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We have studied a possibility to explore the spin density of orbital electrons by utilizing 
the spin dependence of internal conversion processes. We have calculated the relative intensity 
of internal conversion electrons for the case where the radial wave functions of the orbital 
electrons are different for spin up and spin down. As a particular example, we have studied 
the internal conversion process in the decay of the 14.4 keY level of Fe57, using the radial wave 
functions of the orbital electrons of Fe obtained in the unrestricted Hartree-Fock method which 
have a reasonable fit to the experimental data on the internal magnetic field. It is shown 
that the Lr and Mr conversion electrons distribute almost isotropically, and the intensity of con­
version electrons should change by about 0.5% for LI and 2% for MI for different spin 
polarizations. 

§ 1. Introd uction 

Fermi and Sege showed!) that atomic hyperfine fields anse froln the interac­

tion of the magnetic mOln'ent of the nucleus with ele~tronic spin and o~'bital 
moments. The electron spin interaction is also divided into two parts: the Fermi 
contact interaction and the dipolar coupling term. The internal magnetic field 

due to the Fermi contact interaction is given by 

Hi = - (16n/3) ILB[Pi (0) -p~ (0) J, 
where ttB is the Bohr magneton, Pi (0) is the electron density with SpIn up per 
unit volume at nucleus, P~ (0) is the electron' density with spin pown. Originally, 

'the density at the nllcleus of an outer unpaired s elect'ron is considered to be 

responsible for the ohserved effective magnetic field. Mn++ (3d\ 4s0) has no' 

unpaired 4s electrons. Ther~fore no hyperfine field from the contact interaction 

is expected to exist. Experimentally, the internal field is rather high2
) and it is 

- 650 kgauss. Since p (0) has nonzero values. for s electrons only, the nonvanish­
in'g values of [Pi (0) - p~ (0) ] may originate from combinations of Is, 2s and 3s 
electrons. The origins of spin polarization of the s electrons in the closed shells 
are,in the case of the transition elements, the exchange forces between the 
unpair~d 3d electrons and these s electrons. 'The Coulomb repulsion between 
the 3d and s electrons is weaker for parallel spins than anti parallel , spins. 

There~ore, if their spins are parallel, the s electron is attracted to the 3d shell 

(lnd the electron density with anti parallel spm is dominant at the nucle':ls~ 
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The theory of the atomic hyperfine fields is a very popular problem and 
has been studied by many authors. Among them, Watson and Freeman3

) calculated 

the Fermi contact interaction with the Hartree-Fock method. For example, the 
contribution from the core electrons to the internal field in Mn++ is estimated 
to be - 690 kgauss in agreement with the observed - 650 kgauss.2

),3) 

We have studied' a possibility to explore the spin density of orbital electrons 

by utilizing ,the internal conversion processes which depend on the relative spin 

polarization between nucleus arid electron-the spin dependence of conversion 

process. 
Our problem starts from the assumption that the s electrons of the' closed 

shell are spin-polarized relative to the nuclear spin. That is, if the :radial wave 

functions of the s electrons are different for two states with spin up and down, 

there must be certain observable effects in the internal conversion processes: 
Since we can measure the conversion electrons' from different shells separately, 

we should also find the spin polarization of each shell. In § 2, we demonstrate 

that the relative intensity of conversion electron is suitable for our purpose. 

Asa particular example, we study, in § 3, the internal conversion process in the 
decay of the 14.4 ke V level of Fe,57, since the state decays dominantly through 

this process and the radial wave functions of the orbital electrons of Fe are 

given by Watson and Freeman and by Bagus and Liu. 4
) It is shown that the 

conversion electrons distribute almost isotropically in this case, and the intensity 
of conversion electrons changes a few percent for different spin polarization. 

§ 2. Spin-polarization dependence in rehttive intensity 
of conversion electrons 

The converSlOn processes depend on the relative spin polarization between 

nucleus and electron. Therefore, it is easily understood that the probability of 

the conversion process is different for two spin states of electrons, if the nuclear 

spins are polarized, if the radial w~ve functions for electrons with spin up and 

down are not equal, and if we can measure, the conversion probability of the 

orbital electrons with spin up and down separately. 
In order to simplify the discussion, we assume that 1) the conversion pro­

cess is a magnetic dipole transition of the nuclear decay scheme, l+~O+, 2) the 

initial nuclear state is completely polarized*) (.1= M = 1) and the orbital elec­
trons are in the ns state, 3) the conversion electron is emitted in the s state and 

the effect of the d stat~ is neglected. From these assumptions, the conservation 
law of the magnetic quantum nurnber requires a relation, 

(1) 

where Jns is the magnetic quantum number of the intrinsic electronic spm which 

*) The ~~axis of the quantization is chosen to be the direction of the nuclear spin J. 
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takes only two values, ± 1/2. Equation (1) is satisfied with the unique solution, 

m/lllal = 1/2 and m/nitial = -1/2 . (2) 

That is, ih this particular decay scheme, the conversion process can proceed 
only if the spin of the orbital electron is anti parallel to the nuclear spin J. 

Now, let us suppose the transition metal like iron, and let us apply a 
magnetizing field H in the direction of J. The total spin of the orbital d elec­
trons is antiparallel to J and H. In this geometry, the conversion takes place 
from the ns electron whose spin is parallel to that of the d electrons. (This 
is denoted by r' = t in § 3.) We call this the case 1. On the other hand, if 
we apply H in the opposite direction of J, the conversion takes place from the 
ns electron whose spin is antiparallel to that of the d electrons. (This is denoted 
by r' = ~ i!1 § 3.) We call this the case II. The radial wave functions £01' 

r' = t and ~ are different in the unrestricted Hartree-Fock method so that the 
intensities, WI (() and WI! ((), . of conversion eiectrons in these two cases are 
different. Here () 'is the angle between the nuclear spin J and the direction of 
the emission of the electron. The magnitude of [WI (() -:- WI! (() ] /Wr- (() be-

. comes a measure of the difference of the radial wave functions of the ns elec­
trons with different spin polarizations. 

The nuclear polarization can be achieved in several ways; e.g. in the M6ss­
bauer-type experiments, in the nuclear. reactions, or in the beta decays, In the 
next section, we will study W(() for a particular example of Fe.57 

§ 3 .. Internal conversion process in .Fe57 

In § 2, we have discussed the relative intensity of the conversion electrons 
corresponding to the nuclear de-excitation, J = M = l->J = M = 0 with no parity 
change. Since the orbital electrons are in the ns states, the conversion electrons 
are allowed only in the states with*) fC = -1 (Sl/2) and fC = 2 (d3/2) • The angular 
distribution function (or relative intensity including angular dependence) for this 
transition is given by the function FLM(() with L=M=l, from Eq. (44) of a 
paper by Rose, Biedenharn and Arfken.6

) The explicit form of F/ (() is obtained 
. as Eq. (3) below. 

Now we study the decay of the 14.4 ke V level of Fe57 through the internal 
conversion process. The conversion coefficient is known to be a=9.7 in this 
case. We choose a subtransition, J = 3/2+, M = 3/2~J = 1/2+, M = 1/2 which 
is equivalent to 100% polarization of the 14.4 ke V state. The angulaJ;" distribu­
tion of the conversion electrons is again given by F/ (() with fC= -1 and 2. 
We denote it as W ((). We have directly**) 

*) The quantum number ~ specifies the values of land j of the Dirac particle, simultaneously.5) 
**) The units, It =c=m= 1, are used throughout this paper. Here m is the electron mass, 
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W (8) :=F/ (8) = 3IR,,=2,nstI 2 (1- P2) + 8IR/G=_1,ns~12 
+8 Re {exp (i (J/G=-l -J,,=2) )R* /G=2,nS~R"=-l,ns~} P2 + IR"=2,ns~12 (1 + P2) (3) 

with 

00 

RK,nsr = } [FJpr>G~~s,-' (r) + G" (pr) Fns,-,{r) ] h1(1) (kr) dr, (5) 
o . 

G=rg and F=rf. (6) 

Here g and f are large and small components of the radial wave function of 
the electron. The conversion electron has a momentum p and an energy W. 
h1(1) (kr) comes from the electromagnetic interaction, and it is the spherical Hankel 
function of the first kind and of orde! one. The wave number k is numerically 
equal to the excitation energy of the nuclear level over mc2

• r is either l' or ~, 
corresponding to the spin up or down of the ns electron with respect to the 
nuclear spin J, while r' is also l' or ~, corresponding to the spin up or down 
of the ns electron with respect to the total spin of 3d electrons. Therefore, we 
have two cases, 

1. r' = -r, 

II. r' = r . (7) 

The angular distributions Wr (8) and WIT (8) (or equivalently, the relative inten­
sities of conversion electrons at an angle 8 in cases I and II) are different since 
the radial integrals (5) are different. In the following we make numerical cal­
culations of -VVr (8) and WIT (8) for the Lr and Mr conversiol). electrons. These 
are conversion electrons from the 2s and 3s orbits, respectively. 

Radial wave fun~tions for the 2s and 3s states 

Nonrelativistic wave functions for all 26 bound electrons in the: 5D state of 
Fe were obtained from the unrestricted Hartree-Fock calculation by Bagus and 
Liu.4

) For 2s and 3s electrons, these wave functions are given by 

n=2 or 3 (8) 

where 

(9) 

and where the radial functions Ri (r) are normalized nodeless Slater-type orbits, 

(10) 

with 

ex = fine structure constant. 
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Table 1. Radial wave functions for the2s and as electrons of Fe iil the unrestricted Hartree-'Fock 
method.4) Ci , ni and Zi are defined in Eqs. (8) ""-' (10). 

Ci 
t ni Zl ---- - --~------~ 

2st 2s-J,. 3st 3s -J,. 
-- ------,------" .~ ~--.------------

1 1 38.73300 0.00644 0.00629 -0.00290 -0.00274 

2 1 25.87820 -0.31094 -0.31144 0.11682 0.11535 

3 2 21.33300 -0.18016 -0.18129 0.07296 0.07273 

4 2 11.01230 1.03806 1.04258 -0.42236 -0.41937 

5 3 9.50024 0.14489 0.14567 -0.30850 -0.30949 

6 3 6.99020 0.00437 -'-0.00182 0.36701 0.38109 

7 3 4.63797 0.00415 0.00475 0.77597 0.75070 

8 4 3.92345 -0.00023 -0.00079 0.16592 0.18267 

9 4 1.95370 0.00006 0.00015 0.00769 0.00796-

10 4 1.15237 -0.00002 -0.00009 -0.00393 -0.00415 

11 4 0.80019 0.00001 0.00004 0.00166 0:00175 

The spin functions are 

S., = (~) for r' = t , 

= (~) for r' = ~ . (11) 

The numerical values of Ci , JZi, Zi are given in Table I, which has been taken 

from reference 4). 

In our calculation, we assume that the large component of the radial wave 

function is equal to the radial part given by Bagus and Liu, 

(12) 

We also assume that the small component f is the solution of the Dirac wave 
equation, 

cl~~) = (vV + 1-- V)f(r) , (13) 

if we replace 9 (r) by Eq. (12). For V (r), we adopt the following electrostatic 
potential :7) 

V (r) = - [25 cp (x) + 1J (air), 

with 

cp(x) = [1 -/- 1.5x,- 0.7 x 2 + 0.38x3J-l and with x = 4 (50/9n 2Y/3ar , ' (14), 

which includes the screening effect with sufficient accuracy. 'As an example-, 

G 28t and F 2st are given in Fig. 1. Also, r 2[g;stCr) -g1~.~~Cr)J is given in Fig. 2.' 
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r 

Fig. 1. The Coulomb wave functions, G and F, are giveri for the 2s electron with spin up. The 
solid and broken curves represent G in Eq. (12) and F in Eq. (13), respectively. 
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Fig. 2. r2[!I;~st (r) -g;tS~ (r)]'s are given by the solid and broken curves for the 3s and 2s electrons, 
res pecti vel y. 

Radial wave functions for the converswn electrons with IC = -1 and 2 

The radial wave functions for the conversion lelectrons arc obtained as the 
numerical solutions of the Dirac Coulomb field with screening effect. The 
computer program for this calculation is that used by Yamada and Kodama7

),8) 

to study beta decay. The calculation has been done for IC = -1 and 2 and electron 

energies, W = 1.0265 and 1.0280. These two values of W correspond. to the 
conversions from 2s and 3s orbits, respectively. As an example, we show G- 1 

and F-1 for W =1.0265 in Fig. 3. A normalization is adopted so that the average 
of (G::1 + F ::1) in a period is unity at r = 00. 

Radial integrals RK,ns~ 

The radial integrals RK,n8~ are' computed with the· above described radial 
wave functions and the results are summarized in Table II' with the following 

. . 

definitions: 
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o 

-I 

Fig. 3. The Coulomb wave functions 
G-1 and F_l> are given by the solid 
and broken curves for W = 1.0265. 
The screening correction is prop­
erly taken into account. The pure 
Coulomb wave function G::' l is also 

. given by the dash-dot curve. A 

-2~--L-~--~--~--~ __ ~· __ ~ __ -L __ -L __ ~ 

normalization is adopted so that the 
average of (G':' l +F':'1) in a period 
is unity at r= 00. 

o 10 20 30 40 50 60 70 80 90 100 
r 

Table II. Radial integrals, Eq. (15), in case II. The table holds in case I if the sign of .. is reversed. 
Numerical values are given at the upper limits of the integration, r= 183.98 and 178.09 for n = 2 
and 3, respectively. Those for R(B) are still os~illating in this range of r. We give, however, 
the following numerical values so as to show R(B) be negligibly small in comparison with R(N). 

W = 1.0265 and 1.0280 for 2s and 3s, respectively. 

n /C .. ____ J~_ R(B) R(N) iC,ns .. iC,ns .. 
-----

2 -1 t -0.33XlO-3 -0.2166x 102 

2 -1 ,J" -0.33X10-3 - 0.2171 X 102 

2 2 t 0.51 X 10-4 0.2287 X 101 

2 2 ,J" 0.49 X 10-4 0.2293 X 101 

3 -1 t -0.34XlO-2 0.8207 X 101 

3 -1 ,J" -0.34xlO-2 0.8120 X 101 

3 2 t 0.14XlO-2 -0.8704 

3 2 ,J" 0.14X10-2 -0.8606 

R - R(B) + ·R(N) ",nst" - iC,ns.. Z iC,nsr:, 
00 

R~~4sr:· ~ [F" (jJr) Gnst" (r) + G" (jJr) Fnst" (r) ]jl (kr) dr, 
o 

00 

R~~2sr:~ [F" (pr) Gnst"(r) + G" (pr) Fnst" (r)] n1 (kr) dr, (15) 
o 

where j1 and nl are the spherical Bessel and spherical Neumann functions of 

order one, respectively. 

Results 

As we can see 111 Table II, the conversion electrons are almost in the s 

state so that the angular distribution is nearly isotropic. The Coulomb phase 
shifts are obtained graphically from the radial wave function, and the results are 
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J,,=-l - J,,=2 = 1.13 rad for W = 1.0265 (2s) , 

= 1.10 rad for W = 1.0280 (3s). 

1003 

(16) 

Finally, the relative intensities for the cases I and II have the following differ­
ence: 

at 0 =0. 

WI (0) ~ Wn CO) = _ 0.5% for Ll (from 2s), 
WI (0) 

2.1 % 'for Ml (from 3s), (17) 

We did not compute the effect for the Is electron. This is because the 
Sod interaction is much smaller and the effect in conversion process :is negligible. 
Our calculation does not include interactions with ns electrons of neighboring 
nuclei as well as their orbital electrons. 
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