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Electron transport in magnetic multilayers: Effect of disorder
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4Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
5Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

6Department of Electronic Structures, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
~Received 22 October 2001; revised manuscript received 22 March 2002; published 29 May 2002!

The magnetoresistance of metallic multilayers in the current-perpendicular-to-plane~CPP! geometry is stud-
ied theoretically on anab initio level using the tight-binding linear muffin-tin orbital method. The applied
potential parameters were determined self-consistently for a given alloy composition within the coherent
potential approximation~CPA!. Lateral supercells with random arrangements of atoms of two types are used to
represent disorder connected with interface interdiffusion and with alloying in the spacer. We distinguish
ballistic and diffusive parts of transport and study their dependence on the type and on the strength of disorder.
The theoretical approach is illustrated on disordered systems derived from the fcc-based CouCuuCo(001)
trilayers that serve as the reference system. We find quite a good agreement with experimental data and with
other calculations. On the other hand, our results also show the limited validity of the two-current series-
resistor model and that vertex corrections to the CPA applied to the CPP transport are of great importance.
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I. INTRODUCTION

The giant magnetoresistance~GMR! in metallic magnetic
multilayers is said to be due to spin-dependent scatterin1,2

Two types of scattering occur, namely,~i! scattering at the
interfaces between different slabs~intrinsic defects!, leading
to ballistic transport, and~ii ! scattering at impurities, subst
tutional disorder or irregularities of interfaces~extrinsic de-
fects! leading to diffusive transport. In real multilayers bo
types play a role, and also dislocations and stacking fa
can occur. In addition, magnons and phonons can cause
namical perturbations.

In the diffusive regime the mean free path is much sho
than the dimension of the active part of the multilayer s
tem, i.e., the whole system with exception of the leads.
the other hand, in the ballistic regime the mean free pat
larger than the active part of the multilayer system.

The aim of this paper is to study on anab initio level the
effect of disorder onto current-perpendicular-to-plane~CPP!
transport in magnetic multilayers and investigate the cro
over from ballistic to diffusive regime with increasing diso
der. In our approach the electronic structure of the system
determined within the tight-binding linear muffin-tin orbita
~TB-LMTO! method3 and the conductances are calculated
terms of a Landauer-type formula of linear response theo4

formulated in terms of surface Green functions. The rando
ness is approximately represented by lateral two-dimensi
supercells with random occupation of lattice sites by t
kinds of atoms. The applications discussed refer
CouCuuCo(001)-based trilayers connected to ideal se
infinite Cu leads. We also reexamine the validity of the tw
current series-resistor model and show that it is justified o
in the limit of diffusive transport.
0163-1829/2002/65~21!/214414~8!/$20.00 65 2144
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II. THEORY

A. Description of the system

Suppose the magnetic multilayer system consists of n
random semi-infinite left and right leads sandwiching
trilayer consisting of a left and a right magnetic slab se
rated by a nonmagnetic spacer of varying thickness. The
and right leads and magnetic slabs can consist of diffe
metals. A special case of a trilayer consists of nonrand
semi-infinite left and right magnetic leads sandwiching
nonmagnetic spacer.

Multilayers with substitutional disorder in the active r
gion can be represented by finite two-dimensional superc
each containing several lattice sites occupied randomly
atoms of two~or more! different types. The stacking of ran
dom supercells in the growth direction can be arbitra
These supercells are repeated periodically within planes
atoms. In order to describe disorder~substitutional alloys! it
is then necessary to average over different occupations o
sites within a given supercell by the constituents involv
and, at the end, to check the dependence of conductance
the supercell size. Quite clearly, such an approach applie
disordered spacers and/or magnetic slabs as well as to d
dered interfaces.

B. Electronic structure

The electronic structure of the system is described
terms of the TB-LMTO method. We assume a collinear s
structure and that spins is a good quantum number, negle
relativistic effects as well as possible layer and lattice rel
ations. The details can be found in Ref. 4.

Consider a parent lattice5 with one atom att0 in the two-
dimensional elementary cell with translation vectorsa1 and
a2. The corresponding basis vectors of the two-dimensio
©2002 The American Physical Society14-1
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reciprocal space areb1 andb2. Let us assume that the supe
cell translation vectors areA15M1a1 and A25M2a2. The
basis vectors of the supercell reciprocal space areB1
5b1 /M1 and B25b2 /M2. The supercell containsM
5M1M2 atoms located attn5n1a11n2a21t0. Here we use
the compound indexn5(n1 ,n2), 0<ni<Mi21. The recip-
rocal lattice vectorsQj5 j 1B11 j 2B2, wherej 5( j 1 , j 2), map
the supercell surface Brillouin zone~SCSBZ! onto the origi-
nal surface Brillouin zone~SBZ! such that for eachki
PSBZ there exists just oneqiPSCSBZ and just oneQj (0
< j i<Mi21) so thatki5qi1Qj .

The basis states in the case of an elementary cell wi
single atom are

ukiLs&5
1

ANi
(
R

exp~ iki•R!uRLs&, ~1!

whereNi is the number of lattice sites in the basic region
the atomic plane, summation runs over all lattice sitesR of
the plane,L5( lm) is the orbital index, ands denotes thez
projection of the spin. In the supercell case,

unqiLs&5
1

ANi
SC (

RPSn

exp~ iqi•R!uRLs&, ~2!

whereNi
SC5Ni /M is the number of supercells in the bas

region of the atomic plane,Sn denotes the subset of all th
lattice sites in the plane such thatR5m1A11m2A21tn ,
wherem1 andm2 are arbitrary integers. The mutual relatio
between these two bases are

ukiLs&5
1

AM
(
n51

M

exp~ iQj•tn!unqiLs&, ~3!

unqiLs&5
1

AM
(
j 51

M

exp~2 iQj•tn!ukiLs&, ~4!

where the vectorski , qi , and Qj satisfy the condition
ki5qi1Qj .

C. Transport properties

The conductance per one supercell, i.e., perM interface
atoms, can be expressed as4

CA5(
s

C A
s , C A

s5
e2

h

1

Ni
SC (

qi
(
nL

TnL,nL
A,s ~qi ,EF!, ~5!

whereEF is the Fermi energy,e is the electron charge,h is
the Planck’s constant~the quantitye2/h is usually called the
conductance quantum!, andA5P ~AP! denotes the paralle
~antiparallel! orientation of magnetizations of the magne
slabs. The transmittanceTnL,n8L8

s (qi ,E) is given by
21441
a

f

TnL,n8L8
s

~qi ,E!5 lim
d→01

1

2
$B1

b,s~qi ,E!g1,N
b,s~qi ,z1!

3BN
b,s~qi ,E!gN,1

b,s~qi ,z2!

1B1
b,s~qi ,E!g1,N

b,s~qi ,z2!

3BN
b,s~qi ,E!gN,1

b,s~qi ,z1!%nL,n8L8 , ~6!

wherez65E6 id. The quantitiesB1
s(qi ,E) and BN

s(qi ,E)
are the anti-Hermitian parts of the embedding potentials
the left and right lead, respectively, andg1,N

b,s(qi ,z) and
gN,1

b,s(qi ,z) are blocks of the auxiliary Green function con
necting the boundary layers 1 andN of the active region.

The magnetoresistance ratio is defined as

RCPP5RAP/RP215CP/CAP21, ~7!

whereRA51/CA is the resistance per interface atom or p
one supercell. Partial resistancesR A

s51/C A
s are defined in a

similar way.

D. Ballistic and diffusive transport

If the parent lattice is randomly occupied by atoms of tw
types, the electrons are scattered by disorder in the ac
region. The motion of an electron can be either ballistic~if ki
is conserved! or diffusive ~if ki is not conserved!. Here,ki is
a vector from the SBZ of the parent lattice.

The total conductance given by

C5(
s

C s, C s5
e2

h

1

Ni
(
ki

(
ki8

(
L

TLL
s ~ki ,ki8 ,EF!

~8!

can be divided into its ballistic part

Cball5(
s

Cball
s , Cball

s 5
e2

h

1

Ni
(
ki

(
L

TLL
s ~ki ,ki ,EF!,

~9!

and diffusive part

Cdiff5(
s

Cdiff
s , Cdiff

s 5
e2

h

1

Ni
(

kiÞki8
(
L

TLL
s ~ki ,ki8 ,EF!.

~10!

The transmittanceTLL8
s (ki ,ki8 ,E) is given by

TLL8
s

~ki ,ki8 ,E!5
1

2
lim

d→01

$B1
b,s~ki ,E!g1,N

b,s~ki ,ki8 ,z1!

3BN
b,s~ki8 ,E!gN,1

b,s~ki8 ,ki ,z2!

1B1
b,s~ki ,E!g1,N

b,s~ki ,ki8 ,z2!

3BN
b,s~ki8 ,E!gN,1

b,s~ki8 ,ki ,z1!%LL8 .

~11!

The above formulas are valid for systems with one atom at0
in the elementary cell of the parent lattice.
4-2
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ELECTRON TRANSPORT IN MAGNETIC . . . PHYSICAL REVIEW B 65 214414
The transport in supercells with a perfect 2D lateral pe
odicity is ballistic because theqi vectors from the SCSBZ
are conserved. On the other hand, the vectorski5qi1Qj
from the SBZ are not conserved. As it was first shown
Ref. 6, the results of supercell calculations can be use
separate the ballistic and diffusive parts of the electron m
tion.

Using Eqs.~3! and ~4! it is straightforward to show that

TLL8
s

~ki ,ki8 ,E!5
1

M (
n51

M

(
n851

M

exp@2 iQj•tn1 iQj 8•tn8#

3TnL,n8L8
s

~qi!, ~12!

whereQj5ki2qi andQj85ki82qi .
The conductance can be calculated approximately wi

the coherent potential approximation~CPA! if the vertex cor-
rections are neglected. The auxiliary Green functio
g1,N

b,s(ki ,ki8 ,z) and gN,1
b,s(ki8 ,ki ,z) in Eq. ~11! are then re-

placed by their CPA averagesdki ,ki8
^g1,N

b,s(ki ,z)&CPA and

dki ,ki8
^gN,1

b,s(ki ,z)&CPA, respectively. As it will be shown

later, the CPA and ballistic conductances are quite sim
The reason is that the CPA one-particle propaga
^g1,N

b,s(ki ,z)&CPA and ^gN,1
b,s(ki ,z)&CPA do not contain scatter

ing from theki state to a differentki8 state. Consequently, in
this case within the CPA without vertex corrections, the d
fusive transport is completely missing. On the other ha
the damping of the ballistic transport is described qual
tively quite well because the imaginary part of the CPA se
energy mimics the particle losses from theki channel.

III. RESULTS AND DISCUSSION

We will demonstrate the effects of various kinds of diso
der on the electronic transport in CouCuuCo-based trilayers
connected to ideal semi-infinite Cu leads, namely, the effe
of the interdiffusion at interfaces and of alloying in th
spacer. In all cases we consider the fcc~001! structure and the
CPP geometry. The equilibrium lattice constant of Cua
53.55 Å) is assumed.

A. Numerical implementation

In principle, one should use the potential parameters
termined self-consistently for each configuration of the s
tem. Because this approach is numerically prohibitive,
have used self-consistent CPA potential parameters d
mined for a given alloy composition.3 The same parameter
were employed for various random configurations~for more
details see Ref. 4!. We have thus neglected all fluctuations
the potential parameters due to the variation of the local
vironment as well as their layer dependence and assu
that the potential parameters take only two values~one com-
mon for all A atoms and the other value common for allB
atoms!.

Layerwise substitutional alloysA12xBx are simulated by
randomly occupying a chosen~in-plane! supercell withA
andB atoms, such that their ratio corresponds to the ove
concentrationx assumed for a given layer. The random co
21441
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figurations were generated using the RM48 random num
generator.7 We have used 535 supercells corresponding to
A84B16 random substitutional alloy, namely, 21A atoms and
four B atoms. The conductances were usually averaged o
six configurations and the results agreed within 1–3 % w
each other.

The ki integration covers 10 000 points in the fu
fcc~001! SBZ and 400 points in the 535 SCSBZ. In all
cases we have employeduIm z6u51027 Ry, wherez65E
6 id is a complex energy. The diffusive conductances
calculated asCdiff5C2Cball , Cdiff

s 5C s2Cball
s .

B. Ideal trilayer

As a reference system we consider the ideal trilayeru5
Cous Cuu5 Cou with varying spacer thicknesss connected to
ideal semi-infinite Cu leads. The electron transport is co
sionless with the exception of the slab boundaries, where
electron waves are partially reflected.ki is conserved, so the
transport is solely ballistic and the diffusive transport
missing. The quantum-size effects cause the oscillation
partial resistances, which in turn lead to the oscillations
the GMR ratioRCPParound a value of about 115%~see Ref.
4!. The amplitudes are damped with increasing spacer th
ness roughly ass21 ~see also Ref. 8!.

C. Effects of disorder

In the present case, disorder can cause the following
fects:~i! an increase of the overall amount of scattering t
in turn contributes to a reduction of the transmission pro
ability; ~ii ! a violation of the strict conservation of theki
vector belonging to the SBZ of leads can open new transm
sion channels that contribute to an increase of the cond
tance; and~iii ! interdiffusion smoothens the potential barrie
in the ideal trilayer, which in turn also leads to an increas
transmission coefficient. Therefore, the net influence of d
order on the conductance results from a competition betw
all these effects and may lead to an increase or decreas
the conductance, depending on the system under cons
ation ~see also Ref. 9!.

D. Interface interdiffusion

We have considered a simple model of the interface in
diffusion for the trilayer . . . Cuu5 Cous Cuu5 CouCu . . . in
which the interdiffused region extends over two neighbor
layers of compositions Co84Cu16 ~on the Co side! and
Co16Cu84 ~on the Cu side! at each interface. The resistanc
change very little with the varying spacer thickness beca
the number of disordered layers remains constant and
sible quantum oscillations are damped by the disorder.
average values of conductances and resistances are giv
Table I. In comparison with the ideal trilayer the GMR rat
RCPP is reduced considerably~approximately to 40%!. This
result is opposite to that of Butleret al.10 and of Zahnet
al.,11 who found a large increase of the GMR with interfa
interdiffusion. In contrast to our calculations that assum
ballistic regime for periodically repeated lateral superce
these authors considered a diffusive regime of conduct
4-3
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both of them use a linearized-Boltzmann-equation-type
proach. Butleret al.10 calculated resistivities within the CPA
neglecting vertex corrections; Zahnet al.11 introduced an ad-
ditional damping in the relaxation time. Such an approa
neglects the diffusive part of conductances, which is large
parallel minority and antiparallel channels leading thus t
strong decrease inC P

↓ and ^CAP&, which in turn gives large
values of the GMR ratioRCPP. This is confirmed by
our calculations of the CPA and ballistic conductances~see
Table I!.

E. Alloying in the spacer

The effect of alloying in the nonmagnetic spac
(Cu84Ni16) on the transport properties of multilayers
shown in Fig. 1 for the system. . . Cuu5 CouCu84Ni16u5

FIG. 1. Partial resistances per one surface atom~in units h/e2)
of an fcc ~001! u5 Cous (Cu84Ni16)u5 Cou trilayer embedded be
tween two Cu leads with parallel and antiparallel orientation of
magnetization as a function of the spacer thicknesss.

TABLE I. Spin-resolved average conductances per one sur
atom ~in units e2/h) and the GMR ratioRCPP calculated for an fcc
~001! . . . Cuu5 Cous Cuu5 CouCu . . . trilayer with interface inter-
diffusion. The subscripts P and AP denote the parallel and the a
parallel orientation of the magnetization of the magnetic slabs,
spectively. The spin-averaged values are tabulated for antipar
orientation. The results for ideal system without interdiffusion a
given for comparison.

Case C P
↑ C P

↓ ^CAP& RCPP

CPA 0.7074 0.0149 0.0540 5.694
Ballistic 0.7066 0.0253 0.0682 4.368
Diffusive 0.0259 0.2305 0.2859 20.552
Total 0.7325 0.2558 0.3541 0.396
Ideal 0.7426 0.2379 0.2276 1.154
21441
-
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CouCu . . . . If weneglect small fluctuations due to quantum
size effects, the resistances as functions of the spacer th
nesss ~measured in monolayers, 1<s<600) can be, with a
good accuracy, expressed by the function

R~s!5As1B1Cexp~2Ds!. ~13!

The coefficientsA, B, C, andD were found by a nonlinea
least-square fit using the Levenberg-Marquardt method12 and
are given in Table II for systems . . . Cuu5 Cous
(Cu84Ni16)u5 CouCu . . . and . . . Cous (Cu84Ni16)uCo . . . .

The linear increase of resistance with the spacer thickn
s is expected in this case because the number of disord
layers increases with the spacer thickness in contrast to
case of interface interdiffusion. The residual bulk resistiv

e

FIG. 2. Resistances per one surface atom~in units h/e2) of the
fcc ~001! u5 Cous (Cu84Ni16)u5 Cou trilayer embedded between tw
Cu leads~filled diamonds! and of a Cu84Ni16 alloy embedded be-
tween two Co leads~empty diamonds! for minority electrons and
the parallel orientation of the magnetization as a function of
spacer thickness 0<s<30. The straight lines show the linear part
the resistance.

ce

ti-
-

lel

TABLE II. The coefficientsA, B, C ~in units h/e2) andD ~di-
mensionless! of the fit ~13! of the resistances for theu5 Cous
(Cu84Ni16)u5 Cou trilayer with randomness in the spacer embedd
between two Cu leads and forus (Cu84Ni16)u embedded between
two Co leads.

Channel A B C D
. . . Cuu5 Cous (Cu84Ni16)u5 CouCu . . .

Majority parallel 0.02537 1.5696 20.2122 0.02643
Minority parallel 0.02589 5.8046 21.7530 0.05617
Averaged antiparallel 0.02555 3.7309 0.1706 0.4258

. . . Cous (Cu84Ni16)uCo . . .
Majority parallel 0.02517 1.6802 20.3138 0.01274
Minority parallel 0.02601 2.7742 21.9806 0.26321
Averaged antiparallel 0.02515 2.400020.2222 0.00564
4-4
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r of the alloy forming the spacer is directly connected w
the coefficientA by the relationr5AS/d, whereS is the area
per one atom in the atomic layer andd is the interlayer dis-
tance. Our calculations for both systems giver511.8
31028 V m, which is somewhat smaller than the expe
mental value13 rexp517.831028 V m, but it is close to the
theoretical valuer th510.431028 V m obtained by the rela
tivistic KKR-CPA calculations including the verte
corrections14 for the alloy composition Cu80Ni20.

The deviations from the linear dependence are obse
for smaller spacer thicknesses (s,50); they are particularly
large for minority spin electrons and parallel alignment
magnetizations~see Fig. 1 and particularly Fig. 2!. This ef-
fect is connected with quantum-well states.15 The resistivity
of the alloy in a thin spacer is high, because the quantu
well states are localized and do not contribute to conduct
With increasing spacer thickness the quantum-well states
localize due to electron scattering into otherki states and
begin to contribute to electron transport. The resisitivity@i.e.,
the slope ofR(s)# decreases and finally it attains its bu
value. The characteristic length of this transition is the el
tron mean free path. Our results shown in Fig. 1 are sim
to those of Tsymbal16 in his Fig. 2. The main differences
namely, that we do not find nonlinearity in the averaged
tiparallel resistance, but observe a large nonlinearity in
nority parallel channel can probably be explained by the f
that we assume no disorder in Co layers.

Extrapolation of the linear part of the resistance~13! to
zero spacer thickness (s50), i.e., the constant termB in Eq.
~13! yields the total resistance of all interfaces and lea
~Sharvin resistance!. It is interesting to compare these valu
with the results found for simple ideal systems such as i
nite leads, single interfaces, and trilayers. . . Cuus
CouCu . . . and . . . Cous CuuCo . . . ~Table III! as well as
with resistances calculated for the ‘‘extrapolated’’ syste
. . . Cuu10CouCu . . . andinfinite Co ~Table IV!. No simple
relation between these values can be found because the t
port in all ideal systems is purely ballistic, and, consequen

TABLE III. Resistances~in units of FV m2) of simple systems
with at most one magnetic layer.

System R↑ R↓ Remark

Infinite Cu 1.73183 1.73183 Sharvin resistanc
Infinite Co↑ 2.07466 0.87373 Sharvin resistanc
. . . Co↑uCu . . . 2.19313 3.26932 Single interface
. . . Cuu10 Co↑uCu . . . 2.19725 4.48903 Two interfaces
. . . Cuu50 Co↑uCu . . . 2.20803 4.93551 Two interfaces
21441
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the Sharvin and interface resistances are not additive qu
ties. The values of the Sharvin resistances of Co and
~Table III! agree well with the values reported by Schepet
al.;17 the interface resistancesR↑50.29 fV m2 and R↓
51.97 fV m2 agree well with R↑50.33 fV m2 and R↓
51.79 fV m2 reported by Xiaet al.18 for a stronger inter-
diffusion.

We have calculated separately the ballistic and diffus
conductances for the system. . . Cuu5 Cous (Cu84Ni16)u5
CouCu . . . for spacer thicknesses 1<s<150 and for com-
parison also the conductance within the CPA. The results
shown in Fig. 3. The ballistic and CPA conductances
crease exponentially with the numbers of disordered space
layers, which corresponds to the loss of charge carriers
closer examination shows that the ballistic and CPA cond
tances can be expressed as a sum of several expone
functions and a constant

C~s!5A01(
i 51

K

Ai exp~2Bis!, ~14!

where the coefficientsAi and Bi can be found by the sam
method as before and are given in Table V. It turns out t
K53 is sufficient to obtain a high-quality fit in the sense
the rms error, as can be seen in Fig. 3, where lines co
sponding to Eq.~14! fit very closely the calculated points
The constantA050 for conductances calculated within th
CPA, while A0.0 for conductances calculated using fini
supercells. This indicates a certain limitation of the superc
method. The electron in stateki can be scattered into a qua
sicontinuum ofki8 states in the real system and the probab
ity that it is later on scattered back into stateki is vanishingly
small. On the other hand, for finite supercells, the quasic
tinuum is replaced by a finite set ofki8 that after many scat-
tering events~when the distance traveled is larger than t
mean free path! will be equally populated. Consequentl
even in the limit of an infinite spacer thickness, the ballis
conductance will remain finite and will tend toA0. One can
expect thatA0}M 21, whereM is the number of atoms in a
supercell. The role of the finite size of supercells and
asymptotic behavior of ballistic and diffusive transport f
large thicknesses of the spacer are discussed in the Appe
The inaccuracy caused by a finite size of supercells beco
noticeable for large spacer thicknesses. A rough estimate
lows from an inequalityA0.A1 exp(2B1s) that yields 383 Å
~236 Å! for parallel ~antiparallel! magnetization.

The decomposition~14! means that there exist sever
modes of electron propagation through the disordered sp
with different damping constants. The wave packet that w
originally formed in the ideal lead and in the ideal magne
n

n

TABLE IV. Resistances~in units of fV m2) of systems with two magnetic slabs.

System R ↑
P R ↓

P R AP Remark

. . . Cou50 CuuCo . . . 2.20475 3.90879 4.16381

. . . Cous (Cu84Ni16)uCo . . . 2.73286 4.51228 3.91992 Linear extrapolatio

. . . Cuu5 Cou150 Cuu5 CouCu . . . 2.19024 6.93171 7.14632 Ideal system

. . . Cuu5 Cous (Cu84Ni16)u5 CouCu . . . 2.58949 9.44333 6.06081 Linear extrapolatio
4-5
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FIG. 3. Partial conductances per one surface atom~in units
e2/h) of an fcc ~001! u5 Cous (Cu84Ni16)u5 Cou trilayer embedded
between two Cu leads as functions of the spacer thicknesss. The
total conductance~filled diamonds!, its ballistic ~empty diamonds!
and diffusive~triangles! parts, and the CPA results~1! are shown
for the parallel~majority and minority spin! and the antiparallel
~spin averaged! alignment of the magnetization.
21441
layer moves into the disordered spacer. Each electron w
in the packet is scattered by the disorder in the spacer with
own scattering rate. Finally a new wave packet with a mi
mum scattering rate is formed, whose mean free path
given by lmin5d/Bmin , whereBmin is the smallestBi . We
find lmin for . . . Cuu5 CouCu84Ni16u5 CouCu . . . in the
range 103–120 Å from the CPA calculations.

On the other hand, the electron mean free path in a di
dered diluted alloy can be roughly estimated from its resid
resistivity,19

l5
12p2

SF

h

e2

1

r
, ~15!

whereSF is the total area of the Fermi surface. Let us assu
for simplicity a spherical shape of the Fermi surface a
reduction of its radiuskF by alloying Cu with Ni (CuxNi12x

alloy!, then SF54pkF
254p(12p2x)2/3a22. This yields l

580 Å for Cu84Ni16, if the experimental valuerexp517.8
31028 V m is inserted into Eq.~15!, while the calculated
value r511.831028 V m yields l5121 Å in a good
agreement with the value of the mean free path derived fr
our CPA calculations. The calculations based on supercel
finite size yield an anisotropic mean free path because
system is periodic with respect to translations parallel
atomic planes leading thus to infinite mean free path alo
the atomic planes. This can explain why the resistances
tained from our calculations are somewhat lower than
experimental value. The Sharvin resistance along the ato
planes remains nevertheless finite.

Our results show that the CPA without vertex correctio
yields the ballistic part of conductance with a good accura
but gives zero for the diffusive conductance as was alre
discussed in the end of Sec. II D. The diffusive part can o
be restored by correctly including vertex corrections, prov
their importance in CPA studies of CPP transport in terms
Kubo-Landauer-type approach.4

The series-resistor model, elaborated mainly by Leeet
al.,20 is widely used to interpret experimental data. There
accummulating evidence that it is valid only for diffusiv
conduction. Butleret al.21 solved the Boltzmann equation fo
an interface and have found exponential terms in the elec
chemical potential in the vicinity of interface whose chara
Cu

96
48

33
45
TABLE V. The parametersA0, and Ai ,Bi , i51–3 of the exponential fit~14! of ballistic and CPA
conductances for theu5 Cous (Cu84Ni16)u5 Cou trilayer with randomness in spacer embedded between two
leads. The parametersAi are in unitse2/h, while Bi are dimensionless.

A0 A1 B1 A2 B2 A3 B3

Ballistic
Parallel 0.008 05 0.030 49 0.006 23 0.251 15 0.026 66 0.597 55 0.064
Antiparallel 0.007 32 0.020 28 0.007 65 0.124 66 0.028 04 0.234 34 0.070

CPA
Parallel 0.000 00 0.042 09 0.015 99 0.532 49 0.042 83 0.356 20 0.086
Antiparallel 0.000 00 0.030 20 0.014 82 0.193 21 0.043 20 0.187 82 0.076
4-6
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teristic length is comparable to the electron mean free p
By solving linearized Boltzmann equation, Shpiro a
Levy22 have shown that the interface resistance depend
the resistance in the adjacent layers. Bozecet al.23 in their
experimental study observed large differences between m
netoresistances of magnetic multilayers that differ only
sequence of magnetic layers~separated and interleaved a
rangements!, although the series-resistor model predicts t
resistances are independent of the layer ordering. Tsymb16

calculated the CPP GMR in the Co/Cu multilayers using
realistic tight-binding model and found a thicknes
dependent interface resistance that depends on the mea
path. As discussed above, our results confirm these findi
In particular, the results in Table III show a non-additi
character of the Sharvin and the interface resistances for
tems without disorder. The dependence of the resistance
the thickness of disordered spacer is nonlinear~Fig. 1!, but
for spacer thicknesses exceeding the mean free path a l
dependence is restored in accordance with the series-res
model.

IV. CONCLUSIONS

We have presented a systematicab initio study of the
influence of alloying in the spacer and at interfaces
the CPP transport in magnetic multilayers. The el
tronic structure is described by the TB-LMTO metho
and the Landauer-Bu¨ttiker-type approach formulated with
in the framework of surface Green functions applied
laterally periodic supercells is used to evaluate transp
properties.

The main conclusions can be summarized as follows:
~i! Disorder connected with interdiffusion at interfaces b

tween ideal magnetic and non-magnetic slabs can dimi
the GMR ratio, but otherwise has a relatively weak effect
the CPP transport through magnetic multilayers.

~ii ! The two-current series-resistor model, widely used
interpretation of experimental results, is valid only for lar
spacer thicknesses. Non-negligible deviations appear
thicknesses comparable to the electron mean free path.
ticularly large deviations are found for minority electrons
the parallel alignment of the magnetization that in turn
due to the presence of quantum-well states.

~iii ! We have calculated separately the ballistic and dif
sive parts of the transport. The ballistic conductance
creases exponentially with the thickness of the disorde
spacer and it is approximately equal to the conductance
tained within the CPA without vertex corrections. Cons
quently, within a Landauer-type description of linear r
sponse a correct treatment of vertex corrections in the C
theory of the CPP transport is necessary.

~iv! We have found that our results, particularly the r
sidual resistivity of the disordered alloy forming the spac
as well as the interface resistances, agree well with exp
mental data and with other calculations. Also, two indep
dent estimates of the carrier mean free path~from the CPA
and from the residual resistivity! are consistent.

~v! The finite size of supercells used in the calculatio
leads to certain inaccuracies, namely, the resistances an
21441
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loy resistivities are lowered, the electron mean free path
anisotropic, and the ballistic conductance remains finite e
for infinite spacer thickness.
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APPENDIX: SIMPLE MODEL

We wish to illustrate the role of finite size of superce
and the asymptotic behavior of ballistic and diffusive tran
port for large thicknesses of a disordered spacer usin
simple model based on the following assumptions:~i! the
electron entering the disordered spacer layer attains on
theM-allowed values of the transverse momentumki , ~ii ! in
each atomic layer of the disordered region, it may be sc
tered to another channelki8 with probability p. We assume,
for simplicity, that the probabilityp is independent ofki and
ki8 , and it is identical for allN disordered layers. We denot
the probability that the electron has momentumki after mov-
ing throughn layers byxn . Note that the probability to find
the electron in one of the otherM21 channels different from
ki is 12xn , and, according to~i!, x051. If no scattering of
electrons from other channels back toki is present, we would
find xn

(0)5(12p)n. This result does not depend on the num
ber of channelsM. Clearly,xn

(0)→0 for n→`. Backscatter-
ing makes things more complex and we can derive a re
sion formula

xn115~12p!xn1p~12xn!/~M21! ~A1!

from which it follows that

xn5
1

M
1S 12

Mp

M21D n M21

M
. ~A2!

As xn→1/M for n→`, the limiting value is finite for a finite
number of channels, which corresponds to a finite cond
tance found in supercell calculations even for a very th
spacer. The supercell approach becomes exact in the lim
M→` and thenxn→0. Also the difference between the dis
tribution with backscattering and without it,dn5xn2xn

(0)

→0 for M→`. We have thus shown that electron bac
scattering leads to some error for finite supercells, but
error disappears in the limit of infinite supercells.
4-7
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