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Abstract. In this paper, we rigorously derive a diffusion model for semiconductor
superlattices, starting from a kinetic description of electron transport at the microscopic
scale. Electron transport in the superlattice is modelled by a collisionless Boltzmann
equation subject to a periodic array of localized scatters modeling the periodic hetero-
geneities of the material. The limit of a large number of periodicity cells combined with
a large-time asymptotics leads to a homogenized diffusion equation which belongs to
the class of so-called "SHE" models (for Spherical Harmonics Expansion). The rigorous
convergence proof relies on fine estimates on the operator modeling the localized scatters.

1. Introduction. The purpose of this paper is the rigorous derivation of a diffusion
model for semiconductor superlattices, starting from a kinetic description of electron
transport at the microscopic scale.

Semiconductor superlattices are processed by growing periodic layers of two different
semiconductor materials, like GaAs and GaAlAs [25], [34]. The different electronic
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affinities of the two materials produce a periodic electrostatic potential in the direction
of the growth axis, which is discontinuous at each interface between the two materials.
Superlattices possess a number of interesting physical properties, especially regarding
optoelectronics applications [25]. The modeling of electron transport in superlattices
relies on efficient, yet phenomenological models, mostly based on Esaki and Tsu's model

[18].
Electron motion across the superlattice structure obeys quantum mechanics over

length scales which are at least of the order of the superlattice period. However, the
interaction of the electrons against various kinds of defects (such as the possible rough-
ness of the material interfaces) can cause a breakdown of the electron phase coherences
on larger length scales and thus destroy the quantum nature of the transport. In such a
situation, Esaki and Tsu's model needs to be adapted. The model derived in the present
paper is an attempt in this direction.

We consider a situation such that, within one superlattice period, one of the mate-
rials (denoted by (AT)) is much narrower than the other one (denoted by (W)). We
can conveniently describe the narrow material as a single plane at which the potential
possesses a singularity and which acts as a localized source of scattering. The super-
lattice structure is therefore reduced to a periodic array of cells consisting of material
(W) separated by interfaces consisting of potential singularities. Electron motion within
each cell is modeled by a collisionless Boltzmann equation for the distribution function
(or the particle density in phase space (position, momentum)). The distribution func-
tions in neighbouring cells are connected by means of a transmission operator, which
describes the quantum scattering of the particles by the potential singularity. In this
sense, the model retains the quantum nature of transport through the sharp potential
inhomogeneities, while staying classical on larger scales.

The aim of this paper is to rigorously investigate the limit of a large number of cells
and of large time. We suppose that there are a-1 superlattice cells within a macroscopic
distance of the order of unity, while a given particle crosses a-2 cells within one unit of
time, where a is a small parameter, typically the ratio of the superlattice period to the
typical size of the device. Because the interface operators conserve particle energy, the
limit model is a diffusion equation in an "augmented space" (position, energy), which is
known as the "SHE" model (for Spherical Harmonics Expansion, a terminology arising
from its early derivation by physicists, [8], [12] and references therein).

Homogenization limits of kinetic equations in the diffusion regime (diffusion approx-
imation) have been widely investigated in the literature. Early formal approaches go
back to [26], [27] for neutron transport while the mathematical theory was set up in [9].
The solution is formally expanded in powers of the small parameter a. The problem
is then formally reduced to a sequence of "cell problems" posed on the elementary pe-
riod. Beyond homogenization problems, this expansion, which goes back to Hilbert and
Chapman-Enskog, has been extensively used in diffusion limits of kinetic equations (see
[28], [7] in neutron transport, [6] in radiative transfer and [31], [23], [8] in semiconductor
physics). However, the reduction to a sequence of cell problems is not easily justified.
To overcome this problem, the theory of two-scale convergence [29], [2] has recently been
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applied to the homogenization of kinetic equations in the diffusive regime [3], [24], [17]
(see also [20], [1]).

The present paper is, to our knowledge, the first to deal with the homogenization of
a kinetic problem in which the diffusion mechanism (the scattering by the interfaces) is
concentrated at the boundary of the periodicity cells. We show that, in this particular
situation, the diffusion limit can be rigorously justified without resorting to a cell problem
nor to the theory of two-scale convergence. Besides, most of the previous works are
concerned with diffusion models in position space only. As already pointed out, our limit
regime is described by a diffusion equation posed on the extended position-energy space.
Significant technical difficulties arise in the control of the additional energy variable. A
derivation of the "SHE" model in the context of diffusion by the boundary has already
been given in [14] (see also [5] and [13] for earlier work on these kinds of problems).
However, in [14], the geometrical configuration of the electric field relative to the surface
scattering operator makes the control of the energy variable less technical.

The "SHE" model has proven very useful in semiconductor physics (see, e.g., [33],
[22]). It has first been derived in the case of standard semiconductor materials by [16]
for the particular case of relaxation collision operators, and later extended to all elastic
collision operators in [8] (see also [12] and references therein). Finally, in [15], an alternate
SHE model for superlattices is formally derived. It relies on a discrete formulation of the
original kinetic problem and applies to a broader class of superlattices.

The outline of the paper is as follows. In Sec. 2, the Boltzmann equation for superlat-
tices, which is the starting point of our analysis, is introduced and appropriately scaled.
The main theorem of the paper, i.e., the convergence of the Boltzmann equation towards
the "SHE" model is also stated. In Sec. 3, the existence theory for the Boltzmann equa-
tion is given. First, properties of the energy band diagram (the energy versus momentum
relationship) and of the interface operators are given. From this, the appropriate func-
tional setting is defined. One of the key estimates, which gives the control of the trace
of the distribution function on the interfaces in terms of the transport operator within
the cells, is developed. It allows us to prove that the Boltzmann equation supplemented
with the interface conditions admits solutions in an L2 setting. The uniqueness of the
solutions is left open in this work.

In Sec. 4, the proof of the main theorem, i.e., the convergence towards the SHE model,
is developed. A first technical point is to prove that the weak L2 limit of the distribution
function depends on the energy only, instead of all components of momentum. The
idea is to first prove this property for the traces on the interfaces, using the dissipative
properties of the interface operator and then to "propagate" this property inside the
cells. The second technical point is to prove that the current actually converges and to
compute the limit. Again, the trace of the current at the interfaces is easy to compute
by means of an auxiliary function that is a solution of a local problem (and not a cell
problem). The point is again to prove that this property propagates inside the cells. The
proofs of these two points rely on the estimate of the trace of the distribution function
on the interfaces proved in Sec. 3.
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2. The superlattice model and the scaling. At the microscopic scale, the unit
length is chosen such that the superlattice period is 1. Therefore, the (N) interfaces
are located at the points xn = n with n G Z. Let f(x,k,t) be the electron distribution
function in material iW). The position variable x is one dimensional and belongs to the
real line except the location of the (N) interfaces; so, x G R\Z. The momentum variable
k belongs to the first Brillouin zone B associated with material (W). The Brillouin
zone is the fundamental domain of the torus R3/L*, where L* is the reciprocal lattice of
material (W) (isomorphic to Z3). All functions of k will be considered as periodic with
periodicity L*. Note that the k variable is three dimensional even though the position
variable x is one dimensional. Finally, the time variable t belongs to [0, oo).

The collisionless Bolt.zmann equation in material (W) is written:

dtf + vxdxf + dxVdkxf = 0, x G R\Z, k G B, t> 0. (2.1)
Here, vx = vx(k) is the ^-component of the particle velocity v(k) defined by

v(k) = Vfce(fc), k G B,

where e(k) is a given smooth periodic function of k that gives the energy-wave-vector
relationship in material (W) (the so-called band diagram). V = V(x) is the electrostatic
potential due to charges and externally applied biases. It will be assumed given, time
independent and as regular as necessary.

For a function tp(x,k) defined on R\Z, we denote by 7the following limits (if
they exist):

7n(<P)(k)= lim <p(x,k),
x—>n± 0

and we define the outgoing and incoming traces of tp at point n respectively by:

it-mw - s (2.2)
l7n(v), vx(k) < 0,

=I7-<";• "t!s n <2'3>l7„(y), vx(k)<0.
The outgoing (respectively incoming) trace is the distribution of particles leaving (re-
spectively entering) the (W) material at the (N) interface located at n.

We suppose that the traces of / are defined and that the W — N — W structure can
be conveniently described by a scattering operator that maps the outgoing trace at each
interface to the corresponding incoming trace:

lZ(f) = £„(7°ut(/))- (2-4)

This scattering operator Bn is an integral operator given for any function tp(k) defined
on B by

Bntp(k)= ! <Jn(k',kMk')\vx(k)'\5(£(k')-£(k))dk'. (2.5)
■IB

The scattering cross section an can be derived from the quantum scattering analysis of
the potential profile associated with the W — N — W structure. Precisely, if vx(k') > 0 and
vx(k) > 0, \vx(k)\an(k', k)8{e(k')—e{k))dk is the number of electrons transmitted through
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the interface to the right into a volume dk around k for one incident electron on the left
with wave vector k'. Similarly, if vx(k') > 0 and vx(k) < 0, \vx(k)\an(k', k)S(s(k') —
e(k))dk is the number of electrons reflected by the interface to the left into a volume dk
around k for one incident electron on the left with wave vector k'. Similar interpretations
are valid respectively for vx(k) < 0, vx(k') < 0 and vx(k) < 0, vx(k') > 0. an depends
on n to allow smooth changes (on a macroscopic scale) in the W — N — W structure.

The passage to the macroscopic scale is done by the diffusion rescaling

x' = ax, t! = a2t,

where a <C 1 is a small parameter that is the ratio of the microscopic unit length (the
superlattice period) to the macroscopic unit length (the typical size of the device). The
square of a appears in the time rescaling because we are aiming at a diffusion model at
the macroscopic scale. Setting

fa(x',k,t') = f(x,k,t), V(x') = V(x),

we obtain the following model, which is the starting point of our analysis (where we have
dropped the primes for clarity):

adtfa + vx{k)dxfa + dxVdkxfa =0, xe K\aZ, k e B, t > 0, (2.6)

lna(fa) = Sa„(7na(/a))- (2-7)

Note that the electrostatic potential is assumed independent of a, which amounts to
supposing that it varies over the macroscopic scale only. In this paper, we shall suppose

Hypothesis 2.1. The electric field dxV belongs to the Sobolev space W1'00 (in other
words, dxV is bounded and globally Lipschitz over R).

Similarly, we suppose that there is a smooth function a(x,k',k) of the macroscopic
variable x, such that

<jn(k', k) = cr(na, k!, k),
and we define the operator B(x) by

B(x)ip(k) = [ a(x,k',k)ip(k')\vx(k')\S(e(k') — e(k))dk'. (2.8)
J B

Then, the interface condition (2.7) is also written

7 Z(fa) = S(na)(7r(D). (2.9)
In this paper, we are concerned with the limit a —> 0 of the kinetic model (2.6) and

(2.9), with initial data

fa(x,k,t = 0) =ff(x,k), xeR\aZ,keB, (2.10)
also satisfying the transmission conditions (2.9). To avoid the treatment of initial layers,
we shall suppose

Hypothesis 2.2. There exists a smooth function Fj(x, e) defined on RxTZ, where 1Z
is the closure of the numerical range of the function e(k), satisfying

F/(i,e():))eI2(KxB), (vxdx + dxVdkx)[FI(x,e(k))] £ L2(R x B), (2.11)
and such that

ff(x,k) = FI(x,£(k))\R\aZxB. (2.12)



166 N. BEN ABDALLAH, P. DEGOND. A. MELLET, and F. POUPAUD

In other words, ff is the restriction to R\aZ x B of an everywhere defined function
independent of a. Since Fj depends on k through the energy e{k) only and satisfies
the regularity assumption (2.11), the initial datum (2.12) satisfies the interface condition
(2.9) (see Sec. 3). In this paper, wc are concerned with proving the following result:

Theorem 2.1. (i) Under the hypotheses listed in the current and following sections
(namely Hypotheses 2.1, 2.2, 3.1, 3.2, 3.3, 3.4), the problem (2.6), (2.7) has a solution
fa (in a sense that will be specified further, see proposition 3.11).

(ii) When a tends to zero, fa converges to f° in the weak star topology of L°°([0,T],
L2(R x B)) for any T > 0, where f°(x,k,t) = F(x,e(k),t) and F(x,e,t) is the weak
solution of the problem (SHE model) posed on the domain (x,e) € R x 7Z:

N{e)dtF + (dx + dxVds)J = 0, (2.13)
J{x,e,t) = -D(x,e){dx+dxVde)F. (2.14)

F(x,e,t = 0) = F/(x,£), (2.15)
J(x,e,t) — 0, e e 37Z. (2-16)

N(e) is the density-of-states of material (W), whose definition is given in (3.2). The
diffusion constant D(x, e) is given by

D(x, e) = f vx(k)x(x, k)5(e(k) — e)dk, (2-17)
Jb

where x(xi k) is uniquely determined by the problem

L
(I - B(x)*){x) = W + B{x)*)(sgn(Ux)), (2.18)

x(x, k)\vx(k)\5(e(k) — e)dk = 0, V(i,e)eMxK, (2-19)

and where B* is the adjoint of the operator B. The diffusion constant D(x,e) is strictly
O O

positive for (x,e) GMxR, where 7Z denotes the interior of 1Z.

Let us note that the uniqueness of the solution of (2.6), (2.7) is an open problem.
This question is discussed in detail in the next section. The positivity of the diffusion
constant D guarantees that problem (2.13)-(2.16) is well-posed. The diffusion constant
is the same as in [15] (see formula (4.43)), but the density-of-states N(e) is different, due
to some differences in the original kinetic model. In the next section, we introduce the
functional setting, and prove the existence and uniqueness of the solution.
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3. Existence of the solution.
3.1. Notation. We denote by = K\aZ, Oa = fla x B, and Ta = aZ x B. Oa is

equipped with the usual L2 norm and inner product. Note that L2(Oa) = I2(l x B)
since aL x B is a zero measure set. Then

M l2(oq) = / \u(x,k)\2dxdk.
JRxB

We denote by L2(B) the weighted L2 space, equipped with norm

•Ill(B) = [ \u(k)\2ws{k)dk
J B

\UV

with ws(k) = vx(k)ss(vx(k)), where ss(x) is the continuous piecewise linear function
equal to the sign function for |x| > <5:

s'(x) = (8gn(l) V|x| a S' (3.1)
If v|*|<«.

Let us remark that L2(B) is nothing but the weighted L2 space associated with the
weight |ur(fc)|, which will be denoted by L2(B).

3.2. Geometrical preliminaries. This section is devoted to some geometrical properties
of the energy function e(k). We first suppose that £ is a C2 function on B with values
in K, whose periodic extension to the whole space K3 is a C2 function. For any energy
e £ R, we denote by Se the constant energy surface <Se = {k G B,e{k) = e}. Let dSE(k)
be the Euclidean surface element on SE and 1Z the closure of the numerical range of e(fc).
We also denote by dNe(k) the co-area and by N{e) the energy-density of states:

dN-(k) - iHti' "v=i, dN-m■ <-3-2>

By Sard's theorem and the implicit function theorem, these objects are defined for all
e 6 TZq, where TV\JZo is the set of critical values for the function k —> e(k) and is of
measure zero.

For further simplifications, we suppose that TZ\R-q is a finite set, associated with a finite
set B\Bq of critical points. In order to use the Morse lemma, we also assume that these
critical points are nondegenerate. Hence, for ko £ B\B0, and £o = e(fco)> there exists a
neighborhood U of ko and a diffeomorphism Lp such that, either e o tp = £0 + k2 + k2 + k2
(critical point of parabolic type), or e o Lp — <p0 + k2 + k2 - k2z (critical point of hyperbolic
type). A simple computation gives in the first case

lim / dNe(k) —> 0,
Jsenu

and in the second case

lim / dNe(k) —> C < +oo.
£_>£o Js.nu

It is now easy to check that N(e) G L°°(TZ), since N(e) can be extended as a continuous
function on the compact set 1Z. With this hypothesis, the co-area formula applies [19]:
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for any continuous function ip(k) defined on B, we have:

L mdk" L (I. m^mi):= L (1 <3-3'
For £ G 1Z, we define L2(Se) equipped with the norm

lu(fc)l Lj(sc) = I Hk)\2\ws{k)\dN£(k),
J s

so that L2(B) — L2(1Z,L2{S£)) by the co-arca formula. We denote by L2(Ta) the set of
functions u = (tian)n6z, such that uan G L2(B) for all n G Z and such that

Ml^(r°) := a\uan\L^(B)-
n£Z

Similarly, we define L2(S£), L2(Ta), associated with the weight |i>/c(fc)l — w°{k). We
now assume another geometrical condition on the energy function s{k), which is always
fulfilled in practice.

O

HYPOTHESIS 3.1. For any £ in the interior 1Z of the range of 1Z of £, we have

f \vx(k)\dNe(k) > 0.
Jse

O

In other words, for all e E 1Z, we have vx(k) / 0 on a nonnegligible set of S£ for
the measure dNe(k). It is clear that the above hypothesis is automatically satisfied for

O

energies £o G TZ\TZo- Indeed, it is readily seen that, for such energies, there exists k G S£o
that is not a critical point of parabolic type (since such points are associated with local
extrema of the function £) and by a simple computation, we see that for any critical point
of hyperbolic type, we have lim£^£o fs nU \vx(k)\dN£(k) ^ 0. We deduce the following
lemma.

O

Lemma 3.1. For any compact set K c 1Z, and all S0 > 0, there exists a constant
Ck.Sq > 0, such that, V<5, 0 < S < <5o,V£ g A", we have

[ \vx(k)\dNe(k) < CKM [ w6(k)dN£(k). (3.4)
Jsc JSs

o
Proof. If the converse were true, there would exist a compact set K$ C 1Z, a real

number do > 0, and two sequences, en G Kq, 5n G [0, <5o]> such that

[ \vx(k)\dNen(k) > n f wSn(k)dN£n(k).
JSF„

Then, since

we have
L\vx(k)\dN£n(k) < ( sup \vx{k)\ ) N(en) < C,

\keB

limsup / wSn(k)dN£n(k) = 0.
n—►()
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o

Let e be a limit point of the sequence (e„). Then £ G TZ and the above properties imply
that \vx(k)\ = 0 almost everywhere on Se with respect to the measure dNe(k), which is
in contradiction with Hypothesis 3.1. □

3.3. Properties of the operator B. We now list the required assumptions on the oper-
ator B(x).

Hypothesis 3.2. (i) Positivity: o > 0, almost everywhere.
(ii) Particle conservation:

I o(x, k', k)\vx(k)\5(e(k') — e(k))dk = 1, Vfc' G B. (3-5)
J B

(iii) Reciprocity:
a(x,k',k) = a(xi—k,—k'). (3.6)

(iv) B(x) is compact on L2(SE), for all e G 71, and i6R.
Property (i) expresses the obvious physical constraint that a number of particles must

be positive (see the interpretation of a in Sec. 2). Property (ii) states that the flux of
particles of given energy £ is preserved by the transmission operator. It is true as long
as there is no scattering between different energy states (via, e.g., phonons). An account
of inelastic scattering in the present analysis is possible provided that it remains weak.
This will be developed in a future work. Equation (3.5) can be rewritten with the co-area
formula:

[ a(x,k', k)\vx(k)\dN£(k,)(k) = 1. (3.7)
*'Se(fc')

Property (iii) expresses the time reversibility of the microscopic scattering process. Com-
bined with (3.5), Eq. (3.6) yields the following identity, further referred to as the nor-
malization condition:

fB 'a(x, k', k)\vx(k')\6(s(k') — e(k))dk' = 1, WkeB, (3.8)

or

[ a(x,k',k)\vx(k')\dNE(k){k') — 1- (3.9)
J ^e(fc)

From (3.9) and the Cauchy-Schwarz inequality, we easily deduce the following inequality:

\B(x)u\2L2(S^ < M^2(5c), (3.10)

which plays a similar role to the Darrozes-Guiraud inequality in gas-surface interaction
[11]. Since by the normalization condition (3.9), constant functions are fixed points of
B(x), (3.10) implies that for each e E 71, the operator B(x) is a continuous linear operator
on L2(S6) with norm 1:

l|B(*)IU(La(s.)) = l. Ve G 7Z. (3.11)
We denote by Ba the operator on L2(Ya) that coincides with B(an) on each interface,
namely:

u = (uan)neZ G L2(Ta) - Bau = (B(an)uan)n€Z G L2{Va).

Obviously, Ba is a continuous operator on L2(Ta). Moreover, as a consequence of hypoth-
esis (i), B(x)u > 0 for any nonnegative and nonidentically vanishing function u G L2(S£).
This implies the following proposition.
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Proposition 3.2. (i) For all x e R and all e e 1Z, B(x) considered as an operator on
L2(Se) has 1 as an eigenvalue with multiplicity 1. The associated eigenspace is the set
of constant functions. The eigenvalue 1 is the only eigenvalue associated with a signed
eigenfunction.

(ii) We have
N(I-B{x))= R, (3.12)

where N denotes the Null-Space of an operator defined on L2(SE).

Proof, (ii) is a direct consequence of (i). Prom the normalization condition (3.8),
the constant functions are eigenfunctions of B(x) associated with the eigenvalue 1. By
Hypothesis 3.2, Krein-Rutman's theorem [10] applies and 1 is the only eigenvalue of B{x)
and it is simple, which proves (i). □

Let us now denote by Q the orthogonal projector of L2(SE) onto the space of constant
functions, namely

Qu(k) = V(e)-1 f u{k)\vx{k)\dNe{k), V(e) - [ \vx(k)\dNe(k), (3.13)
Jse Jse

and introduce

P = I-Q,
where I is the identity on L2(Se). Note that the adjoint B*(x) of B(x) is given by

B*(x)u(k)— f cr(x,k,k')u(k')\vx(k')\dNE^(k') (3-14)
Jsc

and satisfies, thanks to the flux condition (3.5), the following property:

R C N(I - B*(x)). (3.15)

The following lemma will be needed in the sequel.

Lemma 3.3. The operators P, Q, and B(x) satisfy the following identities:

PB{x) = B{x)P, QB{x) = B(x)Q = Q. (3.16)

Proof. Let u be an arbitrary function of L2(SE). We write, omitting the ^-dependence
of B:

Bu = BPu + BQu. (3.17)

Since Qu is a constant function, BQu = Qu. Hence BQ = Q. Moreover, (3.15) yields
B*Q — Q. Taking the adjoint of this identity leads to QB = Q. The identity BP = PB
follows immediately. □

We now notice that, by elementary operator theory,

V(x,e) g R x 7Z, 3K(x,e) < 1 such that ||^(2;)^>||£(l2(5e)) < K(x,e) < 1.

In the remainder, we shall assume that this constant is bounded away from 1, as (x,e)
vary. More precisely:

Hypothesis 3.3. There exists K < 1 such that

\mx)P\\c{L2(s£)) < K, Ve en,Vxe R. (3.18)
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Note that Hypothesis 3.3 is equivalent to saying that

\B(x)u\L2(S^ < K\u\L2(Se), Vw € L2(Se) such that Qu = 0. (3.19)

Obviously, the hypothesis is satisfied in the case of the isotropic transmission operator
B(x) = Q. It is also satisfied if B{x) is bounded by a constant times Q from below, as
the following lemma states.

Lemma 3.4. Suppose that there exists a constant do > 0 such that

V(e)a(x, k', k) > <to Vx g fla, Vfc, k' G Se, a.e. e G 1Z. (3.20)

Then, B{x) satisfies Hypothesis 3.3.

Proof. First, note that (3.20) and the flux conservation relation (3.5) imply that 0 <
a0 < 1. Let <p G L2(Oa) be such that fs ip(k)\vx(k)\dNe(k) = 0, a.e. e G TZ. We can
write, for k G S£,

V(e)B(x)ip{k) = J (v(e)a(x, k', k) - y) tp(k')\vx(k')\dNe(k').

Since V(e)a(x,k',k) — ̂  > 0, and using Cauchy-Schwarz's inequality, we deduce that

V{E)2\B(x)<p(k)\2 < I (v(e)a(x,k',k) - y) \vx(k')\dNe(k')
J Se

x / (y(£)a(x>k''k) - y) \<P(k')\2\vx(k')\dNe(k')
J s£

v(e) (l - y) j v(e)a(x, k', k)\ip(k')\2\vx(k')\dNe(k').<

It follows that

f \B(xMk)\2\vx(k)\dNe(k) < (l-y) / \<p(k)\2\vx(k)\dNe(k),
J Se ^ J S£

which completes the proof. □
We close this section by giving the following technical hypothesis on the x and £

dependence of the operator B*.
HYPOTHESIS 3.4. Denote by dxB* and dEB* the operators defined by (3.14) with a

replaced respectively by dxo and d£o. Then, dxB* and deB* are assumed to be bounded
operators on L2(S£), uniformly with respect to (x,e) elxK.

3.4. Functional setting. We define the transport operator Aa by

Aau = (vx(k)8x + dxVdkJu (3-21)

on the domain

Ha(A,B) = {ue Ha{A),j°ut{u) G L2(Ta),-y^(u) = Baj°ut(u)}, (3.22)

where the space Ha(A) is given by

Ha(A) = {ue L2(Oa),Aau G L2(Oa)}

and
7°ut («) = (tE?(u))»€z, ^nc(u) = hZ(u))n€z-
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The spaces Ha(A) and Ha(A,B) are equipped with the graph norm

\u\2H"(A) = M L2(Oq) + \Aau\l2{oa).

We shall denote by A the bare differential operator (3.21), when no indication of the
domain is needed.

We now comment on the choice of the domain of Aa. It is well known ([4], [32])
that the regularity u G Ha(A) is not sufficient to guarantee that the traces 7^ut(u) and
YaC(u) are square integrable with respect to the measure \vx(k)\dk. But if one of these
traces is integrable, the other one is also integrable. Therefore, defining

H£(A) = {b£ Ha(A)^°ut(u) G L\Ta)} = {u£ Ha(A),-y™(u) G L2(rQ)},

we have the following Green's formula ([4], [32]):

Lemma 3.5 (Green's formula). For v,w in Hq(A), we have

(AU,W)L 2(0a) + (U,AW)L2(0")

= - (7r(«),7rMW)), (3.23)
where (■, •)l2(c>c>) and ("> ')-L2(ra) stand for the inner products associated with the norms
of L2(Oa) and L2{Fa).

In order to prove that Aa with domain Ha(A,B) generates a strongly continuous
semigroup (which is enough to prove existence of solutions of (2.6)-(2.7)), the closedness
of Ha(A,B) with respect to the graph norm of Aa is needed. A way of proving such
a property is to control |7°ut(ix)|Z/2(ra) in terms of the graph norm. By applying the
Green's formula (3.23) with w = u, it is easy to get the estimate

(1-Pl|)|7rwii2(r-) <"MhW
Unfortunately, since B leaves invariant the set of constant functions on the energy shells
SE, the norm of B is equal to one, and the above inequality does not provide the sought
control of |7«ut(w)|i2(rQ). In order to deal with this problem, we introduce the operator

1
1 + T)~

and the operator A" = A with domain Ha(A, B^), defined by

Ha(A,B,) = {u G Ha(A), 7°ut(u) G L2(Ta),^c(u) = Bv>y™\u)}. (3.24)

Straightforward computations using Lemma 3.3 lead to the following identity satisfied
by any function </> G L2(Ta):

IISiWII2 = (i - <3-25>

This implies, for r/ small enough,

\\Bv\\c(.l"(b)) < 1 - Crj < 1, VO < Tj < 7/o, (3.26)

and the above argument leads to the closedness of the operator A%. In the next section,
we prove that it generates a strongly continuous semigroup of contractions.

Bv = PB + —;—-Q- 7/ > 0,
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3.5. A° generates a continuous semigroup of contractions. In this section we are con-
cerned with the properties of the operator A". Throughout this section and unless
otherwise stated, 77 is a fixed positive real number.

Proposition 3.6. A", with domain Ha(A,Bv), is a maximal accretive operator.

Proof. That A" is accretive follows immediately from Green's formula and (3.26),
which lead to

^oi(A^u, u)l2(o°) > (1 — |Sr)|£(L2(B)))|7°ut(u)|^2('ra) > 0.

We now prove that A™ is maximal, i.e., that for all / in L2(Oa), there exists u E
Ha(A,Bri) such that

u + Au = f. (3.27)
Let / be a given function in L2(Oa). We search for u by means of a fixed point method.
We define the application Tv on L2(Fa) as follows: for (p g L2(Ta), let v be the solution
in Ha(A) of

(v + Av = f, ,
{ . (3.28)
\>y™c{v) = y

(such a solution exists and is unique in Ha(A), see [4] or [32]). Then 7^ut(f) lies in
L2(rQ), and we set

Tv(<P) = ^7°ut(^)-

It is readily seen that a solution of (3.27) corresponds to a fixed point for the application
T,j, so that Proposition 3.6 is a consequence of □

Lemma 3.7. Tv is a contraction on L2(ra), with Lipschitz constant \\Bv\\c(l2(b))i hence
it admits a unique fixed point.

Proof. Let ipi and tp2 be in L2(Fa), and V\,V2 be the associated solutions of (3.28).
Then, we have

v2 - vi + A(v2 ~ vi) = 0 and 7^nc(v2 - v\) = (p2 ~ <fii■

Multiplying by v2 — vi in the previous equation, and integrating, we get

2|U2 -Ui||2(0a) + |7aUt(^2 - Vi)\lHra) = |7aC(«2 - Vl)||2(ra),

which implies

1^77(^2) - ^(<^1)1 L2(r°) < \\Bv\\c{L2{B))\"raUt (v2 ~ wi)U2(r«)

< ll^r7l|£(L2(B))|^2 - yi|L2(r°)-

□
By applying Hille-Yosida's theorem (see [10]), we obtain

Lemma 3.8. For all 77 > 0, for all Fv e Ha(A,B11), there exists a unique function
/« GC([0,T];H«(AS))))nC1([0,T];L2(0Q)), solving

adtf% + Af" = 0,
f*\ -F ^Jr, |t=0 —
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Moreover, we have the following estimates:

I/^Il2(o°o < \Fv\lHo°), la<9«/"lL2(c>°) = \Af%\LHO°) < 1-4-^1 L2(oa)- (3.30)

Since we are aiming at approximating the solution of problem (2.6)-(2.9) by a sequence
of solutions fv given by the previous lemma, we need the following result.

Lemma 3.9. Let F/ be as in Hypothesis 2.2. There exists a sequence (77) tending to zero
and (Fv)v>o such that Fv £ Ha(A,Bri) and

Fn ->■ Fr, AFV-^AFI weakly in L2(Oa).

Proof. We define the function Fv as the solution of

Fv + AFrj = F, + AFi, Fv £ Ha(A, Bn). (3.31)

Such a function exists for all 77 > 0 since A" is maximal; moreover, we have

l-Frj|i2(o») < IFi + AFr\L2(0a),
\AFV|jr,2(OQ) < |F^| + |Fj + AFi\L2^o^ < 2|Fi + AFi\L2(0a,y

The first estimate follows from the monotonicity of A'r*, and the second one is obvious. As
a consequence, there exists F £ Ha(A) such that Fv —> F, and ^F^ —> .4F in L2(Oa)
weak. It remains to prove that F = F/. If we prove that F £ Ha(A.B), the result
follows, since (^4u, u)l2(0°) > 0 for u £ Ha(A,B), and F — F/ £ Ha(A,B). Thus, it is
enough to prove that 7„ut(F) lies in L2(Ta). To this aim, let us define <po — 7™C(F/).
Then, it is readily seen that

Tn(<P 0) = —¥>o>1 + r)

where is a contraction introduced in the proof of Proposition 3.6. Since 7™C(F,,) is
the unique fixed point of Tv, we have the following identity:

7r(Ft?) - = W^F,)) - r>o) -

which immediately leads to

I_,inc/ \ I / l^o|L2(r«) ^ 71 |Vo|L2(ra) ^
ll„ «,) " Wb(r-) < ^ £ —r, ~~ £

which proves the boundedness of 7"'c(Fr)) in L2(ra). □
Estimates (3.30) allow us to take the limit i) —> 0 in Eq. (3.29). In order to take the

limit in the equality YaC{f%) = ^7aUt(/^)i we need some trace estimates. This is the
aim of the next section.

3.6. L2 trace estimates. In this section, we establish the control of 7°ut(u),7^nc(w) in
terms of |it|ija(.4)• Let us now denote by P and Q the orthogonal projections of L2(Ta)
defined for u = (uan)nex by

Qu = {Quan)n^.Xt F?i = {Puan)n£zZ-

Then we have the following proposition.
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Proposition 3.10. For all u e Ha(A)Bv), we have

1c\
(i) |P7r(«)l|2(r») < \PlT(n)\h{ra) < (3.32)

(ii) (1 + ri)QlaC(u) = Q-y°ut{u) := qa(u) = {qna)n€z, (3.33)

and we have

\<la(,u)\2Li(r<*) - C\a\u\2h<*(A) + C2 (l + |u|i2(0a). (3.34)

Proof of Proposition 3.10. (i) Let u € Ha(A,Brt). Then by Green's formula (3.23),
we have

2a(Au,u)L2{0a) = |7aUt(u)li2(r°) ~ \lT{u)?Li(r°)

= l7°ut(u)\lHra) - |*Vyr(«)lia(r«)

= («)ll2(r«) (3.35)

+ {1- (ITw)

> (1 - K')|P7r'(«)li.(r.l,

which shows the second inequality of (3.32), the first one obviously following from (3.11).
(ii) Define <fia(x) by

<t>a(x) = — ^ , x e ((n — l)a, na).

Note that \(j)a\L°o{ua) = 1, that 7na{(f>a) = 1, 7(t-i)a(^Q) = _1 and that = «•
The control of <?7aUt(w) = Qja'c(u) is obtained by multiplying Au by sgn(vx)u and
integrating with respect to x and k. This method obviously breaks down for small vx(k)
if the electric field dxV is nonzero, because sgn(i>x) is not differentiate. However, by
regularizing the sign function and using (3.4), it is possible to limit the breakdown of
the method to the boundary of the energy range 1Z. This is why we only have estimates
of the projections Q-y°ut(u) = Qj^°(u) in the weighted spaces L|(ra), VS > 0. Using
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Green's formula as before, we get for all 5 > 0:

2(Au, uss(vx(k))(j)a)i2(C,a) + — [ \u\2ws (k)dx dk
a Jqoc

+ [ dxV\u\2dk:c{s6(vx(k)))(f>adxdk
JOa

= Xl/ (hn*{u)\2 + \tfn-1)a{u)\2^ WS{k)dk
ne Z B

= E /jl-CW + hZ(u)\2)ws(k)dk

E J \qna{u)\2WS(k)dk= 1 +

IB

1
(3.36)

(1 + rl)2,

+ E / (\P^(u)\2 + \PlZ(u)\2)w5(k)dk
ne z B

+ 2 E I (/J7n«(«) + ^ qna(u)ws(k)dk.
nezjBV 1 + r/ '

Moreover, the last term in (3.36) can be bounded by

^(l^7Lnc(«)lia(r«) + l^ut(«)lia(r-)) + jE [ \qna(u)\2ws(k)dk.4
n£Z

Therefore, we get

t + ,, 1 ^ E I \Qna(u)\2w6(k)dk < 2(AaU,US6 (vx{k))4>a) L2(c>a) + -\u\2Ls
JB Q

+ |0zV|l-|0UAM*)))Il~I«I1»(c><.) + -(|P7inc(«)li2(ra) + l^rwiW-))-
(3.37)

Estimate (3.34) follows immediately from (3.37) after multiplying by a and using the
boundedness of 4>a and vx(k) (since vx(k) is continuous and defined on the compact set
B) and the following inequality:

|3fcl>4Mfc)))|L~ < jHl-

□
3.7. Existence of a solution to the problem (2.6)-(2.7). We can now prove the first

part of Theorem 2.1. More precisely, we prove:

Proposition 3.11. Under Hypotheses 2.1, 2.2, 3.1, 3.2, 3.3, there exists a solution fa
to problem (2.6), (2.7), such that fa G L°°(0, T; L2(Oa)), Afa G L°°(0, T; L2(Oa)),
PlTUa) e L°°(0,T-L2(Ta)), Q~i°aut{fa) G L°°(0,T;Lf(rQ)), for all <5 > 0, and the
boundary condition is satisfied in the sense that

p7r(/Q) = BPi°ut(n, Qj'rin = Qi°aut(n-
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Proof. Let /" be the solution to the approximate problem

adtf% + Af% = 0,
f" e Ha(A,Brl),

f"\t=o = Fv,
where Fv is the function constructed in Lemma 3.9. Then, thanks to the estimates (3.30),
there exists fa £ Ha(A) such that, up to a subsequence, /" converges towards fa in
L°°([0, T], L2(Oa)) weak star, and Af" converges towards Afa in L°°([0,T], L2(Oa))
weak star. Then dtfa € L2(Oa), and

adtfa + Afa = 0. (3.38)

Moreover, Proposition 3.10, Lemma 3.8 and Lemma 3.9 give
In

(l + T])2\Qj™(f%)\2L2{ra) = \Qi°ut(f%)\2Lz{ra)

< c\o\r, + c2 (i + — ) \Fi i*(£,«■).

Then, we can assume that -P7aUt(/")> PjaC{f")> and Q7aUt(/^); QYaC(f%) weakly
converge respectively in L°°(0, T; L2(rQ)) and L°°(0, T; L2(rQ)). By a classical result
(see [4], [32]), their limits are PjaUt(fa)> PYa°(fa)i and )> Q"/aC(fa) in the
distributional sense and we deduce that the traces of fa satisfy

PlT{fa),PlTUa) € L°°(0,T;L2(ra)),
QlT{fa),QlT{fa) e L°°(0, T; L2(ra)), V<5 > 0,

and
PiTUa) = BPi7\fa), Qiac(D = Q7°ut (/Q),

which concludes the proof. □
Remark 3.12. Since Q7aUt(w) only depends on the energy, the condition Q'JaUt(u) £

L2s(Ta) means that

^ a I IUy"""(u)(£)r I wu(k)dMAk)d£ < oc.
n€Z

[ IQ^fna iu)(^012 [ W5(k)dNe{k)de
Jtz Jsc

According to Lemma 3.1, for any compact subset K of TZ, there exists a constant Ck,s
such that

IQln^(u)\L2(K) < CKAQlTa{u)\Ll(K)- (3.39)
In particular, this implies that Q7^t(w) lies in L2{Se) for almost every (later abbreviated

by a.e.) e e TZ. □
Moreover, we have the following estimates, which will be useful later on:

Lemma 3.13. There exists a constant C independent of a such that

IT \Pl°^(r(t))\lHra)dt < Ca2\Fl\lW). (3.40)
J 0
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Proof. Multiplying by /" the equality adtf® + Aa f" = 0 and integrating, we get

a\f%(t)\2mo°-) + 2 [ {Aaf«(s))Li(oa)ds < alF^^y
Jo

Then (3.35) and passing to the limit 77 —> 0 give the result. □

I
I

4. Convergence towards the macroscopic model. In this section, we prove the
convergence part of Theorem 2.1, according to the scheme outlined in the introduction.

4.1. L2 estimates. Let us summarize the L2 estimates deduced from the previous
section.

Lemma 4.1. The solution fa of problem (2.6)^(2.7) constructed in the previous section
292 satisfies:

l/° lc°([0,T];L2(0Q)) < |-F/|l2(RxTC), (4-1)

\~Aa fa \c°([0,T];L2(Oa)) < l^4a-P/|L2(RxTC)i (4-2)

l^7°ut(r mh(T-) ^ Ca\Fj\2Ha{A), (4.3)

\PlTUamW«)dt < Ca2\F:\lHRxlz), (4.4)

T IPlTUaml^T°)dt < Ca2|F/|ia(RxW), (4.5)

£ \qaUaml^)dt < Cs\F!\aH(A), (4.6)

where from now on, C denotes generic constants independent of a and of the data.

We immediately deduce from the lemma that there exists a subsequence (still denoted
by fa) and a function f° in L°°(0, T; L2(R x B)) such that

fa f° in L°°(0, T, L2(K x B)) weak star (4.7)

when a —> 0.
In view of Lemma 4.1, it is reasonable to expect that the traces Ya°(fa) an(^ 7Sut(/°)

converge to functions of the energy only. In the next section, we prove that this property
remains true for fa.

4.2. /° is a function of the energy. Define fa(x, k, t) as the piecewise constant function
(with respect to x) such that

fa(x k t) = X G [(n- \)a,na\,
llnaCTXM). X £ K(n+ \)ot\.

From (4.4), (4.5), and (4.6), it is readily seen that fa is bounded in L2(]0, T[xR, L2(B)),
V5 > 0. Therefore, up to a diagonal extraction of a subsequence, there exists a function
/° in L2(]0, T[xR,L2(B)) such that

fa ->■ f° in L2Q0,T[xR,L2s(B)) weak, V5 > 0. (4.9)
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Furthermore, estimates (4.4) and (4.5) show that there exists a function F(x,e,t) such
that

f°(x,k,t) = F(x,e(k),t). (4-10)

Lemma 4.2. Let f° be the limit of the sequence fa. Then

f°(x,k,t) = F(x,e(k),t). (4.11)

Proof. It is sufficient to prove that fa — fa —> 0 as a —> 0 in the distributional sense.
Let 4> be a test function in X>(]0, T[xK x B), such that the set {e(fe), {x, k, t) e supp(<j(>)}

O

is a compact set of 1Z. Defining

ipa(x) = (n + |)o! — x on [na, (n + l)a]

and using Green's formula with (pip™ as a test function lead to

~ f [ favx(j)dxipadxdkdt
Jo JO'*

= f I fa(adt4> + Aa4>)^adx dk dt
Jo Joa

J v*l%+i)a(fa<lnpa) - l+a(fa<f>TJ>a)]dkdt. (4.12)
n£Z

Since \ipa\coo < a, the first term of the right-hand side of (4.12), denoted by Ma, can be
estimated by

\Ma\ < aN(<f>)\fa li»([0,71xRxB)»

where N(<f>) depends on 4> and its derivatives. Since dxipa = —1 and 7(^+i)Q(^a) =

~§'7na(tl>°') = f' we deduce from (4.12) that

(vxfa,(t>)v\V = Ma + | J2 I j Vxh™(faMna)+1(n+l)a(fa)<t)((n + 1)a)}dkdt-
^ czlf 0 J Bn(zZ

On the other hand, we have

{vxfa,(/))v',v = ^2 [ [ vx(k) 7nM") [ <j>{x,k,t)dx
nez 0 B L

+ T(n+l)a(/a) / <l>(x,k,t)dx
K ' J(n+h)a

r(n+l)

/(n+|)a

Taking the difference of these two identities and using the inequalities

r(n+A)a

dk dt.

r* r 2>a

}" / / / \(p(na,k,t) — (f>(x,k,t)\2dxdkdt < C(cf))a2,
neZJ 0 JbJuol

 ^ pT n /»(n+l)a

/ / / l</)((n + l)a; k, t) — <j>(x, k, t)\2dx dk dt < C(4>)a2,
^ ̂ 7? Jo JB J(n+
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we obtain, after some Caucliy-Schwarz inequalities,

I (vx(fa - faU)w I < «^(^lrii2([0,T]xRxB)
/ T \ 1/2

/ \Vx\hna(fa)\2dk<lt)
\nezJo Jk )

at

T - \ !/2

+ aC(<t>) [y2 JQ jK \vx\\l„a(fa)\2dkdt
\n(zZj'

where K is a compact set containing {s(k), (x, k, t) G supp(0)}. Finally, this leads to the
estimate

im/q - fau) w,v\ < acmp^\n\h(,,wra)) + i^7r(niiWW))
+ (/ )lL2(0,T,L^(r°))l ^ '

which shows that /" — /a —> 0 in the distributional sense. □
4.3. The kinetic problem in weak form and the continuity equation. We first write

problem (3.38) in weak form. Green's formula (3.23) immediately gives the following
lemma.

Lemma 4.3. Let fa be the solution of problem (3.38). Then, for any test function i]j in
C1([0,T], Hq(A)) such that ip(•, -,T) = 0, and compactly supported with respect to k in

O

we have

[ [ fa(adtip + vx{k)dxip + dxVdkxip)dx dk dt + a j f?ip\t=0 dx dk
Jo J Oa JOa

= - r(~lTUa{t))^TW)) - Ba*^c(m))r-dt. (4.13)
a Jo

The classical structure of a diffusion approximation problem can now be clearly seen
on (4.13), since the interface scattering operator appears explicitly, multiplied by the
right scaling factor 1 /a (see, e.g., [31], [8]). We now define the density and current of
particles of energy e by

Fa(x,e,t) = —j— [ fa(x,k,t)6(e(k) - e)dk, (4.14)

Ja(x,e,t) — — [ fa(x, k, t)vx(k)S(s(k) — e)dk. (4-15)
a Jb

We have

Lemma 4.4. For any test function <f>(x,e,t) in C^([0,T\ xRxR) (i.e., continuously
differentiate and compactly supported in [0, T] x R x TZ), such that 4>(-,-,T) = 0, we
have

f [ [N(£)Fadtcf> + Ja(dx<fi + dxVdE(f>)]dxdsdt + f F^l^dxdk = 0. (4.16)
Jo JflaxTl J RxR
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o
Proof. When 0 is compactly supported in TZ with respect to e, this lemma obviously

results from the weak formulation (4.13) with 0 as a test function 4>- For 0 compactly
supported in TZ, we cannot use Green's formula as in Lemma 4.3 and we have to resort
to the approximate solution for which Green's formula (3.23) can be applied. We
have

I ( f"(adt<j> + vx(k)dx(f) + dxVdka;<fi)dxdkdt + a f Fv(j)\t=odx dk
Jo Joa Joa

1 -T

a Jo

= " /T(Q7°ut(/"(i)) "
a Jo

where 7Q(0) := 7™c(0) = 7aUt(0)- Thanks to the co-area formula, and to the orthogo-
nality between P"/aUt(fr^) and 7(0)> this leads to

[ f [N(e)F"dt(j>+J"{dx(/) +dxVde(j))]dxd£dt+ f Fv<j)\t=o dx dk
Jo Jciax'R. JrxII

sjT (■*="«?«),(i-rb)K««») («7)a

For 77 small enough, the computation (3.35) gives the inequality

i 1 j hrazmUr*) < < mfiV„W).
Thus, we have

(X - lT^) - 0, (4.18)
as rj —> 0. Therefore, the right-hand side of (4.17) tends to 0 as rj —> 0, which concludes
the proof. □

We are now aiming at taking the limit a —> 0. We obviously have

Fa^W{£)lB /0(2:' ̂  t)5{£{k) ~ £)dk = F'

in L°°(0, T, L2(R x TV)) weak star. Note that Ja is the ratio of two quantities tending
to zero as a —> 0, because Js vx(k)FdNe(k) = 0. In the next section, we prove that Ja
has a finite limit.

4.4. Existence of a limit for the current. Ja is defined on fla x 11 and has traces
7na(Ja) the interfaces, obviously given by

7*a(-/a)(M) = - [ lnaUa){k^)vx{k)5{e(k) - e)dk. (4.19)
" Jb

By the current conservation assumption (3.5), it is readily seen that

7na(Ja)(e>t) = 7m(^)(£,<) := Cfe4). (4-20)

thus defining the quantity J™a.
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Prom this quantity, we construct the piecewise constant function Ja as follows:

Ja(x,e,t) = J%a(e,t), xG (n-^ ) a, (n+ i ) a

The existence of a limit of Ja is obtained through that of Ja as the following lemma
states.

Lemma 4.5. Ja is bounded in L2([0,T] xlxR) and we have
Ja — J° —► 0, (4.21)

as a —» 0, in the distributional sense. There exists J in L2([0, T] xRxTZ) such that, up
to the extraction of a subsequence,

Ja J in L2([0,T] xRxK) weak, (4.22)

and Ja J in the distributional sense and, more precisely,

f ( Jaipdxdedt^ f f Jipdxdedt, (4.23)
Jo JOa xTZ Jo JrxTZ

as a —+ 0 for all test functions ip in C*([0, T] x R x 1Z).

We note that the convergence (4.23) allows us to pass to the limit in (4.16) and to
obtain

COROLLARY 4.6. For any test function 4>(x, e, t) in C2([0, T] x M x 7?.) (twice continuously
differentiable with compact support in R x K) such that </>(•, -,T) = 0, we have

[ f [N(e)Fdt(t> + J{dx4> + dxVd£<j>)\dx ds dt + f Fi(f>\t=o dxdk = 0. (4.24)
JO JQa xTZ JRxTZ

Equation (4.16) is nothing else but the weak form of the continuity equation (2.13) with
initial condition (2.15). Note that we obtain the zero flux boundary condition (2.16) by
means of an integration by parts in (4.24).

Proof of Lemma 4-5. We first define the current carried by the outgoing and incoming
traces:

.CTM) = - [ j°n*(fa)(k,t)vx(k)6(e(k)-e)dk,
a JB

(e,t) = - [ Y™(fa){k,t)vx(k)S(E(k)-e)dk.
Q Jb

Ta,inc
^ no.

From these quantities, we construct the piecewise constant functions JQ'out and Ja'mc
as follows:

J«-inc(x,e,<) =J^nc(£,

These various definitions are connected via the relation (obvious from definitions (2.3)
and (2.2)):

tr (n+7z(n=7Lin+7^cn,

M) \ x G
l\ ( 1 .

n — - a, n+- a2 7V 2
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which shows that

JL = 7UJa) = 7na(Ja) = + 7„-q(J°)) = |( Jrut + Jntc)- (4.25)

By (4.25), in order to prove that Ja is bounded in L2([0,T] xfx 72.), it is enough to
prove that Ja>out and Ja>mc separately are bounded in this space. We prove it for JQ>out;
the proof being similar for JQ'lnc. Noting that

[ iZ(fa)vx(k)dNe(k) = [ P^(r)vx(k)dNs(k),
Js£ Jse

we have

l^'°utli2([o,T]xKxTC)=« /TE f \J%mt(e,t)\2dedt
J® nEZ *"

= afTJ2[ PhZ\fa))vAk)dNe(k) dedt.
0 nez n Se

(4.26)

Then, using the Cauchy-Schwarz inequality and (4.4), we get

l^'outliw]xRxTC)<^: /TE / I \Pl°nUJ(n\2Mk)\dNe(k)dedt
0 nel 71 Sc

^ Cl /T E (r)l|2(B)^ <-'0

(4.27)

which proves the first statement of Lemma 4.5.
We now prove (4.21). Let ip be a test function in X>(]0, T[xK x 7£). We proceed as in

the proof of Lemma 4.2: we introduce

ipa{x) = (n + |) a — x on [na, (n + l)a]

and the quantity

M'a = — f f fa(adtip + Aatp)tpadx dk dt. (4.28)
a Jo Joa

The first step of the proof consists in establishing the equality

M'a = f f f JaipdEdxdt
Jo Jtl

a
2

m
rT

E f f ^na)Jna + v{(n + l)a)J^n+l)a\dedt.
ne zJo Jn

(4.29)

Since we cannot apply Green's formula because <p is compactly supported in TZ but not
O

in 1Z, we use the approximate solution /" once more. Let Mv be defined by

Mv = — f j f"(adt<p + Aaip)ipa dx dk dt.
a Jo Joa
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We have Aa(ipa) = —vx(k) and 7'^(i/*™) = ±§ • Then, Green's formula gives■ 2 ■

Mv — [ [ [ J^fdsdxdt
Jo J!i° Jn

where
J,

We have

[ 7na(f%)(k,t)Mk)6(e{k) - e)dk
J B

f [ lv(na)JV,na + A(n+1)a)JvJn+l)Jd£dt>
neZ 0 •'n

tna = - [ 7ia{f^)(k^)vx{k)5{e{k) - e)dk.a JB

[ l°na(K)vJ(e(k) - e)dk + f 7Z(f%)vx8(e(k) - e)dk
Jvx(k)<0 Jvx(k)>0

[ - e)dk + [ P^Z(f%)vx6(£(k) - e)dk
Jvx(k)< 0 Jvx(k)> 0

(fc)<0 Jvx(k)>0

PlZt(f%)vJ(e(k)-£)dk + [
(k)< 0 Jvx{k)^

, - 0 / «(/,a)l^|<5(e(fc) - *
1 + rl J Jvx(k)>0

The last term vanishes when 77 goes to 0, thanks to (4.18). We deduce that the sequence
(J^na)nez is bounded in L2{Ta) and that it converges to the sequence {J"a)ne 1 weakly
in L2(ra). That converges to Ja in L2([0, T] xRx 1Z) weakly follows from Proposition
3.11. It is now readily seen that (4.29) holds. Now, we write

((Ja-Ja),<p)v,v

= / / Jay{x,£,t)de dx dt — / / / Ja(x,£,t)ip(x,£,t)dedxdt
Jo Jn™ Jn Jo Jna Jn

r1 r r(n+\)a
= M'a + z2 / [tp(na,e,t)-ip(x,e,t)]dx

J 0 J 7Z J no.

r(n+l)a

(M) / [<p({n+l)a,E,t)-<p(x,E,t)]d.
J (n+k)a

n£Z

+ J,(n+l)a V de dt.
' (n-f |)c*

In the same way as in Lemma 4.2, we have

rT r /•(«+!)«
2^/ / Jna(M) / [<p(na,E,t) - tp(x,£,t)]dxd£
n€Z-'° Jn Jna

^ ^[|^nQOUt|L2(0,T,L2(r°)) + l*^na'nC|L2(0,T,L2(r<:>))]1^2-^r(¥')Q: ^

where N(<p) denotes generic continuous semi-norms on the space of infinitely differen-
tiable functions V, applied to ip. A similar estimate holds for the term involving J^n+l^a-

The remainder will be devoted to the proof that M'a = O(a) as a —> 0. First, we
write, since ^"loo = §>

\M'a\ < N(ip)a + — f [ fa(Aaf)tpadxd£dt . (4.30)
a Jo Joa
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We denote by Ha the last term in (4.30), and we apply (4.28) with dx<p + dxVd£ip — ipo
instead of <p, and the function //Q instead of ipa, where is a primitive of ipa given by

Ha(x) = —\({n + |)a — x)2 on [na, (n + l)a].

We obtain

M'a = — / [ fa(adtspo + Aa<po)nadxdkdt (4.31)
a Jo Joa

= - f [ Ja<p0ipadxdkdt
Jo Jnaxiz

f [ ^Po{na)J^a{na) - M(n+ l)a)J"n+1)aHa({n+ l)a)]dedt,
o Jnn€Z

(4.32)
where, like for (4.29), the identity must first be proven with /", followed by the limit
77 —^ 0. The details are left to the reader. Equation (4.32) gives

\Ha\ = — [ [ favxLpQtl)adxdkdt
a Jo Joa

\M'a\ + Y, f / {l<^°(na)l l^nal \t1°L(na)\
nc? " 0 J7Z.

<
I DC I

n€ Z

+ |^o((n + 1)q)| |J("+i)a| \na({n+l)a)\}dtd£,

and, since \fia\l°° < Ca2,
cT

J2 [ f \Mna)\\Jna\\lJ-a(na)\de
nez 0 n

<Ca [ [a E \fo(na)\\J"a\de dt
^n nez

( T \ 1^2 / T \ 1^2
<Ca( f [ a^lvoina^dsdt) ( f [ a^\J^a\2dedt\

V° JK nez / V^0 Jn nez /

< <xZV(y>)|Jq|l2([o,t[xRxR)-

Moreover, we deduce from (4.31) that

\M'a\ < N(ip)a.

This gives that Ha = O(a), and the result follows. □
The aim of the next section is to derive Eq. (2.14) for the current.
4.5. Equation for the current. We are first concerned with the auxiliary equation

(2.18), (2.19). We prove

Lemma 4.7. The solution x of problem (2.18), (2.19) exists and is unique. Moreover,
X and dxx belong to L2(S£), uniformly for (x,e) € RxK (i.e., x and dxX belong to
L°°(Rx£, L2(Se))).
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Proof. We consider Eq. (2.18) as a functional equation for functions \ £ L2(SE),
parametrized by (x, e) £ 1 x R. With Hypothesis 3.3, I — B* is a Fredholm operator.
Thus, with (3.12), R(I — B*) = N(I — £?)x = Span(l)-1-, where R and N respectively
denote the Range and Null-Space. But

(/ + B*)(sgn(vx)) = -(/ - B*)(sgn(vx)) + 2(sgn(va.)),

and it is enough to prove that sgn(wx) G R(I — B*) to deduce the existence of a solution
of (2.18). We have, by the co-area formula,

(sgn(vx), l)L2(5e) = / vx{k)dNe(k) = / dkxe(k)5(e(k) - e)dk
Js- Js (4.33)

= / dkx(H(e(k) - e))dk = 0,
J B

because H(s(k) — e) (where H denotes the Heaviside function) is a periodic function of
k and the integral over a period of the derivative of a periodic function is zero. This
proves the existence of a solution of (2.18). Two such solutions may differ by an element
of N(I — B*) = Span(l), i.e., a constant. It is easy to see that condition (2.19) singles
out a unique solution.

Now, we prove the estimate

IxIl2(S£) < CIsgnK)!!.2^), (4.34)
where C is uniform with respect to (x, e) £ M x 1Z. We write

{(I ~ 13*)x,x)LHSe) = !((/ + £*)sgn(vx),x)l*(sc) < I sgn(v;c)|L2(S£)|x|L2(se)1

and, using that \ -L N(I — B) and (3.18):

((/ - B*)x, x)l2(Sc) = (X) {I ~ &)x)l2(sc)

> Ix|l2(5e)(IxIl2(se) - IBx\l2(Se))

> - K)\x\h(Se),
where K < 1 is the constant appearing in (3.18), uniform with respect to (x,e) eRxTZ.
Then, (4.34) follows with C = (1 — A')-1.

We now prove a similar estimate (4.34) for dx\■ dxx is the solution of problem

(/ - B*)(dxX) = dxB*(X) + \dxB*{sgn^)), dxX ± N(I - B).
Then, from the proof of (4.34) and the fact that dxB* is a bounded operator on L2(Se),
uniformly with respect to (i^JelxR (Hypothesis 3.4), it follows that

I^X|L2(5e) ^ C|xIl2(5£) + C'I sgn(Uc)|L2(S£) < C,

uniformly for (x,e) eRxR. □
The energy variable e is also a parameter, but it appears that estimates for dex are not

easily available for e close to the critical values of the function e(/c). Indeed, the derivative
of Bx with respect to e involves a term arising from the e-dependence of the integration
domain S£ of the integral operator. This term may be singular in the neighbourhood of
the critical values of the function s(k).

We will now establish the current equation.
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Lemma 4.8. F and J satisfy the current equation (2.14) in the space of L2(R x TZ).

Proof. In order to derive the current equation (2.14), we wish to use the weak formu-
lation (4.13) with x(x> k)<j>(x, e(k),t) as a test function ip. However, although \ is regular
with respect to x as guaranteed by Lemma 4.7, it may be nonregular with respect to k.
We can bypass this problem by assuming that the following property holds.

O

Hypothesis 4.1. x belongs to C°(R x H, L2(SE)). Therefore, there exists a sequence
of regularized functions Xp in C£°(M x B) such that

Xp-X in i£(KxK,L2(5£)).

Note that the only restrictive hypothesis concerns the regularity with respect to e,
since the regularity with respect to x is guaranteed by Lemma 4.7. We shall check in the
last section that Hypothesis 4.1 is not empty, and is fulfilled at least in some particular
cases.

We insert ip = xp(t> as a test function in (4.13). We obtain

rT[ f ̂ rcrxM)Jo n£ Z 1

x ((/ — B(na)*)xP{na, k))4>(na,e(k), t)\vx(k)\ dkdxdt
rT , , (4.35)

= <*/ / faXpdt<t>dxdkdt + a f?XP<t>\t=o dx dk
Jo JOa Jo<*

+ [ f if fa(vx{k)dx + dxVdk\ (cj)Xp)dNe{k))dxd£dt.
Jo JnaxK \Jse J

We first consider the right-hand side of (4.35). The first two terms are multiplied by a
and obviously tend to zero. We take the limit a —> 0 in the third term. Considering that
both F = lim/Q and <j> only depend on e(k), we obtain

f f ( f fa(vx(k)dx + dxVdkx)((j>xP)dNe(k)] dxdedt
Jo JS1«xR \Jse /

—> f [ F(dx + dxVdE) ((j) f vx{k)xpdNe(k)\ dxdedt, (4.36)
^0 J IxR V Jse J

as ol —> 0. Indeed, it is clear that

f vx{k)dx{<t)Xp)dNE(k) = dx (<j> [ vx{k)xPdNe(k)
Jsc \ Jse

That

dkx{4>XP)dN£(k) =d£(^>J vx(k)xPdNe(k)

is easily seen in duality against a test function ip(e) by means of the co-area formula. We
note

Dp(x,k)= / vx{k)xPdNe(k).
Jsc
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We now consider the left-hand side of (4.35). We first write, using duality and the
second equation (3.16),

rT

<*£ / 7Sa(/Q)(M)a Jo ~~t JbnEZ 1

x ((/ — B{na)*)xP(na, k))<j>(na, e(k), t)\vx(k)\ dkdxdt
pT

= / <*-lPl°r£{fa){k,t)
Jo „c-t,Jb

(4.37)

x ((/ — B(na)*)xP(na, k))<j>(na, e(fc), i)|vx(fc)| dk dxdt.

We now define the piecewise constant functions ga>out and ga>lnc by

ga'™\x,k,t) =a~1P1ZtUa)(k
ga>mc(x, k, t) = a-'PjZimk

,t)\ a: € n-- a, n+- a

From the estimates (4.4) and (4.5), the functions \/\vx(k)\ga'out and y/\vx(k)\ga'mc are
bounded in L2([0,T] x K x B). Denote by \/\vx(k)\g0'out and \Z|Ur(/c)|g°'mc their weak
limit (up to a subsequence). We note that, passing to the limit in

PlZ{r)(k,t) = B(na)P^(fa)(k,t),
we have

g°'inc = B(x)g°'out.

In (4.37), the factors ((/ — B(na)*)xP(na, k))<j>(na, e(k),t) can be considered as the
piecewise constant approximation of the function ((/ — B(x)*)Xp(x, k))4>(x, e(k), t). Since
this function is regular, and more precisely, uniformly continuous with respect to x, with
values in L2(B), the piecewise constant approximation is an approximation in the strong
topology of L2([0, T] x K, L2(B)).

It follows that the expression (4.37) can be viewed as the L2 dot product of a weakly
converging sequence with a strongly converging one. Therefore, it converges as a —» 0 to

f f g°>ont(x,k,t)((I - B(x)*)xP(x,k))<l>(x,e,t)\vx(k)\dkdxdt. (4.38)
Jo JRxB

Introducing

JP —= I g°'oui{x,k,t)((I - B{x)*)xP{x,k))\vx{k)\dNe(k), (4.39)
Jse

(4.38) and (4.36) yield

[ [ Jp<t)dxdedt= I f F(dx + dxVdE)((f>Dp)dxdedt, (4.40)
J 0 JRxTZ J 0 «/1Rx7?.

which implies that
Jp = -Dp(dx + dxVdE)F, (4.41)

in 2?'((0,T) x M x 1Z). Passing to the limit p —> 0 in (4.39) and (4.41), we shall prove
that

J =-D{dx + dxVdE)F.
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Indeed, passing to the limit in (4.39) (strongly in L2) and using the definition of x,
we find

limJp = [ g°'out(x,k,t)((I - B(x)*)x(x,k))\vx(k)\dNe(k)
P^° Jsc

= f g°'out(x,k,t)±((I + B(x)*)sgn(vx))\vx(k)\dN£(k)

f (4.42)
= / |((/ + B(x))g°'out(x,k,t))vx(k)dNe{k)

Jse

= [ l(g0'out + g°'inc)(x,k,t)vx(k)dNe(k).
Jsc

Besides, the weak convergence of ga<out, ga<mc towards .9°'out, g°'lnc implies that

/ i(g°'out + g°'inc)vx(k)dNe(k) = weak lim f ±(</Q'out + ga'inc)vx(k)dNe(k).
Jsc p~>° Jsc

In view of (4.33) and of the proof of Lemma 4.5, we have

f U9a'°ut + 9a'inc)vx(k)dNE(k) = Ja,
Jse

which, in (4.22), has been shown to weakly converge to J. Therefore,

Jp —> J in L2((0,T) xlx TZ).

Let us now identify J by passing to the limit in (4.41). To this aim, we use the following
lemma whose proof is postponed to the end of the section.

Lemma 4.9. The diffusion constant D(x,e) is a strictly positive continuous function on

RxTZ.

End of the proof of Lemma 4-8. Hypothesis 4.1 implies that Dp —> D as p —> 0 in
O

x strongly, where D is given by (2.17). We deduce from that and from Lemma
O

4.9 that for any compact set K elxR, there exists a positive constant 5k such that

Dp(x,e)>SK, V{x,e)eK,

for p small enough (depending on K). This implies that (dx + dxVde)F belongs to
O

Lfoc(R x TZ). We can therefore pass to the limit p —> 0 in (4.41) and obtain the current
equation (2.14) in the space L2(Rx TZ). □

O

Proof of Lemma 4-9. Let e be fixed in TZ. We notice that we can write (2.17) as
D(x,e) = (X)sgn(ux))L2(5e)- Besides, Eq. (2.18) can be recast according to

X - |sgn(ux) = B*(x+ \ sgn(^x))•

We introduce A = x + \ sgn(ux)- We have (I - B*)X = sgn(wx) and (I + B*)X = 2x■ It
follows that

D = (XjsSn(vx))l2(sc) = §((/ + B*)X, (/ - B*)\)l*(sc) = |(|A|2 - |£!*A|2) > 0. (4.43)
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Furthermore, D can be zero only if A = x + |sgn(^a;) = C(e(k)). But the condition
(x> 1)l2(5£) — 0 implies that C = 0 and x = — 5 sgn(ur). But then x cannot be a
solution of (2.18). Therefore, the inequality is strict, which yields the positivity of D.

The continuity of D is a consequence of that of Dp (which follows from Hypothesis
O

4.1), and of the convergence of Dp to D in LjJc(M x 1Z). □

5. Examples.
5.1. Isotropic reflection-transmission. This case corresponds to the choice

a(x, k', k) =
V(e)

t(x,e), if (vx(k') > 0 and vx(k) > 0)
or (vx(k') < 0 and vx{k) < 0),

1 — t(x,e), if (vx(k') > 0 and vx(k) < 0)

or (vx(k') < 0 and vx{k) > 0),

(5.1)

where t(x, e) 6 [0,1] is the transmission probability of particles of energy e through
the interface, 1 — t{x,e) is the reflection probability and V(e) is the normalizing factor
(3.13). In this case, it is easy to see that B is selfadjoint. After some straightforward
computations, one gets

*<*•k) = 2fi~=~t) D " w~r)v- (5-2)
Hypothesis 3.2 on B require that 0 < t < 1. If furthermore, t is continuous with respect
to (x,e) it is clear that x satisfies Hypothesis 4.1.

5.2. Clean interface: parallel momentum preserved. This case is opposite to the pre-
ceding one. We suppose that the interface is perfectly clean, so that momentum in the
direction parallel to the interface is preserved. In this case, only a one-dimensional mo-
mentum space is considered: the component of momentum kx in the normal direction
to the interface. It is supposed that the directional energy £x{kx) in this direction can
be defined (this is possible in the case of a parabolic band structure, but is only an
approximation in the general case), such that the velocity in this direction is written
vx = dkxsx{kx). The transmission probability becomes a function of £x(kx) only. The
limit model is a SHE model of the form (2.13), (2.14) with

JV(£) = £
I.,

* = S6"K)'

0= £ 2(1 - t)
kxS.t.Ex(kx)=£

With the same hypotheses on t as in the previous case, we can easily show that x satisfies
Hypothesis 4.1.
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