
s €. | M i) ?h?c?
ot == [ ap G T g ) (), (650)
v

where the matrix element here is dimensionless. This integral is evaluated numerically.

For all binary interactions exact QED matrix elements are used which can be found in
the standard textbooks, e.g. in [90],[322, 505], and are given below.

In order to account for charge screening in Coulomb scattering the minimal scattering
angles are introduced following [506]. This allows to apply the same scheme for the com-
putation of emission and absorption coefficients even for Coulomb scattering, while many
treatments in the literature use Fokker-Planck approximation [507].

For such a dense plasma collisional integrals in (643) should include not only binary
interactions, having order o in Feynman diagrams, but also triple ones, having order a3
[90]. Consider relativistic bremsstrahlung

e1+ e > €] +ey+ 7. (651)

For the time derivative, for instance, of the distribution function f5 in the direct and in the
inverse reactions (651) one has

fo= /dp1dp/1dp/2dk’ (Wt oy i pe 15 S 1 — Wor paipt py J1f2] = (652)
6p3 §W(Py — By)| My |? 1
d d/d/dk/c f i fi e
/ P1ap;1ap, (2m)? 2551625/16'269 fil2 Tk (27rh)3f1f2 )



‘ Binary interactions ‘ Radiative and pair producing variants ‘

| Reactions with pairs |

Mpgller and Bhabha scattering Bremsstrahlung
efef — efed’ efeferetedy
eteT — etle® efeTset ey
Single Compton scattering Double Compton scattering
eﬂ:,y_wi,}/ ei’y<—>ei/’)/’y”
Pair production Radiative pair production
and annihilation and three photon annihilation
’y’y/<—>6i6:F ’7’}/<_>€i€:':’)/”
etetss v ,}/ ’Y”
einei’eeri”

Table 1: Microphysical processes in the pair plasma.

where

dpldpgwpfl,prwk/thQ = V2dw1,
dpidplzdklwpl,pz;p’l,p’g,k’ = Vduws,,

and dw, and dw, are differential probabilities given by (644). The matrix element here has
dimensions of the length squared.

In the case of the distribution functions (657), see below, there are multipliers propor-
tional to exp kBLT in front of the integrals, where ¢ are chemical potentials. The calculation
of emission and absorption coefficients is then reduced to the well known thermal equilibrium
case [497]. In fact, since reaction rates of triple interactions are « times smaller than binary
reaction rates, it is expected that binary reactions come to detailed balance first. Only when
binary reactions are all balanced, triple interactions become important. In addition, when
binary reactions come into balance, distribution functions already acquire the form (657).
Although there is no principle difficulty in computations using exact matrix elements for
triple reactions as well, the simplified scheme allows for much faster numerical computation.

All possible binary and triple interactions between electrons, positrons and photons are
considered as summarized in Tab. 1.

Each of the above mentioned reactions is characterized by the corresponding timescale
and optical depth. For Compton scattering of a photon, for instance

1
tes = )
orTn4C

Tes = 0Nt R, (653)

where op = o (miec)z is the Thomson cross-section. There are two timescales in the prob-
lem that characterize the condition of detailed balance between direct and inverse reactions,
tes for binary and a~'t. for triple interactions respectively.

Notice, that electron—positron pair can annihilate into neutrino channel with the main
contribution from the reaction e*et —svir. By this process the energy could leak out from
the plasma if it is transparent for neutrinos. The optical depth and energy loss for this process
can be estimated following [508] by using Fermi theory, see also [509, 510] for calculations

within electroweak theory.



The optical depth is given by (653) with the cross-section

2 2
0-1/17 ~ g_ ( h ) ) (654)

T\ MeC

where g ~ 10712 is the weak interaction coupling constant and it is assumed that typical
energies of electron and positron are ~ m.c? and their relative velocities v ~ c¢. Numerically
Ovi /0T = 52 (g/a)? ~ 7 10722, For astrophysical sources the plasma may be both trans-
parent and opaque to neutrino production. The energy loss when pairs are relativistic and

nondegenerate is
2 3 2
o _ 1289”5y (4)6%m,c? (E) (mec ) . (655)

dt 7 h h

The ratio between the energy lost due to neutrinos and the energy of photons in thermal
equilibrium is then
2 At

C(5)C(4)8° (m;;c ) At = 3.6 107 —. (656)

Ldp,, 1289

p dt 3

For astrophysical sources with the dynamical time At ~ 1073 sec, the energy loss due to
neutrinos becomes relevant [511] for high temperatures § > 10. However, on the timescale
of relaxation to thermal equilibrium At ~ 1072 sec the energy loss is negligible.

Starting from arbitrary distribution functions a common development is found: at the
time t. the distribution functions always have evolved in a functional form on the entire
energy range, and depend only on two parameters. In fact it is found for the distribution

functions 5
E—V
fie) = Grh) exp (— G ) : (657)

with chemical potential v; = mfiCQ and temperature ¢; = fiig, where € = - is the energy
of the particle. Such a configuration corresponds to a kinetic equilibrium [475, 507, 76] in
which all particles acquire a common temperature and nonzero chemical potentials. Triple
interactions become essential for ¢ > t., after the establishment of kinetic equilibrium. In
strict mathematical sense the sufficient condition for reaching thermal equilibrium is when
all direct reactions are exactly balanced with their inverse. Therefore, in principle, not only
triple, but also four-particle, five-particle and so on reaction have to be accounted for in
equation (643). The timescale for reaching thermal equilibrium will be then determined by
the slowest reaction which is not balanced with its inverse. The necessary condition here
is the detailed balance at least in triple interactions, since binary reactions do not change
chemical potentials at all.

Notice that similar method to ours was applied in [507] in order to compute spectra of
particles in kinetic equilibrium. However, it was never shown how particles evolve down to
thermal equilibrium.

In the case of pure pair plasma chemical potentials in (657) represent deviations from

the thermal equilibrium through the relation

v=~0In(n/ny), (658)

where ny;, are concentrations of particles in thermal equilibrium.



9.2 The discretization procedure and the computational scheme

In order to solve equations (643) a finite difference method is used by introducing a com-
putational grid in the phase space to represent the distribution functions and to compute
collisional integrals following [512]. The goal is to construct the scheme implementing energy,
baryon number and electric charge conservation laws. For this reason instead of distribution
functions f;, spectral energy densities are used

B(e) = T, (659)
where 3; = \/ 1 — (m;c?/€;)?, in the phase space ¢;. Then
. fi(p, t)drdp — 7€ 6 i de; = Budrde, (660)
is the energy in the volume of the phase space drdp. The particle density is
n; = /f,-dp:/%dei, dn; = f;dp, (661)
while the corresponding energy density is
pi = /Ei.fidp = /Eid€i~
Boltzmann equations (643) can be rewritten in the form
%aaEti = (i = XIEy), (662)

q

where 7] = (4me}8;/c*)nf.

The computational grid for phase space is {€;, i, ¢}, where p = cos®J, 9 and ¢ are angles
between radius vector r and the particle momentum p. The zone boundaries are €; +1/2,
Prri/2, G2 for 1 < w < wmax, 1 <k < Fpax, 1 <1< lnax. The length of the ith interval
is A€ = €ut1/2 — €iw—1/2. On the finite grid the functions (659) become

E;,, = ! / deE;(e). (663)

Now the collisional integrals in (662) are replaced by the corresponding sums.

After this procedure the set of ordinary differential equations (ODE’s) is obtained, instead
of the system of partial differential equations for the quantities £;, to be solved. There are
several characteristic times for different processes in the problem, and therefore the system
of differential equations is stiff. (Eigenvalues of Jacobi matrix differs significantly, and the
real parts of eigenvalues are negative.) Gear’s method [513] is used to integrate ODE’s
numerically. This high order implicit method was developed for the solution of stifft ODE’s.

In this method exact energy conservation law is satisfied. For binary interactions the
particles number conservation law is satisfied as interpolation of grid functions E;, inside
the energy intervals is adopted.



9.3 Conservation laws

Conservation laws consist of charge and energy conservations. In addition, in binary reactions
particle number is conserved.
Energy conservation law can be rewritten for the spectral density

d d
y Z pi=0, or - zwj Vi =0, (664)
where
Ei,w+AEi,w/2
Vi, — / Eide. (665)
€i,0— A€ /2
Particle’s conservation law in binary reactions reduces to
d d Yiw
yr Z =0, or — Zw o= 0. (666)

For electrically neutral plasma considered in this Section charge conservation implies

n_=mny. (667)

9.4 Determination of temperature and chemical potentials in ki-
netic equilibrium

Consider distribution functions for photons and pairs in the most general form (657). If one
supposes that reaction rate for the Bhabha scattering vanishes, i.e. there is equilibrium with
respect to reaction

et +e & 4et +e7, (668)

and the corresponding condition can be written in the following way
A=A =) =0 = fO)f- (T + f-), (669)

where Bose-Einstein enhancement along with Pauli blocking factors are taken into account,
it can be shown that electrons and positrons have the same temperature

0, =0_=0., (670)

and they have arbitrary chemical potentials.
With (670) analogous consideration for the Compton scattering

et +v e+t + 9, (671)

gives
fﬂ:(l - fi/>f7(1 + f'y/) = fﬂ:/(l - fi>f7/(1 + f'y)a (672)

and leads to the same temperature of pairs and photons
Hi = H’Y = Qk, (673)

with arbitrary chemical potentials. If, in addition, reaction rate in the pair creation and
annihilation process
et +et oyt (674)



‘ ‘ Interaction ‘ Parameters of DFs ‘

I ete™ scattering O, =0_, Vv, v_

II et scattering 0, =04, Vv vy

IIT | pair production | vy +v_ =2v,,if 0, = 04
IV | Tripe interactions Uy, vy =0, if 0, = 04

Table 2: Relations between parameters of equilibrium DFs fulfilling detailed balance condi-
tions for the reactions shown in Tab. 1.

vanishes too, i.e. there is equilibrium with respect to pair production and annihilation, with
the corresponding condition,

f+f—(1‘|’fv)(1+fvl):fva/(l_f+)(1_f—)> (675)

it turns out that also chemical potentials for pairs and photons satisfy the following condition
for the chemical potentials
vy + v =2u,. (676)

However, since in general v, # 0 the condition (676) does not imply vy = v_.

In general, the detailed balance conditions for different reactions lead to relations between
temperatures and chemical potentials summarized in table 2.

Kinetic equilibrium is first established simultaneously for electrons, positrons and pho-
tons. Thus they reach the same temperature, but with chemical potentials different from
zero. Later on, protons reach the same temperature.

In order to find temperatures and chemical potentials the following constraints are imple-
mented: energy conservation (664), particle number conservation (666), charge conservation
(667), condition for the chemical potentials (676).

Given (657) it is found for photons

Py 1 Yy 3
=30 = — — 1260 677
= n = e (9) 3 (677)
and for pairs
P+ . 1 vi\ .
= j2(0 = — — 0 678
AL ToC Jo(0x),  na %exp (ei)]l( +), (678)
where the Compton volume is
Vo L (2 (679)
7 8 meC

and functions j; and j, are defined as

JEe a2 90

: _ -1

71(0) = 0K (6 )—>{ 2. 9 ro0 (680)
o BKG(07Y) + K (07Y) 1+% 60

J2(0) = A=) — 30" 9500 (681)

For pure electron—positron-photon plasma in kinetic equilibrium, summing up energy
densities in (677),(678) and using (670),(673) and (676) it is found

R S [ R SACSIACA S (652)

etemy




and analogously for number densities

2 v .
> ni=exp () [0+ (6] (683)
et,e” Vb Hk

Therefore, two unknowns, v, and 6, can be found.
In thermal equilibrium v, vanishes and one has

vy =v_=0. (684)

9.5 Binary interactions

In this section the expressions for emission and absorption coefficients in Compton scattering,
pair creation and annihilation with two photons, Mgller and Bhabha scattering are obtained.
9.5.1 Compton scattering

The time evolution of the distribution functions of photons and pair particles due to Compton
scattering may be described by [514],[515]

k
ot ~yet —ylet!

X[f“/(klvt)f:l:(p/7t> - f“/(k7 t)f:l:(pat)]7 (685)
<L€i(p’ t)) = /dkdk’dp/Vwk',p’;k,px
ot yet —y et
X[.f’y(k/>t)f:|:(p/at) - f’y(ka t)f:l:(pat)]a (686)
where oy M
c .
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W', p’;k,p (2m)2V (&7 —ex €y € )o(k+p p) 166761696; ) (687)
is the probability of the process,
2.2 2.2 2.2 2.2 2
M2 = 257202 mzc mz;c msc mzc
Ml e s —m2c?  u— m2c? s —m?2c®  u—m?2c?
1 (s—m2c®> u—m2c
4 (u—m202 * s—mzcz)} ’ (688)

is the square of the matrix element, s = (p + €)% and v = (p — ¢)? are invariants, & =
(e,/c)(1,ey) and p = (ex/c)(1, frey) are energy-momentum four vectors of photons and
electrons, respectively, dp = desdoe? B /¢, dk' = de.e?dol /¢* and do = dudg.

The energies of photon and positron (electron) after the scattering are

o E:I:'E*y(l - ﬁ:l:bzl:'b'y) 6,
7 ex(1 = Bibibl) + 6, (1-bybl)’ -

b; = pi/p, by = p;i/p', b, = (Bresby +€,by — b)) /(Bhel).

€

=€ te,—¢€, (689)



For photons, the absorption coefficient (650) in the Boltzmann equations (643) is

abs / 212 .2
ety et — _1 8f“/ — /d do’ €’Y|Mfi| hc
Xy 5 c ( ot n£d0y Jes 16ere €] J (690)

'yei—Vy’ei’
where dnl = dEidOiE?ﬁifi/Cg = dEZdOZEZ/(27T€Z>

From equations (685) and (690), the absorption coefficient for photon energy density £,
averaged over the €, u-grid with zone numbers w and k is

/1t 1 /1

E yet—q'e = de.d E yet—q'e
(KB Ao /A i (XE),

1 e | M| h?c?
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where the Jacobian of the transformation is

r
€7€:|:

E-y€:|: (1 — ﬁ:l:b'y'b:t) '

Jos = (692)

Similar integrations can be performed for the other terms of equations (685), (686), and

. 1 2| M ;|2 H2 2

e, 7T = / dnvdnidogjcs—VI i —, (693)
; A€y ¢ EAey . 16ese €y
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= Aey, € EAeL T 16€re, (694)
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In order to perform integrals (691)-(695) numerically over ¢ (0 < ¢ < 27) a uniform
grid ¢yz1/2 is introduced with 1 < 1 < lpax and A¢y = (@172 — Gr-1/2)/2 = 27 /lpax. 1t
is assumed that any function of ¢ in equations (691)-(695) in the interval A¢; is equal to
its value at ¢ = ¢; = (@172 + di41/2)/2. It is necessary to integrate over ¢ only once at
the beginning of calculations. The number of intervals of the ¢-grid depends on the average
energy of particles and is typically taken as lax = 2kmax = 64.

9.5.2 Pair creation and annihilation

The rates of change of the distribution function due to pair creation and annihilation are

of, (ki t
<%) - /dkjdp_dp‘i'vavp%kl,kz f“{l (klv t)f’yz (k27 t) y (696)
¢ y1y2—e"et

Of. (ki t
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fori=1,7=2 and for j =1, 1 =2.
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where
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Here, the matrix element |My;|? is given by equation (688) with the new invariants s =
(p_ —&)? and u = (p_ — &)?, see [90].
The energies of photons created via annihilation of a e* pair are

m204 + €_€+(1 — ﬁ_5+b_'b+)

b)) = T D by T e (1= Bibyby)

ea(b1) =€+ €4 —eq, (701)

while the energies of pair particles created by two photons are found from

_ BFVvB?-AC
— 1 :

where A = (61 + 62)2 — [(Elbl + Egbg)'b_]2, B = (61 + 62)6162(1 — bl'bg), C = mgc4[(€1b1 +
€2b2)b_|> + €2€3(1 — by-by)%. Only one root in equation (702) has to be chosen. From
energy-momentum conservation

e_(b_) ex(b)=e+e—e_, (702)

b+t —p_=py, (703)

taking square from the energy part leads to
€]+ €5 + € + 26169 — €16 — 2696 = €7, (704)
and taking square from the momentum part
€+ e+ €2 B2 + 2e16b1-by — 2616 B_b1-b_ — 2e3e_B_by-b_ = (e, 3,)% (705)
There are no additional roots because of the arbitrary e

6162(1 — bl'bg) — 616_(1 — ﬁ—bl'b—) — 626_(1 — ﬁbgb_) = O, (706)
E_ﬁ_(Elbl + €2b2)'b_ = €_ (61 + 62) - 6162(1 - bl'bg).

Eliminating ( it is obtained

6%6%(1 — bl'b2)2 — 26162(1 — bl'b2>(€1 + €2>€_+
+{(e1 + €2)> = [(e1b1 + e2by)b_]*} 2 =
= [(e1b1 + &2by)-b_] (—=m?), (707)

Therefore, the condition to be checked reads

€_f_[(e1by + €2b2)-b_]* = [e_(e1 + €3) — (e162)(1 — by-by)] x
X [(Elbl + Egbg)'b_] > 0. (708)



Finally, integration of equations (696)-(699) yields
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where d°ny. = dn_dndoy,d*n, = dn.,dn,do_, dny = desdos€fs fs, dn,, , = deydoy2€] o fy
and the Jacobian is
E_;,.ﬁ_

(€_|_ + 6_) 5_ - (Elbl + €2b2) ‘b_ .

Jow = (713)

9.5.3 Mgller scattering of electrons and positrons
The time evolution of the distribution functions of electrons (or positrons) is described by

(2.1
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with ¢ =1, j = 2, and with j = 1, ¢ = 2, and where
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with s = (p1 +p2)® = 2(m2c® + pipa), t = (p1 —

2(m2c® — piph) [90].

The energies of final state particles are given by (702) with new coefficients A=
—B1ﬁ2b1b2)], and C = m§c4(elﬁlb1~b/1+
. The condition to be checked is

(61ﬁ1b1'b1+€252b2'b/1)2, B = (61 +€2)[m304+€162(1
62ﬁ2b2'b/1)2 + [mgc‘l + 6162(1 — 5152b1'b2)]2

[6/1(61 + €9)

- m§C4 — (e162)(1 — 5152b1'b2)} [(€181b1 + €205b2)-

ph)? =2(mZc* —pip}), and u = (p1 — ph)* =

(€1+€2)2—

b] > 0. (719)

Integration of equations (714), similar to the case of Compton scattering in Section 9.5.1

yields
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9.5.4 Bhaba scattering of electrons on positrons

The time evolution of the distribution functions of electrons and positrons due to Bhaba

scattering is described by

(in(Pi, t)
ot

x[f-(p_
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and | M| is given by the equation (718), but the invariants are s = (p_—p’, )%, t = (pL —p/,)?

and u = (p_+p4)>.

The final energies €’_, €/ are functions of the outgoing particle directions

in a way similar to that in Section 9.5.3, see also [90].



Integration of equations (723) yields
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where d?n/. = dn_dn,do’_, dny = desdore’ B+ f1, and the Jacobian is

(726)

€\ Bl
Jos = (€. +€)B. —(e-f-b_+e:8:by)b (727)
Analogously to the case of pair creation and annihilation n Section (9.5.2) the energies
of final state particles are given by (702) with the coefficients A = (e_ +¢,)?—(e_5_b_-b" +
€ Bibib )2 B = (e_+ey) [mPc + e_ey (1 — B_Bib_by)], ' = [m2c! + e_e (1 — BB b_by )"+
m2ct [e_B_b_-b_ + e+ﬁ+b+-b'_}2. In order to select the correct root one has to check the
condition (719) changing the subscripts 1 — —, 2 — +.

9.6 Three-body processes

As we discussed above, for the collisional integrals for three-body interactions we assume that
particles already reached kinetic equilibrium. In that case one can use the corresponding
expressions, obtained in the literature for the thermal equilibrium case, and multiply the
collisional integrals by the exponents, containing the chemical potentials of particles.

Emission coefficients for triple interactions in thermal equilibrium may be computed by
averaging of the differential cross-sections given in Section 4 of the corresponding processes
over the thermal distributions of particles. Analytic results as a rule exist only for nonrela-
tivistic and/or ultrarelativistic cases. The only way to get approximate analytical expressions
is then to find the fitting formulas, connecting the two limiting cases with reasonable accu-
racy. This work has been done by Svensson [497], also for reactions with protons, and in
what follows we adopt the emission and absorption coefficient for triple interactions given in
that paper.

Bremsstrahlung
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where £ = ¢7%572 and K5(1/60) is the modified Bessel function of the second kind of order
2.
Double Compton scattering
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Three photon annihilation
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where two limiting approximations [497] are joined together.
Radiative pair production
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Electron-photon pair production
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The absorption coefficient for three-body processes is written as
X?yp = n,y /qu , (734)
where nf’/p is the sum of the emission coefficients of photons in the three-particle processes,

Bt = 2me® f£9/¢, where f$9is given by (657).
From equation (662), the law of energy conservation in the three-body processes is

/ Z — XPE)dpde = 0. (735)

For exact conservation of energy in these processes the following coefficients of emission and
absorption for electrons are introduced:

P — X3P E,)ded
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9.7 Cutoff in the Coulomb scattering

Denote quantities in the center of mass (CM) frame with index 0, and with prime after
interaction. Suppose there are two particles with masses m; and msy. The change of the

angle of the first particle in CM system is
619 = arccos(byg-bl,),

the numerical grid size is Af,, the minimal angle at the scattering is in.
By definition in the in CM frame

P10 + P20 =0,
where
VEZ‘ .
pio =pi+ |(I' = 1)(Np;) — F;Z N, i=1,2,
and

¢ = (€0 + VPio).
Then for the velocity of the CM frame
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By definition
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Haug [506] gives the minimal scattering angle in the center of mass system
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where the maximum impact parameter (neglecting the effect of protons) is
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and the invariant Lorentz factor of relative motion (e.g. [506]) is
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Finally, in the CM frame

€10 2
tonin = 2 {(mec)2 — <£> (1 — 33, cos Hmin)
c
Since it is invariant, ¢ in the denominator of |M;[* in (718) is replaced by the value
t\/1+t2, /t? to implement the cutoff scheme. Also at the scattering of equivalent particles
u in the denominator of |My;|* in (718) is changed to the value uy/1 + 2, /u?.

9.8 Numerical results

The results of numerical simulations are reported below. Two limiting initial conditions with
flat spectra are chosen: (i) electron—positron pairs with a 107° energy fraction of photons
and (ii) the reverse case, i.e., photons with a 107 energy fraction of pairs. The grid consists
of 60 energy intervals and 16 x 32 intervals for two angles characterizing the direction of the
particle momenta. In both cases the total energy density is p = 10** erg - cm™3. In the first
case initial concentration of pairs is 3.1 - 10% cm ™3, in the second case the concentration of
photons is 7.2 - 10 cm™3.

In Fig. 41, panel A concentrations of photons and pairs as well as their sum for both
initial conditions are shown. After calculations begin, concentrations and energy density of
photons (pairs) increase rapidly with time, due to annihilation (creation) of pairs. Then, in
the kinetic equilibrium phase, concentrations of each component stay almost constant, and
the sum of concentrations of photons and pairs remains unchanged. Finally, both individual
components and their sum reach stationary values. If one compares and contrasts both cases
as reproduced in Fig. 41 A one can see that, although the initial conditions are drastically
different, in both cases the same asymptotic values of the concentration are reached.

One can see in Fig. 41, panel C that the spectral density of photons and pairs can be
fitted already at ¢, & 20tcs ~ 7-107"° sec by distribution functions (657) with definite values
of temperature 0y (tcs) ~ 1.2 and chemical potential ¢y (tx) ~ —4.5, common for pairs and
photons. As expected, after ¢, the distribution functions preserve their form (657) with the
values of temperature and chemical potential changing in time, as shown in Fig. 41, panel
B. As one can see from this figure, the chemical potential evolves with time and reaches zero
at the moment ty, ~ o=, ~ 7- 107! sec , corresponding to the final stationary solution.
Condition (673) is satisfied in kinetic equilibrium.

The necessary condition for thermal equilibrium in the pair plasma is the detailed balance
between direct and inverse triple interactions. This point is usually neglected in the literature
where there are claims that the thermal equilibrium may be established with only binary
interactions [491]. In order to demonstrate it explicitly in Fig. 41, panel A the dependence of
concentrations of pairs and photons when inverse triple interactions are artificially switched
off is also shown. In this case (see dotted curves in the upper part of Fig. 41, panel A), after
kinetic equilibrium is reached concentrations of pairs decrease monotonically with time, and
thermal equilibrium is never reached.

The existence of a non-null chemical potential for photons indicates the departure of the
distribution function from the one corresponding to thermal equilibrium. Negative (positive)
value of the chemical potential generates an increase (decrease) of the number of particles
in order to approach the one corresponding to the thermal equilibrium state. Then, since
the total number of particles increases (decreases), the energy is shared between more (less)
particles and the temperature decreases (increases). Clearly, as thermal equilibrium is ap-
proached, the chemical potential of photons is zero.
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Figure 41: A: Dependence on time of concentrations of pairs (black), photons (red) and
both (thick) when all interactions take place (solid). Upper (lower) figure corresponds to the
case when initially there are mainly pairs (photons). Dotted curves on the upper figure show
concentrations when inverse triple interactions are neglected. In this case an enhancement
of the pairs occurs with the corresponding increase in photon number and thermal equi-
librium is never reached. B: Time dependence of temperatures, measured on the left axis
(solid), and chemical potentials, measured on the right axis (dotted), of electrons (black)
and photons (red). The dashed lines correspond to the reaching of the kinetic (~ 10~ *sec)
and the thermal (~ 107?sec) equilibria. Upper (lower) figure corresponds to the case when
initially there are mainly pairs (photons). C: Spectra of pairs (upper figure) and photons
(lower figure) when initially only pairs are present. The black curve represents the results of
numerical calculations obtained successively at t = 0, t = ¢}, and t = ty, (see the text). Both
spectra of photons and pairs are initially taken to be flat. The yellow curves indicate the
spectra obtained form (657) at ¢t = ¢,. The perfect fit of the two curves is most evident in
the entire energy range leading to the first determination of the temperature and chemical
potential both for pairs and photons. The orange curves indicate the final spectra as thermal
equilibrium is reached.

In this example with the energy density 10** erg-cm ™3 the thermal equilibrium is reached
at ~ 7-10713 sec with the final temperature Ty, = 0.26 MeV. For a larger energy density
the duration of the kinetic equilibrium phase, as well as of the thermalization timescale, is
smaller. Recall, that in entire temperature range the plasma is nondegenerate.

The results, obtained for the case of an uniform plasma, can only be adopted for a
description of a physical system with dimensions Ry > % = 4.3 10 %cm.

The assumption of the constancy of the energy density is only valid if the dynamical
timescale tgy, = (}%%)_1 of the plasma is much larger than the above timescale t;;, which is
indeed true in all the cases of astrophysical interest.

Since thermal equilibrium is obtained already on the timescale t,, < 107!2sec, and such a
state is independent of the initial distribution functions for electrons, positrons and photons,
the sufficient condition to obtain an isothermal distribution on a causally disconnected spatial
scale R > ct;, = 107 2cm is the request of constancy of the energy density on such a scale as
well as, of course, the invariance of the physical laws.

To summarize, the evolution of an initially nonequilibrium optically thick electron—



positron-photon plasma is considered up to reaching thermal equilibrium. Starting from
arbitrary initial conditions kinetic equilibrium is obtained from first principles, directly solv-
ing the relativistic Boltzmann equations with collisional integrals computed from QED ma-
trix elements. The essential role of direct and inverse triple interactions in reaching thermal
equilibrium is demonstrated. These results can be applied in the theories of the early Uni-
verse and of astrophysical sources, where thermal equilibrium is postulated at the very early
stages. These results can in principle be tested in laboratory experiments in the generation
of electron—positron pairs.

10 Concluding remarks

We have reviewed three fundamental quantum processes which have highlighted some of the
greatest effort in theoretical and experimental physics in last seventy years. They all deal
with creation and annihilation of electron—positron pairs. We have followed the original path
starting from the classical works of Dirac, on the process e e~ — 2, and the inverse process,
2~y — eTe™, considered by Breit—~Wheeler. We have then reviewed the ete™ pair creation in a
critical electric field E, = m2c®/(he) and the Sauter-Heisenberg-Euler-Schwinger description
of this process both in Quantum Mechanics and Quantum Electro-Dynamics. We have
also taken this occasion to reconstruct the exciting conceptual developments, initiated by
the Sauter work, enlarged by the Born-Infeld nonlinear electrodynamical approach, finally
leading to the Euler and Euler-Heisenberg results. We were guided in this reconstruction by
the memories of many discussions of one of us (RR) with Werner Heisenberg. We have then
reviewed the latest theoretical developments deriving the general formula for pair production
rate in electric fields varying in space and in time, compared with one in a constant electric
field approximation originally studied by Schwinger within QED. We also reviewed recent
studies of pair production rates in selected electric fields varying both in space and in time,
obtained in the literature using instanton and JWKB methods. Special attention has been
given to review the pair production rate in electric fields alternating periodically in time, early
derived by Brezin, Itzykson and Popov, and the nonlinear Compton effect in the processes
of electrons and photons colliding with laser beams, studied by Nikishov and Narozhny.
These theoretical results play an essential role in Laboratory experiments to observe the
pair production phenomenon using laser technologies.

We then reviewed the different level of verification of these three processes in experi-
ments carried all over the world. We stressed the success of experimental verification of the
Dirac process, by far one of the most prolific and best tested process in the field of physics.
We also recalled the study of the hadronic branch in addition to the pure electrodynami-
cal branch originally studied by Dirac, made possible by the introduction of ete™ storage
rings technology. We then turned to the very exciting current situation which sees possibly
the Breit—Wheeler formula reaching its first experimental verification. This result is made
possible thanks to the current great developments of laser physics. We reviewed as well the
somewhat traumatic situation in the last forty years of the heavy-ion collisions in Darmstadt
and Brookhaven, yet unsuccessfully attempting to observe the creation of electron—positron
pairs. We also reviewed how this vast experimental program was rooted in the theoretical
ideas of Zeldovich, Popov, Greiner and their schools.

We have also recalled the novelty in the field of relativistic astrophysics where we are
daily observing the phenomenon of Gamma Ray Bursts [477, 516, 517, 404, 518]. These
bursts of photons occur in energy range keV to MeV, last about one second and come from



astrophysical sources located at a cosmological distance [394, 519, 520, 521, 522]|. The energy
released is up to ~ 10° ergs, equivalent to all the energy emitted by all the stars of all the
galaxies of the entire visible Universe during that second. It is generally agreed that the
energetics of these GRB sources is dominated by a dense plasma of electrons, positrons and
photons created during the process of gravitational collapse leading to a Black Hole, see e.g.
(68, 399, 400, 398] and references therein. The Sauter-Heisenberg-Euler-Schwinger vacuum
polarization process, we have considered in the first part of the report, is a classic theoretical
model to study the creation of an electron—positron optically thick plasma. Similarly the
Breit-Wheeler and the Dirac processes we have discussed, are essential in describing the
further evolution of such an optically thick electron—positron plasma. The GRBs present an
unique opportunity to test new unexplored regime of ultrahigh energy physics with Lorentz
factor v ~ 100 — 1000 and relativistic field theories in the strongest general relativistic
domain.

The aim in this report, in addition to describe the above mentioned three basic quantum
processes, has been to identify and review three basic relativistic regimes dealing with an
optically thin and optically thick electron—positron plasma.

The first topic contains the basic results of the physics of black holes, of their energetics
and of the associated process of vacuum polarization. We reviewed the procedures to gen-
eralize in a Kerr-Newman geometry the QED treatment of Schwinger and the creation of
enormous number of 10%° electron—positron pairs in such a process.

The second topic is the back reaction of a newly created electron—positron plasma on
an overcritical electric field. Again we reviewed the Breit—Wheeler and Dirac processes
applied in the wider context of the Vlasov—Boltzmann—Maxwell equations. To discuss the
back reaction of electron—positron pair on external electric fields, we reviewed semi-classical
and kinetic theories describing the plasma oscillations using respectively the Dirac-Maxwell
equations and the Boltzmann—Vlasov equations. We also reviewed the discussions of plasma
oscillations damping due to quantum decoherence and collisions, described by respectively
the quantum Boltzmann—Vlasov equation and Boltzmann—Vlasov equation with particle
collisions terms. We particularly addressed the study of the influence of the collision processes
ete”™ 2 ~v on the plasma oscillations in supercritical electric field £ > E.. After 103~
Compton times, the oscillating electric field is damped to its critical value with a large
number of photons created. An equipartition of number and energy between electron—
positron pairs and photons is reached. For the plasma oscillation with undercritical electric
field E < E., we recalled that electron—positron pairs, created by the vacuum polarization
process, move as charged particles in external electric field reaching a maximum Lorentz
factor at finite length of oscillations, instead of arbitrary large Lorentz factors, as traditionally
assumed. Finally we point out some recent results which differentiate the case £ > FE, from
the one F < E, with respect to the creation of the rest mass of the pair versus its kinetic
energy. For ¥ > F, the vacuum polarization process transforms the electromagnetic energy
of the field mainly in the rest mass of pairs, with moderate contribution to their kinetic
energy. Such phenomena, certainly fundamental on astrophysical scales, may become soon
directly testable in the verification of the Breit—Wheeler process tested in laser experiments
in the laboratory.

As the third topic we have reviewed the recent progress in the understanding of thermal-
ization process of an optically thick electron—positron-photon plasma. Numerical integration
of relativistic Boltzmann equation with collisional integrals for binary and triple interactions
is used to follow the time evolution of such a plasma, in the range of energies per particle
between 0.1 and 10 MeV, starting from arbitrary nonequilibrium configuration. It is recalled



that there exist two types of equilibria in such a plasma: kinetic equilibrium, when all parti-
cles are at the same temperature, but have different nonzero chemical potential of photons,
and thermal equilibrium, when chemical potentials vanish. The crucial role of direct and
inverse binary and triple interactions in reaching thermal equilibrium is emphasized.

In a forthcoming report we will address how the above mentioned three relativistic pro-
cesses can be applied to a variety of astrophysical systems including neutron stars formation
and gravitational collapse, supernovae explosions and GRBs.

This report is dedicated to the progress of theoretical physics in extreme regimes of
relativistic field theories which are on the verge of finding their experimental and observa-
tional verification in physics and astrophysics. It is then possible from our review and the
many references we have given to gain a basic understanding of this new field of research.
The three topics which we have reviewed are closely linked to the three quantum processes
currently being tested in precision measurement in the laboratories. The experiments in
the laboratories and the astrophysical observations cover complementary aspects which may
facilitate a deeper and wider understanding of the nuclear and laser physics processes, of
heavy-ion collisions as well as neutron stars formation and gravitational collapse, supernovae
and GRBs phenomena. We shall return on such an astrophysical and observational topics
in a dedicated forthcoming report.

We are witnessing in these times some enormous experimental and observational successes
which are going to be the natural ground to test some of the theoretical works which we have
reviewed in this report. Among the many experimental progresses being done in particle
accelerators worldwide we like to give special mention to two outstanding experimental
facilities which are expected to give results in the forthcoming years. We refer here to
the National Ignition Facility at the Lawrence Livermore National Laboratory to be soon
becoming operational, see e.g. [523] as well as the corresponding facility in France, the Mega
Joule project [524].

In astrophysics these results will be tested in galactic and extragalactic black holes ob-
served in binary X-ray sources, active galactic nuclei, microquasars and in the process of
gravitational collapse to a neutron star and also of two neutron stars to a black hole in
GRBs. The progress there is equally remarkable. In the last few days after the completion
of this report thanks to the tremendous progress in observational technology for the first time
a massive hypergiant star has been identified as the progenitor of the supernova SN 2005gl
[525]. In parallel the joint success of observations of the flotilla of X-ray observatories and
ground-based large telescopes [177] have allowed to identify the first object ever observed at
z ~ 8 the GRB090423 [526].

To follow the progress of this field we are planning a new report which will be directed
to the astrophysical nature of the progenitors and the initial physical conditions leading
to the process of the gravitational collapse. There the electrodynamical structure of neu-
tron stars, the phenomenon of the supernova explosion as well as theories of Gamma-Ray
Bursts (GRBs) will be discussed. Both in the case of neutron stars and the case of black
holes there are fundamental issues still to be understood about the process of gravitational
collapse especially with the electrodynamical conditions at the onset of the process. The



major difficulties appear to be connected with the fact that all fundamental interactions, the
gravitational, the electromagnetic, the strong, the weak interactions appear to participate
in essential way to this process which appear to be therefore one of the most interesting
fundamental process of theoretical physics. Current progress is presented in the following
works [527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538]. What is important to
recall at this stage is only that both the supernovae and GRBs processes are among the
most energetic and transient phenomena ever observed in the Universe: a supernova can
reach energy of ~ 10°? ergs (hypernovae) on a time scale of a few months and GRBs can
have emission of up to ~ 10° ergs [539] in a time scale as short as of a few seconds. The
central role in their description of neutron stars, for supernova as well as of black holes and
the electron—positron plasma discussed in this report, for GRBs, are widely recognized. The
reason which makes this last research so important can be seen in historical prospective:
the Sun has been the arena to understand the thermonuclear evolution of stars [540], Cyg
X-1 has evidenced the gravitational energy role in explaining an astrophysical system [541],
the GRBs are promising to prove the existence for the first time of the “blackholic energy”.
These three quantum processes described in our report reveal the basic phenomena in the
process of gravitational collapse predicted by Einstein theory of General Relativity [177].

Notes added in proof

e In Ref. [258] two terms related to the initial and final frequencies are missing in the
effective action (real part and imaginary part). These have been corrected in [542, 543].

e Some new results were obtained for QED in quasi constant in time electric field, in
particular, the distributions of particles created is discussed in [544, 545]; consistency
restrictions on maximal electric field strength in QFT are discussed in [546]. One-
loop energy-momentum tensor in QED is obtained in [547]. The exact rate of pair
production by a smooth potential proportional to tanh(kz) in three dimensions is
obtained in [548].

e A recent review on the muon anomalous magnetic moment (muon g-2), offers the
possibility, by making most precise measurement of muon g-2 in low-energies, to infer
virtual hadronic vacuum polarization and light-by-light scattering effects due to virtual
quark-pairs production in high-energies. In recent BNL E821 experiment!!, the muon
anomalous magnetic moment can be rather accurately measured. In the theory of
Standard Model for elementary particles, the muon anomalous magnetic moment a,
receive leptonic QED-contributions (e, p, 7) to aSFP, which has been calculated, see

w
for a review [549], up to 5-loop contributions O(a?)

a2 ~ 663(20)(4.6) (%)5

While hadronic (u, d, sc, - - ) contributions to the muon anomalous magnetic moment

azad contain, due to the strong interaction, both perturbative and non-perturbative

Uhttp:/ /www.g-2.bnl.gov



parts, the O(a?) contribution to ahd

173 Y
B2, data 2 0 pQCD 2
4 (o had) = (&)’ / o Riad () K(s) / Riaa (8)K(s)
a,’ (vap, had) ( i ) " ds 2 + . ds 2 ,
where R(s) is given by
4 2
Rpaa(s) = o(ete” — hadrons)/%is),

and K (s) is the vacuum polarization contribution,
! 22(1 —x)
K(s) _/0 e Py

and a cut E., in the energy, separating the non-perturvative part to be evaluated
from data and the perturbative high energy tail to be calculated using perturvative
QCD (pQCD), analogously to QED-calculations. The pQCD calculations may only
be trusted above 2 GeV and away from threshold and resonances. In the report
[549], authors resort to a semiphenomenological approach using dispersion relations
together with the optical theorem and experimental data. The “measurements of
Ryaa(s)” get more difficult as increasing energies more and more channels open for
meson-resonances. In addition, the most problematic set of hadronic corrections is
that related to hadronic light-by-light scattering, which for the first time show up at
order O(a?) via the diagrams with insertion of a box with four photon lines. As a
contribution to the anomalous magnetic moment three of four photons are virtual and
to be integrated over all four-momentum space, such that a direct experimental in-
put for the non-perturbative dressed four-photon correlator is not available. In this
case one has to resort the low energy effective description of QCD like chiral pertur-
bation theory (CHPT) extended to include vector-mesons, which is reviewed in detail
[549]. Furthermore, the Electroweak corrections of weak virtual process including in-
termediate bosons W and Z to g — 2 are important and now almost three standard
deviations, and without it the deviation between theory and experiment would be the
60 level. The test of the weak contribution is actually one of the milestones achieved by
Brookhaven experiment E821 (see the footnote above). These studies and experiments
are crucial to include the contributions from all known particles and interactions such
that from a possible deviation between theory and experiment we may get a hint of
the yet unknown physics.

Some recent results on ete” annihilation cross sections in the GeV region are obtained
in the following experiments: KLOE [550, 551, 552], CMD-2 [553, 554] and SND [554].

We would like to point out that in our report, one-loop vacuum polarization and light-
by-light scattering effects (effective Euler-Heisenberg Lagrangian), as well as their high-
order corrections in low-energies are considered in Section 4.7; non-linear Compton
effect is discussed in both Section 4.10 (theory) and Sections 6.2,6.3 (experiments);
the Breit-Wheeler cutoff in high-energy ~-rays for astrophysics in Section 6.4. All
these discussions are limited in the leptonic sector for low-energies. The reason of
recording here these hadronic contributions in the high-energy region is motivated by
our expectation that these effects will be possibly soon detected by direct measurements
of gamma ray emission from high-energy astrophysical processes. We shall return on
this topic in our forthcoming report already mentioned above.
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