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Electron Transmission through Graphene Bilayer Flakes
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We investigate the electronic transport properties of a bilayer graphene �ake contacted by two monolayer
nanoribbons. This �nite-size bilayer �ake can be built by overlapping two semi-in�nite ribbons. We study and
analyze the electronic behavior of this structure by means of a tight-binding method and a continuum Dirac
model. We have found that the conductance oscillates markedly between zero and the maximum value of the
conductance, allowing for the design of electromechanical switches.
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1. Introduction

Graphene is a one-atom thick electronic material; it is
a stable pure two-dimensional system, successfully iso-
lated in 2005 [1, 2], composed by a covalent-bond carbon
monolayer sheet packed in a honeycomb crystal lattice
with two inequivalent triangular sublattices A and B.
Carriers in monolayer graphene behave as two-

-dimensional (2D) massless Dirac fermions [3], with a
linear dispersion relation ε(k) = ±vFk. Phenomena of
fundamental nature, such as quantum Hall e�ect [1, 2]
and Klein tunneling [4] have been recently measured in
graphene based devices. Graphene is also regarded as a
promising candidate for nanoelectronic applications. By
patterning graphene, the electronic structure can be al-
tered [5, 6]. Another way to modify the band structure of
graphene is to stack two graphene monolayers, forming
bilayer graphene [7, 8]. Graphene bilayer systems show
interesting properties with strong dependence on stack-
ing. In bilayer graphene there are four atoms per unit
cell, with inequivalent sites A1, B1 and A2, B2 in the
�rst and second graphene layers, respectively.
In this work we consider narrow graphene nanoribbons

in the energy range for which only one incident electronic
channel is active. We calculate the conductance with
two di�erent approaches: a tight-binding model using
the Landauer�Büttiker formalism and a mode-matching
calculation in the continuum Dirac-like Hamiltonian ap-
proximation. By imposing appropriate boundary condi-
tions, the physics of graphene nanoribbons is well de-
scribed within a continuum Dirac model [9, 10].

2. Theoretical description of the system

The low energy properties in graphene are mainly
determined by the carbon pz orbitals. We adopt a
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π-band tight-binding Hamiltonian with nearest-neighbor
in-plane interaction given by the hopping parameter γ0 =
2.66 eV. In undoped graphene, the conduction and va-
lence bands touch at two inequivalent points of the Bril-
louin zone K and K ′. Near these points, the electric
properties of graphene can be described by a massless
Dirac Hamiltonian [3]. As to bilayer graphene, it con-
sists of two graphene layers coupled by tunneling. The
interlayer coupling is modeled with a single hopping γ1
connecting atoms directly on top of each other, which
we take as γ1 = 0.1γ0, in agreement with experimental
results [11].

2.1. Tight-binding Hamiltonians

The Hamiltonians used to describe the behavior of
both considered stacks are similar to those used in pre-
vious works [12, 13]. Di�erent stacking orders can occur
in bilayer graphene. The most commonly studied is AB
stacking. Here, the layers are arranged in such a way that
the A1 sublattice is exactly on top of the sublattice B2.
In the AA stacking, both sublattices of one sheet A1 and
B1, are located directly on top of the two sublattices of
the other sheet A2 and B2.
As we are interested in the transport properties of

bilayer �akes, we will concentrate on structures where
the leads are monolayer armchair graphene nanoribbons
(aGNR), with widths chosen to have metallic character.
We choose a con�guration where the left lead is connected
to the bottom layer of the �ake, whereas the right lead
is connected to the top layer of the �ake, as depicted in
Fig. 1a. The atomic geometry of the monolayer aGNR
leads and the corresponding low energy electronic bands
are shown in Fig. 1b.
The low energy spectra of bilayer nanoribbons depend

on the particular stacking. In Fig. 1c we plot the tight-
-binding band structure of a bilayer nanoribbon with AA
stacking. The bands also present a linear dispersion and
they can be understood as bonding/antibonding combi-
nations of the constituent monolayer aGNR bands. The
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Fig. 1. (a) The bilayer graphene �ake is formed by the
overlap of two semi-in�nite nanoribbons. The width
and length of the bilayer region are W and L, respec-
tively. (b)�(d) Atomic structure geometries and band
dispersion relations around the Dirac point for several
armchair-terminated nanoribbons. The ribbon longitu-
dinal axes are in the horizontal direction. (b) Mono-
layer armchair; (c) bilayer nanoribbon with AA stack-
ing; (d) bilayer ribbon with AB stacking. For this en-
ergy range, the dispersion relations (b)�(d) are indepen-
dent of the ribbon width.

AB stacking can be achieved from the AA bilayer geom-
etry by displacing one graphene monolayer with respect
to the other, in such a way that the atoms of one sub-
lattice (i.e., A) of the top monolayer are placed over the
atoms of the other sublattice (B) of the bottom mono-
layer. This is schematically shown in the upper part of
Fig. 1d. The band structure of metallic AB-stacked bi-
layer graphene nanoribbons have a parabolic dispersion
at the Dirac point, as we can see in Fig. 1d.

Due to the lack of translational invariance of the sys-
tem, in the tight binding model we calculate the elec-
tronic and transport properties using the surface Green
function matching method [14, 15]. To this end, the sys-
tem is partitioned in three blocks: two semi-in�nite leads,
which we assume to be semi-in�nite aGNR, and the con-
ductor, consisting of the bilayer �ake. The Hamiltonian
is H = HC + HR + HL + VLC + VRC, where HC, HL,
and HR are the Hamiltonians of the central portion, left
and right leads respectively, and VLC, VRC are the cou-
pling matrix elements from the left L and right R lead to
the central region C. The Green function of the conductor
is GC(E) = (E−HC−ΣL−ΣR)

−1, where Σℓ = VℓCgℓV
†
ℓC

is the selfenergy due to lead ℓ = L,R, corresponding to
the left or right side of the conductor and gℓ = (E−Hℓ)

−1

is the Green function of the semi-in�nite lead ℓ.

In the linear response regime, the conductance can be
calculated within the Landauer formalism as a function
of the energy E. In terms of the Green function of the
system [14, 16], it reads

G =
2e2

h
T (E) =

2e2

h
Tr

(

ΓLGCΓRG
†
C

)

, (1)

where T (E) is the transmission function across the con-
ductor, and Γℓ = i[Σℓ −Σ

†
ℓ ] is the coupling between the

conductor and the ℓ = L,R lead.

2.2. Dirac-like Hamiltonians

Most of the low energy properties of monolayer and
bilayer graphene nanoribbons can be understood using a
k · p approximation, which yields a Dirac-like Hamilto-
nian [9]. We have found analytical expressions for both
stacks (AA and AB), but we only give here those for the
AA-stacking, because they are much simpler and we can
analyze through them the energy dependence, interlayer
coupling, and superposition length [12].
The low-energy e�ective bilayer Hamiltonian describ-

ing the properties of an in�nite AA-stacked bilayer has
the form

HAA =











0 vFπ
† γ1 0

vFπ 0 0 γ1
γ1 0 0 vFπ

†

0 γ1 vFπ 0











, (2)

where π = kx + iky = ke iθk , θk = tan−1(kx/ky),
vF =

√
3
2 γ0a0, where a0 = 2.46 Å is the graphene in-

-plane lattice parameter, and k = (kx, ky) is the momen-
tum relative to the Dirac point. The Hamiltonian acts on
a four-component spinor [ϕ(1)A , ϕ

(1)
B , ϕ

(2)
A , ϕ

(2)
B ]. The eigen-

functions of this Hamiltonian are bonding and antibond-
ing combinations of the isolated graphene sheet solutions,

εAA
s,± = svFk ± γ1, ψAA

s,± =











1

se iθk

±1

±se iθk











e ik·r, (3)

with s = ±1.
In accordance with the geometry shown in Fig. 1, we

assume for nanoribbons that the system is invariant in
the x direction, and therefore kx is a good quantum num-
ber. In the case of metallic aGNR, the boundary condi-
tions are satis�ed [9] for ky = 0 independently of the
nanoribbon width; this ky = 0 state is the lowest energy
band con�ned in the aGNR. We have checked that the
dispersion of the lowest energy band obtained by solving
the Dirac model coincides with that obtained by diag-
onalizing the tight-binding Hamiltonian for the mono-
layer and AA-stacked bilayer nanoribbons. Therefore,
the Dirac approximation is a good description for the
low energy properties of these nanoribbons, Fig. 1b�d.
In the low-energy limit, we can obtain the conduc-

tance of the system by matching the eigenfunctions of
the Dirac-like Hamiltonians. We consider incident elec-
trons from the lowest energy subband, which corresponds
to a transversal momentum ky = 0 in aGNRs. Assuming
an electron with energy E coming from the left mono-
layer ribbon, we compute the transmission coe�cient t to
the right monolayer lead. In the central part the wave-
functions are linear combinations of the solutions of the
bilayer nanoribbon Hamiltonians. The transmission, re-
�ection and the coe�cients of the wavefunctions in the
bilayer part are determined by imposing the appropriate
boundary conditions at the beginning (x = 0) and at
the end (x = L) of the bilayer region. Matching of the
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wave functions amounts to require their continuity. As
the Hamiltonian is a �rst-order di�erential equation, cur-
rent conservation is ensured automatically. The precise
boundary condition depends on the lead con�guration
and on the stacking.

3. Results

In the AA stacking, the dispersion in the central part
is given by Eq. (3), and for each incident carrier with
momentum kx, there are always two re�ected and two
transmitted eigenfunctions with momenta ±(kx±γ1/vF);
see Fig. 1c.
In particular, for the chosen leads con�guration, the

bottom wave function ϕ(1)A (x) and the top wave function
ϕ
(2)
B (x) should be continuous at x = 0 and x = L, re-

spectively. In addition, the hard-wall condition should
be satis�ed, ϕ(2)A (x = 0) = ϕ

(1)
B (x = L) = 0. These

boundary conditions yield the transmission

T = 1−
cos4 γ1L

vF

2
(

1− cos 2EL
vF

)

sin2 γ1L
vF

+ cos4 γ1L
vF

. (4)

We see from these equations that the conductance
changes periodically as function of the incident energy
and length of the bilayer �ake. For �xed L, the trans-
mission is a periodic function of the incident energy. In
this geometry there are antiresonances, T = 0, at ener-
gies given by πvF

L
n, with n = 0, 1, 2 . . . These energies

correspond to quasilocalized states in the top part of the
bilayer �ake. The paths through the bottom graphene
ribbon and through the quasilocalized state of the top
�ake interfere destructively, producing the antiresonance
[17�19].
For �xed energy, the conductance varies periodically

with the length of the bilayer �ake. There is a pe-
riod, πvF

E
, related to the energy of the incident carrier;

other periods are harmonics of that imposed by the in-
terlayer hopping, πvF

γ1

. The dependence of the conduc-
tivity on γ1 can be understood by resorting to a sim-
ple non-chiral model with linear dispersion. Consider an
incident carrier from the left with momentum kx and
energy E = vFkx in the bottom sheet. When arriv-
ing at the bilayer central region, the incident wavefunc-
tion decomposes into a combination of bonding (b) and
antibonding (a) states of the bilayer with momentum
kb(a) = kx ± γ1

vF
. The conductance through the bilayer

region is proportional to the probability of �nding an
electron at the top (bottom) end of the central region,
1 + cos(kb − ka)L = 1 + cos γ1L

vF

. This simple model ex-
plains the dependence of the conductivity on harmonics
of cos γ1L

vF
.

Let us recall here that the length of a unit cell (u.c.) for
an armchair ribbon is 3aCC =

√
3a0. In the following �g-

ures, we choose to give the system length L in terms of the
armchair ribbon u.c. length, which is unambiguous for
the discrete tight-binding model. Note that, in the con-
tinuum approximation, the hard wall conditions at the

edges of the system (x = 0 and x = L) are set at two ex-
tra rows of atoms where the wave functions are imposed
to be zero. This amounts to add to the system length
the quantity aCC, which we take into account when com-
paring the continuum and the tight-binding results.
As discussed in the previous section, the expression for

the transmission Eq. (4) demonstrates that the depen-
dence with the system length has periodicities related
to the interlayer coupling γ1. This is evident in Figs. 2
and 3, which shows the length and incident energy depen-
dence of the conductance for the stackings AA and AB.
The tight-binding calculations are performed for a rib-
bon of width N = 11, but for this energy range only
one channel contributes to the conductance in the mono-
layer and at most two channels in the bilayer �ake, so
the conductance is independent of N .

Fig. 2. Conductance and local density of states for
AA-stacked bilayer as a function of the Fermi energy
E and bilayer region length L for a ribbon of width
N = 11. (a, c) Local density of states; (b, d) conduc-
tance. In both contour plots, transverse cuts have been
made, (c, d), which correspond to the selection of spe-
ci�c lengths in the contour plots to examine in detail,
in this case, black is for L = 15 and red is for L = 20.
For purposes of clarity, we have modi�ed the scales in
parts (c, d).

As expected, the AA stacking shows clear antireso-
nances in the conductance as a function of length and en-
ergy, Fig. 2b�d, since in the whole range of energies, there
are always two available channels, as shown in Fig. 1c.
These conductance antiresonances correspond to peaks
in the local density of states (LDOS), Fig. 2a�c.
The conductance shows one clear length period of

15 u.c., stemming from the cos 2EL
vF

term in the conduc-
tance, which appears in the analytical expression Eq. (4).
On the other hand, the AB-stacked bilayer graphene

presents two energy regions with di�erent behaviors
(Fig. 3). At low energy range E < γ1 there is only
one transmission channel in the bilayer. Thus, although
the conductance oscillates due to �nite-size e�ects, there
are no conductance antiresonances for the AB stacking
at this energy. However, for E ≥ γ1, the AB case now
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Fig. 3. Conductance and local density of states for
AB-stacked bilayer as a function of the Fermi energy
E and bilayer region length L for a ribbon of width
N = 11. (a, c) Local density of states; (b, d) conduc-
tance. In both contour plots (a) and (b), two transversal
cuts have been made, (c, d), corresponding to two dif-
ferent lengths, namely, L = 23 (in red) and L = 30 (in
black). For the sake of clarity, we have modi�ed the
scales in part (c).

presents antiresonances with zero conductance, as for the
AA stacking. This is due to the presence of an additional
conductance channel at this energy range.
The conductance in the AB case shows one clear length

period close to 30 u.c. This period doubles that of the
AA stacking; and it can be related to the fact that in
the AB stacking only half of the atoms have interlayer
coupling, thus having an e�ective coupling smaller by a
factor of two.
As discussed before, the most characteristic feature of

the transmission is the appearance of the Fano antireso-
nances with zero conductance. This can happen for any
energy in the case of AA stacking because there are al-
ways two conducting channels in the bilayer. On the con-
trary, for AB stacking, with only one channel for E < γ1,
the oscillations in the conductance are due to a Fabry�
Pérot-like e�ect in this energy range, i.e., the interference
of one scattering channel with itself due to the �nite size
of the structure. Therefore, the AB stacking presents
non-zero minima in the conductance in the (0, γ1) en-
ergy range, whereas the antiresonances above γ1 clearly
reach zero values.
We clearly see the main transmission antiresonances

with a 15 u.c. length period in AA and 30 u.c. length
period for the AB. In fact, it turns out that for certain
�ake sizes L, the conductance is zero, independently of
the energy. As this spatial period depends directly on
the interlayer coupling strength γ1, we propose that this
feature can be used to estimate the interlayer hopping
parameter, the value of which is still under debate [20],
by overlapping two nanoribbons and displacing one of
them with respect to the other, the spatial period could
be measured and thus γ1 would be obtained.

As the variation of the conductance as a function of
length is so dramatic, from one quantum of conductance
to zero, this system can function as an electromechanical
switch, turning from the maximum conductance to zero
by a displacement of a few Å.

Fig. 4. Local density of states for a bilayer in the AA
stacking, for a nanoribbon N = 11 and a bilayer length
L = 20, for energies corresponding to a peak in the
density of states (E = 0.38γ0), and a minimum in the
LDOS (E = 0.42γ0). In this plot, the left lead is located
on the left edge of layer 1, and the right lead is located
on the right side of layer 2.

In order to understand the electronic behavior of the
system, we analyze the spatial distribution of the local
density of states, selecting two energies with well-de�ned
behaviors, given the clear resonances that presents the
system with AA stacking for L = 20 (Fig. 2c). We choose
a peak in the density of states, at E = 0.38γ0 (Fig. 4a)
and a minimum in the LDOS at E = 0.42γ0 (Fig. 4b).
These energies correspond to a drop in the conductance
in the �rst case, and the second corresponds to an en-
ergy where the conductance is close to the maximum
value. Notice that in both cases there is a symmetry
in the LDOS distribution under the interchange of the
two layers. For the �rst energy, E = 0.38γ0 (Fig. 4a)
corresponding to a peak in the density of states and a
drop in conductance, this behavior is caused by an an-
tiresonance in the �ake. There is a quasi-con�ned state
in the �ake, but it is not connected to the leads, because
the LDOS has two minima in the connection to the leads,
thus producing a drop in the conductance. However, for
E = 0.42γ0 (Fig. 4b), the situation is just the opposite:
the density of states has an overall local minimum, but
the leads are well connected, leading to a transmission
maximum.

4. Summary

In this work, we have studied the conductance of
a graphene bilayer �ake contacted by two monolayer
nanoribbons. Two di�erent stackings for the graphene
�ake have been taken into account, namely, AA and AB.
We have calculated the conductance with a tight-

-binding approach and also by performing a mode-
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-matching calculation within the continuum Dirac model,
by choosing the appropriate boundary conditions. We
have explained the features in the transmission and ob-
tained analytical expressions that allow us to elucidate
the transport characteristics of these structures. We have
found several periodicities on the conductance and in the
local density of states, related to the energy and the in-
terlayer coupling of the system.
In particular, for the AA con�guration, we have found

that the conductance through the �ake shows the Fano-
-like antiresonances, that we have related to the interfer-
ence of two di�erent propagating channels in the struc-
ture. For a �ake of length L, the main transmission pe-
riod is given by πvF/L. For a �xed incident energy, the
conductance as a function of the system length L oscil-
lates with two main periods related to the energy E and
the interlayer coupling γ1.
For the AB stacking, we have found two distinct be-

haviors as a function of the incident energy E: for ener-
gies larger than the interlayer hopping γ1, the transmis-
sions resemble those found for the AA stacking. This is
due to the existence of two propagating channels at this
energy range. There is, however, a di�erence on the main
period related to the interlayer hopping γ1, which is twice
the period found for the AA stacking. This can be un-
derstood by noticing that in the AB stacking only half of
the atoms are connected between the two graphene lay-
ers. For energies smaller than γ1, the AB-stacked �ake
only has one eigenchannel, and the conductance shows
resonances related to the existence of the Fabry�Pérot-
-like states in the system.
The conductance of these bilayer �akes can oscillate be-

tween zero and the maximum conductance as a function
of length; thus, a system composed by two overlapping
nanoribbons can behave as an electromechanical switch.
We propose that these characteristics can be employed to
measure the interlayer hopping in bilayer graphene. Our
results give a comprehensive view of transport through
bilayer graphene �akes, clarifying the role of stacking,
contact geometries, �ake width and length in the con-
ductance of these structures.
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