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ABSTRACT

The SLAC Electrop Trajectory Program is described and fnstruccions

and examples for users are glven., The progrom s specifically wrirten

to compute trajectories of charged particles in electrostatic and mag-

netostatic focusing systems including the effects of space charge and

self-magnecic fields. Scarting options inctude Child's Law conditions

on cathodes of varlous shapes. Either treccangular or cyiindrically sym-

metric geometry may be used. Magnetic fields may be specified using

arbitrary configuratjons of ceils, or the output of a magnel propram

such as Poisson or by an externally calculated array of the axial
fielda.

The progrum is available in IBM FORTRAN but can be easily converted

for use on other brands of hardware. The program is intended En be used

with a plotter whose incerface the user must provide.
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1. INTRODUCTION

This report is intended a5 2 user’s reference manual for the SLAC
Eiectrun Trajectory Program. It contains all the currently relevant
materfal from the earlier publicatiens about this program which were
SLAC-51 and SLAC-166. “n additioam, 1 have included specific ingtirue~
tions for using a aumber of the special features which have been added
to tire prograa. These features have usually been incorporated as a direcc
result of the neads of scme parricular user and T wish €0 take this oppor-
tunity fo express thanks to everyone who has at some time or other sug-
gested improvements to the profram. I think we have all benefited by this
open process and it is for the purpose of making all these features bet-
ter availshle that vhis report is being prepared, The most recent varsion
cf rhe progranm has benefited greatly from some eareful program house
cleaning, including a complete revision of the plotting sections, making
the problem of fpterfacing with other plotter systems much easler, It
is a pleasure to acknowledge the contributions pof Glen Herrmannsfeldr in

making these improvements,
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I1. APPLICATION

The SLAC Election Optics Program is specifically written to calcu-
late alectron trajectories in nlectrostatic and magnetostaric fields.
Poigson's equation is solved by finite difference equations using bound-
ary conditicns defined by mpecifying the type and position of the bound-
ary. Electric fields are determined by differentiating the potential
distrlbution. The elecrron trajectory equations are fully relativistic
and account for all possible elactric and magnetic field components.
Space charge forces are realized through appropriate deposition of
charge on one cycle followad by another solution of Poisson’s equation
vhich is in turn followed by another cycle of trajectory caleculations.

The progrenm may be used in either rectangular or cylindrical coor-
dinates. A special option allows space chatge forces in a cylindrical
beam to be calculated in a rectangularly symmetric array of electric and
magnetic fields, Magnecic fields are read io either as axial srrengths
or as arrays of colla with specified coerdinates and currents. The pre-
ferred technique of defining the magnetic ficld is to calculate the
axial field from an arbitrary configuration of solenoids. Altermatively,
the program accepte the output data from a magnet design program, which
can include the -effects of gaturoble fron. 1In cylindrical caordinates,
the magnetic flelds are axfally symmatric. Off-axis fileld componeats
are calculated by & sixth~order expanrion of the radial coordinate. Tn

Tettsngular coordinates the external field is assumed to be normal to

the plane of the problem, which is sgsumed to be the medign plane. OIf-

e d y
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median plane cowpaments are calculated by expansion of the perpendicular

coordinare,

Electron trajectories may be started by three methods:

1. Child's lav for spherical geometry based on Pierce geomerry.

2 Child’s law for generalized cathodes including effects of
holes, shadow grids and other irregularicies.

Direct input of the starting conditions, including the Qutput
from previously run problems.

The program ig designed te yield & combination of printed and platted
output. Printec cutput includes sll fnrut data, Waps of the potenefal
fields, starting conditions for esch cycle, and Elnal conditicns far
each cycle. FPlocted gutput s made for the trajectory calculations and
for equipotential lines. Plotted output may be obtained for selected

cycles alvays including the last cycle.

11I. IMPLEMENTATION

The program is written in IBM-style FORTRAN IV. Remsonable appli-
cation requires about 400 K bytes of total storage. Running times vary
greatly with the problem and the computer. However a “rypieal” problem
run on an IBM 370-168 takes about 2 minutes.

The progron is designed for use with a computer comtrolled plotter.
Data needed for plotting are placed on an external storage device (dimk)
from which they are called by a ploteer Interface prograz. S5Such a pro-
gram callipg standard CALCOMP routines is available and can be uged as a

model for users with other plotter cystems.



IV. CENERAL DESCRIPTION

Starting with the input boundary description, the program first
solves Laplace's equation (i.e., Poisson's equation withour space charge).
The result of this calculation, together with all the boundary informa-
tion is then printed.

N¥ext, the first iteration of electron trajectories 1s staried.
Thege are initiated by one of four achemes: (1) “GENERAL" cathode in
vhich electrons are started assuming Child's law holds near a surface
designated as the cathode; (2) “SFHERE" for a spherical cathode {cylin-
drical in rectangular coordinates) in which the elecrrona are assumed to
be emitted at right angles to the surface defined by a radius of curva-
ture and a radial limit. Child's law for space charge limlted current
1s again uged. (3) “CARDS™ in which the specific starting conditions
for each ray are specified. (4) "GENCARD" which combines the vorgatil-
ity of "CARDS" with the assumptions of Child's law from “GENERAL."

On the first iteration cycle, space charge forces aTe calculated
from the assumption of paraxial flow. As the tays are traced through
tbe program, space charge ia computed and sto:ed in a scparate array.
After all the electron trajectoriea have becn calculated, the program
begins the second eycls by solving Poirson's equation with the space
charge from the first iteration. For problems mecting Che paraxial
assumptions, especially if relativistic electron beams are involved,

thia one eyele may be sufficient to solve the entite prohlenm.

5

Subsequent iteratien cycles (as meny as are requested) follow the
above pattern. The Child's law calculations for the starting conditions
are remade for every cycle. Perveance converges through the iterative
process by averaging the perveance used for the previous eycle with the
perveance calculated directly frow the solutfon of Poisseon’s equation.

An additional starting option is "LAPLACE” intended for any appli-
cation of Laplace's equation not involving electron ray tracing. In
this case the wmumber of cycles is used simply to improve the accuracy of
the solution to Laplace's equation. The "LAPLACE” option includes a
provision for imputting arbitrary data in the space charge" array.

The program always operates in kyo dimensions; either R and Z in
cylindrical coordinates or ¥ and X in rectangular coordinates. The rec-
tangular cootdinate output retains the R and 2 labels however. Electron
orbits are calculated through azimuthal changes (labsled "PHIM) refer-
enced te the Z axis. In rectangular coordinates, PHI {s actually the
third Carteslan coordimate.

Magnetic fields, except for the seli-magnetic field of a beam, are
input directly In one of three ways: (1) by specifying the field along
the Z-axis, (2) by specifying a set of colls (giving position, radjus
and current), or (3) by using the vector potential ocutput from & magnet
program. lIn cylindrical coordiuates, the field is interpreted as an
axial magnetic field with radial terms as required by Masurell's equarions.
In rectangular coordinates the field is interpreted as going in the PRI
direction, i.e., at right angles to the place of the prablem. The rec-

tangular coordinate field iz assumed to extend to infinity fan ¥ (R} and
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rhe PHI = 0 planc (the plane of the problem) is assimed to be the median
plane. The Bx(nz) terms are calculated for PHI ¢ O from Maxwell's
equations.

Self-magnetic filelds are calculated for hoch coordinate systems
from the current in the rays on the present cycle. It is generally
asgumed that tha raye arg sequentially numbered Ero@ the axis outwards.
The self-magnetic field calcularion assumes all the current fror the
previous rays l1ies on the axis in an Infinitely Iong conductor. IE che
tay being calculated crogges the last preceding cay, then the current
from that ray is dropped, However, if the ray continues to cross other
rays, then the current from those rays is only dropped if the ray Roes
btelov the minimum radius of a previous ray. If several rays cross the
axis, the reswlis are apt to be somewhat incorrect, depending of course,
on how significant the self-magnetic field is. Note that 1f the self-
magnetic field 1is very significant, then almost by definition, one is
dealing with a very intense relatlviscic beam. This problem is generally
better suited to the paraxial ray ar.roach, as solved in the flrst
cycle, or to a program such as EBG (by Art Faul of LBL) which handles
the cancellation of space charge by self-magnetic {icid directly. rather
thao by tne off-setting effects of two large terms.

In rectapgnlar coordinates, the self-magnetic field assumes Sywme-
try ahout the y = 0 (R = 0) plane. If this Is not cerrect, or 1if for
other reasons it 18 desired to turn off the self-magnetic fleld, then an
external field of strength zero can be specified. In any case, in rec-
tangular coordinates, the gelf-magnecric fleld functions only if there is

no external field.

-7

A aingle variable controls plotting. If this variadle, MI, is set
to zero ro reject all plottiung, then on the first and last cycles every
tenth paint that would have been plotted is printed so ther it may be
hand platted. Normally at least the last eycle 1s plotted. The first
cycle may a’s> be plotcted or onc may even plot every cycle, All plots
way include equipotential plots, either separate or overlaid with the
trajectory plots. If there is an external magnetic field, then this
field is also plotted, overlaid on the trajectory plors. Finally, there
are a pair of simple plots; current denalty vs. radius and alpha vs.

radius. (Alpha = l:a:\_l dr/dz).

V. FPDISSON EQUATION SOLVER

A. General Description

The program contalns 2 subroutine which reads in data cards
deseTibing the boundary conditlons and calculates the coeffictents o.
the finite difference equations for cach mesh polnt within the problem.
Other subroutines are made to proceed to generate the solutiom to
Polsson's equation which match those boundary corditions. The solution
is found in terms of a set of points which fu.m a wesh of identical
squares- It Is recognizyd that a provision for a rectangular mesh
{i,e., different horizontas ond wertical spacing) wvould fmprove the
utility of the program and lL is plsnmed to incorporste *his fcature a8
soon ag possible. The potential fs calculaced for pach intersection of

the mesh. TFigure 1 shows a amall section of the mesh.



Fig. 1. Section of mesh for solution of Poisson's equation.

In rectangular coordinates, the finite difference form of Poisson's

equation is

VyH T, HVE V-GV 2 (RHL) Q)

where the ¥'s refer to thbe mmbered points in Fig., 1 and R.H. is the
value of the right-hand aide of Poisson's equation at peint 4 when wrie-

ten in the farm

v = (R.E.) @

All equations use the mesh space, h, as che basic unit, so h does not
appear explicicly.
For problems with cylindrical symmetry, the finite difference equa-

tion becomes

RY; + RU;+ (R + 1/2)V, + (R - 1/2)V; - 4RV, = R * (R.H.) (3)

4

where R is the distance in megh umits frem the axis of symmetry to the

point at 4.
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A number of refernn:esl-ﬁ give the derivation of theae equationa
and the gpecizl equations at boundariea. Thrue types of boundaries are
of intcrcst. A Dirichler boundary fs that boundary on which the potea-
tial is knowm. 1In an clectrostatic problem, this would be an electroda
fized at o given potential. An ordinary Neumann boundary is one which
lics coincident with the mesh and on which the normal derivarive of the
potential is known. In practice, the only value of the normal derivative
that is ever known is zero. Thus, for example, the axis of symmetry of
a eylindrically symmetric device has the normal derivative equal to zero
and is a Neumann boundary.

However, the axis of a cylindrical symmetry problem fm a special

case for which the difference equation is

vy + Vz + 1:\'3 - 6“4 = (R.R.) (%)

The difference equation for ordinary Neumann boundaries parallel co
either axis can be derived from Eqs. (1), (3) or (4) by setting the pocen—
tials which straddle the boundary equal to each other. Thus a vertical

Neumann bhoundary in cylindrical coordinstes has the form

2R v(l.Z) + (R + 1IZ)V'3 + (R - sz)vs - lalwl. = R x {(R.H.) (off-axis)
(5)
where the subsceipt 1 or 2 applies to the point inside the problem.
The third type of boundary i{s the general Neumann boundary, i.e.,
one which does not lie along a mesh line, It is always assumed that the

aormal derivative is zero. The program has a provision for overriding

the internally computed difference cosfEfcientsand it is feasible t.
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hand calculate difference coefficients for a general Neumann boundary,
Hovever, in practical applications to electron optics problems, it {s
almost never necessary Lo go to such extremes.

A special case of general Newmann boundary which can be handled
esagily {s the 452 Hewnamn boundary. A1l that is required 1s to specify
each guccessive point using the ordinary We. nann condition feor koth
coprdinates; i.e., both DELTAR and DELTAZ = v. A tilt:d boundary that
is s'uil"iciently far from the area of most iptorest can frequently be
adequately approximated by o combination of normal and 45° Neumann

baundaries.

B. Problem Input

In this section the rules for problem input will be describee asing
an actual exawple and follewing through the process card py card, The
new user 15 urged to read this section carefully while the old user or
Tesder trying to gain an coverall familiarity with the program may well
skip this section. In this scction esprcially, no attempt will be made
to be concise.

Condensed instructions for problem input are printed at the head of
the source listing and are {ntended to be wp-to-date. A capy of the cur-
Tent version of rhese instructions in printed in Appendix I11. The
zeader should follow the instructions which are relevant to this discus-
slon while studying the example.

Except for the TITLE, boundary input, and ray starting cards, all
input to the program is by mecans of the NAMELIST option by which certain

variables are defined at the place in which the program expects them.
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The definitions are by means of short defining statements, e.g.,
RLIM = 50. A piven set of these statements may be placed on one card,
but the number of data cards used is unimportant. Each set of inputs 1s
preceded by a designator, e.g., LINPUTL, which must begin in column 2.
Hever use colusm 1 of any NAMFLIST card. The NAMELIST hlock is cloged
by an &END entry.

Preparation for mmning a problem consists of makipg a suitable
scale drawing on graph paper. Figure 2 shows the region between cathode
and grid for the SLAC injection gun. Figure 3 is the line-by-1ine ligr-

Log of the input data.

1. Ticle and Porential Cards

(Title) The first card of rhe data set is the title card, The
cohtents of this card will appear at various points in the printed out-
put and as the title for the plots.

The second card is &INPUT1, starting in colunn 2.

‘the following remarks about array limits apply speciffcally to the
cutrent version of the program, It it supgested that most prablems
sheuld use about 5000 mesh points aithough there are occasions when auch
smaller, or somewiar larger, nmumbers of mesh points are useful.

The third card Ls the potential card, Tt contains the basic Lnfor-
mation for sctting uwp the program.

(RLIM) KLDM is the maxlmm size of the problen area in the radial
direction. RLIM can be made larger tham necessary if it is desired to
affect the way plots are scaled,

RLIM Ls a posicive integer; the present limit is 100.

sTommany
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Fig. 2. Example of preparation for a problem.
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€.C ~CefC
2.C -C.4
€. €S -C.1
2.C -1.C
7.C ~Caf
{.cc -C.t
7.C =1aC
2.C -Cati
2.C -C.3
2.¢C =-Cati
2.C -1l.¢
~C.%9 ?2.C
-£. -CeP
-C.7 2.C
-C.7 2.C
-7 c.C
2.C c.C
C,¢S t.C
(.5% 2.C
[ 2.¢
€.5¢% CeS%
-C.2 c.c¢
2.C c.?
-Ce? C.2
2. C C.P
2.C Ces
2.C €.
?2.C C.2
. C £.2
C.C 2.C
Ca € 2. €

1z€=1c, FAPRE2S7, AMAX=2T.5, LFMITIR=0.01, 5PC=0.0,

FORTRAN data prepared for the problem shown in Fig. 2.
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(2LIM) ZLIM is the maximum size of the problem 4n the axial direc-
tion. A larger chan necessary value of ZLIM may also affect the way the
plots are scaled. If an attempt is made to create a boundary which
exceeds the limits RLIM by ZLIM, or goes negative, error messages are
prinred and vhe propram will not attempt the sslution of Polsson®s
equation.

ZLIM is a positive Ilnteger; the present lluwit is 300

Mote that although the problem area is (RLIM + I} x (ZLIM 4 1) mesh
prlats th2 actual requirement is for (RLIM + 1} x (ZLIM + 2). (An axtra
colum is required as a buffer.) The present limit for the total azea
is 9001 mesh points.

(POTN) POTN is the number oi potentials which are to be read in.
There may be reasons to assign different numbers to parts of surfaces
vhich are at the same potential. Normally the cathode will be potential
nutber 1 and the anode will be number 2. Usually the grid, if any, will
be number 3. A focus electrode, even if at c¢athode patenttal, should be
asaigned a different number to enable the general cathode starring
method to be applied. The present limit for POTN is 101.

POTN is a positive integer for cylindrical symmetry.

POTN 1z a negative integer for rectangulay symmetry.

RECTANGULAR- COORDINATES. The code to the program to¢ switch to
rectangular coordinates is the sign of POIN. If POTN is negative, the
PIOgTAD assumes rectangular symmetTy and a message: RHFRECTANGULAR
COORDINATES, PHI IS TRANSVERSE appears immediately after the 1list of

potencials.

35

TIT(L) The rext numbers are the elements of the array of poten—
tials. They are read in im order from 1 to FPOIN. Porentials are car-
ried in double precision which means that up to 15 significant secimal
figures can be used. Examples of valid says of punching 250 volrs are
as follrmes: 250., 250, 2.5E2, 2500E-1, 250.000. For FAMELIST, the list
neod consi~t only of POT = (string of potentials separated by commasg).

POT(I)} 15 an element of an 2rray of floating pnint mmbers.

Negative potentials are indicated by a minum siga, e.g., -250.
Negative potentials are pernifted but it is preferable to avoid using
them. Since a constant can alvays be added to all potentials, it is
possible to make the oost negative petential zero. The reason foc
avolding negative nurmbers is that space charge is negative and some
diagnostics of the output are simplified if there are no negative poten—
tials. On the other hand, certain problems have a symmetry that can be
quickly examined 1f a2 symmetry plavme or surface is made to be zero by
having equal + and - potentials. Then negative potentials are certainly
desirable,

Note that it 1s acceptable to include potentials corresponding to
potential mubers which are not used by the problem. Ome reasen for
doing this is to get a desired set of equipotential limes on the plotter
output.

The prograc 1 intended to be run using engineering units. Thus
potentials are in volts and magnetic fields are in gauss. 1f a problem
does not use wmagneric fields or relativistic energles, there is no rea~

son not to scale the putentials. The perveance and running time will

| BRIy
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not be affeccted. However, there is also nothing gained by scalinp. of
course, when a problem has been tun at one set of potentials, all the
scaling rules of electron optics may be applied to avoid the cost of
running the problem again.

(M1) M1 18 a code number which determines the selection of plots,

If MI = 0 there are ne plots generated. However, every tenth poiut
of the trajectories 1s printed for the first and last cycles.

The following table, rep-inted from the condensed instructions,

shows the available opticna for MI

Cycle for which electron

trajectories are plotted: Initial & Final All Final
Plota vith equipotential lines i 2 3
suparimposed on trajectoricae:

Separate plots of cquipotrential 4 5 6
linenr:

No « uipotential lines: 7 8 9

MI is a posirive integar or zero. If MI is negative 1t is inter-
preted as a deliberarc boundary error for help in debugging boundaries.

TYME = X TYME = 5 MAX. PROBLEM RUN TIME (MIN.)

ITHE 13 uged to make an internal check of how much time is being
used ro gunrd againat running out of compurer time, as specified on a JOB
card, just before printing and plotting the results., TYME uses speecfol
machine language subroutlnes to measure actusl uee of CPU time which is
the parameter used to determine JOB time and charges in a mulrictask
enviromment. This avoids Bross variatlons In time due to the presence

of other Jobs on the system, The subroutlpe must be supplied by non-

-17-

Stanford users ra suit their hardware or, alternatively, dummy subrou-
tincy may be used to defeat this feature. The program only tests for

TRME oncc each <ycle and determines that there is adequate time loft to

a. thc extra plotting, ctc., that is involved in the last cyele, based

on the previous cycle time. When time appears iimired, the program cuts
out Intermediate cycies, wirh a note rhat:

THERE IS NQT ENOUGH TIME TO DO THE SPECIFIED NUMBER OF CYCLES

TYME ddes not need to correspond exactly to the job card. The user may
wish to madify the value according to his experience, or disable TYME
vntively by setting (¢ much larger than his JOB card time.

LSTPOT = 1, 2 or 3 causcs the program to print a table of the poten-
tials of all the nesh points. This ls the mosc useful dlagnostlc avail-
able for the Poisson solution and, when studied togefher with the equi-
potential plot, can show quite subtle errors. The defaule value:

L5TPOT = O, suppresses this output and thus saves quite a lot of printinrs
+f the same or a very sinmilar boundary is run pany times, The cholces

for LSTPGT cause the printiag of the first (LAPLACE) solution (LSTPOT = 1),
57 the last selution (LSTPOT = 2), or the solurions from both the first
and last cycles (LSTPOT = 3).

The parameter MAGSEG controls two of the four possible ways of
reading in magnetic fields. The example case will be explained in the

next paragraph.

2, Magnetic Field Data
Elactron oprics calculations include the effects of any external
zagetic fields that may be present. The Input methods for magnetic

ficlds have bren greatly revised and will be treated later in a speclal
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section. IF there sre exeerpal magnetic fields then the Lnput could
octur at this point. The parameter MAGSEG signals thac segments of mag-
netdc field data will follow; one segment for MAGSEG = 1, e¢te. The
namelise SINPUT2 {6 called MASSEC times to read in segments, which may
be anything from constents to sixth order polynomisl functions of Z-

Plegse note that this discussion is only included here to explaln the
GINPUT2 uameiist data card in Fig. 3. 1t is grossly incopplete an an
rxplanation of tha magnetfic field situatlon wirtck will be found in am
expanded form in Scetion VI-D.

The example problem contains a meaningless magnetic field inserted
only a3 an cxample, The magne~fc field plotted on the right-hond side
of Pig. 2 shows an axfal Field starting at % = 20 going frouw O to 500
gawss in 20 mesh upits. A sixth order expression iz used by the program
to fit the fislds on any scgment of the axis. The data on the card are
Z1 and ZZ, the limits of the vange of the segment being described; 23,
the origin for the seguent being described, and seven coefficients for

the equation:

BZA(Z) = IBC(n) (2 - 2™

n=1lt? (6}

21, Z2 and 23 are integers.

BG(n) is an element of a sevep member real array.

The pacameters 21, 22 andZ} are read ip by simple statements
(22 = 100, etc.) and are defsuleed te 0, ZLIM and O, respectively. The
coefficlenta, BE, ate read In as an array by BC = (string of coefficienta

aeparated by commas).
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A sccond oprion {MAGSET = -1) allows the axial array to be read in

directly. See Section VI-D for a description of this featur. .

3. Boundary Input

The main thing for a user of the program to lcarm is the technigue
and c-aventions used to input boundary data. Sin~e the primary npplicz-
tion for ihe progras is for ¢lectrostatic optics, the terninology used
will be appropriate to that class of problem. Each line on the table in
Fis. 3 represcnts ope data card for the problem in Fig. 2. The input
uses FORTPAN fired €1cid Laput; three integers follrued by twp floating
point aumbers. The fimed figld format requires one card for cach point.

The chief Iracure of the input routines is the abilicty to £i1l in
fer pegmance of cthe problem that the progrmner skips. This saves a
great deal of labor since o typical problem which uses perhaps 300 bound-
ary points may be specified with about S0 cards. This technique will be
called “fireing” in the description for the ability of the program to fit
a curve to three specified data points.

fwo types of boundaries ave used: Dirichlet boundaries ate those
on which the potential 15 kaown. Neuwmann boundaries arve those on which
the normal derivative of the potentilal is known.

Dirfchlet boundaries are used Co regresent meral suriaces. Neusanp
boundaries represent gaps berween surfaces and must be chosen so that
the normal coopotent of the fleld is zero since that Us the only value
that is cvetr known in practice. Thus the cathode 45 a Dirichlet boundary
and the axgs ls a Neumann boundary tn a typical example. Neumann bound-

aries can mpet at @ COIneT.
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For electrostatic problems it has been found satisfactory te
restrict Neumann boundaries re Jic along mesh Ifnes. Dirichlet boundn-
ties may have any shape desired although the mesk spacing licits the
resolution of the smallest details which can be ef fectively used.
Slanted Neumann boundaries are poseible however, ard the input technlque
vill be degcribed later in this section.

A boundary point is defined as any mesh point leas than ome wesh
umit from the boundary of the problem, but always within the voundarty.
The painte on @ Heumaon boundary are aluays boundary points. The points
on a Dirlchlet boundary are never boundary points. This difference,
vhich ig inherent in the formulation and not just a progtam convention,
givee rise to a code to determine which type buundary Ls belng specified.

Thus, 1f the dietance from a point to a beundary in either the R or 2

dircction 43 zero, then that boundary §s defined as a Neumapn boundary.

1. Potential numbet, integer, corresponds to the surface wunbers
denoting clements of the array POT (n) described earlier.

2, R, integer, the value of the radial coordinate of the mesh at
the baundary poine.

3. 2, inceger, the value of the axial coordinate of the mesh at
the boundary poins,

4, DELTAR, floating point, the distance from the wesh point to
the boundary in the radial direction. DELTAR is negative if
the boundary intersects the tadial line at a point in the winus
direction from the mesh point. If the intersection is greater
than one meeh unit [rom the boundary point then the intersec-

vion is not significant. Any number preater than 1.0 could he
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used but typically the discance {5 specified as 2.0 1if 1r 1s

greater than 1.0.

5. DELTAZ, floating point, the distance from (“e mesh point to
the boundary in the Z or axial direction. The pame rules as
for DELTAR, above, apply.

Tn the case of 3 point on a Newnann boundarv, the potential nusber

i

@

not significant. [If the point 1s simultaneously within one mesh unit
sf a Dirichlet boundary, then the potential number is the number for
that surface. Otherwise 1t {5 customary to punch a zere for the poten—
tial meaber. It is {opartant to realize that a zeve for the potential
nuther {s not the code number for a Neumann boundary. Repeating, the
code for a Neumann boundary Ly a zere for DELTAR if the boundary is par-
alle! to the axls.  If the boundary §s & radial plane, then the code is
DRELTAZ = 0.

A mesh point cannot simultancously be a boundary point for two
9irfchlet surfacres at differenmt potemtials. This is not wsually a prob-
lem for the progrimmer. However, there can be sitvations when it is
necessary to make Some adjustment in the problem to avold a sirtuation ip
wh'ch, eirher DELTAR .r FELTAZ should have two values, or in which DELTAR
and DELTAZ refar ro tus different surfaces in which peither is a Neumann
boundary.

Note that this also means that a gingle poinz cannot be a complete
row or a complete columr. A column pust have a tep peint and a bottom
point, each of which has a DELTAR L.tween -1.0 and 41.0. S$ince one

point camnot have batk of chese, one peint caonot bhe a column. The sare
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thing applies to rows. However, the program applies testa for the col-
umns only.

Boundary pointe must be read In ia sequential order. Adjacent
polpts must be within one mesh unit In both K and Z. If a ‘~:ndary
point iz not within onc mesh unit of the previous point, then a special
procedure starts with ..e purpose of determining and f11ling in the miss-
ing point or points., This procedure, referred to as "fitting," fits
a gecond degree equation to the three boundary poines defined by the two
carde referred to above and the fmmediarely next card. The equation 1s

either of the forms

R~ mzf+BT+cC SLOPE £ 1.0 )
or
2

Z = A'R“+BR+C' SLOPE > 1.0 (8)

depending on vhether SLOPE = ABS[{22 + 1) A + B) is less than or greater
':han unity.

Use of fitting demands soWe cate and understanding on the part of
the ueer. It should not be used on curves with more than one curvature
or ou curves that go through too large an angle, {.e., never more than
45°, It ie more useful on long straight ot slight ) curving s¢gmeats.

Three points always define a segment and if the third point is
miesing or goes around a corner to apother segment, the result will be
chaotic.

The programmer must realize that each boundary point may actually
define two points on the surface at the intersections in the R and Z

directions. If both points do not 1lle on the same segment, the results
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are unpredictable. This is a common difficulty at {aside corners of
Dirichlet boundarfes. The selution is to provide a3 data card for one
extea pofnt {n cach direction frow the corner.

In the special, but guite common, case in which one of the surfaces
at a corner is a Newrann boundary, the rogram takes account of the cor-
ner ambiguity and no extva cards are required.

The beunaary output 1liscing showum on Fi8. 4 will now be examined
in detaill as an example, Notice that there are seven columms; POINT,
CARD, POTENTIAL, R. 2, DELTAR, DELTAZ. The POINT column im just the
point mumber. The CARD column contains a sequential mumber if such a
card exists; otherwise {r contains a zero. The remalning columns coa-
tain the identical daty asare found on the cards, or the data resulting
from fitting. 1t 15 vseful ro vempare Figs. 7. 3 and 4 as the following
discussion progresses.

Card number one: Potential number one, (cathode), R =0, Z = 1,
{this $s the usval starr ng place), DELTAR = 0.0, {code for Neumann
boundary -leng the axis), DELTAZ = -0.99,(-1.0 could have becn used but
1.0 for the DELTA terms can result in gome confusion for the fitting
routine). The point R =~ 0, Z = 0 could alse have been used but it ls
risky te use -0.01, for example, for DELTAZ because the curve could try
to cros® the Z = O line pefore R = 1, thus resulting in a point with two
values of DELTAR, 0.0 and scme positive fraction. This would also have
the result of adding another column o che problem without Increasing
the resolution or the actual area, thus resulting in a fractional slow

down. Thus 0,99 ot 0.999 is freauently used for DELTAR or DELTAZ.
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Fig. 4. OQutput listing of boundary data for the problem of Fig. Z.
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Card number two: POT = 1, R= 16, Z = 1, DELTAR = 2.0, DELTAZ = 0.4.
Since R = 16 is moere than one unit from R = 0 on card one, thc automatic
fitting routine will be called. Xt will read the next card which oust
also be on *he cathode surface. The DELTAR = 2.0 indicates that the
boundary does mot cross within one mesh uni: in the R direction.

Card number three: POT = 1, K= 37, 2 = 3, DELTAR = 0.99,

DELTAZ = -0,1. Both DELTAR and DELTAZ refer to the same curve segmant,
ac there is no ambiguity for the fitting. This is the third card for
the ficting ser for the cathode. The coordinates of the points through
which the curve will fir are: (r =0, z = 0.01), (r = 16.0, = = 0.5)
and {r « 37.99, 2 = 3.0). It will use Eq. (3) rather tham Eq. (2)
because the absolute value of the slope is gre;ter than ona.

Catd number four: POT = &4, R = 38, Z = 4, DELTAR = 2.0,

DELTAZ = ~-1.0. POT = 4 is used to permit the focus electrode, which
this surface 1s, to be distinguished from the cathode. The -1.0 for
DELTAZ 1s inadvisable *ut works on the first point of the set of three.
Wo fitting since R snd Z are 1 mesh wnit from those on card 3.

Card number five: POT = &, R = 48, Z = 10, DELTAR = 20,

DELTAZ = ~0.8. This card causas tha automatic fitting procedure to be
called,

Card number 'six: POT = 4, R = 35, Z = 15, DELTAR = 0.99,

DELTAZ = =0,6. Thia is the third card of the ser and fits the straight

section of the focus electrode.

The next several cards define the boundary around the point on the
focus electrode, The logic should be obvious by inspection. Ficting is

used for the top of the focus electrode,
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Card number sixteen: POT = 4, R = 62, Z = 0, DELTAR = -4 7,

DELTAZ = 0.0. This card {s interesting becaure it iefines the end of the
segment to be fit along the top of the focus electrode and the beginnicy
of the Neumann segument along Z = 0. Becanse of the Neumann condition
{DELTAZ = 0.4) the program recognizes the corner condition and firs to
the point (r = 61.3, z = 0.0),

Card qunber geventeen: POT » 0, R = 66, Z = 0, DELTAR = 2.0,
BEITAZ = 0.0, This is a case vhere one might forget to skip a point and
make R = 63 ... don't. Also note especially ine DELTAR = 2.0 ... thore
1s no surface in the R direction for more than one mesh unit, even though
the point lies right on the Neumann boundary.

Card oumber efghceen: POT = 2, R = 71, 2 = 0, DELTAR = 0.99,
DELTAZ = 0.0. Potenrfal 2 is for the anode, whic¢h 1s the tole played by
the gun grid in this example., The 0.0 for DELTAZ signifies the vertical
Neumann boundary. Note that this card is used to begin the next fitting
segment .

Card number twenty:; POT = 2, R = 7. Z = 27, DELTAR = 0.99,

DELTAZ = 2.0. This 1s aa "extra" card iuserted to .avoid the corner
ambiguity which would occur 1€ the fitting program had to use the next
card which peints to two different line segments of thp same surfsce.

Cards number twenty-one and twenth-two: POT = 2, R = 71 and R = 70,
Z = 27, DELTAR = D.99 and 0.2, and DELTAZ - 0.99. These two cards form
a shoTt column to avold a column of length ope at the torner. Clearly
they do not agree vith the design surface, but the location is such that

the discrepancy cannot affect the solution.
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The last three boundary cards define the Neumann segmeat an the
axig. Note that the last caxd, POT = 0, R = 0, Z = 2, DELTAR = 0.0,
DELTAZ = 2.0. gpecifies the point fmmedfately adjacent to the first
point, thus completely defining the boundacy. The boundary wmust be com-
pleted In this way without ever repeating a boundary point.

‘The next card, with BBS in the POT field, or any other potential
nuwber greater than POTN, terminates the boundary input. The next step
in the program {3 to ¢alculate the difference equations and te perform

svae checks oa the boundary dats,

4. Speaial Boundary Conditfons

A curved or slanted Neumann bouadary, except for 459, requires the
general Neumonn conditions. The special case of a 45° Keumann boundary
15 correctly described in both DELTAR = 0 and DELTAZ = 0. General
Neumanp and other boundary comditions such as dielectric surxfaces, may
be put in as talculated values by overwriting the difference equations
calculated by the program, The pormal ending Lo the boundary data is by
a potential number greater than POTM. If 999 is used, the program will
commence reading cards containing R and Z; the coordinates of an exist-—
ing baundary point, aad D1, D2, D3 and DS; the four caefficlents of the
difference eguation Tor the poiat (R,Z).

R and Z are integers locating an existing boumdary point. Di, D2,
D3 and D5 are the real positlve coefficients of rhe difference eduaticn
at (R,Z).

Any number of such cards way be used fin any sequence.

An R value

greater than RLIM terminates this input.
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Diclectric waterials nay be sinulated by special boundary values at
the dielectric surface. The rules for this are summarized in the con-

densed insrrucrions and will be explained Ln Section ¥I.1.

3. Boundary Diagnostics

If the inpucr data are acceptable, the next message printed on the
output is: SPECTRAL R:DIUS=D.995. The spectral radiuvs Is a coastant
used y the program for the vonvergence of the solutfon of Poisgon's
tquation.

BOUNDARY ERROR IN COLUMN XX

1f this mesgage appeacs somewhere in the middle of the listing of
boundary data, {v is a signal that the boundary data have exceeded Che
limics of the probiem, 0 < R < RLIM and 0 s Z < ZLIM, or that the bound-
ary data have excceded the haXimum putber allowed which {s 901. Thus,
this message appears if the boundary calculatien goes into a logp.
Loops wsually regult from an errar in boundatly fitting ar might de
ciaused by omitiing onw of the three points of a iine segment. Normally
the prograi will attempt te pick up the boundary computation and com-
plete the listinmg. However. the problem will not attempt te run and
there may be other errors caused by the pregram In trying to f{mterpret
the rest of the Loundary.

BOUNDARY ERROR TN COUUMN XX

1f this message appears at the end of the boundary listing it indi-
cates that the program checks have found an errotr. Thé program chetcks
are basucd ot the requirencnt that each column must have a top and a bot-

tom. Sipce theye can be more than one segmept O a column, the require-

rent rranslates to mean that thete must be at even number of ends for




-29-

each value of 2. An end is defined by a DELTAR value between +1 and ~1,
Thus the programmer need only determine why there are not an even mumbey
of such points for the indicated column.

Note that there are similar checka which could be made but aren't.
Pach row must have two ends also, but no such check fs included. Also
obviously a bottom end must have DELTAR between 0.0 and -1.0, i.e., not
greater than 0.0. This and similar boundary mistakes are left to the
programier's care to prevent ar correct.

BOUNDARY ERROR OR MI NEGATIVE

If this message appears at the end of the boundary listing the pro-
grammer must check for messages of the previous two types. If there arg
none, and he has set MI negative, then the boundary data have pasged the
program chacks. It 15 worthwhile for the programmer to look at all the
output carefully to catch other boundary errors. The programmet should
alzo always endeavor to get at least epe plot including equipotential
lines of any pew geometry. Unausperted crrors frequeptly become glar-
ingly obvious on examination of a plot. The optional printout of the
table of potentials caused by LSTPOT > 1 should always be used for a new

or revised boundary configuration.

C. Poisson's Equation
After reading the boundary fnput, and before reading the starting

conditlions, the program makes the first solution of Poissen's e@quation
(actunlly Laplace's equation at this peint since there is no space
charge, hence right-hand side (R.H.) equals zero). The description of
the dnput data for the example will be interrupted here for a brief

description of the mechanics of the solution of Poigson's equarion.
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The program solves the complete set of ejuations for one colum at
a time. Mathematically, a matrix for a column eunsisces of a tridiagonal
matrix which must be solved (inverted) te find values for the potentizls
of each of the points in one column. To do thia, the adfacent columns
are assumed to contain "known" values, and the end poipts are alse
“"knowns." That is, either the value is knowm or, in the case of a
Neumann boundary, the adjacent point 15 assumed to be the same as the
poinc being solved since the derivative {5 2ero. The relaxacion wethod
is known as the "setml-icerative Chebyshev" method and is described by
Varga.h

Each colwm consists of twe or more points, with upper and lewer
end points being beoundary peints for which ~1.0 s DELTAR s 1.0, Thus
gach columm has at the top and bottow a conditiom, either Neumann or
Dirictler, that permits the program to write a set of n equatfons in n
unknowns for that column. A zolumn of the problem area defined simply
by the value of Z, may have more than one segment which must each meet
the ahove definirion of a "“ecolumm." Each such column must have its
proper ends. Inm the cxample probleu, there are two columms for each
value of Z up to and including Z = 14.

When a eslump is solved, the adjacent columms are considered fixed.
Alternate colums are solved so that on two passes First the odd mumbered
¢olums and then the even pumbered columns are solved. After 50 iteva-
tions, ot less if the arror criterion is satisfied, the calculation is

stopped and a message 13 printed:

N =51, ERR = ¥.XXE - XX
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This is the gignal that after 50 iterations (the counter is already set
to 51) the maximum error is expected to be ERR in volts. The actual
test is on the largeat slngle change in the x*terz~ion, but the value
printed takes into eomsideration the dimensions of the problem. The
convergence criterion can be adjusted by using the parameter ERROR (see
VI.A.(4)). 1t 1s gutomatically tightened by a factor of ten for the
final eycle. CQertain problems using large areag of Neumann boundaries,
are subject to slow convergence so that the results may be Incarreet.
This can be remedied either by iterating for more tycles or by glvimg
the program a better starting discriburion. These techniques will be
described in a subgequent section. Cenerally the iteration process is
quite zatisfactory snd after S0 icerations the field ds sufficiently
determined to start ray tracing leading to the inclugion of space
charge.

After finishing the first cycle of Poimson's equation, a poteatrial
map, or POTLIST, is printed giving the potentiul {normalized to 1Q0% of
the maximum potentisl) for every point in tha RLIK by ZLIM space. Since
this includes background points (points behind the surfaces) one can
usually trace the outline of the problem. The background points have
the inirial valueg and should not be confused with the Intermal polnts.
The PUTLIST is an excepticnally effective diagnostic device and should
always be 6tudied for peculiarities. An error In boundary data may, for
example, leave a strange zero in the middle af the high potencial part
of a device, thereby sreatly distorting the fields. When used together
with the equipotential plors, ir is possible to pinpoint errors in a few

afnutes. The POTLIST is suppressed by the default value of LSTROT = 0.
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VI, STARTING CONDITIONS

#frer the first calculation of Poisson’s equation, the program
tveads the stareing condicrions. The format is NAMELIST consisting of
defining equatjons In which the variable [s named followed by an "equal™
sign and the value. Only Lhose variables that need to be altered from
the default cond’tions need to be apeciffed. The sample problem desda-
strates how litctle dota neads to be specified in many cases- Using the
gsampple problem, the following remarks will illustrate the technique. Ia
the rest of this section, a brief description will be given for cach of
the options currently Included in the programs. Since other optioms can
aluays be added, the vser must refer te the comments ip the program for
the up~to-date implementation.

The sample problem is coded as a spherical diode or Fierce gun.

The card with 5INPUTS signals that the namelist entries follow., The
entry START = 'SPHERE’ directs that the spherical diode conditions will
be used. The catries RAD = 257 and RMAX = 37.5 give the spherical
¢adius and cachode radius respectively. UNITIN = 0,01 specifies that
the scale of the problem s 0.01 inches/mesh unit. All problem scaling
is im MKSA units so that UNITIN (s immediately converted to UNIT fu
seters. After rcading thase items the program prints a table of all the

starting parameters

The starring conditions are described in the follovwing sections

according to [unction as follows:
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A.  Universal; apply to more than one case,

B. Equipotential lines; controls equipotential plotting,

C. Plotting; piot controls,

D. HMagnetic fields; input and calculation parameters for magnetic
f1e1ds,

E. General cathode; porameters controlling the geumeral cathode option,

F. Spherical cathode; parameters specifically applicable to START
= "SPHERE'.

6. Card starting; parameters coatrolling the use of specified startiog
conditiong.

H. Laplace stacting; parameters controlling the use of the program for

applications ather than ray tracing.

Al Universal Parameters

For each starting parameters, there 1s a default value which will
be the value used 1{ it is not changed by the input. In the following

digcussions, the enlrie: will be glven as doscribed by the program com

wegts with the formac:
INSTRUCTION DEFAULT , MAX COMMENT

Thls will be followed by a discussion of the use of the parameter.
When 8 second number, separated by a comma, appears for the default

value, it refers co the maximum allowed value, usually determined by

array limite.

~3m

(1) PERVC = X.XX PERVO = 0 ZERO USES LAPLACE/?

PERVO is the initial value of the perveance of the beam for either
the START = 'SPHERE' or START = 'GENERAL' methods. Perveance is defined

as the constant K in the expression

ifz - 10-6 {9}

where K 1s expreased in micropervs so thae, for example, a microperveance
1.0 device operating at 10"' volts would have a current of 1.0 ampeye,
The entry XK.XX indicates that a decimal number ig the expected value.
When a single X is used, it Implies that an integer is expected. The X'a
do not Indicate the fnput format; rhe number of significane figures is mot
restl‘cted except by the computer hardware, and by the logic of tho
Program.

PERVO normally controls only tne perveance of the firat cycle.
However, it may be "held" for amy desired number of cycles by using
HOLD = X. The process by which the program determines perveance is toe
average the perveance calculated for a given cycle with the perveance
actually used in the prec~ding cycle. The new averaged value 1s then
used to determine the current per ray. The averaging process has provem
very effective in quickly arriving at a stable value. It has been so
successful that it {s frequently betfer to start with the averaging
zethod than with a value "known" to be “correct' from experiment ar from
prior calculotiens. The default value PERVO = 0 is a code instruction
which takes tne value of perveance calculated for the LAPLACE solution

and simply divides it by twe to arrive at the perveance for the first
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cycle. The pew user of the program is advised to use the default value

until specific oxperiences lead him to try something else.

{2) HOLD = X HOLD = 1 PERVG 'HOLDS' FOR HOLD JTERATIONS

ROLD = 2 or moTe causes the input value of PERVO to remain
unchnnged by the averaging process for HOLD irerations. There are some
problems, parcticularly with very non-ualform cethede leading, where using
HOLD helps establish the necessary space charge enviromment for the process
to stabilize. A more frequent application ls to simulate emisaion limlted
conditions by running the entire problem wirh a fixed reduced perveance.

Then, ¢f course, BOLD must be at least as large ag NS.

(3 PE=XX PE = 2.0 INITIAL ENERGY AT CATHODE (EV)

PE is the incremental energy that is pdded to every trojectory to
account for the combined effect of wotk function petential and thermal
energy. Like PERVO and HOLD, PE is ¢nly used for starting with one
of the Chiid's Law routines for calculating the (nitial conditions. It
15 normally aot necessary to have any indtial PE, but some small changes
way be observed hy varying 1. Im & few low emission devices, it bas
been found cssential to have some initial epergy to aveid instabilities

near the cathode,

¢4) ERROR = LX ERROR = 1.0 MULTIPLIES ERROR TEST

ERROR » 2.0 doubles the built in error test by which the program
determines that an adequate solution of Poigsons equation has peen
reached. IF the problem is slow to converge, particularly if there are

large arcas of Neumann houndary, it may be necessary to reduce che
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allowed error, e.g., ERROR = 0.1, 1o get the Program Lo converge at all.
Slew convergence is indicated if each cycle only fterates three times,
prints N = 3, ERR = nnn, and ¢alculates the trajectorica, On the last
cyels, the error test is reduced by a factor of 10 from whatever level

was get by the user. Some hines about convergence problems will de found

in a later sectign.

(5) UNIT = X.XXX UNIT = 0.001 METERS/MESH UNIT

{6) UNITIN = X.XXX (SEE UNIT) INCHES/MESH UNIT

The default scale value for thea pragram ia 0.001 meters/mesh unir.
1f a walue is given for UNITIN (inches/mesh unit) this value will be
irmediately converted to meters. Eacept for problems using magoetie
fields, the optics of an elecrron gun does nof depend on the scale facror.
All the standard rules of scaling In electron optics can be used once a

problem has beea selved.

(7) MAXRAY = XX MAXRAY = 27, 51 MAXIMUM NUMBER 0" RAYS

IF MAXRAY IS WEGATIVE, THE NKUMBER OF RAYS=ARS{MAXRAYS)

MAXRAY determines the maximum nunber of electron trajectories that
can be calculatad. The arrays for trajectories have 2 lmit of 51. The
number of rays used by START = *GENERAL' or START » 'SPHERE" is deter-
mined by a program algorithm wnless the value tead in is pepgative. Within
the limit MANRAY, the program tries to make an integral wmber of rays

per mesh unit at the cathede.
(8) STEP = 0.XX STEP = 0.% MESH UNITS/STEP

STEP is the iteratiom step length for ray tracing. 1t must be lesa

thap 1.0 for the prograw teo properly acecount for space charge, calculate
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magnetie fields, etc., when crossing a mesh line. The equations of
wotion are time dependent, thus the program uses STEP to calculate step
time from the velocity at the starc of the step. Since the electron can
accelerate during a step, it may actwally go slightly farther than STEP.
The default value is about the largest that should be used. If magnetic
fields are present, STEP should wsually be reduced at least a factor of
two. On the last cycle, STEP is automarically reduced by a factor of
two. Shortening the step means more time will be required for a problem.
As a tule of thumb, the program spends roughly half of the time with
Poisson's equacion and half with che ray tracimg. Thus reducipg STEP by
a factor of two could increase cost by about 25% the first time but may
nearly double it thy after. The Runge-Kutta method is used to solve the
differential equations of motion. Because of the necessity to take small
steps anyway, and because of the time needed, the program does not use
any of the "predictor-corrector" techniques of verifying step length.
‘Experience has shown that erxors due to STEP being too large, especially
if wagnetic fields are included, becowe glaringly obvious when the plots
are exgmined. The mosr frequent effect is for a trajectory te get too
claogse ko the axis, violate coenservation of angular momentum in one step,
and £ly out of the problem area with beta > 1.0, where beta = v/c. An
erroY message ro rhis effect is prinred when a ray ends with beta > 1.0.

At the very least, this is a signal to reduce STEP in subseguent runs.
(90 Ns =X N§ =7 NUMBER OF ITERATIONS

NS defines the number of program cycles to be made. In the program,

NL is wsed as the ruming variable to record the number of cycles left to
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be run. Infrially NL = NS, The default value if usually acceptable
unless the program is having trouble converging on the perveance. For
the special case of no space charge, it is advisable to still use NS = 2
to gain the insight afforded by the reduction of ERROR and STEP on the
final cycle. For START = 'LATLACE', NS is the mmber of times that

Laplace's equation will be cycled.

(10) SPC = D.XX SPC = D.5 ESTIMATED SPACE CHARGE

SPC SIMUFLATES PARAXIAL APPROXIMATION ON FIRSI CYCLE. SPC IS THE
FRACTION OF THE RADIAL FORCE USED. SPC = ) FOR FILL EFFECT, SPC = 0

FOR NO EFFECT.

SPC determines the fraction of the ordinary radlal electroestatic
force that will be applied to the rays on the first cycle. In a device
in which space charge forces play a strong part in the focusing, the
electrostatic fields usually have a strong radial restoring effect. If
not opposed by space charge on the first cycle, thesc forces may cause
the rays to strongly over focus leading to a poor infcial distributicn
of the space charge. The full contriburion, SPC = 1.0, adds a cterm to
the radial equarion of wotionm simulating all the current, of all the rays
calculated, to lie in a conductor on the axis. Thus it s assumed thac
the rays are calculated in sequence starting with rhe ray nearest te the
axis, In the case of op electron gun calculacion starting at the cath-
ode, a better choice is SPC = 0.5 which attenuates che force by 0.5.

Near the cathode, this corresponds to a current starting froem the cathede
and extending infinitely in only one direction. Further from the cathode,

SPC = 0.5 is a less lagical choice, bur the beam is less sensitive to




~39-

radial forcec as it gains in energy. Empirically, it has been found that
SPC = 0.5 is a good choice for gun problems involving starting frem the
cathode. For other types of problems, the user should be aware of the
fact that SPC exists and can be changed. [In rectangular coordinates, SPC
simulates an infinite sheet of current on the axfs. If the problem does
not involve reflection about the R = 0 plane, then there is a transverse
force {which oes not depend on distance from the x-axis) which should be
turned off by .SPC = 0,0. Since SPC only affects the first cycle, zhe
program vill usually forgive any misuse of it, SPC can be useful in
arriving at a satisfactory sclution of one uwsually dlfficult problem,
that of a long thin beam with magnetic fields providing the focusing.
This can be a difficult problem to get ro stabilize because of the poer
aspect ratio which frequently finds a large fraction of the beam within
one or two mesh units of rhe axis. Howewver, it ix usually well repre-
sented by the par:xlal approximation so that a single cycle run, NS » I,
v;.lth SPC = 1, will frequently result in a good solution. In this case
one must be pure that STEP {s small enough and that an adequate solution
of Laplacc's cquation was attained, since ERROR had no effect on rhe

first cycle.

{11y FOILIMN = X.X PHILIN = 0.0 AZTMUTHAL LIMIT

PHILIM .HE.- G ENDS TRAJECTORY AT PHI .GT. PHILIM

For apecial applications, it is possible to establish /mm orbit thar
would continue until the program is stopped. An sxample is an electron
orbiting in a uniform magnetic field. PHILIM has the umits of PHI;
radians in cylindrical coardinates and mesh units in rectangular

coordinateg,

[ W
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(12) sSavE = 1 SAVE = 0 SAVE = 1 5SAVES BOUNDARIES

TO USE SAVE = ], OMIT BOUNDARY CARDS FROM REXT PROBLEM

SAVE = 1 i5 a sfgnal to the progran to expect a second problem run
immediately after the first problem, and that the gecand problem will uge
the same boundary cenditfons. 1t is always possible to run tandem prob-
lems although, at most computer facilities, there is no porticular incen-
tive to do so. Programs are usually run from load modules, or frow a
ithrary of compiled subroutines to be linked with very little expense,
and scparate problems can be run lndependently without the risk that a
failure in the first problem will affect or kmeck owt the second one.
However, in the case where successive preblems use the same boundary con-
ditions, considerable savings in effert and computer time can result by
saving the bounduries, which also saves the arrays of potentials and
space charge.

The SAVE = 1 parameter is put in the startiog conditions of the
first problem, nui the second ome unlews theee Is still to be 2 third
arablea. The dats deck for the wecond proslem ararts immcdiatcly after
the last data card ¢ the first Jdeck with no EOF or /& control cards.
The second deck is complete in every respect including title, porential,
magnetic ficlds, eic., except that the houndary cards and the accodpany-
ing large potential number card are omitted. The potentials can be
cnanged between runs; 1f the largest poteniial is changed, the prograz
will scale all potentials im the potential map proportionately. Ocher-
wise the prograsm will start out just ag 1f a cold start €as being made,
axcape that the old solutlem, including che last space charge array, 1s

vsed as a “preload.”
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One example of the use of SAVE i< to be able to trace rays with
small changes of either voltage or magnetic fields. Another use 18 in
the case in which the Laplace go’wition ig diffircult to achicve because of
extended lengths of Neumann boundaries, In this ¢ase, it may help to run
the £irst part with START = ‘LAPLACE' (see sectiom VI-H) apd SAVE = 1 and
then do the ray tracing in the following problem. This gaues :hé time
and expense of ray tracing in an incorrect potential distribution. This
procedure i{s not notmally required since the usual procedure allows the
program to improve the solutlon on successive iteratinons as the space
charge 1g entered.

Ihe special cage of a pair of electrodes separated by a long length
of Neuwnann boundary parallel to the z-axis causes special problems with
convergence that might reaspond to the approach using START = 'LAPLACE'.
An alternative appreach, which is easier, i{s to introduce a few boundary
points alang the top or hottom Neumann heunderies, with potential num-
bers. 1f the carresponding voltages, which must be entered in the poten-—
tial list, vepresent approximate values for the potentials in the final
golution at that paint, then the starting load to the program will be
mech batter than the normal starting load. Usually the starting load is
of very little significance, but in thig special caze it can be cruclal.
The special boundary points are exactly like the usual Neumann pelnts,
except that the potential number is gilven and refers to an appropriate
element of the POT array. After the prelead, the Neumaan points relax

ag usual and the potentlals changz accordingly.

52—

{13) SAVE = 2 SAVE = O USES FINAL DATA

FROM PREVIOUS RUN TO START THIS RUN. USE ONLY WHEN START = 'CARDS'.

Save = ? alloug consecutive runs to use the final conditions of a
preceding problem as the initial conditions of the succeeding problem.
Necessary scaling and positioning adjustments are made as described wunder
START = 'CARDS', below. The SAVE = 2 goes to INPUTS of the second run.

Note that the dual use of SAVE = 1 and SAVE = 2 in one problem is
not permitted, but that SAVE = 1 oa the first problem followed by SAVE = 2
in the second is both permitted and quite common. It simulates the

repeated use of a drift tube, perlodic focusing section, etc.

(14) MASS = X.X HASS = 0.0 MASS > 0O FOR ONS
HASS IS THE MASS TD CHARGE RATIO, 1.0 FOR PROTONS
USE MASS » D FOR RAYS WITHOUT INERTLIA; CAN BE USED FOR MAGNETIC

FLUX LINES OR ELFCTRIC FIELD LINES,

MASS is used to signal the program that particles othetr than elec~
trons ave to be followed. The units are in 1836 electron masses, so that
a procon would be 1.0 and 3 doubly lonlzed tritium ion would be
3/2 = 1.5, for exi.plc. The Child’s Law routines for starting still
functic1. Note that the Intrinsic charge built into the program 1& nega-
tive. Jon problems are ncrmally rum as if charge is ncgative, although

negative currents {(positive charges) are permitted for START = 'CARDS'.
(15) AV = X AV =0 SPACE CHARGE AVERAGED LAST AV CYCLES

(16) AVR = X.X AVR = 1.0 WEIGHT OF PREVIOUS CYCLE FOR AV

AV and AVR are companfon pirameters to help improve stability by

averaging the contriburion of space charge over successive cyeles. 1t
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should not be confused with the differeat process of emissiep averaging
to determine perveance. In fact, to keep the emission averaging and
space charge averaging from affecting eath other, it is suggested thar AV
be small enough so that the emission averaging is essantlally complete
before ppace charge averaging starts. Note that AV 16 for the last AV
cycley, e.g., 1f N8 = 7 and AV = 3, then only cycles 5, 6 and 7 are aver-
aged. Howaver, this may have 8 very small effect since the trajectory
calculations of cycle 5 are not affected and the space charge derermined
by the cycle 7 is never used (since there 18 ™o ¢ycle 8, Thus the
effect of averaging is only ebserved for AV-1 eycles. AVR determines the
weight of the previous cycle such that with AVR = 1.0, the space charge
from the previous cycle {s weighted equally with the present cycle. AVR
can have any valua, 0 < AVR ¢ ~,

Experfence with averaging has shown rhe effect to he less dramatic
than one might anticipate. A poorly designed gun, with strong splierical
aberrations and resulting crossovers, is likely to oe unstable and con-
verge poorly even with averaging. Also, application af averaging to
relativistic high intensity beams dees not 4o wwch to solve the inherenc
difficuley caused by the fact that the self-magnetic field forces nearly
cancel the space charge forces. Vith the two—cycle format of the program
(l.e., space charge from the previous eycle and self-ficlds fram the
present cycle} the program has difffculty converging on 'ong beam trans-
port problems. The solution to this siteation is frequently to use the
first cycle only with the paraxial approximation amd SPC = 1.0 as

deseribed Ln VI, A.10 above.

~dhe

(17) BEND = X.X BEND = 0.0 MAGNETIC BENDING FIELD

I¥ CAVSS IW THE DIRFCTION NORMAL TO THE R-Z PLANE FOR THE AXIALLY
STMMETRIC FRYBLENMS. ¥IELD MUST BE UNTFORM. THE EFFECTS OF SELV-
MAGNETIC FTELD ARE LOST AND SPACE CHARGE IS STILL AXIALLY SYMMETRIC
S0 THAT 1F BEAM [S DEFLECTED, CHARGE DISTRIBUTION IS PROBABLY INCOR-
RECT. AN AXTAL FIELD MUST BE INCLUDED IN THE INPUT, EVEN IF IT IS

ZERO, E.G., BC=D IN INPUTZ.

This feature {s most usefu! for problems with litele or no space
charge. Various types of photo tubes have tipght tolerance for transverse
magnetic field effects. Residual transverse flelds, carth's field, etc.,
can be calculated. Note thut a cylir...cal beam in a rectangular coor-
dinate geometry. Including transverse field and space charge, can be sim-

ulated as described below in Section VI.G.4.
(18) MAGMLY = X.X MAGMLT = 1.0 MULTIPL1ES BZA ARRAY

MAGMLT multiplies *ha enti-e BZA ) arrav after it hos been read
in or caleutated internally. It also multiplics the c¢rtire vector poten-
tial array if that option is uscd. It can be thoupkz of as a knob on all

the magnetic fi=ld Jenoraring powrr supplies.

(19) TPEP - Ki, X2,...xr IPRP = p {P To SIX RAY NUMBERS
FOR POENT-EY-BOTHT PRINTAUT:

¥, R¥O, 2ETA, ROGT. ZDO;, TDOT, PHT, BR, ©Z, STEP, RPH™

in special situatjons, vspevially when program behavior Is not Jus
vxpocted, it 15 ud ful to be able to print out every iterarive step.
Tris [eature operates pn the last pregram cycle. Thus Lf for exanple a

bug is stopping the program in the first cyele, it Is necessary te st
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HS = 1 and set IPBP = (the nubet of the trajectory at question). Note
that it 1s possible to gemerate a great deal of paper this way. In some
cases, one might rather have other items printed than thoge in the above
ligt. It is a pisple chenge Yo svbstitvre ER, BZ, ctec,, for BR, B2, for

example.

(20) ZEND = X.X ZEND = 1000.0 EXACT END OF TRAJECTORY
CAUTION: IF ZEND IS NOT THE RIGHT-HAND BOUNDARY, THE SPACE CHARGE

DI:"RIBUTION MAY BE INCORRECT.

Normally .. trajectory is calculated uwatil the program can no longer
determine the electric fields. Thus the trajectories usually go up to
one-half mesh unit beyond the boundaries. In special situatiens, such as
high-resolution photo tubes, this mgkes cxact interpretation of the
regults difficule. Setting ZEND to a specific value causes the program
to back up to this value whem & trajectory passes through this value of

zeta.

(21) VION = X.X VION = -1£8 LOWEST PQTENTIAL PERMITTED

USE VION TO SIMULATE SPACE CHARGE NEUTRALIZATION.

Space charge depression can be reduced in a real device by positive
ions in an electron device or by electron clouds In an jon beam. Since
the program normally ru.s with negative charges, the above cases both
resulr iu negative space charge depregsion. IE it is desired to limft
the depression, VION can be set to the lowest depresscd potential thar is
duegired. The default value is intended te be low enough so that fr will

naver diasturb a practieal prablem.
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B. Equipotential Plots
Under the beading:
INPUT FOR EQUIPOTENTIAL PLOTS,
the instryctieons lisc che paramecers which may be used eo concrol che
output of the equipotential lines.

if the plot control parameter MI, on the potential card, has been
set to MI s 6, thea the subroutines which draw equipstential lines will
be called at the appropriate times. 1f the entire problem f{s at one
potential, it 5 usually better not to call for equipotential ploea.

The method used {n the progran to find the equipotential lines con-
sists of first finding a starting point for Che potential to be followed,
and then following a line of constant potential frow that peini. This
o T T T ey o o et e e
found and plotted. If POT (2) ¥ 0 the prograt always draws Che equi-
potential line for ¥V m & + POT () where b = 0.05, 0.15, 0.25, 0.35, ...
D.95. Alse if POT {3) # 0, the program draws lines for V = b - POT {3)
where b = 6.2, 0.4, 0.6, 0.3, .0 Nowmally the lines are scavted at che
points on the axls which are at that potential. The expectation is thm
POT {2) will be vwsed fov the ancde and POT (3) will be used for the srid,
if any. 1f, for example, one is designing a gridded gun to be operated
at v,

[
POT {3} at 0.01 PCT {2), one zets the 1deal contewT for the grid to be

= 0.01 VA' then, by first designing tiae gun 3v a diode, and plotting

electrically invisible.
{l) EQUITR = X.X EQUIPR = 0.0 R-INTERSECT. FOR EQUIF. LINES

EQUIPR {s the radlus af the line aleng which the program hunts for

the poteatials which are to be plotted. 1t sometimes happens, particularly
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in rectangular coordinates, that the equipotential lines do not intersect
the z-axis, (R = 0 line), EQUIPR lets the programmer indicate along

which haorizontal line the program should look for the starting points.

(2> 1M = 00 ¥ = 303 LENCTH OF EQUIPDTENTIALS

M 1s the srrsy limir for the points to be plotred for any one equi-
potentfal. If a !ina aimply stops in midstream, it may be desired to

increase IM. Arrays bX and BY must be as iarge as LM.

(3) EQIN = 0 to 20 EQLN = 1 #H0. OF CORRECTIONS

EQLN controle the Lrerative corrections made as each point 1s fonnd
along the equipotential line. These correctiens prevent the lines from
deviating from sharply curving equipotential lines. The default value,

QLN = 1, is usually adequate.

(4) EQST = % EQST = 2 #STEPS PEX MESH UNIT

QST gives the denaity of peints for the coutputentiol plots. The
maximm length of a line is given by the ratio LM/EQST. 1f EQST is too
small (steps too long), fime detail may be smeoched over.

*ALSO APPLIED TO GENERAL CATHORE

This footnote warns that the starting surface for the GENERAL CATH-
ODE rovcine (o generated fust like an equipotential (but (s not plotted),
ard thus the paraseters EQLN and EQST may determine the accuracy of the
starting surface. It is primarily for this application that EQLN and

EGST are made variable parameters.
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(5} 1Z1 = X, 122 « X, 125 ~ X 1Z1 » 0, 122 = 1, I7S = 10 EXTRA

EQUIPUTFERTIALS AT THE INDICATED VALUES OF Z.

[Z1 and I22 are the end poines of a line segment, ac EQUIPR, along
which some exira cquipprential lines will be started. The lincs will be
equally spaced by 12§, instead of by voltage, so that their density will
aot mean field gradient. The default value, IZ2 = -1, turns this device

off.

C. Platting Controls
(1) SCALE = 'YES' SCALE -~ ' ' 'YES'=DIFPERENT X,Y SCALES

SCALE = 'YES' allows the axis routines to adjust both the X and Y
scales to take maximm sdvantage of the size of the poper. The default
value constralns the axis to have che Same scale factor In both direc-
tiony, thus preserviag the actual proportions. Using SCALE = 'YES'
alinws the plots to show more detall belwveen trajectories la problems

with low height/length ratier,

(2} 8X = XX 5X =22 MAX. HORIZ. PLOT LEMCTH

(3) SY = xX SY = 9 MAX VERTICAL PLOT ":LGHT

$K and 5Y controi the area for each picture. The dimensions are
given ia inches. SX can be adjusted to sult the length of a glven
problem,

Plot data generated by the program are stored o an external file
(disk) In a format very simflar to that pormally used a6 input te the
software supplled with CALCOMP plotters. A separate job, or second job

step, can then be tun to generate the olots. A sigpl: program {s
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printed in the appendix to convert these data to make CALCOMP plots. (a) The data cards for an axial magnetic field are put in

Other plotter software such as that used at Stanford can be programmed before the boundary data. The format was briefly described in Section V,B.
by uaking the appropriate calls to the local subroutines. With the The input data for the polynomial mechod consist of MAGSEG segments of
changes that resulted in the above system, a programmer at another data Includipg: 'Z1' to ‘22' with origin at '23' (three integers} and
installation does not need to search for plotting commands within tha seven coefficients, BZ, Bl, B2,...,B6;

electron trajectory program. Conversion to local software is usually B=BZ+Bl%DZ+B2*DZ&*2+,,.4B6 % DZ ** 6, where DZ = Z - Z3.

quite simplified.
For the sixth urder expansion, the fiold must start six units behind the

D. HMapnetic Fields cathode or starting peint, and go six units past ZLIM. In Tectangular
Magnetic fields play a vital role in steering and focusiog many coordinates, the normal maguetic f£ield 1a in the transverse (phi)
kinds of electron beam devices. The capabilities and limitations of the direction.
magnetic fiejd implementation in the program will be described in this The NAMELIST input for RLIM, etc., (4INPUTL} includes the parameter
section. The following areas will be discussed: HAGSEG (default MAGSEG = 0) which deiermines how many segmenta are to be
1. Magneric Field Input; (a) axdal, (b) ideal coils, (c) vector read, each with SINPUTZ and &IND cards. Eaci segment consists of the
petential data; data for 21, 22 and Z3 fellowed by the array BC in NAMELIST format,
2. Off-axis field expansions; Z1 and Z2 arc the cad points of a line segment on the axis
3. Magnetic fields in Rectangular Coordinates. (Z1 § Z2) 1n the range -6 ¥ Z!, Z2 ¢ ZLIM + 6. IL {a necessafy €O per-

it £ields ta be described beyond the ends of the pr. in order that
1. Magnetic Field Input - elen 10 Be desnrive ¥ encs problem

In the present impl card £ th thete are thece mett the off-axis ficlds can be calculated at the enda of the problea. ZJ is
plementation o e program, e are thrz

the local origin for tl olynomial 1 f D2 =2 --23.
ods of inputting magnetic field data: < cal origin for the polym expansion {n powers o

Having a local origin simplifies the input of, for example, a straight
{a) By reading in the field on the axis using cither 2 poly~ aving ° #la slmp ¢ Snpu ’

line that does not go through (0,0). As many of cthe coefficients BZ,
nomial expansion or by reading the full areay,

Bl, etc., can be used as are necessa simply by setting the remaining
(b) By specifying 1deal coils (radius, position and strength), ' ry, simply by

onec Co zero,
(c) By reading iu vector potential data from the output of a

In cylindrical ccordinates, this flel’ must be in the axial direc-
two-dimengional magnst design progran fuch 2s TRIM or

tion. In rectangular coordinates, the field on the axis may be elther
POISSON.

in the direction mormal teo the plane of the plot, 1.e., in the PHL
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directjon, where PHI 1s the orthogonal linear roordinate te R and 7, or
in the R (vertical) direction.

With the above format, data car be entered »!th any degree of poly-
nomial up t¢ 6. The datas way be div.ded into segments ranging from a
point at a time to the whole length of the problem. Typically, magnetic
meagirements of an axially symmpetric pormanent magnet will be taken on
the axis. The data are then Frequeptly smoothed by a polynomial least
squares fitting program and the resulting coefficients read into the
program. Alrermacively, a ficld may be designated by the user as in the
example preblem, segmented into short lengths of quadratic or lipear
dependance, and read in to the program, Eithe~ method will usually give
a good representatiun of the field on the axis. However, difficulties
arise when the program needs to calculace the off-axis fields. These
will be described in Section 2, below.

A separate proviaion allowe one to read .a the BZA array direccly.
Note that this array starts with BZA(l) at Z = -6 and gces to
BZA(ZLIM + 13) Bt Z = Z2LIM + &, ‘The program cwitches Lo this wmode by
having MACSEG < O, Lf.e., if MAGSEG = -1, then a different NAMELIST,
SINPUT3, is called to read rhe array Bza ( ). Tf measured and/or
plotted data are used, nofe especially the inherent tisks in expanding
such data for the off-axie ficld compinents. This fomnat lends fiself
readily to computer caleulated cutput, properly adited, and with up to
15 efiective decima) dipiss.

{b) The data for ideal coils are read in as part of the
INPUTS starting conditions.

The stacting conditions pertaining to mag-

netic fields are as follows:
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MAGNETIC FIELDS

METHOD ONE: READ IN AXYAL FIELD.
RMAC = ¥.X RHAG = RLIM/2 OFF-AXIS MAG FIELD LISTING
ZMAG = X.X Z¥AG = ZLIH + & B CONSTANT BEYOND ZHAC
HAGORD = X MAGORD = 2 HICHEST ORDER FIELD TERM s 6

IF MAGORD < 0, KECT- COORD. MAG FIELD ARRAY BZA 15 IN THE R DIRECTION

NMAG = X NMAG = 0 N0. OF FIELD COILS (SEE BELOW)

METHOD TWD: READ IN POSITION AND STRENGIH OF NMAG IDEAL COILS

KELL = % NELL = 0 1 FOR ELLIPTIC INIEGRALS
CR{I) = X.X CR(I) = RLIM RADIUS OF COIL (MESH UNITS)
CZ(I) = X.X Cc2(1) = 0.0 AXTAL POSITION OF COIL
M(I) = x.X (T} = 0.0 CURRENT IN AMPERE TURNS

B(AXIS) = 0.2 * CM * PT * CR ~* 2/SORT (((Z-CZ)} ** 2 + CR ** 2)) #* } GAUSS
WHERE I 18 COIL NUMBER, E.G., XZ(2) = 20-.0.
'"METHOD ONE' REFERS TO THE POLYNOMIAL IsPUT JUST DESCRIBED.

(1) RvaG =

XX 2MAG = BLIM/2 OFF-AX1S MAG FIELD LISTINGS
RMAG is used only by an ¢ 'tput routine taat prints the axial and

radial components of the magnetic field at the radius RMAG. The default
value is chosen to be typical of the maximum radius of the beam, but it
should be adjusted to suit the problem, For a pencil beam, RMAG should
be equal to the expected average beam radius (in wesh units). Tnis

printout is a useful diagnostic device to check on unrealistie of f-axis
components rhat can tesult if the fnputs have discontinuities in one of

the higher derivatives.
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€2y ZmaG = X.X IMAG = ZLIM + 6 B LONSTANT BEYOND ZMAG

ZMAG permits some simplification of dara by setr ing Lhe axial field
from 214G to 2LIM + & equal to the calculated value at ZMAG. The prin-
cipal use for ZMAG {s where a converglng magnetic field In the gun
reglon merges into the uniform ficld of a solenoid. The field expres~
slons or coile must describe a fiele which converges to parallelism ac
the golenaid entrance, and ZMAG is then the Z coordinate (in mesh units)
of thip point,

The default value of ZMAG (ZLIM + 6) engures that it them has no
effect in the working region up to ZLIM,

ZMAG 13 a positive integer.

(3) MAGORD = X MAGORD = 2 HIGHEST ORDER FIELD TERM ¢ &
HAGORD is the highest order tert, in powers of R, that will be used
to calculate off-axis fields, It is not related to the power of the
polynomial input. Usually MAGORD has ane of the values, 2, 4 or 6. TIf
HAGORD is higher than warranted by the quality of che data, parricu-
larly 1f data from magnetic measurements are uscd, then the of faxis
fields may be Just plain nonsense. If MAGORD < 0 (rectangular coordi-
nates only}, the array BZA ( }, on the g-axis, {s taken to be in the R
directions. Off axis expansion, in povers of R, are used to generate BZ
(off axis). This case ig suitable for quadrupole SyTmetry in rectangu-

lar coordinates as viewed end-on to the beam.

(4) NMAG = X BMAG = D NO. OF FIELD cOILS
"Method Two" refars to the method of tdeal coils, WMAG is che mum-

ber of ideal circuler current loops, centered on the axis and Iying in

planes perpendicular to th. axis. NMAG may have any positive integer
value, but pracrical field shapes can usually be represented by no more
than 1l colis, which is the array size. Each coil (s descrihed by three
rarameters:

CR{I) = radius of coil (mesh units);

CZ(1) = axial position of coil;

CM(I) < awperc-turns;

where I = 1 to NMAG

The i{ndex is not retated to the strength or position of the colls, Some
zethods of obtaining CR and CM values that will fit a desired field are
discussed in Ref, 7,

The subsidiary parameters RMAG and ZMAG which have been discussed
above, apply equallv ro merhod two {¢coils) as to method one.

All CRC ) values must be positive (not zero, or a rero divide will
occur); CR is not restricted to be withino RLIM, but may have any posi-
tive value. Tt nced not be an integer. The CR values should be larger
than the beam radius to avold stromg local non~unifgrmities.

C€Z{ ) values may be positiva, negative or zero, integer or decimal,
and are not restricted by ZLIM. The program caleulates the field only
within the vorking space RLIY < ZLIM, but the coils may be Llnside or
outside this space.

CM{ )} values arc unrestrictad.

All the coi] data are entered in the SINPUTS NAMELIST block.

Examples of magnet fleld emlry using coila (these data represent a

field converging into a solenvid which starts at Z = 100}:



55—

¢laat boundary card)

8aa

&INPUTS

(usual START cards)

NMAG = 3,

ZMAG = 100,

RHAG = 5,

CR(1) = 150,

CZ(1) = 6.8,

cu(L) = ~900,

CR(2) = 50.0,

cz(2) = 50.0,

M(2) = ~ 2000,

CR(3) = 32,0,

€Z(3) = 100.0,

cM(3) = 31000,

&END

{Card start data, 1f amy)

/%

2. 0ff-axis Field Expansions
The tue Ll\.pul methods described abave both result in aa avray of

flelds from Z = -6 to Z = ZLIM + 6. The arvay is for the axial fleld
and ig In double precision. With this mmber of significant figures,
it is possible to get meaningful results for finite differences up to

the sixth difference, whicn is necessary for the sixth order derivative
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used to find the off-axis fields. Each difference requites one larger
value of n in Z ¢ n, the range used to find th. fleld at Z, at any
tadius. The range Z * 6 requires that the flelds be spectfied beyond
the limits of the problem from Z = -6 to Z = ZLIM + 4.

To sixth order, the ficld cxpansions area

B, = 8,2) - R (a2 - dmrac’ « nPnae + Pmra® - RSt (o)

8. = - R(dB/dZ - dJBl'dZJ - EZIB + dsB/sz . R5I192)I2 (11)

By specifying MAGORD = 2 or MACORD = &4, the derivatives higher than
MAGORD are set to zero, This results in # less accurate expansion, if
the original dJata are worthy of the high order differences. If they are
not, then the result of the lower order expansion is apt to be far mote
acceptable., Generally, measurcd data, no matter how smoothed, ar= only
worthy of pecond order expansion. Syathesized data from an ideal curve,
if there is only one segment, can generally be expanded to fourth order.
Coil data can be expanded to sixth order. Note, however, that it is
virtually impossible to use the full sixth order expanaion with elther
measured data or arbitrary polynominls, especially {f mor¢ than one seg-
ment is to be fir together without running the risk of having a very
unphysical result. The off-axls flelds gemerated hy poor models, oT
ones with insufficlent accuracy, are apt to shov very wild fluctuations

wlth extremely large peak values,

3. Rectangular Coordinate Expansions
In rectangular coordinates, the usual expansion is normal to the

plane of the paper. The central plane, with coordinate PHI = 0, can be
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thought of as the median plane of a magner whose pele face is normal to
the z-axis, 1.e., dB/d4R = O.

The off-medisn-plane expansion is

= - 2 . 2 2
BP’HI BPHI (z) - pur 4"B/4Z 12)

Bz = PHI « dB/d2 (13)

The alteruative expanslon has the median plane lying normal to the
R-Z plana, at R = 0. The off-axis expansion is them in the R direction.

The second order expansion has been adequate for the applicacions
that have been mnde. Ome example is the "alpha” magnet doflection systen
used to bend tha low emergy SLAC beam from the gun to the line of the
accelerator. A proper chvice of angle makes the verrical focusing of
the pole face edge compensate for the vertical phase space of the beam.
Runs at different entrance angles, using the measured field profile of
-the wagnet, were uged to determine the optimum angle. Space charge of a
eylindrical beam, in rectangular coordinates can be included in such

rung by the Features described for CARD starting in section VI.G.

b Elliptic Inregrals
For coil input (Method Two"), if elliptic integral routines are
available ar cum'pilation, a table of off-axis ficlds with elliptic inte-
gral calculations is printed. It NELL = 1 inm &INPUTS, che elliptic
inregralp are uged for the ray tracing.
(¢) Inputting Vector Potential Data
In &INPUT1, the option INTPA = .TRUE., calls for &INFUTA te be

called next. The condensed instructions are:

-58-

{TO INPUT VECTOR POTENTIAL DATA)
RRO=0.0 POSITION OF FIRST ELEMENT OF a( ), IN MU
2Z0=0.0 RELATIVE TO ORIGIN OF GUN PROB.
DELR=X.X DELR=1.0 INCREMENT TN R (CM) FROM POSSON/EDIT
DELZ=Z.Z DELZ=l.0 INCREMENT IN Z (CM) FROM POISSON/EDIT
RLMAC=XX  RLMAC=3D NUMBER DF RONS OF A{ ) DATA
ZIMAG=XX  ZLMAG=200 NUMBER OF COLIMNS QOF A{ ) DATA
AC) VECTOR FOTENTIAL DATA ARRAY OF A, EXCEPT A*R AT R=0
UNITS OF A IN GAUSS-CM. A( ) IS A LINEAR ARRAY WITH
COLUMNS REMAG LONG. MAX SIZE OF A( ) IS BOODO.

Use of this option requires the outpur from a magnet design pro-
gram, such as POISSON, which solves for the magnetic field including irgn
segments, vhich may even be partially saturated. The output of such
programs is usvally in the form of an array of the azimuthal component
of the vector potential A{ ). This array is currently set to 2 maximm
of 8000 elements, but may be reduced to one element to save space for
users not interested in this option. The array elements correspond to
points in a rectangular mesh which does not need to coincide with the
mesh used for the electrostatic problem. To save running time for the
magnet program and to reduce storage requirements for the data, it is
preferable to jdentify a rectangular area that is expected to imclude
the space that the electron tralectories will require. The array starts
at RRO, 220, proceeds in steps of DELR in columms RLMAG long, and con-
tains ZIMAG columms separated by increments DELZ, During operatiom,
Lhe program finds the differences from the four points nearest the par-~

ticle to £ind the components BR and BZ.
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E. General Cathode and GENCARD

START GENERAL
START = "GENERAL® START = 'GENERAL' GENERAL CATHODE
RC = X. 000 RC = D.O LOWER END OF STARTING SUR-
FACE
2C = X.XX 2C = 2+CATHODEZ CATHCDEZ IS Z VALUE OF
BOUNDARY FROM FIRST
DATA CARD.
CL = X.XX CL = RLIM MAXTMUM LENGINl OF STARTING
SURFACE
DENS = XK.X DENS = 10.0 HAXTMUM EMISSION (A/CM**2)
BETA2 = 1.0 BETA2= 0.0  IF > 0,0 USES LANGMUIR~-
BLODCETT
RAD = X.X - USE RAD FOR WIRE RADIUS IN
RECTANGULAR COORDINATES,
BETAZ > 0.0
SURFACE = X SURFAC = 1 STARTINC SURFACE ITERATION
USE POT(5) FOR NON-EMITTING SURFACE, E.G.
HOLLOW CATHODE OR SHADOW GRID. DO NOT USE
POT(3) OR POT(5) FOR FOCUS ELECTRODE ...
USE POT(4) TO STOP ELECTRONS ON IMPACT.
START GENCARD

START = 'GENCARQT START = 'GENENERAL'  GENERAL WITH CARD START

HAVE UP TO MAXRAY CARDS WHICH SPECIFY:
1) RAY NO.
2) INITIAL RADIUS R
3) INITIAL AXIAL VALUE Z
4) DISTANCE FROM CATHODE DX (CATHODE MUST BE POT(1)).
5) EFFPECTIVE SPACING BETWEEN RAYS, DR.
6) PARAMETER WHICH MODIFIES CHILD LANGMUIR BQUATION. ALPH2
NORMAL DX TS 1.0 T0 2.0 MESH UNITS.
NORMAL DR IS 1.0 BUT MAY BE VARIED ALONG THE SURFACE.
NORMAL ALPRZ IS 1.0 FOR A PLAIN DIOLE.
FOR CYLINDRICAL COORDINATES:
ALPH2= (ALPHA (RADIUS OF CHRVATURE)/ (STARTING STEP))**2
FOR RECTANGULAR COORDINATES:
ALPH2=(BETA**2)* (RADIUS OF CURVATURE)/{STARTING STEP)
WHERE ALPHA AND BETA ARE AS DEFINED IN THE LITERATURE,E.G.,
SPARGENBERG FOR BETA AND BREWER IN SEFTIER, vOl. 11, FOR ALPHA.
FORMAT IS THE SAME AS FOR GARD STARTING; RAY NO..R.Z.DX.DR.ALPH2
(15.5%.5F(10.5)) .
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This section descripus the use of the GENERAL cathode method which
appliea ro anything that cannot be described using the assumptions of a
spherical cathode. [t includes the GENCARD option.

In caleulating starting conditions using Child's Liu, the basgic
assumption is that of space charge limited emission. Mathematically,
this meana that the electric ficld on the surface of the cathode is
zern, Thus, In order to ¢alculate the emissfon current, the calculation
must scart some finite distance from the cachode. This leads to the use
of Langmiir diodes, or pill boxes. which become anpular in shape in cyl-
indrical coordinates. The typical thickress i3 2.0 mesh units, with the

range 1.0 ro 1.0 generally acceptable,

The basic Child-Langmuir equation for emission in a plane diode 199
\ ~6.3/2
J = w- in amperes per unit area  (14)

X

The 3/2 power dependcnce of the thermionic emission current density
leads directly to the concept of perveance here defined as the constant K

in the expregsion

1= kv’ g8 (15

Since K depends only on geometric factors, the perveance becomes mm

identifying characteristic of the device. Because of common usage, per-
-6

veance for the program is expressed with the implied factor of 10 -,

3/2

i.e., microperveance having un.ts microamperes per volt
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The certral problem for the GENERAL cathode starting routine 15 to
define the starting surface and to calculate the digrance x for the
thickness of the pill box. The starting surface is initiated at the
point (RC,2C) with default values BRC = O aud ZC = 2.0 + CATHODEZ. The
defaylt point represents a point on the axis. 2 mesh upnits in front of
the Z value of the first boundary peint. 1f the cathode does not start
on the axis, a different value for RC must be used. If the first bound-
ary point does not describe the heginning of the cathode, then a differ-
ent value of ZC must be used.

The term CATHODEZ refera explicitly to the value Z + a2 of the first
boundary point. It is frequently convenient to make rthe R = 0 {ntercept
of the cathode be the first boundary peint, but there #a no rule about
this., The starting step (or diode thickuess) of 2.0 mesh units can alss
be adjusted by using a different value of ZC. The parameter ST, used
for gpheriecal starting, does not apply to GENERAL starting.

’ The starting surface is calculated by starting an equipotential
line at (RC, 20) and following it, in one direction only, until one of
three things happena:

1. The lime leaves the boundary of the problem.

2. The line becomes longer than the parameter CL. (default;

CL = BLTM)

3.  The boundary points intercepted by a line draun at right
angles to the starting surface, cxtended to the left as viewed
along the line starting at (RC, ZC), cease to be represented
by POT(1) or POT(5). Fmissien will occur from surfaces repre-

seated by POT(l). No emission will accur from POT(S5) surfaces;
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hollow carhodes or shadow grids may usc POT(5). any other
petential number will cause the line te stop, with the axcep-
tion that POT{3), usually used for grids, will not seop the
line because it may be so close to the starting surface that
confusion would result. Thus the notes suggest using POT(4)
to end the starting surface.

Tests 1 and 2, above, are included as “safety valves." Test 3 is
intended tu determine the length of the starting surface. As the gtart-
ing surface has to follow a more tortuous curve, duc to holes, wires and
corners, the equipotential parameccrs EQLN and EQST may be adjusted as

described in Section VI.A.

DENS = X.X DENS = 10.0 MAX EMISSION (A/CMA*2)

DENS limits the curren: density ro a maximum value controlled by
the user. It can be used to limit the cmission as In temperature
limited emission. The normal use s to avold extreme values of current
from local high-field points until space charge depression becomes
effective on subsequent iterations, Note chat tempevature limited emis-

aion can also be aimulated by using PERVO and HOLD as described in

Section VI.A.

BETA2 = 1.0 BETA2 = 0.0 IF > 0.0, USES LANCHUIR-BLODGETT
RAD = X.X USE RAD FOR WIRE RADIUS IN RECT. COORD. BETAZ > 0.0
BETAZ and RAD refer to the parameters Bz and r_ in the Langmuir-

Blodgel::lo theory of emission between coaxial cylinders. The waterial

i8 covered in Ref. B. The Langmuir equations are included In the pro-

gratn for the particular case of emission from an array of wires in



~b3-

rectangular coordinates., BETAZ is calculated internally once it has
been activated by the user specifying a value greater than 0,0, The
pPregram uges the distance from the wire, the radius RAD of the wire, and
the Langmuir equations to caleculare currents in each ray. More than one
wire can be used provided that the starting surface can get from ane
wire to the next by "seeing" POT(S) surfaces between wires. The wires

that emit are of course POT(1). The current per mesk unit in leogth (in

rectangular coordifiates) is

-6,,3/2

/e = 14,66 x 10 V' /(r - 32) amperes/mesh unit (16)

where r is the starting radius in mesh units and

2

82 = (L - 0.4 U+ 0.346 UP) where U = n(r/RaD).  (17)

The more usual configuration of emlssion fram a flat or concave
surface in cylindrical ccordinares is treated by the program if
BETA2 = 0,0. Then the program Ereats the annular pill boxes formed by
dividing the storting surfiace into a mumber of equil segments. The oum-
ber of rays is calculated by the program re be the largest aumber
{s MAXRAY) Lhat can be distributed evenly along the stariing lime,
i.e., 1 or 2 per mesh unit, not 1.5!

The progrumldateminen the porentlal ar the point on the srarting
surface from which the rays are to start and calculates the starting
velocity and the “Urrent using either the eguarjon for cylindrical eois-
sion, if in rectangular coordinates, or the equation for emissien from

concentric sphureall in cylindrical coordinates:

~blh=
2.335 = 107%*2
1 = D e o § p amperes per tadian (18)
T (-a}
c
where
a0 s -owiearsdo 2 19
and
y = in[(rc - x)frt] {20)

where, as fn (14), x is the thickness of the pill box, and in which T.
Is the radius of the cathode and p and § - are the radius and thickness
of the annular ring on the starting surface. This equation calculates
the current in a one radian segment of the annular ring. The program
prints this current in the one radian segment in the rable of initial
conditions. Under final conditions, the current is printed divided by
the initial radivs, 5. This column gives a measure of current density
to determine uniformity of cathode loading. The cathede tadius T 13
estimated for gemeral cathodus by comparing the length of the ecathode to
the lemgth of the starting surface, This may be incorrect if the cath-
ode does not have a constant tadius of curvature but the tesult is se
¢lose to the sinple L/nz dependence thae the discrepancy does noi scem
genetally significant,

For cases involving cylindrical coordinates, for spherical and gen-
cral cathodes, the Starting step is much smaller than the radius of
curvature. Thus, it is possible to simpllfy (19) by expanding it to

second order in (x/rc):

2w = P L6 e+ 2,06 x7/xD) (1)
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in vhich x has been redefined as positive for the usual case of a con-
cave gpherical emitting surface. With this change, (14) and {18) are
essentially the same except for the correction factor, the term in paren-
theseg in (21), called ALPH2 in the program. [t is this term that is

called for explicitly in the input for GENCARD.

SURFAC = X SURFAC = 1 STARTING SURFACE CYCLES
SURFAC controls the number of program cycles for which the starting
surface will be regenerated. Frequently, the most satisfactory lovking
starcing surface is generated on the first cycle, without space charge
depression. The starting surface, it should be racalled, is only a
locus of starting points from which particles start out in the direction
of the electric field, The potential difference betwaen the starting
pofnt and the cathode determines the initial particle velocity and the
current for that ray. As space charge depression is inciuded, the shape
Pf the starting surface may, or may not change, although generally the
poteucial en it will change. In any case, it is well to limic the num~
ber of cycles during which the surface 1s recomputed so that the final
cyelea converge to a stable solution. SURFAC controls the number of
such cycles and, while it may often be more chan one, it should gener-

ally be 2 rr 3 less than N5, the total number of cycles.

General Cathode Diagnostics

if the START = 'GENERAL' option Is selected, the program will print
a special table of the appropriate constants: RC, 2¢, CATHODE LENGTH,
MAXRAYS, etc. After puccessful calculation of a starting surface, the

message
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STARTING SURFACE: LENCTH = X.X ENDS AT RHO = X.X, ZETA=X.X

will appear. XNext the headings for the initfal cenditions will be
printed followed by the inirial condition data.

1f the starcing surface tails by not being able to trace an equi-
potenclal for at least two mesh units, or because it is asked for points

outside of the preblem, then the message:

GENERAL CATHODE STARTING SURFACE FAILED : LENGTH = X.X

ENDS AT RHO=X.X ZETA=X.X

is printed. If SURFAC » 1 and this failure occurs on the sccond program
cvele, then the program will cycle once more with a smaller perveance
{currently 80%) and rrv again to fit the starting surface, Ocherwise,
the program will terminate, but in either case the complete potential

map will be printed to «id in diagnosis of the difficulty.

GENCARD I{s a starting option Introduced to permit brtlur responge
to highly nonuniforu cathodes, A specific example would be the sharp
outer corner of a tight cylindex emitting from the end face. This cor-
net is usually handled poorly by START = "GEWERAL' because of implieir
assumptions that the radius of curvarure of the surface is much greater
than the starting step. GENCARD was specifically intended for use with
high curreat fleld caission devices. but applies also to thermtonic
emitters.

GENCARD combines some o the functions of GENERAL with the basie
philosophy of CARDS in which the user specified all the startlng condi-

tions. In GENCARD, the user specifies the inicial coordinates no'zo'
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the effective distance to the cathode DX; the spacing between rays DR;
and the "fudge factor" ALPHZ, Thus the user has defined all che param-
eters needed to start the space charge limited problem exXcept initial
energy and direction. These are calculated by the second part of SUB-
ROUTINE CHILDA which is the subroutine called by GENERAL. The first
part of CHILDA calculates the starting surface, apd 1s not needed by
GENCARD.

The parameter ALPH? 15 the term in pdventheses ¢n the right side
of (21). In rectangular coordimates, ALPHZ correspends to the BETA” of
the literature with (STARTING STEP/CYLINDRICAL RADIUS)'S® PO¥°C facroreq
out. The effect of this is to make the normal, i.,e., plain diode, value

of ALPH2 = 1. Anything else is a perturbation at the user's cantrol.

F. $pherical Cathode

START SPHERE
START = 'SPHERE® START = 'GENERAL' SPHERICAL CATHODE
RAD = X.XX RAD = 2%ZLTH SPHERTCAL RADIUS
RMAX = X.XX RMAX = RLIM CATHODE RADIDS
ORAD = X.XX ORAD = CATHODEZ CENTER OF CATHODE
ST = X.X% ST = 2.0 STARTING STEP

"SPHERE' ALSO WORKS FOR CYLINDRICAL
CATHODE IN RECTANGULAR COORDINATES

IF START = ;spnxxn' is elected, the program will first print the
special table of parameters for the spherical cathode: SPHERICAL
RADIUS, CATHODE RADIUS, CATHODE CENTER, etc. The first two values,

RAD and RMAX, determine the essential geometry of rhe spherical cathode

as shown im Fig. 5. Obviously the default values, 2 x ZLIM and RLIM
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RLIM

e—— RMAX

ZLIM

230042

Fig. 3. Basic geometry for spherical cathode configurations
defining the input parameters.
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Iebpectivaly, have almost uc chance af being carrect, so the user muot
specify them. The default value for ORAD, the cathode center, is at
CATRODEZ, the first boundary point as defined for the general cathode in
Seetion VI.E. The starting step 5T, is thr value used for the thickness
of the Langmuir pill boxes. As in the START = 'GENERAL' case, in cylin-
drical coordinates these pill boxes are innular rings and the current is
that curtent in a one radian segment of that ring. The current 1is cal-
culated an in Eqs. 18-20 using the geometry of Pig. 5. Figure € im the
plotted output of the sample problem of Fig. 2 using START = ‘SPHERE’.

In rectangular coordinates, START = 'SPHERE' operates with the same
input and rhe same geomebry t calculate the current per mesh wmit in
the direction normal to the plane of the paper. Again, as in START =
"¢ TNERAL' Eqs. 16-17 are used according to Ref. 8.

Immediately after printing the headings the spherical cathode rou—

tines print a message:
TTERATION NO, X, I = X.X MICROAMPS, PERVEANCE = X.X MIGROPERV.

The curreat and perveance pricted are those calculated according to the
fields and geometry by the appropriate equations as indicated above. In
other worde, these arc the unnormalized valueca. After printing this
megsage, the program averages the perveance according to the method
described under PERVD in Seetion VI.Z, The initial currents that are
printed aut with the initial <¢ounditions Tellect this averaging process.
Between the initial and final conditions, the same message as above is
printed, except with the normalized values for current and perveasce.

As in START = 'GENERAL' the currents primted with the final conditiens

8p
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Plotted output of sample problem shown im Fig. 2.
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are divided by the initis1 radius {if in cylindrical coordinates) and

thus give a measure of uniformity of cathede loading.

The spectial case of magnetic filelds reaching the cathode, i.c.,
"{mmersed flow" Ls treated by both SPHERE and GEMERAL according to
Busch's theorem.lz The program must use magnetic fields on the cathode
and on the starting surface te lntegrate the azimuthal wotion through
the 2ap between the cathode and the starting surface. If there is any
inconsistency in the off-axis magnetic fields within * 6 mesh units of
the entire range of the starting area, then peculiar bunching of the 13ys
will occur, That 1s why the proper use of MAGORD and the careful inpur
of fields mear the cathode were stressed in Section VI.D. Fortunately,
any problem of this sort becomes {mmediately obvious on examimation of

either the gtavting conditions or the plots.

G. Card Starting

The program starting instructions are as follows:

START = CARDS' START = 'CENERAL’ CARD STARTING
70 = X.¥X 20 = 0.0 OLD ORIGEN IN NEW FRAME
SRAL = XXt S¥AL = 1.0 OLD MESH/NEW MESH
HAVE UP 1O MAXRAY DATA CARDS WITH (1 INTEGER, 6 FLOAT PT.) KO., R,
2, EMERGY (EV}, ANGLE (RADIANS), CURRENT (MICROAMPERES IN ONE RADIAK
SEGMENT), TRANSVERSE ANGLE, TRANSVERSE POSITION (PHI). FORMAT 15, 5X,
7¢10.5. OLD USERS GETTING THE NEW VERSION OF THE PROGRAM SHOLLD NOTE
THE CHANGE TO TRANSVERSE ANGLE AND TOTA!. KINETIC ENERGY.
STOP READING WITH RA® NO. CREATER THAN MAXRAY.
LF RECTANGULAR COORDINATES:
PHI IS TRANSVERSE POSITION IN MESH UNITS.
CURRENT IS MICROAMPERES IN ONE MESH UNIT DEEP SEGMENT.
*a**SPECYAL TESTS IN RATNST; CROSSING OR 3-T CPACE CHRAGE**

IRAT=1 IRAT=0 3-D SPACE CHARGE

IRAT=2 IRAT=0 CROSSING DETECTION
USE OF NEGATIVE RAY NUMBERS:

A) IF IRAT=1 (3-D SPACE CHAKGE)

1) MAKE RAY NUMBERS NEGATIVE FOR BEAM EDGE CARDS.
USE BEAM EDGE CARDS (10=0) TG STIMULATE SPACE CHARGE SPREADING
OF A CYLINDRICAL BEAM OF CURRENT I AND RADIUS R 1IN RECT. COORD.

-12=
PAIRS CF BEAM EDCE CARDS PRECEDE SETS OF RAY CARDS DEFINTNG
PART OF BEAM FOR WHICH )-D SPACE CHARGE SPREADING IS T0 BE SIMULATED.
SEVERAL PARTS, DIFFERENTLATED RY SELECTED ATTRIBUTLS; £.G., ENERGY
ALPHA OR RADTUS. CAN BE USED SIMULTANEOUSLY WITH ANY NUMBER OF RAYS
IN EACH PART. FND OF PART 1S DEFINED BY NEXT RAY WITH NECATIVE RaY
NUMBER, WHICH BEGINS THE NEXT PART.
TO SIMULATE CYLINDRICAL BEAM SPACE CHARCE IN RECT. COORD. MAKE
CURRENT PER MESH I™IT, 1' = 1/(PL%R) INSTEAD OF §' = 2 * I/(PI * )
WHICH WOULD MAVE TUE SAME CURRENT PENSITY. IK OTHER WORDS, MAKE
I°(K) = I(K)/(2#*R(X)) INSTEAD OF I(X)/R(K). NOTE THAT THIS REQUIRES
TWICE AS MANY RAYS AS FOR CYLINDRICAL BEAM WITH SYMMETRY.
BEAM EDGE CARDS {RAY < N) APPLY TO OFF-AXIS PENCIL IN CYL. COORD.

The START = 'CARDS' mode uses data cards for the tnitial conditicns
rather than computing the inirtjal conditions from a thermionic model.
There ate several typical applications f{or this feature that will be
described {n some detail. These are:

1. The simplest case of user speciflied data.

2. Use of cards gencrated by a preceding run to restart in a new

seyment of the same problem.

3. Study thermal an: other perturbing influences on a beanm.

4. Rectangular coordinate application with a cylindrical bean,

including eylindrical space charge and off-axis bends.

1. Format for User Specified Data

1f START = 'CARDS' hus bvem sclected, the program will respond by
srinting a table of apprupriate patumetcrs: STEP, NS, Z{0), SKAL,
(NIT. Following the end of the BAMELIST inpuc &END card, the prograa
will expect to read up Lo MAXRAY cards with the starting daza. A card
with ray number greater than MAXRAY will cerminate this imput. If MAX-
RAY cards are present, the termination card should be used anyway. WHow-
ever, no effort should he made Lo make MAXRAY agree with the number of
cards usad, so long as it {s big rnough. The computer can, after all,

count betrer than most humans.
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Data to be entered on the ray cards consist of a ray number and
the initial values for R, Z, ENERGY, ANGLE, CURRENT, TRANSVERSE ANGLE
and TRANSVERSE POSITION., The format is IS5, X5, 7F (10,5).

(a) Ray Number: the ray mumber i{s only included for user conven-
{ence, and for the termination purpose described above. Rays
are mmbered by the program, sequentially as the cards are
read in. Negative ray numbers have special implicatlons that
will be described below.

{b) R: the initial radial positicn in mesh units,

{c) €: cthe inicis! axial position in mesh units.

(d) ENERGY (ZV): The initial kinetic energy of the particle in
clectron volts. It should be obvious, but sometimes requires
stating, that ENERGY has nothing whatever to do with the poten-
tial vslues on the boundaries, or on the potential at which the
Tay tracing starts. For ray tracing, only [felds are ilmpor-
tant, not abgolute potentials.

(¢) ANGLE: the initial angle that the rny mnkes with respect to
the z-axis, 1n radians.

(f) CURRENT: the current in microamperes for a one radian segment
of that ray. In rectangular coardinates, it is for a one mesh
unit deep segment.

(g) TRANSVERSE ANCLE: the angle normal to the R~Z plane.

(h) PRI: the inirdial transverse positien. In rectangular symme-—
try, PHI is a linear coordinate, measured in mesh units. In
cylindrical eymmetry, PHI 1s the szimuthal pesition in

radians.
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2. Use of Program Generated Cards

At the end of a run, the program generatea a set of cards with the
final conditions of each ray according to the above format. These cards
may be punched, or saved as a data set in card format on a diract access
device. If 1t is planned co use_r.hu cards in 0 subsequent run, 1t is
only necessary to be sure they are saved somehow. In a pinch, tie same
data are printed in the final conditions of the output and can be hand
punched.

Typically, these cards are intendeu to be used in a subsequent seg-
teat of a problem. Thus the results of the sample problem, Fig. 2, are
intended to be used in the complete gun with card starting just past the
grid. Between runa, it is normal to expect that a different scale and
origin will be used, otherwise there fs not much reasom for the second
run. The companicn parareters 20 and SKAL arc used to modffy the data,
as read in on the cards, as Follows:

20 = X.XX 0 = 0.0 OLD ORIGIN IN NEW FRAME
SKAL = X.XX S5KAL = 1.0 OLD MESH/NEW MESH
In words, if the f{rst problem is plotted on the same graph with

the second problem, then the origin of the E{Tst problem will be found

displaced lefr or right by Z0 mesh units in th¢ new coordinate aysted.

Usually ZO is nepative. SKAL is interpreted as the ratio of sizes of mesh

units (in meters). Thus a problem in which many mesh units were used to
calculate cathode conditions will have a relatively smaller wosh than

cthe follow on problem and SKAL < 1.0 {n this example.
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3. Thermal Effects

SUBROUTINE THERM IS CALLED IF THE PARAMETER TC - 0.

TC=200K, X =0 KELVIN TEMP. OF CATHODE
TWO MODELS ARE INCLUDED IN THIS VERSION

KRAY=] KRAY=1 THREE RAY SPLIT

KRAY=5 KRAY=1 FIVE RAY SPLIT

THREE RAY SPLIT PUTS CURRENTS IN 1~2-1 RATIO WITH 2 PARTS IN
URDEFLECTED RAY AND 1 PART EACH IN RAYS WITH W({PERP)<=SQRT{2KT/H)
IN R-2 PLANE, UP AND DOWN RELATIVE TO UNDEFLECTED RAY.

FIVE RAY SPLIT PUTS CURRENTS IN 1-9-0-9-1 RATIO %1TH
V(PERP)=2#SORT(2KT/M) FOR 1 PART RAYS AND V(PERP)=1#SCRT{2KT/M}
FOR 9 PART RAYS. NO CURRENT IN CENTER RAY.

USERS SHOULD FEEL FREE TO MODIFY SUBROUTINE THERM.

THERM CAN BE CALLED FOR START='SPRERE', 'GENERAL', 'CARDS'.
OR 'GENCARD' ,

IT _CANNOT BE USED FOR START='CARDS' WITH SAVE=2.

[N Rectangular Cootrdinates with Cylindrical Beams

The basic assumption in rectangular coord{nates is that Lhe beanm
consists of a sheet extending infinitely in the directiens in-and-ocut of
the problem, The space charge forces on such a beam are much greater
than {n cylindrical symmetry because the field does not fall off by L/R.
However, i{f the current is properly reduced, the transwerse space charge
forces can be made the same as they would be for a cylindrical beaw.
Further reductisns in the cufrent can compensate [or further expamsion
af .he beam.

Congider first a uniform density cylindrical beam ol total current 1
and radius R, The current density Is 1 = l/nRz. 1f one wished to have
a rectangular symsetry beam of thickness 2R at the same current density,

the total current per unit length would be

I' = 2RI = Z2I/mR {equal densities) (22)
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dae cauld divide 1' by some intiger n and make n rays, suitably spaced,
each with a curreat of 1'/n.  If ope wishes to use starting data from a
previous run, them each ray has a current per unit length 1(K)/R(K).
Unless the rectangular beam has roflection symmetry on the z-axis, there
would have to be twice as many trajectorics created ag in cylindrical
SyTmetry o represent both halves of the beam.

Consider now a particle of charge e on the edge of a cylindrical
beanm of radius R and current 1. The radial space charge force on the par-

ticle is
Z 2 -
md“R/de” = e1/ (ZnRZc ) (23)

The force on the similar particle next to a current cheet in rectangular

symmetry iR

2 2 '
nd’y/ded = el'i(zac) (24)

To make dZRId:Z = dzy/dzz we have only to require
I' = 1/=R {equal forces) {25)

This is just ope half of the result for cqual densities in Eq. (21).
Thus, if the results from the previous run were trcated as described
above, except divided by two, then the Initial space charge forces on
the rays would be the same as in cylindrical coordinates.

A special featur? allows the user to deaignate groups of rays, as
few as one per group, to be bounded by "beam edge” cards which do not

catry curtent. As the beam edge cards mpread apart, the curremt on all
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rays within the group is reduced proportiocnately, The groups may cress
or overlap, but should not cross their own beam edge rays. The initial
conditions of the beam edge rays cam be chosen so that they da nat cruss
the tays of the group, Beam edge cards arc designated by being ingerted,
with negative roy numbers, in pairs just before the members of their
BTONp, Successive groups would thus be scparated by the pair of beam
adge cards for the mext group.

Beam edge cards may alse be used in cylindrical coordimates. In
thic case, the effect would be of an .ff-axis pencil beam, i.e., not an
annular xing. Assuming that the thicknesa of the pencil is small com-
pared to the radial displacement, the same Factor of one-half should be
applied to the initlal currents as was derived For tectangular
coordinates.

B) IF IRAT=2 (R-Z AND PHI CROSSOVERS)

1) R-2: MAKE RAY NUMBERS NEGATIVE FOR SEQUENTIAL RAYS FOR
WHICK FIMAL CROSSOVER SHOULD BE DETECTED. CROSSINGS WILL BE
LISTED AND PLOTTED. NEGATIVE RAY NUMBERS SHOULD BE IN PAIRS.

TC FIND CROSSOVERS WITH Z AXIS, RUN A RAY WITH R=0,ALPHA=0
PRECEDING THE HAY TO TEST AXIS CROSSING.

2) PHI: LEAVE RAY NUMBERS POSITIVE FOR TRANSVERSE RAYS TO

DETECT LAST CROSSING OF PHI=PT * INTEGER,

A specilal application of beam edge cards is to specifically detect

crogsovers. For this application, the beam edgr control code is set to

T=2 in £INPUTS5. The program instruction comments appear above. This
feature 19 used to f£ind the locus of foci to determine the position of
the sclotillatar surface in image intensiffer tubes. Ro space charge
is involved. Pairs of trajectories, started sequentially from the same
point with different initial conditiens {energy and direction) are
focused to a crossing, which must be located exactly, The program finds

such crossovera and prints a table of their coordinates.
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H. Laplace's Equation Applications

START = "LAPLACE' START = 'GENERAL' NO RAY TRACIRG
NS = X NS = 7 NUMBER OF LAFLACE CYCLES

ADD DATA CARDS WITH (R.Z SPACE CHARGE) FOR NON-ZERG POINTS. END POINT

INFUT BY R > RLIM.

Laplace's equation has many applications besides solving electro-
static potential problems. Some examples are temperature distributions
and magnetic fields.

As a reminder, by Laplace's equation one usually means vze =0
vhile Poisson's equatfon is Vzo = p. The program alvays soclves Folsson's
equation but with ¢ = O on the first iceration. However, 1f one selects
START = 'LAPTACE', one can then add dots cards with the coordinates
(R,A), and the right hand ot space charge term for any non-zero point.
These dara are appended sfter the end of the starting namelist and are
terninated by R > RLIM.

The program will then eyele for N§ cycles on just these data, with
no ray tracing- It prints the porential wap or POTLIST before and after
the last cycle to show how things may be changing, Following the last
eycle, the progTam prints a list of the fields, {.e., the derivacives of
the potentials, on all the boundaries. Ficlds at specified interior
points can be obtained by making a duwsv boundary go chrough such peints.
Dummy boundary points have DELTAR = DELTAZ = 2.0 and can be ficted
aceording to the same rules as Neunann boundaties, 1.e., along mesh
lines The fields are mormalized to 100X of the field on the first
boundary peint. Choose {t carefully, I.e., not where the field is necar

ZEero.
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To do ray tracing with the arbitrary space charge solution found
by LAPLACE, it i simply necessary to sct SAVE=1 in &INPUTS of the first,
LAPLACE, problem followed by a second problem, without boundary daca,
but with ray tracing starting instructions. See the discussion under

SAVEwl in Section VI.A.1l2.

1. Dielectric dowmdaries

The input provision for special boundaty points, described in Sec-
tion V can be used for the particular case of a dielectric boundary.

The difference equatinns are only affected on the boundary of the
diele-ctric. The notmal methed of using this feature is to specify
dumny boundary points, i.e., points with DELTAR = DELTAZ = 2.0, which
can be put in point-by-point or with the f{tting (three-point) method as
1if the polnts were Neumann boundarfes. That {3, they must lle on wesh
lineca.

The difference equations were derived by Seegerl] for the special
capsgs of horizontal and vertical dielectric boundaries. These telatively
simple cases are sufficlent for most applications because the actual
poastion and angle of even a curved dielectric are telatively less
important te the Fields in the vicinity than the fact that the boundary
in loeated nearby. Thug a good approximation results from a stepwise
atmulation of t}‘l(.- dielectric and a small displacement ro the nearast
menh point does very little to the flelds a few mesh units away.

The coefficients of the difference equatien are given by Eq. (3) in

Scction IV, and can be expressed as:
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o=
[}
o
-
n

RIGHT = R {Vacuum)
UP = R+ 1/2

DOWN = R - 1/2 (26)

For a horizontal dielectric, where £y is the dielectric c¢onstant for the
lower vegion and ‘Z is the constant for the upper region, the coeffi-

cients become:

LEFT = RECHT = (tl(R - 1/2) + Ez(R + 1/2)3/2 (horizontal)
UP = cz(R + 1/2)

DOWN = cl(R - ) (27
For a vertical d{electric boundary, the coefficients becoma

LEFT = clR RIGHT = cZR (vertical)
UP = (;1 + :2)(11 + 1/2)/2

DOWN = (e, + €, ) (R - 1/2)/2 (28)

where !-:1 is the dielectric constant for the laft side regfon and ¢ 8

2 1
the constant for the right stde rcglon. Fov rectangular coordinstes,
set all the R's and (R £ 1/2)'s to unity,

The terms LEFT, RIGHT, UP and DOWN refer to the points, 1, 2, 3
and 5 respectively in Fig. 1. The notes summarizing Eqs. (27) znd (28)
in the program imstructlons are reprinted below;

SPECIAL BOUNDARY POINTS {INCLUDING GENERAL NEUAANM BOUNDARIES) USE
999 IN COLUMNS 3-35 TD END BOUNDARY INPUT. BOUNDARY MUST INCLUDE ALL
FOINTS TO BE USED AND ALL POT NUMPERS. THEN INCLUDE ANY KUMBER OF CARD3

WITH R, 2 AND FOUR DIFFERENCE NUMBERS FOR LEFT, RIGHT, UPF AND DOWN,
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SEQUENTIALLY. NUMBEES SHUULD ADD TO 4 * R OR 4 IF RECTANGULAR COORDI-
NATES. END WITH R > RLIM, FOR GENERAL NEUMANN, SEE APPENDIX I1, TERMS

ARE 4 * TANQ/1+TAN@) AND 4/TAN@) WHERE TANE@ < 1.

HORIZONTAL DIRLECTRIC BOUNDARY:

LEFT = RIGHT = (EL * (R - 0.5) + E2 * (R+0.5))/2
UP = E2 * (R + 0.5)
DOWN = E1 * (R - 0.5)

where E1 OR E2 = 1.0 FOR VACUUM AND E2 15 UPPER 'MATERIAL’.
VERTICAL DIELECTRIC BOUNDARY:

LEFT = E1 * R RIGHT = E2 * R

VP = (EL + E2) * (R + 0.5)/2

DOWN = (E1l + E2) * (R - 0.5)/2
WHERE E2 IS RIGHT HAND 'MATERIAL'.

V1l. TRAJECTORY CALCULATIONS

The program uees a fourth-order Runge-Kutta method of solvipg the
relativigtic differcotial equations given below. Suirable substitutions
are used to reduce the three secord-urder equations to six first-order
differential equations

The independent varisble is time but the Cime Lnterval is calcu-
lated from the allowed iteration step and the velocity. It is neces-
Bary re use fairly ehort gteps because of the auxiliary calculations

that must be made at each mesh unit. Thus it is generally not helpful
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to use any self-checking "rorrector™ solving routine. If some unusual
application requires shorter iterarjon steps, the results usually show
this by their internal inconsistency.

The telativistic differential cquations are derfved in Appendix 1

aud are

o _ 2142 _ 2 .. - - .
z (1 87) [- Ez(l Z)+ZREr+ZAEw—cRBw+cABr]

» (29)
.. 2.1/2 -y .. . . . _'AZ
R-Q(J-B) -~ E (i =1R") +ZRE_+ RAE _+ ¢ZB_ ~ cAB_ [+ =
T z < (4 z R
i)
and
- 2172 2 . S R
A afl - 87) [— Ew(l A") + ZAE_ + RAE_ - <ZB_ CRBT] T -
(31)
where
g2 = 22+l 4+ A and 8 = vic (32)

The conxtant a = axlmucz vhere e is the magnitude af the electron charge
(the "-" sign is in the equations), mocz is the rest energy of the elec-
tren and A is the constant of proportionality berween the real coordi-

nares and the dimensionless ccordinates. Thus
2 = AZ, r = AR, am= AA and ct = AT (33)

By an arbitrary choice, % = 5.11 ¥ 105 mesh units so that a = 1.0 mesh
unit per volt. Inspection of the differcatial equatiens shows that they
are dimenstonally correct if the electric fields are specified in volts

per mesh unit.
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Dimensionally E = vB, se that in wksa units E is in volts per
meter, v is in meters per second and B is in webers per mel:er.2 Then
cB has units of volis per meter. To convert to program fields of volts
per mesh unit, fields are multiplied by the value UNIT in meters per
mesh wnit. Hagnet{c field input to the program is in gausu, which is
the common engineering unit, and is intemmally converted ro
Hebetslmeterz.

The azimuthal magnetic field B:p comes from the current in the elec-
tron beam and 18 called the self-magnetic field of the beam. The mag-
necic field created by an axial current is

Bm = ;} % |-'f-:tnzrsllmal:er2 (34)
The field 48 assumeq to be due to an infinita conductor which is a
pretey goad apgroximation in the area in which the field 18 signiffcant.
After multiplyfng Hlp by the scale facror and expressing r in meters
which requires multiplying r by the scale factor also, the scale factor
cancels as might be expected. Thus the scale factor anly enters for
external magnetic fielda., The current I in Eq. (J4) is the summation of
the current in the trajectories at lower radif than the trajectory being
calculated, but-lncluding the one being calculated.

Two field compeonents are neglected, The azimuthal electric fleld
1s neglected hecause of the ax1al symmetry assumed. The axial magnetic
field can have a contribution from the beam due toa azimuthal velocity of
the beam. The magnitude has been shown to be less than one gauss in

meat practical caseas and o is neglected.
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The space charge fs calculated to supply the right side o1 Poimnon's
cquation which 1s
vly - £ . A

co Ve,

35

The element of area for J is (r x 1,0) mesh uni.l:sz where r {5 the parri-
cie radius. The velocity 1s only the Z-component gince the space charge
is being spread between adjacent points on the same column. The one
mesh unit space between adjacent points accounts for the 1.0 in the area
expression above.

in the finite difference form, Eq. (3} replaces Eq. (35), and the

tight hand side becomes

365 % 10 To(K) x 1070

RD = 3
ABS(ZDOT) = 3 = 10

= (3.77%% - 4) 10{K)/ABS(ZDOT) (36)

where RO is to be spread between two points in loverse ratic to the dis-
tance the ray is between them, 10{K) is the current in the one tadian
segment of the ray {(in microamperes) and 2DOT is the velocity in units
of c. If the angle of Inclination, dR/dZ, exceeds 450, che calculation
is made for RDOT, The absolute value of ZDOT is vsed te allow a negative
7L0T. The explicit value of R in Eq. (3) is canceled by the R which
vould convert the current co current density, thus avoiding speci.l
problems as K =+ 0.

In practice, however, there ave still some space charge problems
near the axis. In rectangular coordinates, if the axis 1s a plane of

symmetry, then any trajectory between R = 0 and R ~ 1 has a mirror imagu
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between R = 0 and R = -1, To account for all the space charge on the
axis, the calculated charge is doubled. In cylindrical coordipates, it
has been found necessary to muleiply the axial spoce charge by an empir-
{cal factor of 5.5. While no satisfactary explanation of chis has ever
appeared, the behavior of ideal laminar beams 1in test problems is markedly

improved and highly convergent beams appear to behave as expected.

VIII, TRAJECTORY ANALYSIS

The progran does some analysis of the quality of the beam resulting
in a quantity which is similar te¢ the phase volume, or emittance, of the
beam, For rhoge not familiar with rthe concept of phase volume, the
materiel presented by steffan13 is a good introduction. The direct
application of the concept of phase volume to electroa gums was derived
by Hiller.lh
) The simplest formulation of phase volume 1is to consider the area of
an ellipse plottaod in dr/dz vs. r. Assuma that the beam (e.g., the
first standard deviation) £111s this ellipse. Subsequent drifting and
focusing can be ghown to affect only Lhe agpect ratie of the ellipse,
and the retatien of the major axis, but not the area. The ellipse can
become unrecoguizable through nonlineatr elements.

At the cod of each computer rum, two cxtra plots are generated.
One is a plot of current demsity as a function of final radius, i.e.,
the beaw profile. The second plot 16 a point plot of the location in
dr/dz ve. r of the Flnal conditions eof cach ray. TFigure 7 is the plot

in dr/dz for the sample problem in Fig. 2. Using this second plot, the

dR/dz

-86-
0.02 T ¢ T 1 T 17177 v T 7T 7 1 U T 1]
0 g 1
-0.02 N
.
-0.04

-0.06 .
—0.08 . ith Point
~0.10 {r> Ldr/dz)” ‘ i
L / .
-0.12 - Area Ai x x% n
- * —
-0.14 : x )j

-0.16 I IR IR IO NN NN U N SO W W AN T S B

0

Fig. 7.

4 8 2 16 20 24 28 32 36

R——-—

Phase space calculation for problem shown In Fig. 2.



-B7-

effective phase area is calculated at the end of each rum according to
the method described by Hiller.u First the center of the distributien
1s calculated, with sultable weighting for the current of each ray.
This results in a locatian <r>, <dr/dz> in the half-plane. Then the
area &y for the ith rrajectory is calculated as the weighted cross
product between the ith point, Tys (dl'lldz). and the center of the dis-

tribution. Tha resulting expression which is used in the program is

dr e i 172
1
| Tl ® (3 ) (T )
3
(1 i

T <)

This definition for the emittance area of a number ¢f discrete points

37)

has the followling desirable characteristics:

l. It vanishes when the points 1ie on a straight line through
the origin.

2. It approaches the area of the ellipse for a very large number
of equally weighted points uniformly distributed in the Inte-
rior of an ellipse.

3. It is ipvariant under limear transformations which conserve

phase area such as that representing an aberrationless lens.

When multiplied by the particle momentum, Eq. (37) vetains the same
invariance through subsequent acceleration. That ig, transverse momen-

tum times radius is conserved.
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APFEIIDIX I
DERIVATIOCH OF EQUATIONS OF MOTTON™

.
The equations of moticn are derived from the Lorentz force equation

-

aav)

- - -
A - elf +vx B), (1}

where ¢ is the magnitude of the charge of an electron. The electron
velocity vector v, expressed in cylindrical coordinates is

> . * -
vEw feu T Hu a (2)

Here vy, 1, and Uy are unit vectors and & = rq') is the azimuthal or
peripheral velocity. The left side of Eq. (1) can be found frem

-l
- ]
v} @ LY ( - .‘f) e (3)

® - X = )

S
where =, 1is the electron rest mass. Differentiating Eq. (3) ‘yields

- -3z -~
alov) _ AT yavr [l & (&)
at © i o2 at o2 at
where
av
-‘ﬁsuzz-l-ur(i"-m')a)+u@(zﬁ:+rq") 5)
which becetmes
& .- w .2 . e
T T 47 1"-1!.(:1'-8/1-)+x-.p (zafe +3) . (6)
ez 42 W21
Fram v = (2 + % +4 )% where v is the scalsr velocity, 1
we have
ol rertrid). (8)

*
This derivation was suggested by Dr'. Geoe Leng in a private camunication.



-90-

_a9—
Substituting Egs. (6), (T) and (8) in Eq. () yiclds and
> ~3f2 AN E T i T v?
d 2 1 o xose roar s oas . . . l(’—‘ S g e = ¥ L = Z -
J%l=mo(l-!-) LE TP T8 00d var i) c\l Cz) (cg“ *L_Q” + cz*cz A 2
{9) . . (1u)
= -e(E\_\ + ZEr - rB.) .

For ¢omruter proorumming it s sonvenient to express the varinbles
in a normelized torz. Accordingly, we let

t

+ (1 - V_E) !.,zau w ¥ - &) + uy(F &/7 + a')li .

o
Equation (9) can be expanded and grouped by vector camponents yielding
. 2"—'kr . 2 =N, »=X, s = A and ct = AT, (15)
diz: ¥ 1 sgs e et e Ve 3
ac =B, (1 - = uz—z(rr+su)+z 1- e e ve a5 e - ot
o2 o2 \ R e differentiate with resrect to T = X tc set
. . 2
.. 2 2 . 2 Y-} z=¢Z, 2 )
1u1_Lr(z'z'+uu.)--a—(—v—)+r-1-v——+r—}(10)
o2 T <2 ¢ 2 e
;= of, ;.':C_'_,\“ . (16)
®,6 s e - A T 2 (1] = 22
+u{-l—ga(zz+r7+5—3—(1 "’—)+ (1-‘—';1-9—)}.
Pl e o2 2 2

A similar vector campenent expansion can be made Tor the right side of
(1)

Eq. (1) yielding

ns {r Egs. (12), (13), snd (17) ylelds

+
dfwmv) . N . . . s
3t -e [l.lz(Ez + 1-Btp - uBr) + ur(}:,l_ - aBz-qu)) + um(Ev + zBr-rBz)] . (1)
Making the nermalizing substituzio
Equating vector ccmponents we have flnslly R
= ¢ R .
"3 g [o-o2 e 8D oy tin] - efrpeinata ), 08)
o _¥E ve . ..L [ ) ] a 2 T
o = -5t zad —-:-(E:+r13?~afr) , {12 A(1-82)
< © )
o Y2 . R :\oc2 o 2ae e ae @ 5 r . .
mo(l - V—E) l—z M SR (1 o . Lfd ATNOETLE ST L SRR "’Lsr"’“:;“"@;] (19)
o o 5 A 1~8%)

= -e(E!r-';.BqJ + &Bz) (13)
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and
o e? 2., B3 N .
e [fz T AR K+ (102 A+ B (102 oe [L«;ZB .cns,]. (20}
7\(1_32)3[2 S by 2

Our goal is te get separated aquatlions solved for the second order
derivative of esch of the orthogonal variables. To solve the equations,
we arrange them in the form

AY+BR4cK=D
1 1 1 1
aZ+BR+cR=p (a1}
2 2 2 2
AZ+BR+c¥=p
3 3 3 3
and apply the standard determinant method of solving similtaneous

equations. Reerranging Eqs. (18), (19) ana (20) in the form of Eq. (21}
yields

(8P Y & SR E - 8 K = =22 (1.82)°% (g ochn -chn ), (22)
mocz z (] T
Ve as 2.0 . 2 e .. 32
8+ (1-p2f) + A = (1-87) T - = % (E_-ofB 4B )(1-6%)77, (23)
me? r P z
Q

and

. pe 2 2y RA P al=z
BE+ BE+ (L8245 = - (1-69) X" ::z x (Efp+c'2,3r—cRBz)(l-ﬂa) ;

[+

(ah)

~§2-
The detcrmlnsnt of tle coetficicnts is

8- (107" [0 )40 4 27 R0-0%47))
T [ZAZ:'. . A2 (1-8% az)] - (1B (187 (1B )

- 232(1-7)- 27RP(1-87) ~ (1-8%)2(1-8%4 254 8% £7)

which 1s simply
£s (1897 . (25)

It 15 convenient to let @ = cklr.oe'—’ . The exiol acceleration Z, is

given by

Z = c_ -¢B)+D(CB _~BC p(BC -CBH
% DL(BZS L?S) E(J.J 13)’ )(12 I.Z)
vwhich becazes

2 =~

(18917 & = [-a0089) Tk etiockn )] fr1-627) x (10780477
+ [(1-52) A-: - a(19) R (2 -c2B_ + um:ﬂx[mz-mu-am‘)]

+ [»(1—6"’) % - a(l-sf)”ztﬁonznr-cﬂaz)] x[iﬁzi-(L-ﬂE#)ﬁ]-
Simplified, the above cquaetion yields
Y e a(l-ﬁz)% [—(Ezwﬁﬂm-uﬁBr)(1-52+ﬁ2+&2) + (Er-cZBpmﬁBz)iﬁ

¢ ngueis -of,) 2] .
Noting that (1-B2 + &% + A%} = 1 - 2%, we have finally

1 a2
¥ = o(1-67)7 [.sz(u o 2z v 2z, - o, + cmar] . (26)
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The rodiel acceleration R , is given by
MR=D(AC-AC)+D{(AC-AC)+D(AC-AL)
132 23 2 13 31 372 12

which beeomes
-2 [.a(l-ezn”'z (5, + ohn - ehn )|« -8 (1-827)

342 PR . »Z
(Er-:zﬂamz)}x [(1-52&2)(1-6"’9 }

+ [(143?) é—z- - of2-p%)
pAH

- «ﬂ“] +[.(1-n2) B e (Ecp«:iﬁr-cﬁ’z)] < |

- (e e 27
Simplified, the above equation yields
H-= a.(]_-ﬁz)% {EZZR + ui.ﬁzno} - cZﬁABr - (Er-czam + c.ﬁBz)’....-B"é:«'.z)
2 25
+ E\vﬁﬁ - c:’.Brl:!ﬂ - c]‘ieﬂBz-] 5 éR" (1-82:2%43%) + _Rﬁf .

Noting that (1-B2 + 2% + A2) = (1-8%), ve have finally
(a7)

f= a(l—ﬁa)% [-Er(l-ﬂz) £ Ezil-'! + E{pﬁi + cZBq) - cABZ] + g

The azimuthul scceleration X , ia given by

M=D(AB -AB)+D(AB-aAB)+D(AB ~AB)
1 23 32 2 31 13 3 12 21

which turecues

94

5.’5“. A . PPN - .
[-3(1»52) \E;chE_-d-Br_‘] [\n’._ - FA s (1-:!2+a‘)]

- 026N x —efw, wf«l-____\] » [.iéﬁ-kﬁ(l-a%iﬁ]

ol

=z i, N . A .
+ [—(1-32) —Rﬂi - cx(l-BE)"‘E( ':””r“'""m;)]" [u»e?fzz)(l-azma)

- ZEQZJ
Simplified, the above equation ylelds
s as o 1io L oain PP
- cA ErZ + AHEr LLAR%@ + CA’ ELR

.-

2\ 1o sz 3
(1-B%) [EZZA + chB,

A= O
st - A8 Baeinge)

P s t
- (;Omzsr-casz)( 1-8243

Noting tbat (1-pE+22+8%) = (1-42) we have fimally
.
T (28)

1
o =¥ ooy 2 c B c IR L otn A R
A = a(1-8%) [-NG‘U_ A7) + 2R 4 B AR - B+ cmaz]
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APFENDIX 11

GENERAL NEUMANN BOUNTWRTES

If e boundery with normal derivative cqual fo zero is as shown, then

a8 problem boundary is drawn as showm by the deshed line. & poiunt st "g"

15 chosen Such that Vy = Vy. Polnt "a" s secn to lie on the normal to
the boundary through the point "b" at the iIntersection between points

] gt
.

¢” and The slope of the boundary is given by tan Q.

°
n-re 1ar
Sterting from
¥ o=V (1
a ) ]
¥e have
ac Pr

"o

shere, for earmple, 3¢ 36 t)° distance frow point "s" to point "c". The
meeh imtervel ls teken to be wnity. Cross-nmultipiying, we uave

ad - ad ~ge V., ~ac V
ad V!.l ad Vc ac \-d ac Vo
or . _ _
{ad + ac) v, = oc Vq +od Vc . (3)

But, W + % =V2 end V= Vs bence

= ae ad b
,/évh ucvd+advc. (€3]
Fra the law of sines,

ae 1 - 1 - 1

sin @ sin(n—-ﬁ ~d) eos(-ﬁ-- Q) cos 1]% cos + gin % sin

T
viiceh boeomes
o - vZ sina _ VZ tap @
~sinT+cosa 1+ tan

Then the other segmenit is

2d =23 - a0 A3

1 tanx \
l+tanc ) =

The camplete difference equation fram £q. (4) is

_ V2 tgn @,
vz Vv * Treans ‘a

Ve

l+tana

va

1 + tan

whieh in the notation used in the cain text is

e VvV +
1 +tan @ "

L
T+tma s

vO

=0.

c

{5)

(6)

n
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APPENDIX III

g7

INSTRUCTION COMMENTS FROM THE PROGRAM

SLAC ELECTRCON WPTICS PHUGRA

Wa He MERRMARNSFELDT
STANFUND LINEAK ACCELERA‘U
STANFURU UNIWERSI

M3 VECTUR PUT/PLOTF LLE VERSION OF NOV

R CENTER

STANFURD, CALIFURNIA 24308

SUURUVUT INE

SUBRUVTI INE ANALYZ(MI)
SUHRUUTINE TLaTST{ITaNL)
SUBRUUTINE CHILOA (®)
SUHROUTINE CHILCW
SUBHUUTINE DSETIRBOOL. » )
SUSROUTINE (HILFG{BRZ2)
SUdHUUTINE PRFILE
SULDRUUTINE POTLST
SUBHUUTINE PUISSN (New)
SUSRDUT INE BUUNL (PUTN.HAD.-)
SUBHUUTINE CuEF(s)

SUBRUUT INE ;ﬂA#gT (0

SUBROUTNINE EQULP (FL-NDD

SUdRUUT INE LAPL C (e}

SUBRUUTINE FRAME

SUMRUUTINE DbPRCLIIEOG-hOH-‘)

SUBRUVTINE LIS (55)

SUDRULUTINE CUOHDIN.HHG-&&TAI
MAGFD

SULAUUT INE L1ISTHG
SUBRUUTINE PRTIALIRHU o ZETAsPU
SUBRUVUT INE TUUCK( -

SUBRUUT INE nzp(é;

SUBROUYTINE RATNSTEIRAT)
SUBHUUTINE PERVNC(ME)
SUBRUUTINE THERM

-
-
m
-
-3
.
o
-~

LIME NOW

SUBRUUTINE LUOPS (RHLLZETAHR N}

SUHBRUUTINE SCALEZ { XX 2 AXLENSNFY Se XD XL )

ADA
SUBRDULT INE Cl#?ﬂ‘lﬁHDaZh'AnBRndd..l

SUBRUUTINE

[

C

E SAMPLE PROGLEM:

& INPY

<

Ci

CLINPUT2

C 2Mx20:Z2240:4L32205BC=0e 01250
CLEND

cC i (] i V0«0
[ ) 1o 1 <4+0
c 4 37 3 099
C A 28 L3 240
C A 48 10 2e0
[=/ 55 14 0«99

36043

INJECTION GUN MLUEL $=iA GRID-CATHODE REGION (w8H)
Tl
ELIISTZ.ZLlH=QO.PU'NIQ.PQT=0-°v5000-D|D¢0|0-0-Hl-0'“AGSEG-I-1"5‘2-

MO0 e LLl-20~67

979

AP EB VLGV SRAIE S SIS B PRB0 08N [INSTRUCTIUNS 2682800000840 000000sR
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4
(<]
o 0t e o e g

- e

© o
- RN -
CrWLLNONNDPO0ACTNWINLUUTA

EORDNRBRNRNODNRNERNOPIS DI LS
~
-

NO

as8
CEINPUTS
C lZi=l, (22m24 125=00¢ HADS25T, RMAK=3IT obs UNITINZ=JuOls SPC=ga.O0s

GEEND
<

Lol nl Aot oY ot ol e Yol ol U o ol oV o YoV T oYt al aluk s Y2 18]

C NUe 1 CUNYAINS TITLE UN UNE CARD
C&INFUTI CARD NOe 2 EINPUTL. (5TARTS IN COL.

CA NOs 3 CONTAINS RLIM ZLIMs POTN, PU"I)A POTI2)sane
PQ‘IPUTNI;!I.MAUS&G. ALL IN NAME LI ST FCRMAT.

o]
= CATHOLE
=

ANUDE
POT(3) = GRIVD (CUNTRULS EXTRA EnulputtNt:ALS)
POT(4) = FUK A SURFACE aHiICh wicL S5TOP RAYS-NUT A GRID.
PUTI{5) = FUR A SHADUW GRID-hUT FOR FUCUS ELECTRODE
UTHER PCT{ ) VALUES AS OESIRED
TAGLE FUOR VALUES OF MII(USE MI = 0 FCR NO PLOTS)
CyCLE TU BE PLUTTED INIY 5 FINAL ALL FINAL ONLY
WEITH EQUIPLIENTIAL LINES &2

4
C

[+ INSTRUCTIUN DEFAULT s MAX COMMENT

3 RLIMT KX uLzu-bo. 190 HE IGHT OF PROBLEM

[3 LLIMEXX Lin=50, 300 WIOTH OF PROBLEN

[4 (leE LimMly |HL1M¢1)(£Lln'a) < 9001}

C LAXS LAX o EPRESSED AX1S

c Putu-xx N=10Lle 4O} MBER UF PUTENTILALS

c PUT{L J=XaX YU BuI(nolu) SEFAuLT vo ZERU+POTENTIALS IN VOLTS

C (use NEGATIVE Porn TU SIGNAL RECTANGULAR CUURDINATES)

c LI 2] PLUT INSTRUCTION. SEE TA8

c tlF ni 1s NEGATtho PHUGRAM WILL CNLY PRUCESS DUUNDARY DhTA)

4 NAGSEG=X AGSEG=0 NUMBER UF SEGMENTS OF MAGNETIC

< FLELD DATA TU BE READ NEXT»

< INTPAm e THUE . INTPABSFALSE. CALLS INPUTA TD READ VECTOR PUTENTIALS.
[4 LSTPOT=X LSTPUT20 DUN'T PRINT POT NAP

C LSTPUTEL  PHINT FIHST. =2, FRth FINALs =3 PRINT FIRST ANO LASY OEC~-78
14 TYME = XaX TYHE 2e0 MAX PRLELEM RUN TIME HIN

N EXPECTED POTENTLALS

4

[

<

C

C

(4

<

<

s
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1
JSE NANELlsr FulKA Fun THREE INTEGERSe AMO AN ARRAY BC
F SEVEN cutFFlclEnrs UF VALUE B2, Els B2s aave B
6 =HZeU)SDIBZIDIPR 200 e a®UbH 86 WHERE D2nl-23
2 TAKES THE VALUES "ZA" JU "Z2¢ miYM ORIGEN AY *13°
FQR SIx aRcEn ExPAuSlu«. FLELD MUSKE START & UNLTS BEWIND
cATHuoe. Ok STAKTING PUINT. AND GU SIX UNITS PAST 2L1IM.
IN utctAnauLAH CUORDINATEh HAGNETIL FLELD 1S IN THE
TRANSYERSE (PHI) OLHECTION UNLESS MAGORD < Lo (SEE NAGURD, BELOW)
IF MAGNETIC FIELD INPUI 15 usen N A RECTANGULAR COORDINATE PROBLEM,
THERE L5 NL TERN FUR TIiC FIELD. EVEN IF INPUT FIELD IS JERD.
WiYHOUS INPUT FIELD hELf-FIELD 1S N PHI DIRLCTION. SELF-FJELD 15
CALcULAren FROMN CURHENT Ih RAYS DETaEEN 2-AXIS AND KTH RAY INCLUDING
HALF U(K)s ENPUT Ful IOEAL COILS IS IN SEclth Se
USE LEND hF'ER EACH SEGMENT

& INPUTS
PUINT BY PDIN" INFU'I OF MAGHNET IC FlELLSS
1F MAGSEG € Ov  EaGayp MAGSEGE—le THEN USE CLINPUT] TO READ ARRAY
BZA=(AKIAL FIELD STAWTING AT Za<b TQ ZuillLlWes)

< SEPARATE ECQUIPUTENTIAL PLUT 4 5 [}

[4 NO EQUIPUTENTIAL PLCY T 8 9

ELEND CINSEHT HEHE-STARYS IN CULe. 2 )

<

4 MAGNE TIC FIELD HETHUDS

4 1) INPUT2 ees POLYNDNIAL SEGMENTS MAGSEGEN IN GINPUT)

c F1 lunuts sas AXIAL FIELD RAGSEG==2 IN LINPUTI

< A} INPUTA ees VECTGHR PUTEHTIAL ARRAYeae INIPARLTAUE. IN £INPUT)
[ A} INPUTS sen UAT FINDS ANIAL FLLELDS

< [3] lNﬂu!b e ELLIPYIL INTEGRALS

t USE (1} UR (2) FOH HECTANGULAR SYMME TRY

c

(4 MAGNETIC FIELD DATA (READ lN HAGHEG SEGNEN\'SI 1IN NANELLISY FOHMA
13 WARNING: THIS APPRUALH 15 VIRTUALLY IMPOSSIBLE 7D USE IN A PHVSICALLI
c “EALISI’I.L IAV ANO s NOT HECOINENI‘.ED-

EI-INPU EACH se

<

<

c

<

“

<

<

S

c

14

GEND
€INPUTA {FC INPUT VECTDR POTUNTIAL DATA)
ARO=X, X kAGn0a0 POSITION OF FIRST ELEIEN'I DF A(l.lN Y]
20Xk 4208040 RELATIVE TO ORIGIMN GF GU ROY
DELA®X . X DELR=La0 JINCREMENY IN R (CHW) FRDM PDSSDNIEDIT
INCREMENT IN I (CMI FROM PCISSON/EOLT
RLMAGS XX ALMAGH 30 NUMBER UE ROBS OF A() DATA
LLRAGE XX L HAGu 200 MUNMBER OF CULUNNS GF Al) DATA
ALl YECTOR PDTENTIAL DATA ARRAY OF A. EXCEPT A®R AY H=D.

UNITS OF A IN GAUSS~CHs At) 1S A LINEAR ARRAY w1TH
COLU.\INS RLMAG LUNG. NAX SI2E UF Af) 15 8000.

HUOUNDARY INPUT

UBWDMV ThPUT {3 INTEGERSs 2 FLOAIIHG POINT NUMBERS)

UTe NOes He Zv» DELTA Ru DELF

FDR!AI’ 1G9 BAL2F 1045
TO TERMINATE INPUT+ USE POTe NUs >PUTNe EoGe 200 1IN COL. Ja
IF Y99 1S ySEDe SPECIAL SUUNDARIES witLli BE READs SEE BELOW.

OarnNBABPODRARADrACOAABADNNANANANA

r
N
»
~
.

L]
r
]
[}
-
.

(-1
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STARTING CONDITIONS VALID lNS?Rucrlcns AND DEFAWLTY CONDITINNS

NPUTS  ( [NSEHT HERE) ¢ GO
ND (INSERT Affhﬂ START INSTRUCTION
INSTRUCTI DEFAUL ToMaAX

UNIVERXAL PARARETERS

ES IN %GLUHE 24

CUMMENT

PEHVO = X xX BEAVG = O ZEAD USES LAPLACE/2
HULD = & HULD = 1) PERVYU *HOLDS® FDR MHGLD
i TERATIONS
PE n XeX PE = 240 lNlllAL ENERGY AT CATHUDE
IN
ERRUR B X, 2 ERRUR = 1.0 IULIIPLIES EERQR TEST
UNIT = X xxx UNIT = 0.00L METERS / MESH UNIT
YNIT N = x.xxl USEE uNiT) INCRES/HESH UNLT
HAKRAY = MAXHAY® 27, 51 HAXINUM NUMBER OF RAYS
AF HAIRI' 15 NEGATIVE:s THE NUMBER LUF RAYS&ABS(I!KRA'I
STEF - - 'Y STEP = U.8 RES+ UNITS / STIEP
Ns - r HUNBER OF LTERATIUNS
SDC = O-l PC w5 ESTIANTED SPACE CHARGE

5PL SIMULATES pmlxlll. Appuulllll'lﬂﬂ UM FIAST CYCLEs
SPC 1S THE FRALTION UF THE RADIAL FORCE USEDe
SPCm) .0 FUR FULL EFFECT: SPC=0 FUR NO EFFECT

PHIL [MEX o X CHIC [M% 0.0 AZIMUTHAL LIMIT
PHILLIM oNMEs 0 ENUD TRAJECTURY AT PHI «GTe PHILIN
SAVE = } SAVESQ SAVEF| SAVES BOUNDAHIES.
FO USE SAVEwl, UMIT UCUNDARY CARDS FRUM NERT PRGULEM

SAVE=2 SAVE=D SAVE=Z2 USES FINAL Dh'l
FROM PHEVIUUS RUN TQ STARF TFHIS RUN.
USE CHLY mHEN START= 7CANUS '+
MASS = Xaod MASS = O MASS > D FOR_IONS
MASS 15 THE MASS TU CHARGE RATLU. 140 FUR PROTLKS
USE MASS<U FUR HAYS wITHJIUT 1HERI 1A E
rnu MAGNET L FLUX LIKES GR ELE(TYRIC FLELD LINES,

AV = AV = 0 SPACE CHARGE AVERAGED
LAST AV ITERATION
AVR = NaX AVAR = f.0 Wt IGHT GOF SPACE (HARGE
IN FHECthNG PRUGRAM CYCLE FGR AVe
BEND = X, X 0z0s4 MAGRETIC BENDING FILELD

IN GAUSS IN THE olnEctlon NURMAL TO THE ﬂ—l FLANE
FUR AXJALLY SYNMHNETRIC PRUBLENS.: FIlELD Mu BE
IN{FQRMs THE EFFECTS UF >EL!-!AGNEIIC FIELD ARE LUST
AND SPACE CHARGE 15 STILL AX|ALLY SYMNETRIC SO YHAY
IFf DEAM IS DEFLECTED- CHAHGE DIStRlBUfION 1S PROBABLY
IHCURKRECT. AN AXIAL BE INCLUQED IN THE
INPUTs EVEN IF T IS5 ZEHU * L.G.. GC=0 IN INPUT2.
MHAGMLTER o X MAGMLT®L .0 IULTIPLIES B2ZA ARRAY
IPBPERL KL paes i 1PUPLI=0 TU S1X RAY NUMBERS FOR PUINT
av-PuIaY Pn[nluut K.RHD.ZETA.RDuI,ZDGT.TDnr.PHI HR,BZ, STEP4BPHI

LENU=X X ZENDE100D. 0 ExALT END OF THAJECTORY

CAUTION: IF ZEND IS NOY THE RIGHTF-FAND BOUNDAnr. THE SPACE
CHARGE DISIHIHUIIGN MAY BE lNcuRHEL

VAIUN=X o X LGN=-1E8 BEST POTENTIAL PERMITTED

YSE VIUN FU SIMULATE hDACE CHAKRGE NhhTRALIZATIUN

INGUT FUR EQUIFOTENTIAL PLOWS

I
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EQUIPR = 040 R—INTERSECT LGN FOR EQUI-

LAUIPR = XoX
POTEmTIAL LINE

LM = XXX LN = 300 LENGTH OF EQUEIPOTENTEIALS
EQLN = G TL 20 EULN = 1 NLe OF COURRECTIONS
£QST = x EJsY = 2 STEPS PER MESH UNIT

APPLIES ALSU TO GENERIJL CATHODE

IZ1=X o 1L2%Re 1 LS=X 1Z1=0sl 2221 EXTRA EQUIPOTENTIALS AT

tZs=10 THE INDICATED VALUES OF 2.
PLUTTING CUNTROLS
SCALE = JYES? SCALE = # & SYESY'= DIFFERENT XY SCALE
5X = XX 5X = 22 HAXIHUN HURLZONTAL PLOT
HEIG
SY = X SY = 9 MA!IMUH VEATICAL PLOT
HEIGHT

MAGNETIC FIELLSS
RBAG = XeX

METRUD ONE; READ IN AXIAL FIELD IN SECTLION 3(ABOVE)
Hetag = RLIM/2 QOFF=AXIS HAGNET{C FLELD

ISTING AT RzAMA
LZMAG = XeX LMAG = ZLIM+6

MAGORD = 2.4 MAGURD = &

NMAG = X NMAG = 0.1

&

B8 CONSTANT BEVCND LMAG

HIGHEST DRDER FLELO TERM

IF MAGURD ¢ i+ FOR RECTANGULAR
CUDRDINATESs B2A IS 1IN THE
R-DIRECT ION AND THE OFF AXIS
EXPANSION 1S A FUNCTION GF R
NG

UF FItLD COILS FOR
METHOD Twu (BELOW)

METHUD Twli READ IN POSITION AND STRENGTH OUF NMAG IDEAL COILS
IF NELL=0Q. PRCthI CALCULATES ARIAL FlELUS AND PRUCEEDS A> IN NETHDD ONEe
EF NELL=1s THIS METHUOD CALCULATES FILELDS US1NG THE COMPLETE
ELLIPTIC INTEGHAL FUNCTIONS e FILELDS ARE THEN VALID IN ALL SPACE.
sses ELLIPTIL INTEGRAL METHOD [S5 VERY SiLOw ##s%
dF ELLIPTIC INTEGRAL FUNCTIUNS ARE INCLUOED whihd PRUGRAM IS
CUMPLILEY (USER NUST CUMMENT QUT THE OUMMY FUNCTLONS AT THE
END UF THE PRUGKAM} THENs FUR COIL METHGD UNLY. THE PRUGRAM
RILL L1S5T THE OFF=AXI1S FIELDS BY BOTH UFF-~-AXIS EXPANSIGNS
AND BY USING ELLIPTIC INTEGRALS: EYEN IF NELL=0e THIS
PRUVIDES AN INTERESFING CHECK ON THE VALIDITY OF THE QOFF-
AXIS EXPANSIONS IN THE USER'S hPEClAL SITUATIONS
NELL=1 NEL 1 FOA ELGCIPTIC INTEURALS

L=
{
1
1

CRIL) = XeX CRil)} = RLIM RADIUS OF CUlL (MESH UNIT)
CZIJI = KaX C2Zil) = 0.0 AXIAL POSITION OF COIL
CM{1) = XoX CM(1) = 040 CURRENT IN AMPERE~TURNS
STARF GENEHAL
START = *GENERAL* START = P"GENERAL® GENERAL CATHODE
RC = XeXKX RC = 00 LGWER END OF STARTING SUR—
FACE
ZC = ReMX &G = 2+CATHODEZ CATHODEZ 15 Z VALVE OF
BOUNDARY FRGOE FIRST
OATFA CARD.
CL = XoXX CL = RLIM MAXIMUN LENGTH OF STARTING
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SURFACE

DENS = XXeX DENS = 1040 HMAXIMUM EMISSIUN (ArCMes2)
BETA2 = 1.0 BETA2= (.0 IF > D40 USES LANGK'IR~
BLUDGETT

RAD = XoX —— USE RAD FUR WIRE RADLIUS [N
RECTANGULAR COORDINATES,

BETAZ > 040
SURFAC = X SURFAC = 1 STARTING SURFACE ITERATION

UoE PUT(S) FOR NCN-EMITTING SURFACE- E.Go
HULLOW CATHUDE GR SHADOB GRID. 0O NO

PUTL3) OR PUT(3) FOR FOCULS ELEC'RUBE saw
USE AUT(&) TG STOP ELECTRONS ON IRPACT .

START GENCARD
START = *GENCAKOD* START = *GENERAL®* GENERAL wiITH CARD STAKT

HA:E UP TO MAXRAY CARDS mHICH SPECIFY:

RAY NU»

2) INITIAL RADLUS R

3) INITIAL AXIAL VALUE Z

4) DISTANCE FRUM CATHODE DX {CATHUDE MUST BE POT(L) ).

5) EFFECTIVYE SPACING BETWEEN RAYS OR.

6) PARAMETER WHICH MODIFIES CHILD LANGHULIR EQUATIUN. ALPHZ,
NORMAL DX LIS leQ TO 20 MESH UNITS.
NORMAL OR IS 140 6UT MAY BE VARLIED ALUNG THE SURFACE.
NORMAL ALPHZ 1S 1.0 FUM A PLAIN DICDE.

VINATES

ALPH2={ ALPRA®(RADIUS OF CURVATURE)/ (STARTING STEP) )#s2

FUR RECTANGULAR COUOHDINATESS
ALPH2=(BETA®Z ) » {HADIUS UF cuRVhrthlI(srARTlNG STEP)
WHEKRE ALPHA AND HEYA ARE AS DEFINED IN THE LITERATUREsEeGey
SPANGENBERG FUR UETA AND BREWER IN SEPTIERs VOL I[l. FOR ALPHA
FURMAT IS THE SAME AS FUR CARD STARTING; RAY NOeeReZeDXJDRALPHZ

(I5e5X5F(105))s

START SPHERE

START = 'SPHEKE® START = 'GENERAL"® SPHERICAL CATHUDE
RAD = XXX HAD = 282L IM SPHERICAL RADIUS

ANMAX = XqXX RMAX = RLIM CATHODE RADLULS

QRAD = MeXX UHAD = CATHODEZ CENTER OF CATHODE

ST = XoXX ST = 2.0 STARTING STEP

*SPHERE" ALbSL WURKS FOR CYLINORICAL
CATHGDE IN RECTANGULAR COURD INATES

START CARDS

STAKRT = 2CARDS® START = 'GENERAL' CARL STARTING
0 = XeXX 20 = 0.0 ULD URIGIN IN KNEW FRAME

SKAL = X XX SKAL = 1.0 OLD MESH/NEwW MESH

HAVE UP TO MAKRAY DATA CAHDS (L INTEGER, 6 FLOATING PUINT)
RAY NOe» Re Zo ENERGY(EV)s ANGLE(RADIANS}» CURRENT (KICROAMPERES
IN UNE RADIAN SEGMENTI, TRANSVERSE ANGLE. TRANSVERSE POSITION(PHI)
(NUTE CHANGE: THANSYERSE ANGLE. NOT TRANSYERSE ENERGY: ENERGY IS NUW
TOTAL KINETIC ENERGYe)

FURMAT I845K«7F10.5

AL AR RANAC N DR NAAANANNONONANRONRACAORBARNARAARANOARNANANAAAA
n
c
T
"
]
r
-
¥
5]
o
L1
[
»
r
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STLE HEAUDING WlTH HAY NUe. GHREATER THAN MAXRAYS
INLTLIAL TRANSVEHDE VELUCITY HAS THE SIGN OF ITHE TRANSVERSE ANGLE

IF RECTANUULAR CUURDINATES!

1) PHI 13 THANSVERSE POSITIUN LN MESH UNLTS,.

2} CURRENT 13 MICHDAMPERES> IN ONE MESK UMIT OEEP SEGMENT,
SHMISPECIAL TESTS KN RATNST; CHUSSING GH J=D SPACE CHARGE®¢

IRAT=) IRAT =0 3-D SPACE CHARGE

IRAT= 1RAT=0Q CRUSSING DETECTIUN
USE OF NEGATIVE RAY NUMBERS:

A IF IRAT=I (J~0 SPALL CHARGE)

t) MAKE RAY NUMUERS NEGATIVE FUR BEAM EDGE CARDS.
USE BEAM EDUE LARDS {]1U=0) TO SIMJULATE SPACE CHARGE SPREADING
UF A CYLINDRICAL BEAM UF CUNMRENTY I AND HADIUS R IN RECTs CUURD. B
PAIHS OF BEAM EDGE CARDS PRECEVE SEFS DF RAY CARDS DEFINING
PART UF BEAM FUR WHICH J=U 3PACL CHARGE SPREADING IS TU 8E SIMULATED
SEVERAL PARTS, DIFFERENTIAIED UV SELECTED ATTRIBUTES! €sUss ENERGY
ALPHA UK HADLUS, CAN UE USED SIMULATEQUSLY mITH ANY NUMBER UF RAYS
IN EACH PARTs CND OF PART I3 UEF INED BY NEXT RAY nlTH NEGATIVE RAY
NU“BER‘ WHICH BEGINS FHE NEXT PARAT .
Tu SIMULATE CYLINDRICAL BEAM SPACE CHARGE 1N HECTANGULAR
cDDHu:NAIES MAKE CURRENT PER MESH UNIT. I° IZ/(PIWR) INSTEAD
OF 1* = 291/7{PI#R) WHICH WOULD HAVE THE SAHE CUHHENT DENSITY.
IN UTHER WLKRDSy MAKE I*(R) = J{K) ~ (24R8(K)) INSTEAD OF l(K}/
RiK}a NUTE THAT THIS REQUIKES TRICE AS MANY RAYS AS FUR
CYLINDALCAL HEAM #wITH SYMMETRY. BEAM EDGE CARDS {RAY NUe < 0)
ALSGU APPLY TU UFF-AXIS PENCIL IN CYLINORICAL COURDINATES.

B) IF [HATEZ (H=Z ANO PH1 CRUSSUVERS)

1) R=Z: MAKE RAY NUMOERY NEGATIVE FUR SEQUENTLIAL RAYS FUN
WHICH FINAL (ROSS5UVER SROULD BE DETECTEO. CRUSSINGS witl BE
LISTED AND PLUTTEO. NEGATLWE RAY NUHBERS SHOULD 8E IN PAIRs,
TU FIND CRUSSOVENS alTH 2 AXIS. RUN AY ®1TH R=04ALPHA=D
PRECtDING Thi RAY ¥J TEST AXES LRuSSlNu

2) PHIZ LEAVE RAY NUMBERS POSITIVE FOR THANSVERSE HAYS TU
DETECT LAST CROSSING UF PHI=PI&INTEGEF.

IF SAVEZ2, KUN STARTS wWilTH FINAL HAY DATA FRUM PREVIUUS RUN.
DU NUT PUF bLAVE=Z UN THE FIRST HUN OF A SETa

————— ———

THERMALL EFFECT>
bUHRDUIINE THERM (S CALLED IF THt PARAMETER TC>0.

TCEXKKK g X TC= KELVIN TEMP. OF CATHODE
TwO MUDEL$ AHE INCLUDED lN THIS VERSICN

KRAY= 3 KMAY= ) TYTHREE RAY SPLIT

KRAY:S KHAY= L FivE RAY sSPLIT

THREE NAY SPLIT PUTS QUHRENTS IN 1=2-1 RATIU wliH 2 PARTS IN
UNDEFLECTED RAY AND | PART EACH [h HAYS wITH VIPEAPI=SORT(2KT/M)
IN R=Z PLANE. uP AND OCWN RELATIVE TU UNJOEFLECTED RAVY.

FLIVE waY SPLIT PUlS CURRLENTS IN  1—-9-0-9—1 RATIO klTH
VIPERS )=28SQRTL2ZKT /M) FUR | PART HAYS AND VIPERP)=1#5QRTI2KT/M)
FUR 9 PART HAYS, NU CURREANT (N CENTEH AAY. N
USERb SHUWULE FEEL FREE TU MUDEFY SUERGUTINE THERM.

THERM CAN UE CALLED FUR START=FPSHHERE®, °GENERAL's *CARDS'e
OR_*GENCARDY -

IT CANNOT BE USED Ful START=*CARDS5® wlTH SAVE=2.

START LAPLACE
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START & *LAPLACKE® bTAHT = 'hENEHAL' NO RAY TRACING
NS = T BER OF LAPLACE CYCLES

ADD DATA CARDS Il'H IR-I- SPACE CHARGE) FOR NON~ZERO PUOINTS.

FORMAT (215+£20.7)
€MD CARD INPUT NITH H > RLIMe

SPECIAL BOUNDARY POINTS (INCLUDING GENERAL NEUMANN BOUNDARLES)

USE 999 1IN COLS. J-5 Tu END BOUNDARY INPUTe BOUNDARY
MUSF INCLUDE ALL POINTS TL BE USED AND ALL POT NUMBERS. THEN
INCLUDE ANY NUMGLER UF CARDS WITH R.Z AND FOUR DIFFERENCE
NUMHBERS FUR LEFT, HIGHTy UPse AND OGWNs SEQUENTIALLY. NUMPERS
5HOULD ADD TO 48R OR % IF RECVANGULAR COQRDINATESe END vlta

R > RLIMe. FUR_GENERAL NEUMANN, SEE APRENDIX [I OF SLAC 166
TERMS ARE 4*{TAN A)/{4+ TAN A} AND a/(1 + TAN A) BHERE TAN “a <1

HORIZONTAL DIELECTRIC BOUNDARY
LEFTBRJGHTC(EJ.(R--5l052Q(R¥-5I312
UP & E2R(R¢sD) WN = EL®{R=e5)
SHMATEARLIAL® «

WHERE EL QR &2 = loO FUR VACUUM ANDO E2 15 UPPER
VERTICAL DLIELECTRIC BOUNDARY

LEFT = EL®R RIGHY = E2%R
UP = (ELPE2)¢(R*a5)/2 DOWN = (EIFEZ'.(R--S)I2
WHERE E2 IS KIGHT MAND *MATERIAL *

SUMMARY OF FILE | FORMAT FUR PLOT ODATA QUTPRUY
WRITECL)I ol oA sBoCoDo i X{ddsdmloldal(¥idded=lsl)

WHERE:
150 THROUGH 8
FOR [=0e748 PLGT A LINE
LENUMBER UF DATA POINTS TO BE PLGTTED
e Y ARE ARRAYS OF LENGTH >= Le WITH X.Y DAJA
FOR g@ls PLOT XM AXLISe FOR k=2, PLUT ¥ AXLIS
L=ENJMBER OF COMPUTER WORDS IN TLTLE
FOR IBM/360 La(N#3)/4 IF N=NUMBER OF CHARS
A=SLALE (DATA UNITS/ INCH)
H=AXIS LENGTH (LNCHES)
C®X COURD UF ¥ AXISy OR Y COUWD OF X (OTHER COORD IS5 0s)
D=DATA VYALUE TO APPEAR ON LUWER END OF AXIS
FOR l-J! END OF PICTUREs GET A CLEAN AREA ON PAPER. ETC.
L=} AsBeCoDeNe Y200
FOR ll" CLOSE PLUTe THIS IS THE LASY RECORD QOF THE FILE
L= AyBeCoDeXevuQ,
FOR [uS, pLOT DCINTS (UR X*Se OR SUME SYMBOL)
LeAsBoCoDeXeY SAME AS FOR I=0 (LIMES)
FOR [abe SEV SCALE FACTUOR
AmX AX]1S LENGTH
BaY AXNIS LENGTH
C=SX (FROM EINPUTS)

D=3y
PLOT AHREA MUST BE AT LEAST —0e5<X<A+0+5 ~0.5<¥<B10.5
€ AND O CAN UE USED IF NEEDED.
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THE TITLE UN THE AXIS SHOW.D Wi UNDER THE X AXKSe
AND TD THE LEFT OF THE Y AXIS (THE PROGRAM CAN PLOT
MORE THAN UNE Y AX1S OM A PLUT, S0 BE CAREFUL.?
i LESS THAN O. GR GHREATER THAN B SHOULDN'T HAPPEN, BuT CHECK IT.

ARRAY SIZES

MAX SIZE OF PUTENTIAL ARRAY+1GLl. ADJUST PUTN=L10L«POTLLOLLLLE1,101

MAX BUOUNDARY SIZE; 901+ ADJUST BONOUL.BUND2.,BOND3 OBOND1.080NDZs
ABCX(F014¢4) ABCY (901 44) ORDER(IOL+1C)) e XTLO01+10R5)

MAX HLLIN 100, ADJUST QRUER(FOI+10] JeXT(P0L+101+6)A{101+5) {10

MAX NUMBER OF RAYS: Sle ADJUST AL{SI+2) o f0(S5L)elE{S1)+RRIS1+2)«RNINL

TFHI(SI).VV(bL)-Xu(995ll02£(5l).lI(Sl)oLLlSII.IRHIN=51

MAX SEZE OF PROBLEM; 9001 (RLINCLIS(ZLIM+2) <= 9002
ADJUST TYPE(R00L)sUI90061)sHH{9G01L) .

HAX ZLIM; 300, ADJUST Bl(30|*2B.BY!JOI023-RZK‘Z‘JOIOZI-HZY(2‘3°l02l

RZIY INITe LUOP =1.2030)%2y HZA( JOL +1 4}, 1DZA=301¢18 » RARR(301)
LM=301 LENGTH OF EQUIPUTENT IAL
HAX NUMBER ufF CULMMNS; 4Q1:A0JUST LINC(3940LY,
{SHOULD BE LARGER THAN JLIM)
RARR{Iel51) COHLY FUH RECT. SPRO. IN CYis CUODAD
SEFSE SRS FSSHAE I AN ES S EIDRLES MAIN it‘l“l.t*.““‘....‘t‘t....‘t.
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APPENDIX IV

SAMPLE PLOTTER INTERFACE PROGRAM

REAL X(1000).YC1000)
REAL.G.T( }

**Y-ANES® o "NEW PTIC?e"CLOSE® . *POINTS s "OPEN",

CALL STRTPZ(IT)
1 READU 1 oENDEDD I L ol « DR DY e SXe SV (XTSI o dmEal D o I {SI U214}
WRITEC(S 101) TCI+1)elok uDOXeDY4SXaSY
101 iu?H:T(llnAB.ZIIZ.QFIO-QD
L 5.4
GOATO 100810024036 14+19:0:10,100,0
[ CHEC? FDH ERRORS

wayg TE(G- t
100 Eg'.h'l’(' nuPs- «I12+* FOUND IN FILE")
1
C DRAY A LINE
10 X(L#»))mSK
X{L#2)mDX
YiL+1)ulY
YL e2)mDY
CALL LI“E!(X-V-L.I.O.D’
GO YO
DRAW AN I- XIS
CALL AX]SZISX.Ounlu-L.inDK.O-uSY-D')
gaVFD =0 X

T0
DRAW v-~-AXIS
CALL AXISZ(SXe0e0eXeL®4:DXs90:04+5V40V)

GO TO
END OF 0LOT
CALL PLOFZ(SAVEOX4Tees0as~3)

GO T0
CLOSE FILE (TAPE)
CALL ENDP2

-ry
=

N

W

PLOT x°*S
XiLel)mS)t

-y = = =n

CALL LlN!Z(I.V.L-l--I.Ol
GO TO

29 WRITELS, 102)
102 sgo AT(* END OF FILE FOUND."}

END
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APPENDIX V

DO
(=]
p=
fe)

i
S

—
< 10 25 38 40 50 60 70 80 il 1@a 110 12b
GLAG2 LASER GUN 75.0,200KV WBH 12-19-79

Fig. 8. Sample output for a very high perveance gun.
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BiZ1 GAUSS
190 185 200 205 210 2% 220 225

185

18 20 ab 4D 50 1] 70
HOLGUN.IL TWB CRIL MAG FEILD VITH #2=135 GERSTED

Fig. 9. Sample output for a

holl ‘w baam gun.

By
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Sample output for a gyrotron gun.
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e

e

W 18 0 2 ap 5
XK-5 FREM WyL KL.GTK.LIENSTANGUT Wl TH FBRE GRIS

Fig. 11. Sample output for a klystron gun.
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