

$$
\pm-17987
$$

ELECTRON TEMPERATURE MEASUREMENTS DURING ELECTRON CYCLOTRON HEATING ON DX USING A TEN CHANNEL GRATING POLYCHROMATOR

By

A. Cavallo, H. Hsuan, D. Boyd, B. Grek, D. Johnson,
A. Kritz, D. Mikkelsen, B. LeBlanc, H. Takahashi

PLASMA PHYSICS LABORATORY

PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY
 UNDER COMNPMCF DE-ACO2-76-CEO-3073. HERTING ON PDX USING A TEN CHANNEL GRATING POLYCHROMATOR

A. Cavallo, t. Hsuan,
D. Boyd ${ }^{+}$, B. Grek, D. Johnson,
A. Kritz ${ }^{++}$, D. Mikkelsen, B. LeBlanc,
H. Takarashi
Princeton Plasma Physics Laboratory, Princeton, N.J.
${ }^{+} \mathrm{U}$. of Maryland, College Park, Md.
${ }^{++}$Hunter College/CCNY, N.Y.

ABSTRACT
During first harmonic electron cyclotron heating (ECH) on the Princeton Divertor Experiment (PDX) ($R_{0}=137 \mathrm{~cm}, \mathrm{a}=40 \mathrm{~cm}$), electron temperature was monitored using a grating polychromator which measured second harmonic electron cyclotron emission from the low field side of the tokamak. Interference from the high power heating pulse or the broadband detectors in the grating instrument was eliminated by using a waveguide filter in the transmigsion line which brought the emission signal to the grating instrument.

Off-axis ($\sim 4 \mathrm{~cm}$) location of the resonance zone resulted in heating without sawtooth or $m=1$ activity. However, heating with the resonance zone at the plasma center caused very large amplitude sawteeth accompanied by strong $m=1$ activity: $\Delta T / T_{M A X} \simeq 0.41$, sawtooth period $\simeq 4$ msec, $\mathrm{m}=1$ period $=90 \mu$ sec, (11 kHz). This 1 s the first time such intense MHD activity driven by ECH has been observed. (For both cases there was no sawtooth activity in the ohmic phase of the discharge before ECH.) At very low densities there is a clear indication that a superthermal electron population is created during ECH.

1. INTRODUCTION

From fundamental plasma physics considerations, plasma heatang in a tokamak at the electron cyclotron frequency is very attractive. The waveplasma interaction has been studied extensively both theoretically and experimentally and is well understood. Thig interaction is expected to be independent of plasma edge conditions and impurity content. The power deposition is localized and the position of the heating zone can be easily controlled. Einally, the antenna-plasma coupling problem is neatly and easily solved. With the further development of the gyrotron, ${ }^{2}$ the lack of a reliable, efficient high power source is being overcome.

Two $60-\mathrm{GHz}, 200-\mathrm{kW}$ varian gyrotrons ($100-\mathrm{msec}$ maximum pulse length) were available for heating experiments on PDK. Power was launched from the low field side of the tokamak in the 0-mode (wave E-field parallel to toroldal B fleld); a reflector mounted opposite to the launcher converted the incident O-mode to a reflected X-mode (wave E field perpendicular to toroidal B field). An antenna was also available on the high field aide for current drive and heating. However, for the experiments to be described only the outer antenna (omode) and a single gyrotron were used.

A unique feature of the PDX BCH system was the attention paid to the design of the transmission line and antenna. 3,4 power from the gyrotron in the TE02 mode was converted to a low loss TE01 mode for transmission to tine tokamak, which was located 30 meters from the gyrotron. At the tokamak, the TE01 mode was converted first to a TMit mode, then to an HE11 mode for launch from an open wavegulde. This mode has a gaussian antenna pattern whth 10 dB points (full wiath) of 10 cm at the plasma center. This narrow antenna pattern ensured that poser deposition was very wall localized, which was essential for this experiment.

2. INSTRUMENTATION

A. General Principles

Electron temperature evolution was determined using a ten channel grating polychromator ${ }^{5}$ which measured second harmonic x-mode emission from the plasma. For the plasma conditions of interest this was black hody emission, that ig, the emission intensity depends only on local temperature, not local density or ippurity content. The electron cyclotron frequency 19 determined by the local toroidal magnetic field, given by $B_{T}=B_{0} R_{0} / R$. Here B_{0} is the toroidal field at a major radius R_{o} and E is an arbitrary major radius. Thus, a measure of the eaission intensity at a known frequency yields electron temperature at a corresponding position in the plasma,

In the grating instrument (Fig. 1) the entrance aperture and mirror M1 serve to illuminate the grating with a plane wave; lens $L 1$ acts to correct the aberration introducecd by using $M 945^{\circ}$ off axis. The grating then disperses the light according to the relation:
$2 \mathrm{~d} \sin \left(\sigma+S_{n}\right) \cos S_{n}=k_{n}(k=1,2 \ldots ; n=1 \ldots 10)$.

Here d is the grating constant, σ is the angle between the incxdent beam and the grating normal, $2 S_{n}$ is the angle between the incident beam and the output beam from the grating which is focused by mifror $M 2$ on the $\mathrm{r}^{\text {th }}$ exit aperture, and K is the order of the interference.

The light is detected by liquid helium cooled indium antimonide hot electron bolometers ${ }^{6}$ housed in a lang hold cryostat. The eetector rise time is less than 1 usec (200 kHz 3 dB point), that of the detector preamplifier, $7 \mu s e c(25 \mathrm{kHz} 3 \mathrm{~dB}$ point), and the mirimum detectable signal between 10 and 40 eV RMS (best and worst detectors) with a 9 kHz 3 dB paint.

Abstract

B. Waveguides and Antenna

The light transport system for the PDX experiment is shown in Fig. 2. C-Band waveguide (47.5 ma $x 22.15 \mathrm{~mm}$) was used except for a $200 \mathrm{~cm} C$-Band to P-Band to C-Bend wavegutde filter. Six 90° bends (4 E plane and 2 H plane) were used and the total length of the waveguide run was about 15 meters. The theoretical loss (waveguide and bends) for single mode transmission was about 3 dB at 120 GHz for this system.

Spatial resalution is deterained by two factors. Resolution along the major radius is set by the frequency resolution of the grating instrument, and is about 3 cm (3 dB point). The spot size of the waveguide stub antenna viewing the plasma determines verthcal and horizontal resolution. for the single mode system used in this experiment the vertical resolution was about 6 cm , and the horizontal resolution about $13 \mathrm{~cm}(10 \mathrm{~dB}$ points) at $\mathrm{R}=1 \mathrm{du} \mathrm{cm}$ as calculated from Ref. 7. Antenna spot size could have been reauced by moving a smaller waveguide stub closer to the plasma, but this would have blinded another diagnostic. C. Filters

A major problem with electron cyclotron emission measurements during this experiment was that the broadband detectors, which must detect a few tens of nanowatts at 120 GHz , are sensitive to stray radiation from the $60-\mathrm{GHz}$ r $100-\mathrm{kW}$ heating pulse. Such interference was completely eliminated by inserting a wavequide filter with a cutoff at $73.76 \mathrm{GHz}(F$ Eand) into the transmission line. The linear tapers used (C Band to F Band to C Band) had a theoretical $10 s s$ (mode conversion) of about 10% each.

Instrument sensitivity with the filter in place was reduced by a factor of 3.5 to 5.5. Although this was a severe penalty, a signal to nolse ratio greater than 100:1 (RMS) for Zive of the ten channels, was still obtained and was adequate for these meagurements.

The magnitude of the reduction in sensitivity was somewhat larger than expected, as can be seen from the following analysis. The polarizer near the input to the transmission line (Fig. 2) allows only $\mathrm{TE}_{\mathrm{NO}}$ modes ($\mathrm{N}=1,2,3 \ldots$) to propagate in the waveguide. However, diffraction at the input aperture of the grating instrument (50 whe 12 mon, wave E fiela parallel to the short dimension of the aperture) is such that only the first two TE modea are well coupled to the input mirror. Since, for black body emission, energy per waveguide mode is $k \mathbb{T}^{\Delta f}$, where k is Aoltzmann's constant, $T e^{\text {is }}$ the electron temperature, and Δf the frequency resolution ($\sim 2.4 \mathrm{GHz}$) of the instrument, this diffraction limits the energy throughput of the grating polychromator.

Thus, insertion of a waveguide filter which allows only a single TE mode to pass should reduce the throughput by about a factor of two, not including resistive losses in the linear tapers and the fundamental waveguide, which should be of the order of 1 dB .

The only other factor which could account for the higher than expected attenuation is the misalignment of the transmission line. This would convert. energy in the fundamental mode to higher modes which would be rejected by the mode filter.

One further problem with a grating instrument can be seen from Eq. (i). A channel tuned to accept power at a wavelength λ also accepts power at $\lambda / 2$, $\lambda / 3$, etc., i.e., at higher orders. Low pass grating filters ${ }^{B}$ were mounted in the 90' waveguide bends. These had a very rapla rolloff (100 dB/octave), low attenuation in the passband and eliminated higher order light from the input to the instrument.

D. Calibration

The system was calibrated by normalizing the output of each of the ten channels to the electron temperature measured at the corresponding channel

Abstract

cadius by T. V. Thomson Scatering (TiTS) on several ohmic discharges. The ercor bars shown on Figt, 5, 6, and 9 on the pe profiles using ECE data reflect the uncertainty in the calibration constant of each channel. The uncertainty arises Erom discharge to discharge itreproducibility of the plasma and gystem noise present in both the bxE and TVTG data; both systems measure a profile along a majox radius in the equatorial plane.

It is important to note that the ECE systam avecages the electron temperature over a much larger plasma yolume (3 dm $\times 6$ cm $x 13$ cm) than does TVTS ($1 \mathrm{~cm} x 1 \mathrm{~cm} x \quad 1 \mathrm{~cm}$) Poot regolution along the toroidal field (13 cm resolution - 10 dB point is not important since temperature gradients in this dicection are negligible. However, the poorer sacial and vercical regolution can lead to lower electron temperatures at the plasma certer, compared to Thomson scattering data, especially darkrg sawtooth activity, Forturately, in this case, the volume of plasma involved is smal, so that this deficiency is tolerable.

3. EHECTRON CYCLOTRON HPATING (ECH) RESULTS

A. On-aris Location of the Resonarce Bones

Electron heating with the regonance zone located close to the center of the plasma dg shown in Flg. 3. The centcal electron temperature roze rapidiy (e-folding time n 7 msec), and strong sawtoothing (period ni msec) began about 10 mec after the start of the beatirg pulae. That the f (o) tise time is much ahorter than the heating pulse indicates thac, at leagt for understanding the gross features ti plasma behartor during bet, a 40-msec pulse is adequate.

When the heating pulse encied, the central Te fall the was mucio greater than the initial cige time. For exampla, in Flg. 3, Te (f $=144,4$ cm) remains nearly constant for about 50 misec after the end of the heatirq pulse the
post-heating behavior of the electron temperature will be discussed in a later gection.

An expanded whew of the sawteeth generated during ECH is shown in Fig. 4. The distortion in the temperature rise during ECH on these signals is caused by the $8-\mathrm{Hz}$ low-frequency 3 dB point of the digitizer preamplifier. The sawtooth period is around 4 msec, but is in fact somewhat irregularit 0.5 ms), perbaps nise to the presence of a large amplitude $m=1$ oscillation with a frequency of about 11 kHz . (Strictiy speaking, one can only say from Fig. 4 that this is an m-odd oscillation, but since it is so closely associated with the termination of the gawtooth, it is reasonable to label it as $m=1.1$ This oscillation continues for about one-half the sawtooth period, in contrast to What is observed during an ohate heating sawtooth, where the $m=1$ oniy appears immediately before the discuption; frequently only one or one-half eycle of the $m=1$ is seen in ohmic sawtooth.

The 180° change in phase on che $m=103 c i l l a t i o n$ between $R=133 \mathrm{~cm}$ and $R=139 \mathrm{~cm}$ indicates that the center of the discharge is near $R=136 \mathrm{~cm}$, and that the maximum T_{e} was not abserved by the grating instrument.

A comparison between ECE and TVIS data is shown in Fig. 5 (top of a sawtooth) and Fig. 6 (700 $\mu \mathrm{gec}$ after sawtooth collapse). These are two similar discharges; note that the maximum central T_{e} is observed by TVTS at the top of a sawtooth, and that the BCE data points straddle the peak of the T_{e} profile and are in excellent agreement with TVIS. The amplitude of the T_{e} sawtooth is far larger than whet is normally observed during ohmic, ICRH, or beam-heated discharges. Here it is found that $\Delta T / T \mathrm{MAX}=0.41$, and that the central T_{e} drops by about 900 eV from 2.45 keV to 1.55 keV in legs than 50μ sec in a typical internal disruption.

It is clear that, because of the presence of such large sawteeth, the figure of merit usually employed to characterize tokamak heating must be applied with discretion. This figure of merit is defined as the measured central temperature increase (ΔT) times the average density (N_{e}) divided by the RF input power (P_{RF}). For the case of DCH whth the resonance zone located at the center of the plasma, the figure of merit is $\left(N_{e}=0.6 \times 10^{13} \mathrm{~cm}^{-3}\right.$, $\left.P_{R F}=75 \mathrm{~kW}\right):$
top of sawtooth:
bottom of sawtooth:
average (middle of sawtooth):
$9.2 \times 10^{13} \mathrm{eV} / \mathrm{kw} \mathrm{cm}{ }^{3}$
$2 \times 10^{13} \mathrm{eV} / \mathrm{kW} \mathrm{om}{ }^{3}$
$5.6 \times 10^{13} \mathrm{eV} / \mathrm{kH} \mathrm{cm}{ }^{3}$
B. Off-axis Location of the Resonance zone

The time evolution of the electron temperature during ECH $\boldsymbol{R}_{\text {RES }}$ $=141.7 \mathrm{~cm}, R_{0}=135 \mathrm{~cm}$) is shown in Fig. 7. In this case, a rapid rise (e-folding time ~ 7 msec) was followed by a gradual increase in central $T \mathrm{e}$ but without the generation of any MHD activity. The fall time in $\mathrm{T}_{\mathrm{e}}(0)$ after the heating pulse was, as for the case of on-axis heating, much greater than the rise time.

The figure of metit for off-axis heating is $\sim 5.5 \times 10^{13} \mathrm{eV} / \mathrm{kW}-\mathrm{cm}^{3}\left(\bar{N}_{\mathrm{e}}=\right.$ $\left.10^{13} \mathrm{~cm}^{-3}, \mathrm{P}_{\mathrm{RF}}=80 \mathrm{~kW}\right)$. This compares very favorably with what is observed 9 with neutral beam heating and ICRH on PLT, $2.5-4 \times 10^{13} \mathrm{eV} / \mathrm{kw}-\mathrm{cm}^{3}$.

A comparison between the TVIS temperature profile and the ECE profile is shown in Fig. 8 for off-axis heating. Once again, the good agreement betweer. the two diaqnostics indicates that bulk heating is obtained and production of nonthermal electrons is very small.
C. Post Heating Changes in the Electron Temperature Profile

The slow decay of the central electeon temperature after on-axis or offaxis heating (Figs, 3 and 7) remaing difficult to explain. At first it seemed
as if the rapid rige in line average density after ECH = 5J\% in 150 msec (Fig. 9) - might cause this slow decay. In another experiment in which line average density was better controlled, this density rise and the slow T_{e} decay were absent. However, results from a computer simulation (Section 4 and Fig. 12) indicate that this density rise cannot cause such an effect. Thus, this point remains unclear and hopefully will be investigated in a future series of experimerts.

D. ECH in Very Low Density Regime

It is well known that ECH power in the X-mode, firgt hammonic, incident from the high field side of the tokamak can preferentially increase the perpendicular energy of the high energy tail of the electron distribution. ${ }^{10}$ In the very low density regime ($\mathrm{N}=0.13 \times 10^{13} \mathrm{~cm}^{-3}$), (Fig. 10) the optical depth at the firgt harmonle 0-mode is: $\tau_{0,1}=0.2$ ($T_{e}=2$ keV). Almost 80\% of the incident 0 -mode power is available to be converted to x-mode in a poorly focused beam for additional heating (Power Transmitted/Power Incident $=$ $e^{-\tau}$). This situation $1 s$ ideal for the production of nonthermal and runaway electrons.

From Fig. 10 it can be seen that the emission from the outer partion of the plasma increased much more than the emission from the center of the plasma during heating. After the heating pulse, emission from the central and outer regions at first decayed, but then increased rapidly as the digcharge ran away.
-ecause the optical depth of the outer portion of the plasma is less than that of the center, emission from this region is more sensitive to the presence of nonthermal electrons in the discharge. Thus, the large relative Increase in emission during heating measured by the channel labeled $\mathrm{a}=155 \mathrm{~cm}$ is a clear indication of the buildup of the superthermal population.

In fact, for this low density discharge, $\xi_{\text {r }}$ the ratio of the mean drift velocity to the random thermal velocity, is of otder one even before the gtart of the heating. It is, therefore, difficult to distinguiah between the importance of the ohmic heating electric field and the ECH in oreating runaways. However, the fact that runaway only occurs 20 milliseconds after the heating indicates that the interaction between the superthermal population and the ohmic electric field is not the dominant one during ECH.

An estimate of $T_{1}(0)$ of the superthermal population created during CH can be made for this discharge. Since the resonance zone is located at the plasma center ($R=136 \mathrm{~cm}$), the superthermal population should be localized in this region. The emission observed on the channel labeled $\mathrm{R}=155 \mathrm{~cm}$ \{f $=$ 104.3 GHz) for thermal electrons actually originates at the plasma center: because of the relativistic mass increase of the superthermal electrons, their emission frequency is downshtfted from $f=118.8 \mathrm{GHz}(R=136 \mathrm{~cm})$ to $\mathrm{E}=$ 104.3 GHz. The relativistic mass increase is given by $m_{0}[f(136 \mathrm{~cm}) / f(155 \mathrm{~cm}]$, where M_{0} is the rest mass of the electron. This indicates that $T_{1}(0) \geqslant 70 \mathrm{keV}$. The equipartition time for such electrons with the background plasma $\left[T_{e}(0)=2\right.$ kev, $\left.N_{e}(0) \approx 1.8 \times 10^{-2} \mathrm{~cm}^{-3}, Z_{e f f}=2\right]$ is approximately 22 maec. Thus, these energetic electrons are decoupled from the bulk electron aistribution.

A more sensitive test for the creation of superthermal electrons during electron cyclotron heating is the simultaneous measurement of second harmonic enission on the high- and law-field side of a tokamak ${ }^{11}$ in a discharge where ξ is much less than 1. In the present experiment, one has a clear indication that ECH Can indeed create a superthermal population and nodify ine electron velocity distribution substantiall's but a more thorough study remains to be done.

4. HESULTS FRON THE COMPUTER SIMULATION

Sinse the power deposition prufile during election cyclotron heating is underatood, it is possible to study electron energy transport using ECH. This is of fundamental fmportance, as the major erergy loas channei in a cokamak plasma is via anomalous electron heat conductivity. Global electron esergy transport is much larget than what is predicted by neoclassical theory, even though ion energy transport is of the same order as that given by this theory.

To invegtigate transpurt, BALDUR, 12 a one-dimensional transport code, has been coupled ts a ray tracing code which computes ray paths and associated power deposition in the plasma. The line average density and the loop voltage and curtent are used as inpurs in the BaLDUR code. The cransport coefficients are modelled such that the simulation temperature and density profiles are consistent with the TVIS profiles obtained during an ohmic discharge. The location of the plasma center was determined from an MHD equilitrium solution to the Grad-Shafranov equation.

The transport model used for the BALDUR ECH gimulation is sumarized in Table II. Other assumptions are that impurity radiation for these low density diverted discharges is natiigible, and that the density is controlied by adjusting a gas puffing rate to produce the desired inne average density.

Results of the simulation for the case of off-axis heating ($\mathbf{r}=4 \mathrm{~cm}$) are shown in Fig. 11. Good agreement is obtained between the simulation and TYTS and second harmonic ECE measurements with a single transport model used in both the $O M$ and ECH phages, In addition, the same X_{g} (electron thermal conductivity) model which fits the dats with the resonance located off-axis also fits the data for the on-axis heating case.

The observed evolution of $T(0)$ for the case of on-axis heating is compared to that caleulated by the computer gimulation in Fig. 12. Note that the simulation prealcts a rapid drop in the central temperature after heating, which is very different from what is observed in the experiment (Figs, 3 and 7). The time evolution of E_{e} (Iine average dengity) used in the simulation is shown th the insert in Fig. 12A. Therefore, the slow $T_{e}(0)$ decay after ECH cannot be explained by the use in line average density after ECH.

Experimental data for a case of on-axis heating in which \vec{N}_{e} fas better controlled is ghows in Fig. 12B. Here N_{a} decreased duxing heating but then only rose to its preheating value (insert, Fig. 129). This discharge was identical to the one previously studied except for the post heating behavior of the line average density. In this case, simulation and experiment are in much better agreement with regpect to the pogt heating behavior of the central electron temperature. Yet the reason for this remaing unclear. It is hoped this can be resolved in a future experiment.

In these experiments, the auxiliary heating power (680 kW) was much legs than the total onmic heating power ($\sim 250 \mathrm{~kW}$). However, locally the ECH power was equal to or greater than ohmie heating power for a plasma radius $z=620 \mathrm{~cm}$. Therefore, that the regults can be matched with a transport model which does not change during heating is very encouraging but not unempected, since the discharge is not really changed very much globaily. Still, gubstantial changes could be made in the discharge with the resonance zone located near its center; profile control was clearly demonstrated in these expertments. These experiments will have to be repeated at porer levels of the order of the ohutc heating power before any deftnitive conclustons about global transport can be drawn.
5. CENTRAL EOWYR DEPOSITION

Abstract

Ray tracing calculations indicate that almost all of the ECH power is deposited inside the sawtooth inversion radius. These calculations can be checked roughly by using the measured rate of rise of $T_{e}(0)$ during a sawtooth as Eollows

$$
P_{D}=\frac{d T_{e}(0)}{d t} \cdot N_{e}(0) \cdot \frac{3}{2} \cdot 2 \pi^{2} R_{0} b^{2} \cdot a .
$$

Here P_{D} is deposited power from ohmic heating as well as electron cyclotron heating, a is a constant which depends on the shape of the T_{e} profile inside the inversion radius b, R_{o} is the plasma major radius, and $N_{e}(O)$ is the electron density inside the inversion radius, For the peaked profiles obtained from on-axis heating, we have taken $a=0.5$ (triangular profile). From other grating instrument T_{e} measurements, the inversion radius for the gawtooth is located at $R=145 \pm 1 \mathrm{~cm} ; L=B \mathrm{~cm}$. Hith $\mathrm{R}_{\mathrm{o}}=137 \mathrm{~cm}$ and $d T_{e}(0) / d t=900 \mathrm{eV} / 4 \times 10^{-3} \mathrm{sec}$, we have $P_{D}=70 \mathrm{kf}$. This is in quite reasonable agreement with calculations which indicate that about 80 kW total heating power is deposited inside the inversion radius for on-axis heating.

6. DISCUSSION

It is evident that the grating instrument is able to follow electron temperature profile evolution during electron cyclotron heating experiments. Interference from the high power heating pulse on the sensitive broadband detectors in the instrument has been eliminated. The well-behaved emission observed near the plasma edge, where lower optical depth enhances sensitivity to superthermals, as well as the good agreement between TVTS T profiles and ECE T_{e} profiles, indicates that only buik electron heating is observed at higher densities $\left(N_{e}(0) \geqslant 1 \times 10^{13} \mathrm{~cm}^{-3}\right)$. In very 10 density discharges
there is a clear indication that superthermal elestrons are created during ECH,

The intense MHD activity indiced in the plasma during on-axis BCH was somewhat surpriging. This has not been previousiy observed ${ }^{13,14}$ in other ECH experiments. As noted in Table I, the sCH anterna spot size was approximately 10 cm is diameter (10 dB points) at $\mathrm{R}=140 \mathrm{~cm}$. This is smaller than the diameter of the $q=1$ region ($\sim 16 \mathrm{cml}$, as defined by the location of the inversion radius when sawteeth were presenc. Thus, for pDK, it is in fact reasonable that large amplitude sawteeth could be generated for on-axis heating. What is lesa comprehensible is that a displacement of the resonance zone of only 4 ca , which would mean that most of the ECH power is still deposited inside what should be the $q \Rightarrow$ surface, resulted in heating without any MHD activity.

Computer studies of these experimenta using the same transport model or both on-axis and off-ixis heating predicted the onget of sawterthing for on axis heating and the absence of sawroothing for off-axis heating. Sawtooth behavior was a sensitive function of the plasma center - resonance zone separation for the X_{e} model used in the almulation. Unfortunately, this linited set of data cannot be used to make more general statements about electron thermal conductivity, A more extengive gtudy is needed and is planned to be done on PLI (Princeton Large Toras) in the near future.

The effictency of electron cyclotion heating compares well with that observed with other heating methods. It is clear, however, that the intense MHD activity observed during on-axds heating must be taken inta consideration in any calculation of heating efficiency. In contrast to these other heating methods, the MHD actionty in the center of the discharge can be concrolled simply by shifting the location of the resonance zone.

ACKNOWLEDGMENTS

Abstract

We would like to thank N. Bowen, J. Doane, M. Goldman, P. Manintveld, R. Polman, M. Vocaturo, E. Fredd, N. Greenough, J. Lawson, and R. Sorenson for operating the meH syatem; K. Bol, R. Fonck, R. Goldston, R, Kaita, S. Kaye, H. Kugel, K. McGuire, M. Okabayashi, G. Schmidt, and the PDX Group for their help and support during these experiments. Discussions with I. Fidone reyazding the low density ECH experiments were most helpful.

The technical assistance of Robert cutler on the grating polychromator is very much appreciated.

This work is supported by U.S. DOE Contract DE-ACO2-76-CHO-3073.

REFERENCES

1 M. Bornatici et al., Nuc1. Fusion 23, 1153 (1983).

2

3

4
Y. Carmel et al., Phys. Rev. Lett. 50, 112 (1983).
J.L. Doame, Princeton Plasma Ehysics Iaboratory Report No. PPPL-2071, 1984.
H. Hsuan et al., Princeton Plasma Physics Laboratory Report No. PPPL2114, 1984
J. Fischer, D. Boyd, A. Cavallo, J. Benson, Rev. Sci, Inst. 54, 1085 (1983).
quC Instruments, Ltd., 229 mile End Road, London, U.K.
L.J. Chu, J. App. Phys. 11, 603 (1940),
G. Tait, Fifth International Conference on IR and MN Waveg, Wurzburg. W, Germany (October, 1980), paper T8-4.
D. Hwang θ 它祭. Plyy. Rev. Lett. 51. 1865 (1983).
I. Fidone, G. Granata, R.L. Meyer, Plama Phys. 22, 26!, (1980). TFR Group and I. Fidone, Phys. Rev. A, 24, 2B61, 1981. A. Silverman, D.E. Post, C.E. Singer, D.R. Mikkelsen, and the PPPL 'Transport Group, Frinceton Plasma Physics Laboratory Report AP \#23, 1983.
H. Piekadr, R.M. Sillen, Th. Oyevaar, A. Cavailo, $1 . R$. B2/056, FOM Institute for Plasma Physics, Nieuwegein, the Netherlands, October, 1982.
R.M. Gilgenbach, A.E. England et al., Phys. Rev. Lett. 44, 647 (1980).

TABLE I

Summary of Experimental Conditions for the ECH Experiment

Plasma:

$$
0.26 \times 10^{13} \mathrm{~cm}^{-3} \leqslant \mathrm{~N}_{\mathrm{e}}(0)<2.5 \times 10^{13} \mathrm{~cm}^{-3}
$$

$$
I_{p}=250 \mathrm{kF}
$$

$$
T_{e}(0)=1.3 \mathrm{kev}
$$

$$
P_{\mathrm{OH}} \simeq 250 \mathrm{~kW}
$$

$$
\bar{\tau}_{E_{e}}=12 \text { msec }
$$

Elertron-Electron Collision T1me $\left(\mathrm{N}_{\mathrm{e}}=1.5 \times 10^{13} \mathrm{~cm}^{-3} \mathrm{~T}_{\mathrm{e}}=1.5 \mathrm{keV}\right) \approx 70 \mu \mathrm{sec}$.

Optical Depth - O-mode, 1st Harmonic
$\left(N_{e}=10^{13} \mathrm{~cm}^{-3}, \mathrm{~T}_{\mathrm{e}}=1.5 \mathrm{keV},\right) \simeq 1.56$ (80% single pass absorption)

RF System: 60 GHz - D-mode - Outside Antenna
Antenna Spot Size $(R=140 \mathrm{~cm})=10 \mathrm{~cm}(10 \mathrm{~dB}$ points)

$$
\begin{gathered}
P_{R F}(\text { gyrotron })=100 \mathrm{kH} \\
\mathrm{P}_{\mathrm{RF}}(\text { into plasma })
\end{gathered}=75-80 \mathrm{~kW}
$$

BALDUR Tzanaport Model for ECH Simulation

Esperimental PDX - ECH Data Fit with

$$
c_{1}=\therefore \times 10^{17} \quad c_{2}=0.05 \quad c_{3}=1.0
$$

$$
x_{1}=3 x_{1} \text { (Einton-Haseltina neoclassical) }
$$

$$
D_{H}=D_{\mathrm{H}}(\text { neoclassical })+2.7 \times 10^{16} / \mathrm{N}_{\mathrm{e}}
$$

Boundary Conditions:

$$
\begin{gathered}
T_{e}(a)=T_{i}(a)=40 \mathrm{eV} \\
N_{e}(a)=4 \times 10^{12} \mathrm{~cm}^{-3} \\
\text { Here: } N_{e}=\text { electron censity } \\
T_{e, i}=\text { electron, ion temperature } \\
r / a=\text { normalized plasma radius }
\end{gathered}
$$

$$
x_{e, i}=\text { electron/ion thermal conductivity }
$$

$$
D_{H}=\text { particle diffusivity }
$$

In addition:
Ohmie heating is determined using Spitzer Resistivity.
The model includes the Ware Pinch.
90* particle recycling is assumed.

FIGURE CAPTIONS

Fig. 1 Schematic of the 10 channel Grating Polychromator.
Fig. 2 The PDX lighic transport system.
Fig. 3 Electron temperature vs time at four radil for on-axis heating. The rapta rige of $T_{e}(x=-3$ cm) at the start of the ECH heating at 400 mgec, the sawtooth activity in the central region of the plasma and the slow post-heating fall of T_{e} are seen most cleariy in the ingert. The full sawtooth amplitude is not shown here. The plasma/heating conditions for Figs. 3, 5 , and 6 are $N_{0}(0)=1.2 \times$ $10^{13} \mathrm{~cm}^{-3}, I_{P}=260 \mathrm{kA}, P_{R F}=75 \mathrm{kH}, R_{R E S}=135.5 \mathrm{~cm}, P_{O G}=$ $250 \mathrm{~kW}, \mathrm{t}_{\mathrm{E}}=12 \mathrm{msec}$.

Fig. 4

Fig. 5

Fig. 6

Fig. 7 Electron temperature vs time ior off-axis ECH. The rapid initial rige, the lack of MED activity and the unexpectedly slow fall of the central T_{e} can be seen in the insert. The piasma/heating parameters for the discharges shown in Figs. 7 and B are: $I_{p} \simeq 250$ $\mathrm{kA}, \mathrm{N}_{\mathrm{e}}(0)=2.1 \times 10^{13} \mathrm{~cm}^{-3}, \mathrm{P}_{\mathrm{RF}}=80 \mathrm{~kW}, \mathrm{R}_{\mathrm{RES}}=141.7 \mathrm{~cm}, \mathrm{R}_{\mathrm{O}}=136$ cm.

Fig. 8 off-axis heating; a comparison of TVTS and ECE profiles at 440 mee (the end of the 40 msec heating pulse).

Fig. 9 Line averaged density, plasma current (I_{p}), and loop voltage for a typical ECH experiment.

Fig. 10 ECH heating of a low density plasma: $I_{p}=250 \mathrm{kA}, \mathrm{P}_{\mathrm{RF}}=70 \mathrm{kH}$, $R_{\text {RES }}=135 \mathrm{~cm}_{\mathrm{r}} \mathrm{N}_{\mathrm{e}}=0.13 \times 10^{13} \mathrm{cma}^{-3}$.

Fig. 11 A. Te profile before DCH, BALDUR simulation TVTS, and ECE data compared, $t=400 \mathrm{~ms}$
B. Te proffle after ECF, resonance zone 4 cm off-axis. EALDUR simulation, TYTS and ECE data compared $t=440 \mathrm{~ms}$.

Fig. 12 A. Computer simulation of $T_{e}(0)$ vs time. N_{e} evolution shown an insert.
B. Experimental data $T_{e}(0)$ vs time. N_{e} programmed to return to its preheating value (ingert).

10 CHANNEL GRATING POLYCHROMATOR

Fig. 1

Fị̆. 2

Fig. 3

Fig. 5

Fig. 6
\#84×0138

Fig. 7

Fig. 8

Fig. 9

Fig. 11

Fig. 12

Plaspe Res Lab, Austra Nbtil Univ, australia Dr. Frank J. Paolonl, Univ of mollongong, AuStRALiA
Prof. d. R_{e} Jenes, Filnners Unlv., Australia
Prof. MaH. Erennon, linlv Syaney, AUSTRALIA
Prot. F. Cup, Inst Thoo Phys, Austria
Prof. Fronk Verhoest, Inst theoretisehm, BELGILM
Dr. D. Paiumbo, Dg Xil fuslon Prog, BELGIUM
Ecole Royale Militaire, Leo de Phys Plasmas, EELGIUM
Or. F.M. Sakanaka, Univ Estadodi, BRAlil
Or. C.R. Jemes. Unlv of Alderta, CANADA
Prot. S. Teichmann, Uniy of Montreal, CANADA
Dr. H.H. Skarsgera, Univ of Saskatchemen, CAMADA
Prot. S.R. Sreanivasan, University of Calgery, CAnada
Prof, Tudor K . Johnston, INRS-Energle, CAMADA
Dr. Hantss Bariard, Unlv British Columbia, CAhank
Dr. M.P. EechynskI, MPE Teennologies, Inc., CMADA
Zhengmu Lb, SH Inst Physics, CHINA
Library. Tsing Hut University, CHINA
Librerien, Institute of Physics, CHINA
Inst Piesma Phys, Academia Sinica, CMINA
Dr. Petor Lukec, Komenskeho Unlv, CZECHOSLOVaKIA
Tne LIbrerlan, Culham Laborstory, ENGLAND
Praf. Schatzman, Observatoire de Nlce, FRAMCE
J. Radet, CEn-ep6, france

AM Dupas Llbrary, AM Dupas Library, fRAMCE
Or. Tom Mual. Academy Blbliogranhlc, HONG KONG
Preprint Library, Cent Res Inst Phys, hungary
Or. S.K. Trehen, Panjed University, IMDik
Dr. Indre, monan lal Des, Boneras hindu Unlv, INDiA
Dr. L.K. Chevad, South Gujaret Univ, IMDIA
Dr. R.K. Cnnajienl, Var Ruenl Merg, iNDIA
P. Kbw, Physical Research Lob, INDIA

Dr. Pnilitp Rosenbu, israel Inst Teen, ispael
Prot. S. Cuperman, Tel Aviv Universlity, ISRAEL
Prot. G. Rostagnt. Univ DI Padove, ITaly
Llprarian, int'l Ctr Theo Pnys, ITAly
Miss Clella De Palo, Assoc ELRATOH-CHEN, ITALY Eitlioteca, del Cir eurator, ITALY
Dr. H. Yumeto. Tosnide Res \& Der, dapan
Prot, M, Yoshlkawe, JAERI, TokBi Res Est, JAPAN
Praf. T, Uemlas, University of Tokyo, JRPAN
Reseerch Info Canter, Nagay $\begin{gathered}\text { University, JAPAN }\end{gathered}$
Frot. Kyoji Nishikeme, Uniy of HIroshlme, JAPAN
Pret. Sigory Morl, dherl, dhPAN
LIbrory, Riyoto University, JAPAN
Prof, lehire Kamakami, Nihen Unly, Jafan
Prot. Satoshl Iteh, Kyushy Unlyarsity, JAPaN
Tech Info Division, Korea Atomic Erergy, KOREA
Dr. R. England, Civdec Universiterla, MExico
E1bliotheek, Fom-Inst Visor Plasme, NETHERLANDS
Frof. E.S. Lllay, Univarsity of wolkato. NEm ZEALAND
Dr. Surash C. Sharma, Uislv of Calabar, NiǦRIA

Prof. J.A.C. Cebral, Inse Superior Tech, PORTUEAL Dr. Octavian Petrus, AlI CLEA Unlversity, ROMANIA Prot. M.A. Hellberg, Universlty, of Natel, 50 AFRICA Dr, Joman de Villiars, Atomic Energy Bo, 50 AFRICA Fuslon Div. LIbrery, JEN, SPAlN
Prot. Hens wlihelmion, Chblwers Univ Tech, Smeden Dr. Lannart Stentlo, Universtity of UMEA, SWEDEN
LIbrary, Royal Inst Tech, SwEDEN
Or. Erik T. Karison, Uppsaio Unlwersitat, SWEOEN
Cantre de Recherchesen, Ecole Polytech Fad, SwITZERLAND
Dr. Wat. Welse, Met'; Bur Stanc, USA
Dr. W.M. Stacey, Georg Inst Tech, usa
Or. 5.T. Wu. Univ Alabems, USA
Prot. Norman L. Olason, Univ 5 Fleride, uSA
Dr, Benjamin Ma, lowa State Unlv, USA
Prot. Magna Kristlansen, Texas Tect Unlv, USA
Dr. Raymend Askiv, Auburn Unlv, USA
Dr. V.T. Tolok, Kharkov Phys Teen Ins. USSR
Dr. D.D. Ryutov, SIberian Aciod Sci, USSF
Dr. G.A. Eilseev, Kurchetov Institute, LSSR
Dr. V.A. Gluknikn, Inst Electro-Physical, USSR Institute Gen. Physics, USSR
Prot. T.d. Boyd, Unlv College N Wetes, Whes
Dr. K. Schindier, Ruhr Univarsitat, W, germany
Nuclear Res Estab, Jullat LTd, H. GERMANY
fibrarian, Maxtianck institup, w. GEPAANy
Dr. H.d. Kisppler. Unlverslty Stuttormp, W. GERmANY
Blblechak, Inst Plasmbtorschung, H. ERMANY

