ELECTRON TRANSFER IN CHEMISTRY AND BIOLOGY

An Introduction to the Theory

Alexander M. Kuznetsov

Russian Academy of Sciences, Moscow, Russia

Jens Ulstrup

Technical University of Denmark, Lyngby, Denmark

JOHN WILEY & SONS Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

Contents

.

•

Ser	ies Pre	face	xiii			
Pre	face		xv			
1	1 Introduction					
	1.1	Electron Transfer as a Ubiquitous Elementary Process in Chemistry and Biology	1			
	1.2	Electron Transfer in Relation to Other Electronic and Particle Transfer Processes	2			
	1.3	The Physical Scenario in the Simplest Chemical Process: Electron Transfer	6			
	1.4		8			
		References	10			
2		Theoretical Prerequisites	15			
	2.1	General	15			
	2.2	Classical and Quantum Mechanical Particle Motion	15			
		2.2.1 The harmonic oscillator	17			
	• •	2.2.2 The Morse oscillator	19			
	2.3		20			
		2.3.1 The partition function	21			
		2.3.2 The energy	21			
		2.3.3 The Gibbs distribution	21			
		2.3.4 The density matrix	22			
	2.4	The Born–Oppenheimer Approximation and Potential Energy				
		Surfaces	22			
	2.5	Elements of Quantum Mechanical Perturbation Theory and Fermi's				
		Golden Rule	24			
	2.6	The Condon Approximation	28			
	2.7	The Physical Nature of the Perturbation and Some Concluding				
		Observations	29			
		References	30			

CONTENTS

3	The '	Tunnel Effect in Physical, Chemical and Biological Processes
	3.1	General
	3.2	The Plane Wave and Rectangular Barriers
	3.3	Tunnelling between Stationary Bound States
	3.4	Resonance Tunnelling and Tunnelling through Spatially Fluctuating
		Barriers
		3.4.1 Resonance tunnelling
		3.4.2 Tunnelling in stationary, spatially randomly fluctuating
		barriers
	3.5	Vibrationally Assisted Tunnelling
	3.6	Tunnel Times
		References
4	Elem	ents of Dielectric Theory
	4.1	General
	4.2	Notes on Linear Medium Field Responses
	4.3	Dielectric Materials
	4.4	The Electric Field and the Electric Induction
	4.5	The Dielectric Function in Vibrationally Dispersive Solvents
	4.6	Non-local Dielectric Theory
	4.7	Configurational Fluctuations in Dielectrics
		4.7.1 Inertial and inertia-less environmental polarization
		4.7.2 The fluctuation-dissipation theorem for dielectric polarization
		fluctuations
		4.7.3 Fluctuations in local dielectrics
	4.8	Notes on Molecular Approaches to Aqueous Dielectrics and Dielectric
		Fluctuations
	4.9	A Few Concluding Notes
		References
5		rge Transfer in Solids
		General
	5.2	The Simplest Environmentally Localized Electronic System:
		The Polaron
		5.2.1 The large polaron
	<i>с</i> 0	5.2.2 The small polaron
		Large and Small Polaron Dynamics
	5.4	Electronic Transitions between Localized Centres in the Solid State
		5.4.1 The quantum mechanical transition probability
		5.4.2 The semi-classical Franck–Condon principle
	5.5	Some Concluding Notes on Polaron Systems
		5.5.1 Polaron formation in transition metal oxides and related
		materials
		5.5.2 Conductivity in one-dimensional materials
		5.5.3 Conductivity by soliton-defect mobility
		References

vi

6	The S	Simplest Chemical Process: Electron Transfer	91			
	6.1	General	91			
	6.2	Notes on Transition State Theory	91			
	6.3	Features of the Molecular Electron Transfer Process	93			
	6.4	System Mode Specification	95			
	6.5	Phenomenological System Mode Specification: the Solvent	97			
	6.6	The Activation Energy and Gibbs Free Energy	100			
	6.7	The Symmetry Factor and the Activation Gibbs Free Energy	102			
	6.8	The Reorganization Energy	105			
6.9 The Electronic Transmission Coefficient						
6.10 The Diabatic Electron Transfer Rate Constant and the Transition S						
		Theory Revisited	110			
		References	111			
7	Some	Selected Experimental Data for Simple Electron Transfer				
,	React		115			
	7.1	General	115			
	7.2	Free Energy Relations	116			
	7.3	Inter-Reactant Work Terms	119			
	7.4	The Molecular and Solvent Reorganization Gibbs Free Energies	121			
	7.4	7.4.1 Simplest dependence on $\varepsilon_{\infty}^{-1} - \varepsilon_{s}^{-1}$	123			
		7.4.2 A simple integrated approach to solvent ET parameters	123			
		7.4.3 Deconvolution of dynamic and stochastic solvent effects	123			
	7.5	The Electronic Transmission Coefficient	124			
	7.5	7.5.1 ET between molecules in frozen glassy media	125			
		7.5.2 Correlation between the electronic factor and low-lying	127			
		excited state energy gaps	128			
		7.5.3 A comprehensive group of electron tunnel data in chemical	120			
		and biological ET	129			
	7.6	Notes on Dissociative Charge Transfer	129			
	7.0	References	132			
		References	152			
8	Towa	rds More Precise Electron Transfer Theory	135			
	8.1	Adiabatic and Diabatic Processes	135			
	8.2	A Note on the Nature of the Perturbation in Diabatic ET	138			
	8.3	Classical Nuclear Motion and Nuclear Tunnelling	140			
	8.4	Nuclear Tunnel Effects in Diabatic ET Reactions	141			
		8.4.1 Nuclear tunnelling in displaced one-dimensional oscillators	142			
		8.4.2 A combination scheme for high- and low-frequency nuclear				
		motion	144			
		8.4.3 The inverted Gibbs free energy region	147			
	8.5	Nuclear Tunnel Effects in Vibrationally Dispersive Solvents	148			
	8.6	Low-Temperature Electron Transfer and Environmental Dispersion	152			
	8.7	Partially and Totally Adiabatic Reactions	154			
	8.8	Experimental Investigations of Chemical Processes at Low				
		Temperatures and in the Inverted Gibbs Free Energy Region	154			

CONTENTS

vii

CONTENTS

		8.8.1	Nuclear tunnelling in physical systems	154
			Nuclear tunnelling in chemical systems at low temperatures	
			and in the inverted Gibbs free energy region	154
		Reference	es	156
9	Optic	al Charge	e Transfer in Allowed and Forbidden Transitions	159
	9.1	General		159
	9.2		and Thermal Electronic Transitions	160
			Quantization of the electromagnetic field	160
			Modulation by a non-absorbing solvent	161
			Field-molecule perturbations	162
			Transition probabilities for light absorption and emission	162
			Observables for optical transitions. Absorption	164
			Observables for optical transitions. Spontaneous and	
			stimulated emission	166
	9.3		Charge Transfer Bandshapes	166
			The strong-coupling limit	168
			The weak-coupling limit	170
			Local mode reorganization	170
			Transitions coupled to radiationless excited state decay. Broad	
			Lorentzian and Voigtian bandshapes	171
	9.4		bservations on Experimental Optical Bandshape Analysis	172
			Weak-coupling systems	172
		9.4.2	Strong-coupling systems	173
			9.4.2.1 Solvatochromic band features of the betaines	173
			9.4.2.2 Charge transfer in the $[Fe(CN)_6]^{4-} \cdot MV^{2+}$	
			ion pair	174
			9.4.2.3 Photo-induced ET in the aqueous $[Fe(CN)_6]^{3-/4-}$	
			system at high concentration	174
	9.5		ry-Forbidden Transitions	175
		9.5.1	Herzberg-Teller adiabatic separation schemes and orbitally	
			symmetry-forbidden transitions	175
		9.5.2	Some observations of temperature dependence in	
			Herzberg–Teller transitions	178
	9.6	Some Co	oncluding Notes	178
		Referenc	es	179
10	Elem	ents of Pi	roton and Other Light-Atom Transfer Theory	183
	10.1	General		183
	10.2	Protons i	in Molecules	184
	10.3	Interactio	ons of the Bound Proton with the Molecular, Solvent and	
		Conform	ational Environment	185
		10.3.1	Local mode coupling	185
			Coupling to a polar continuum	186
			Proton coupling to a conformational macromolecular	
			environment	186
		10.3.4	Interactions between the proton donor and acceptor	
			fragments	187

viii

CONTENTS

	10.4	The Born-Oppenheimer Approximation and the Franck-Condon	
		Principle for Proton Transfer	187
		10.4.1 The Born–Oppenheimer approximation for proton transfer	188
		10.4.2 A generalized Franck–Condon principle	188
	10.5	Proton Transfer between Spatially Fixed Molecular Fragments	189
		10.5.1 The proton transfer rate constant	189
		10.5.2 Specific limiting interactions	190
	10.6	Some Important Proton Transfer Correlations: The Brønsted Relation	
		and the Kinetic Deuterium Isotope Effect	192
		10.6.1 The Brønsted relation	192
		10.6.2 Temperature effects and the kinetic deuterium isotope effect	194
	10.7	Fluctuational Barrier Preparation, Relaxation and Molecular Solvent	
		Effects	197
		10.7.1 Fluctuational barrier preparation and gated PT	197
		10.7.2 Some relaxational solvent effects in fast chemical PT	199
		10.7.3 Molecular solvent effects and PT	200
	10.8	Some Notes on Untraditional Proton and Hydrogen Atom Transfer	
		Systems	203
		10.8.1 Low-temperature hydrogen atom transfer	203
		10.8.2 Ultrafast PT of molecular systems in excited electronic	
		states	204
		10.8.3 Hydrogen and hydride transfer in transition metal complexes	204
		10.8.4 'Vectorial' PT in biological systems	204
		10.8.5 Proton conduction in solids	204
		References	205
11	The l	Electrochemical Process	209
	11.1	+	209
	11.2	Bulk and Surface Properties of Pure Metals and Semiconductors	211
		11.2.1 Bulk metals and semiconductors	211
		11.2.2 Metal and semiconductor surfaces	212
	11.3	The Metal Electrode–Electrolyte Interface	214
	11.4	The Fundamental Electrochemical Process at Metal, Semimetal and	
		Semiconductor Electrodes	217
		11.4.1 Metal electrodes	220
		11.4.2 Semimetal electrodes	222
		11.4.3 Semiconductor electrodes	223
		11.4.4 Some notes on experimental investigations of simple	
		electrochemical ET reactions at metal and semiconductor	
		electrodes	224
	11.5		225
	11.6	Electrochemical Processes via Surface Adsorbate States: An Element	
		of Electrocatalysis	228
	11.7	A Note on Adiabatic Electrochemical Electron Transfer	229
	11.8	A Note on Perspectives and Outlooks in the Theory of the Fundamental	
	11.8	A Note on Perspectives and Outlooks in the Theory of the Fundamental Electrochemical Process References	231 233

CONTENTS

12	Elem	ents of Long-Range and Multi-Level Electron Transfer	237
	12.1	Multi-Level Electronic Processes in Chemistry and Biology	237
		12.1.1 Multi-level physical electronic processes	237
		12.1.2 Long-range and superexchange ET in chemical and biological	
		systems	238
		12.1.3 Coherent multi-step ET and dynamically populated interme-	
		diate states	240
	12.2	ET Routes and Molecular Group Separation Schemes	240
		12.2.1 Long-range ET and splitting of energy eigenvalues	241
		12.2.2 Perturbation schemes and long-range ET as a scattering	
		process	243
		12.2.3 Notes on experimental investigations of long-range ET in	
		homogeneous solution	244
	12.3	Modulation of the Tunnel Factor and Self-Consistent	
	1210	Electronic–Vibrational Interactions in Long-Range ET	245
		12.3.1 Environmental wave function modulation in the Condon	
		approximation	246
	12.4	••	249
	12	12.4.1 A note on three-level resonance electron tunnelling	250
		12.4.2 The quasiclassical approximation to nuclear dynamics in	200
		three-level molecular ET	250
		12.4.3 Intermediate state vibrational relaxation	252
		12.4.4 Quantum mechanical approach to three-level ET	253
		12.4.5 Some notes on the observation of coherent multi-step ET	254
	12.5	A Few Observations on Relations between Thermal and Optical	254
	12.5	Multi-Level Electronic Transitions	257
	12.6	Long-range ET in Non-traditional Interfacial Electrochemical ET	231
	12.0	Systems: <i>in situ</i> STM of Large Adsorbates and Continuous Phase	
		Transitions in Two-dimensional Electrochemical Surface Layers	259
		12.6.1 In situ STM of large adsorbate molecules	260
		12.6.2 Continuous phase transitions in interfacial tunnel systems	263
		References	265
		References	205
-	C 1		2/0
13		astic Views in Chemical Rate Theory	269
	13.1	Dynamic and Stochastic Approaches to Chemical Processes in	
		Condensed Media	269
		Diffusion and Stochastic Processes in External Potentials	271
	13.3	Reactive One-Dimensional Diffusion across a Barrier Close	
		to Equilibrium	273
	13.4	A View of Diabatic and Adiabatic Electron Transfer with	
		Relaxation and Diffusion in Multi-Dimensional Environmental	
		Polarization Modes	276
		13.4.1 Potential surfaces spanned by Gibbs free energy fluctuations	276
	1	13.4.2 Implications of single-mode reactive energy diffusion	279
	13.5	Solvent and Molecular Structural Features	281
		13.5.1 The notion of time dependent friction	281
		13.5.2 Molecular high-frequency nuclear motion	283

x

		13.5.3		elaxation and local low-frequency nuclear motion in	202
		1254		and adiabatic electron and proton transfer ensional reactive diffusion	283 287
		13.5.4			207
		13.5.5		ng notes on non-stationary diffusion and a formal on between diffusion coefficients and solute–solvent	
			interactio		289
	126	Notes			289
	13.6			lar Representations of Diffusion and Solvent	291
		Control 13.6.1		numerical approaches	291
		13.6.2		numerical approaches	291
	13.7		-	al formalism in the mean spherical approximation	292 295
	15.7	13.7.1		tal Observations ate relaxation and viscosity patterns	295
		13.7.1		ransfer cases in multi-time domains and molecular	290
		15.7.2	structural		296
		Referer		l'effects	290
		Referen	ices		298
14	Elem	ents of (Charge Tr	ansfer in Biological Systems	301
	14.1			ires and Charge Transport Chains	301
	14.2	•		e Transfer Sites in Solvated Protein Environments and	
				ization of Electron and Proton Tunnelling	304
				c-conformational interactions	304
				atic and solvent interactions in anisotropic dielectric	
		2	media		306
		14.2.3		tronic tunnel factor	307
	14.3			tron Transfer in Selected Biological Systems	309
		14.3.1		dividual metalloproteins	310
		1		Intramolecular ET in single-haeme cytochromes	010
				and myoglobins	310
			14.3.1.2		
				proteins	312
			14.3.1.3		
				$cyt c_3$	313
		14.3.2	Organize	d ET in multi-centre redox enzymes and	
			•	ecular protein complexes	314
			14.3.2.1		314
			14.3.2.2	A view on multi-ET in the nitrogenase enzyme	
				complexes	315
			14.3.2.3	ET in the bacterial photosynthetic reaction centres	317
	14.4	Selecte		al Proton Transfer Systems	321
		14.4.1		etic isotope effects in enzymatic proton and hydrogen	
			transfer		322
		14.4.2	Proton tr	ansfer and conformational dynamics in carboxypep-	
				catalysed peptide and ester hydrolysis	322
		14.4.3		onal PT barrier preparation in	_
				psin catalysis	323
		14.4.4		d proton transfer: the proton pumps	325
		Referen			328

CONTENTS	C	ON	TE	NT	S
----------	---	----	----	----	---

15	Pers	pectives	and Outlo	ok	333
	15.1	Fundar	nentals of	Charge Transfer Theory	333
		15.1.1	Fundame	ntals of molecular approaches to charge transfer in	
			condense	d media	333
		15.1.2	Interfacia	l electron transfer	334
		15.1.3	New area	is in the melting pot: ET near phase transitions and	
			coherent	multi-ET	335
	15.2	Techno	logical Per	spectives for Charge Transfer Theory	335
		15.2.1	Functiona	al molecular materials	336
		15.2.2	Functiona	al supramolecular organization	336
		15.2.3	Molecula	r and supramolecular function	336
			15.2.3.1	Molecular electronic rectification and	
				amplification	336
			15.2.3.2	Quantum size effects and single-electron tunnelling	
				(SET)	337
			15.2.3.3	A working biological molecular electronic device:	
				bacteriorhodopsin	338
		Referen	nces		339
Ар	pendix	Α			341
	and the second second second		luantum m	echanical rate constant, Equation (5.34)	341
Ар	pendix	В			343
	- 10 C		ation (8.24)		343
Ap	pendix	С			345
Ana	alysis c	of Equati	ons (5.34)	and (8.51)	345
			정말 아님 아파는 그가 많은 것이 가지 않았다. [4]	onal coupling	345
				nal coupling	346
Ap	pendix	D			349
			elocity dist	ribution at high friction	349
	erence				350
Ind	ex				351

xii