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We have studied a possibility to explore the spin density of orbital electrons by utilizing
the spin dependence of internal conversion processes. We have calculated the relative intensity -
~ of internal conversion electrons for the case where the radial wave functions of the orbital
‘electrons are different for spin up and spin down. As a particular ‘example, we have studied
the internal conversion process in the decay of the 14.4keV level of Fe%, using the radial wave
functions of the orbital electrons of Fe obtained in the unrestricted Hartree-Fock method which
have a reasonable fit to the experimental data on the internal magnetic field. It is shown
that the Lr.and Mt conversion electrons distribute almost isotropically, and the intensity of con-
version electrons should change by about 0.5% for Lt and 2% for Mi for different spin
. polarizations. ‘ ’ S

§ 1. Introduction

Fermi and Segé showed” that atomic hyperfine fields arise from the interac-

tion of the magnetic moment of the nucleus with electronic spin and orbital
moments. The electron spin interaction is also divided into two parts: the Fermi
contact interaction and the dipolar coupling term. The internal magnetic field
due to the Fermi contact interaction is given by

H;= — (167/3) 5[0, (0) —0,(0) 1,

where ,ZzB is the Bohr magneton, p;(0) is the electron density with spin up per

_unit volume at nucleus, g, (0) is the electron density with spin down. Originally,

the density at the nucleus of an outer unpaired s electron is considered to be

responsible for the observed effective magnetic field. Mn*"(3d% 4s") has no-

unpaired 4s electrons. Therefore no hyperfine field from the contact interaction
is expected to exist. Experimentally, the internal field is rather high® and it is
—650 kgauss. Since p(0) has nonzero values for s electrons only, the nonvanish-
ing values of [0;(0) —0,(0) ] may originate from combinations of 1s, 2s and 3s
electrons. The origins of spin polarization of the s electrons in the closed shells
are, -in the case of the transition elements, the exchange forces between the
unpaired 3d electrons and these s electrons. "The Coulomb repulsion between
the 3d and s electrons is weaker for parallel spins than antiparallel-spins.
Therefore, if their spins are parallel, the s electron is attracted to the 34 shell
and the electron dehsity with antiparallel spin is dominant at the nucleus,
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The theory of the atomic hyperfine fields is a very popular problem and
- has been studied by many authors. Among them, Watson and Freeman® calculated
the Fermi contact interaction with the Hartree-Fock method.. For example, the

contribution from the core electrons to the internal field in Mn*™* is estimated

to be —690 kgauss in agreement with the observed — 650 kgauss.”'®

We have studied ‘a possibility to explore the spin density of orbital electrons
by utilizing the internal conversion processes which depend on the relative spin
polarization between nucleus and electron—the spin dependence of conversion
process. ‘

Our problem starts from the assumptlon that the s electrons of the closed -

shell are spin-polarized relative to the nuclear spin. That is, if the radial wave
functions of the s electrons are different for two states with spin up and down,
‘there must be certain observable effects in the internal conversion processes.
Since we can measure the conversion electrons from different shells separately,
we should also find the spin polarization of each shell. In §2, we demonstrate
that the relative intensity of conversion electron is suitable for our purpose.
As a particular example, we study, in § 3, the internal conversion process in the
decay of the 14.4keV level of Fe”, since the state decays dominantly through
this process and the radial wave functions of the orbital electrons of Fe are

given by Watson and Freeman and by Bagus and Liu.” It is shown that the
conversion electrons distribute almost isotropically in this case, and the intensity

of conversion electrons changes a few percent for different spin polarization. |

§ 2. Spm-polamzauon dependence in relatlve mtensny
of conversion elecirons

The conversion processes depend on the'relative spin polarization between
nucleus and electron. Therefore, it ‘is easily understood that the probability of
the conversion process is different for two spin states of electrons, if the nuclear
spins are polarized, if the radial wave functions for electrons with spin up and
down are not equal, and if we can measure the conversion probability of the
orbital electrons with spin up and down scpalatcly

In order to simplify the dlscusswn, we assume that 1) the conversion. pro-
cess is a magnetic dipole transition of the nuclear decay scheme, 1*—07%, 2) the
initial nuclear state is completely polarized® (J=M=1) and the orbital elec-
trons are in the ns state, 3) the conversion electron is emitted in the s state and
~the effect of the d state is neglected From these assumptions, the conservation
law of the magnetic quantum number requires a relation,

’ 1-— O — 7ns‘ﬁnnl _ 7’72311\11,15\1) ‘ (1)

where m, is the magnetic quantum number of the intrinsic electronic spin which

*) The z-axis of the quantization is chosen to be the direction of the nuclear spin [,
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takes only two values, :I:l/lZ. Equation (1) is satisfied with the uniqué solution,
ﬁnnl 1/2 and mvsinitial: . 1/2 . (2)

That is, in this particular decay scheme, the conversion process can proceed
only if the spin of the orbital electron is antiparallel to the nuclear spin J.

Now, let us suppose the transition metal like iron, and let us apply a
“magnetizing field H in the direction of J. The total spin of the orbital d elec-
trons is antiparallel to J and H. In this geometry, the conversion takes place
from the ns electron whose spin is parallel to that of the d electrons. (This
is denoted by /=7 in §3.) We call this the case I. On the other hand, if
we apply H in the opposite direction of J, the conversion takes place from the
ns electron whose spin is antiparallel to that of the 4 electrons. (This is denoted
by =] in §3.) We call this the case II. The radial wave functions for
¢’=1 and | are different in the unrestricted Hartree-Fock method so that the
intensities, Wy (0) and Wy(6), of conversion electrons in these two cases are
different. Here 0 -is the angle between the nuclear spin J and the direction of
the emission of the electron. The magnitude of [W; () — Wy(0)]1/W.(6) be-
. comes a measure of the difference of the radial wave functions of the s elec-
trons with different spin polarizations.

The nuclear polarization can be achieved in several ways; e.g. in the Moss—
bauer-type experiments, in the nuclear reactions, or in the beta decays. In the
next section, we will study W (#) for a particular example of Fe.”

§ 3. Internal conversion process in Fe”

"In §2, we have discussed the relative intensity of the conversion electrons
.corresponding to the nuclear de-excitation, J=M=1—-J=M=0 with no parity
change. Since the orbital electrons are in the ns states, the conversion electrons
are allowed only in the states with® g= —1(s;) and £=2(dss). The angular
distribution function (or relative intensity including angular dependence) for this
transition ' is given by the function F;”(0) with L=M=1, from Eq. (44) of a
papéer by Rose, Biedenharn and Arfken.” The explicit form of F! (0) is obtained
‘as Eq. (3) below.

Now we study the decay of the 14.4keV level of Fe” through the internal
conversion process. The conversion coefficient is known to be a=9.7 in this
" case. We choose a subtransition, J=3/2%, M=3/2—>J=1/2", M=1/2 which
is equivalent to 100% polarization of the 14.4 keV state. The angular distribu-
tion of the conversion electrons is again given by Fy'(0) with £=—1 and 2.
We denote it as W(0). We have directly**®

*) The quantum number & specifies the values of [ and j of the Dirac particle, simultaneously.”
*%) The units, i=c=m=1, are used throughout this paper. Here =z is the electron mass.
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W () =F:"(0) =3|Roes,ust]’ A — P2) +8| Ryt ,
+8 Re {eXp (Z (An=-—1 E Alc=2) ).R*x=2,nsi,R;c=—-l,ns],} P2 + lR;c-::2,nsl,i ? (1 + P‘2> (3)

with | |
P,=(1/2) (3 cQs20—1),, , (4
Ropis= {[F.(59) Guuer ) + G (67) Fare () 11 Gy )
G=rg and F=rf. (6)

Here ¢ and f are large and small components of the radial wave function of
the electron. The conversion electron has a momentum p and an energy W.

@ (kr) comes from the electromagnetic interaction, and it is the spherical Hankel -

function of the first kind and of order one. The wave number % is numerically
equal to the excitation energy of the nuclear level over mc®. ¢ is either T or |,
corresponding to the spin up or down of the zs electron with respect to the
nuclear spin J, while ¢/ is also 1 or |, corresponding to the spin up or down
of the ns electron with respect to the total spin of 3d electrons. Thgrefore, we
have two cases,

I =c. - | @)

The ‘angular distributions Wy (0) and Wy(0) (or equivalently, the relative inten-

sities of conversion electrons at an angle 6 in cases I and II) are different since
the radial integrals (5) are different. In the following we make numerical cal-
culations of W;(0) and Wy(0) for the L; and M, conversion electrons. These
are conversion electrons from the 2s and 3s orbits, respectively. '

Radial wave functions for the 2s and 3s states

Nonrelativistic wave functions for all 26 bound electrons in the °D state of
Fe were obtained from the unrestricted Hartree-Fock calculation by Bagus and
Liu.® For 2s and 3s electrons, these wave functions are given by

Quer (1) = };‘ CineXi, ooy n=2 or 3 ‘ ®
where _

Xy = (4m) 7 "Ri(1) S, - O
and where the radial functions R;(#) are normalized nodeless Slater-type orbits,
. Ri(r) = [ 2uy) 1TV (2Z) ™+ (qur)ri—t g~ %™ 10)

with | '

a=fine structure constant.
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Table I. Radial wave functions for the 2s and 3s electrons of Fe in the unrestricted Hartree-Fock
method® C;, »; and Z; are defined in Egs. (8)~(10). '

A C; , ‘
2s 1 a¢ 35 3sd
11 '38.73300 0.00644 000629 —0.00290 —0.00274
2 1 25.87820 T —0.31094 —0.31144 - 0.11682 0.11535
32 . 21.33300 . —0.18016 .~ —0.18129 0.07296 0.07273
4 2 11.01230 1.03806 1.04258 —0.42236 . —0.41937
5 3 9.50024 - 0.14489 0.14567 —0.30850 —0.30949
6 3 6.99020 0.00437 =0.00182 . 0.36701 ~0.38109
7 3 463797 0.00415 0.00475 0.77597 0.75070
8 4 3.92345 —0.00023 —0.00079 0.16592 - 0.18267
9 4 1.95370 0.00006 0.00015 0.00769. 0.00796-
10 4 1.15237 © —0.00002 - —0.00009 —0.00393 —0.00415
1 4

0.80019 . 0.00001 0.00004 0.00166 0.00175

The spin functions are

S <1> for ¢ 1
= or /=1,
o) ,

;C)) for /= . | | (11)

The numerical values of C;, 7;, Z; are given in Table I, which has been taken
from reference 4). ‘ ‘

In our calculation, we assume that the large componcnt of the radial wave
function is equal to the radial part given by Bagus and Liu,

gnsr’ (7”) = Z Ci,nr’Ri (?") ' ' (12>

WC also assume that the small component Fis the solution of Lhe Dirac wave
equation, ’

diz(’”) (vm 1= V)0, a3

if we replace g () by hq (12) For V (r), we adopt the following electrostatic
potentlal :

V() =—125¢(2) +1](a/n),
with , |
¢(x) =[141.52—~0.72"+0.382"]"" and with x= 4 (50/97% " ar , (14).

which includes the screening effect with sufficient accuracy. As an example,

Gay and Fyy are given in Fig. 1. Also, 7*[gan(7) ~usy )] is given in Fig. 2.°
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- Fig. 1. The Coulomb wave functions, G and F, are given for the 2s electron with spin up. The

solid and broken curves represent G in Eq. (12) and F in Eg. (13), respectively.

0 - 100" 200 300

Fig. 2. 72[g2s () —g2s ()]1’s are given by the solid and broken curves for the 3s and 2s electrons,
respectively. '

Radial wave functions for the conversion electrons with k= —1 and 2

The radial wave functions for the conversion ‘clectrons are obtained as the
numerical solutions of - the Dirac Coulomb field with screening effect. The
computer program for this calculation is that used by Yamada and Kodama”®
to study beta decay. The calculation has been done for k= —1 and 2 and electron
energies, W=1.0265 and 1.0280. These two values of W correspond. to the
conversions from 2s and 3s orbits, respectively. As an example, we show G_,
and F_; for W=1.0265 in Fig. 3. A normalization is adoptcd so that the average

of (G2 +F?) in a pcmod is unity at 7=o00

Radial integrals R, ns.

The radial integrals R, .. are computed with the-above described radial
wave functions and the results are summarized in Table II' with the following
definitions:
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..Fig. 3. The Coulomb wave functions
G_i and F._y, are given by the solid
and broken curves for W=1.0265.

erly taken into account. The pure
Coulomb wave function G2, is also
‘given by the dash-dot curve. A
normalization is adopted so that the
average of (G%; +F?,) in a period
is unity at r=o0

' Lo 1 1l L L 1
0 I 20 30 40 50 60 7O 80 90 100
r B .

. Table II. Radial integrals, Eq. (15), in case IL The table holds in case I if the sign of r is reversed.
Numerical values are given at the upper limits of the integration, »=183.98 and 178.09 for n=2
and 3, respectively. Those for R® are still oscillating in this range of . We give, however,
the following numerical values so as to show R® be negligibly small in comparxson with R,
W=1.0265 and 1.0280 for 2s and 3s, respectively.

n K T /c(,]?z)vr R/c(,ly;gr

2 -1 0 —0.33%1073 —0.2166 X 102

2 =1 J —0.33%1073 : —0.2171 X 102

2 2 0 0.51x107* 0.2287 X 101

2 2 J 0.49% 10" 0.2293X 10" .
3 -1 0 —0.34% 1072 0.8207 X 10!

3 -1 J —0.34x10°2 0.8120 X 10t

3 2 1 0.14x 1072 © o —0.8704

3 2 J 0.14X 1072 —0.8606

B SV
Rx,nsr = Rf(c, %sr + ZR/E, n)s‘z' ’

R;ﬁzsgzg [F.(57) Goee (7) + G () Fose () 171 k) i,
0

RE%=\[F. () Guse () + G (07) Frse @) I k) dr, (15
0 .

where j; and »; are the spherical Bessel and spherical Neumann functions of

order one, respectively.

Results

As we can see in Table II, the conversion electrons are almost in the s
state so that the angular distribution is nearly isozropic. The Coulomb phase
shifts are obtained graphically from the radial wave function, and the results are

The screening correction is prop-

220z 1snbny 9| uo 1s8nb Aq z656881/966/1/1 p/elone/did/woo-dnoolwspede)/:sdyy wolp papeojumoq



Electron Spin Density and Internal Conversion Process - 1003

door—4,2=113 rad for W=1.0265 (25), B
=1.10 rad for W=1.0280 (3s). - 16)

Finally, the relative intensities for the cases I and II have the following differ-
‘ence: v
Wi(0) —Wy(0) _ :
=—0.5% for L; (from 2s),
W.0) . far . L. Grom 29 |
| = 219% for M; (from 3s), an
at 0=0.

We did not compute the effect for the 1s electron. This is because the
s-d interaction is much smaller and the effect in conversion process is negligible.
Our calculation does not include interactions with zs electrons of neighboring
nuclei as well as their orbital electrons.
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