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Abstract: Bulk-heterojunction (BHJ) polymer solar cells have received a great deal of attention mainly
due to the possibility of higher power conversion efficiency for photovoltaic applications. Therefore,
in this study, relatively novel polymer BHJ solar cells are proposed (ITO/ETL/PTB7:PC70BM/PEDOT:
PSS/Au) with various electron transport layers (ETL) such as zinc oxysulfide (Zn(O,S)), zinc selenide
(ZnSe), and poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-
dioctylfluorene)] dibromide (PFN-Br). Here, each ETL material is selected based on the energy
bandgap compatibility with ITO as well as the PTB7:PC70BM active layer and is based on other
physical properties, which are generally required for efficient photovoltaic responses. Each proposed
device is comprehensively optimized and then photovoltaic responses are simulated and compared
using the software SCAPS-1D. It was observed that the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au
device offered the highest power-conversion efficiency of up to 17.15% with an open-circuit voltage
of 0.85 volts, a short-circuit current of 28.23 mA/cm2, and a fill factor of 70.69%.

Keywords: bulk-heterojunction; polymer; solar cell; PEDOT:PSS; PTB7; PCBM; ITO; Zn(O,S); ZnSe;
PFN-Br; SCAPS-1D

1. Introduction

Over the last few decades, the demand for energy has sharply risen due to economic,
social, and industrial growth and development [1,2]. However, the current conventional
energy reserves will be abruptly depleted over time. It is unanimously accepted that
available energy reserves will not be sufficient to fulfill the enormous energy demand even
in the near future [3]. Many researchers believe that the unlimited energy supply from
renewable energy resources may be the best solution for fulfilling the never-ending demand
for energy [4,5]. Unfortunately, many renewable energy resources are inherently polluting
the environment and have some very serious greenhouse requirements. Among the many
renewable energy resources, solar energy is considered one of the best options concerning
greenhouse technology and has an unlimited and sustainable energy potential that can
fulfill the future demand for energy [5–8].

The best candidate material for solar cells is still silicon, but the costs associated
with silicon-processing technology for solar cells are very high due to higher-temperature
processing as well as strict clean room technology requirements [9,10]. Therefore, other
materials for solar-cell technologies that offer low-cost and highly efficient photovoltaic
responses are under intense investigation. Organic/polymer conjugate materials are con-
sidered another option, not only for their low cost but also for their highly efficient solar-cell
applications [11–13], light-emitting diodes [14], flexible transistors [15], and various other
types of sensors [16,17]. However, for photovoltaic applications, the reported efficiency
of polymer solar cells is still not up to the mark compared to the commercially available
silicon-based solar cells.

The working principle of polymer solar cells is very similar to other inorganic solar
cells but the photovoltaic processes are much more complicated [18]. Broadly speaking, the
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photovoltaic processes for polymer solar cells can be classified as the (i) optical absorption
of photons, (ii) formation of excitons and diffusion, (iii) dissociation of the excitons into
the free carriers; (iv) transportation of the free carriers toward the opposite electrodes;
and (v) collection of free holes and electrons at their respective electrodes [19]. When
photons strike the surface of active polymer layers, nearly all the photons are absorbed,
which generates a huge amount of bound electron–hole pairs as excitons. Generally, these
excitons are unfruitfully recombined within 10 to 20 nm of radium due to the strong
electrostatic binding energy (exciton binding energy) before reaching their respective
transport layers. The remaining fruitful excitons are dissociated into free charge carriers
and then transported through the respective transport layers to collect at the electrode and
generate some electrical energy for the connected load [20,21]. From the above discussion, it
can be inferred that the major obstacle to the efficient polymer solar cell is the lack of exciton
dissociation before reaching the respective transport layers. Huge research efforts are being
carried out to improve the exciton dissociation for an efficient photovoltaic response.

Among many other solutions, polymer bulk-heterojunction solar cells offer a unique
and efficient solution for exciton dissociation and reduction of exciton recombination losses.
The polymer BHJ solar cells simply consist of a heterojunction mixture of both electron-
donating (polymers) and electron-accepting (fullerenes) materials at the nanoscale domain
to enhance the dissociation of excitons, which helps to achieve a reported photovoltaic
efficiency in the range of 10–13% [22–24]. The bulk heterojunction offers a high interfacial
surface area, which plays a vital role in the dissociation of excitons. The selection of the
electron-donating and accepting material for efficient BHJ solar cells that combine low
bandgap light absorption, adequate energy level positions, and reasonably high carrier
mobilities is a challenging task. Recently, a derivative of benzodithiophene generally
known as PTB7 has been considered a promising active material for heterojunction and
the PTB7:PC70BM solar cell shows an excellent photovoltaic response [25–27]. Therefore,
PTB7:PCBM is selected as the active BHJ layer for this study.

The active PTB7:PCBM layer also interacts with other functional transport materials.
These functional materials are generally classified into two well-defined layers: the hole
transport and electron transport layers. The main objectives of these functional layers are
to selectively transport the electrons/holes as well as block the holes/electrons at the same
time [28]. For the hole transport layer, the water-soluble poly(3,4-ethylene dioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) is the most commonly reported material not only for
BHJ solar cells [29] but also for polymer-nanowire hybrid solar cells [30], perovskite solar
cells [31], and many other types of solar cells and light-emitting diodes [32,33]. PEDOT:PSS
has attracted a great deal of research attention due to its excellent and unique properties, for
example, it is lightweight, very flexible, and low-cost, has simple processability, is highly
transparent, can be deposited on various types of substrates, and has promising electrical
and thermoelectric properties [30].

On the other hand, the appropriate materials for the efficient electron transport layer
are one of the more serious concerns for polymer-based solar cells and other polymer elec-
tronic devices. Because many polymer/non-polymer materials do not fulfill the minimum
requirements of an efficient electron transport layer such as (i) a compatible HOMO/LUMO
level with the active layer, (ii) acceptable electron mobility, (iii) good environmental and
thermal stability, and (iv) simple thin-film processability [34]. Therefore, based on these cri-
teria, zinc oxysulfide (Zn(O,S)), zinc selenide (ZnSe), and poly[(9,9-bis(3′-((N,N-dimethyl)-
N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br)
are randomly selected as the electron transport materials for the PTB7:PC70BM BHJ active
layer, where PEDOT:PSS is used as the hole transport layer.

Similarly, the physics regarding the doping of organic semiconductors either as the
hole or electron transport layers for photovoltaic devices is still not very clear, but it has
been experimentally observed that the charge transport process for any conducting polymer
with a very high doping density is controlled by the ionized impurity scattering, which
severely degrades the carrier mobility and hence the overall photovoltaic response [35,36].



Polymers 2022, 14, 3610 3 of 15

Therefore, in this study, all the layer doping densities of the proposed solar cells are
optimized up to 1021 cm−3 for realistic analysis and design.

Simulation and modeling with SCAPS-1D is a very efficient method to systematically
investigate the overall photovoltaic response as a function of the various parameters of the
electron transport layer. As a result, in this study, we first optimized each layer before inves-
tigating and optimizing the photovoltaic response of the ITO/ETL/PTB7:PC70BM/PEDOT:
PSS/Au devices as a function of various electron transport layers, such as Zn(O,S), ZnSe,
and PFN-Br, and then proposed the most efficient and novel device for photovoltaic appli-
cations.

2. Device Modeling and Simulation Methods
2.1. Simulation Methodology

Various types of software are available for the simulation and modeling of solar cells.
Among these, SCAPS-1D is very popular and highly reported due to being open source and
reasonable agreements have been observed between experimental findings and SCAPS-1D
(SCAPS 3.8, ELIS-University of Gent, Gent, Belgium) simulation results [37–39]. Therefore,
the modeling of the proposed solar-cell devices was performed with the help of SCAPS-1D
software version 3.3.07. The SCAPS-1D offers many optical, electrical, and photovoltaic
tools to comprehensively model the overall photovoltaic response of any type of solar
cell. Recently, many solar cells including BHJ solar cells were also modeled and reported
successfully with the help of SCAPS-1D software [27,40–42].

To model the overall photovoltaic response of a solar cell, SCAPS-1D executes four
well-defined sets of semiconductor equations such as (i) the Poisson equation (Equation (1)),
(ii) continuity equations (Equations (2) and (3)), (iii) charge transport equations (Equations (4)–(6)),
and (iv) the absorption coefficient equation (Equation (7)).

d2∅(x)
dx2 =

q
∈o∈r

(
p(x)− n(x) + ND − NA + ρp − ρn

)
(1)

dJn

dx
= G− R (2)

dJp

dx
= G− R (3)

J = Jn + Jp (4)

Jn = Dn
dn
dx

+ µn n
d∅
dx

(5)

Jp = −Dp
dp
dx

+ µp p
d∅
dx

(6)

α (λ) =

(
A +

B
hν

) √
hν− Eg (7)

where φ is the electrostatic potential, e is the electric charge, εr is the relative permittivity,
ε0 is the absolute permittivity, NA/ND are the shallow acceptor/donor impurity densities,
ρn/ρp are the electron/hole density distributions, n(x)/p(x) are the electron/hole densities
as a function of x, Jp/Jn are the hole/electron current densities, G is the generation, and R is
the recombination rate. Dn/Dp are the electron and hole diffusion coefficients, respectively,
and µn/µp are the electron/hole mobilities, respectively. α(λ) is the absorption coefficient, h
is the Plank constant, ν is the frequency of photons, Eg is the bandgap of the semiconductor
absorber layer, and A, B are arbitrary constants.

2.2. Device Structure:

The detailed photovoltaic responses of the proposed devices were investigated, evalu-
ated, and compared as a function of the different electron transport layers. These devices are
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1. ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Ag (Zn(O,S) device);
2. ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Ag (ZnSe device);
3. ITO/PFN-Br/PTB7:PC70BM/PEDOT:PSS/Ag (PFN-Br device).

Figure 1 shows the block diagram of each proposed device with its energy bandgap
diagram. It can be observed that the conduction band (or LUMO level) of all electron
transport layers is in between the conduction band of ITO and PTB7:PCBM, which is the
first criterion for the selection of the electron transport layer for any solar cell.
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Figure 1. The device block structure and energy band diagram for (a) ITO/Zn(O,S)/PTB7:PC70BM/
PEDOT:PSS/Au, (b) ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au, (c) ITO/PFN-Br/PTB7:PC70BM/
PEDOT:PSS/Au.

The successive thin-film deposition of a water-soluble conducting polymer even by
the spin-coating method is not an issue in modern device fabrication technology. The
most popular approach for the fabrication of organic photovoltaic devices involves the
use of orthogonal solvents, i.e., the alternating use of organic solvents and water for the
application of consecutive layers to prevent the dissolution of the previous layers. Detailed
information can be found in the literature [43].

2.3. Simulation Parameters

The quality of a simulation depends on the reliability of physical and material pa-
rameters. Therefore, all physical and materials parameters required by SCAPS-1D were
carefully extracted and cited from the various literature for PTB7:PC70BM as the active
BHJ layer; PEDOT:PSS as the hole transport layer; and Zn(O,S), ZnSe, and PFN-Br as the
electron transport layer, and are listed in Table 1. Similar to many other semiconducting
polymers/oxide materials, PTB7, PEDOT:PSS, Zn(O,S), ZnSe, and PFN-Br are considered
disordered semiconducting materials. They intrinsically offer both energetic and spatial
disorders that can be modeled in terms of traps [44]. The presence of these traps is one of
the main causes for observing the poor photovoltaic efficiency of such solar cells. Thus, to
improve the quality of the simulation, bulk trap density (1014 cm−3) is introduced in all
electron transport layers as shown in Table 1. Similarly, all photovoltaic simulations were
carried out via 100 mW/cm2 illumination by a standard solar simulator (A.M. 1.5) under
ambient room temperature conditions.
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Table 1. The physical and material parameters of the active BHJ, hole transport, and electron transport
layers used in the simulation, as required by SCAPS-1D.

Parameters Symbol Unit PEDOT:PSS BHJ
ETL

Zn(O,S) ZnSe PFN-Br

Thickness T nm 300 300 75 75 75

Energy Band Gap Eg eV 1.80 1.10 2.8 2.81 2.98

Electron Affinity X eV 3.50 3.75 3.80 4.09 4.00

Dielectric
Permittivity εr - 3.00 3.90 9.00 8.60 5.00

Effective Density
of States at

Conduction Band
NC cm−3 2.2 × 1018 6 × 1019 2.2 × 1018 2.2 × 1018 1.0 × 1019

Effective Density
of States at Valance

Band
NV cm−3 1.8 × 1019 2.0 × 1019 1.8 × 1019 1.8 × 1018 1.0 × 1019

Electron Thermal
Velocity Ve cm/s 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Hole Thermal
Velocity Vh cm/s 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Electron Mobility µe cm2/V·s 1 4.4 × 10−4 1.0 × 102 4.0 × 102 2.0 × 10−6

Hole Mobility µh cm2/V·s 2.0 × 101 2.5 × 10−4 2.5 × 101 1.1 × 102 1.0 × 10−4

Donor Density ND cm−3 - 1.0 × 1019 1.0 × 1019 1.0 × 1019 1.0 × 1019

Hole Density NA cm−3 1.0 × 1018 1.0 × 1019 - - -

Defect Density Nt cm−3 1.0 × 1014 1.0 × 1014 1.0 × 1014 1.0 × 1014 1.0 × 1014

2.4. Simulation Flowchart

The general flow chart of the simulation process used in this study to determine the
most suitable ETL for the proposed solar cell is shown in Figure 2. The simulation was
initialized in the first stage with the suitable boundary conditions and material parameters
listed in Table 1. In the second stage, the thickness of PEDOT:PSS as a hole transport
layer was optimized and then updated in the SCAPS-1D software before executing the
third stage. Similarly, in the third stage, the doping density of PEDOT:PSS was optimized
and then updated in the SCAPS software before executing the next stage and so on. In
the same way, the ETLs’ (Zn(S,O), ZnSe, and PFN-Br) thickness and doping density were
optimized. In the final stage of the simulation, very small, increments/decrements (±5%)
of the optimized values were varied to determine which of the proposed devices with
the optimized parameters gave the maximum power conversion efficiency for the overall
photovoltaic response.
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Figure 2. Shows the flow chart used to determine the maximum power-conversion efficiency of the
proposed photovoltaic ITO/ETL/PTB7:PC70BM/PEDOT:PSS/Au devices with various ETL (Zn(O,S),
ZnSe, and PFN-Br) layers.

3. Results and Discussion
3.1. Optimization of PEDOT:PSS Layer Thickness

According to the flow chart above, the thickness of PEDOT:PSS was optimized in
the first stage, as PEDOT:PSS is the most commonly reported hole transport material
for organic/inorganic type solar cells. From the published results, we did not find a
PEDOT:PSS thickness above ~300 nm for any efficient photovoltaic device. Therefore, the
proposed solar cells were simulated from 75 to 300 nm for the thickness optimization of
the hole transport layer. Figure 3 shows the photovoltaic parameters such as open-circuit
voltage, short-circuit current, fill factor, and power conversion efficiency as a function of
PEDOT:PSS thickness for the Zn(S,O), ZnSe, and PFN-Br devices from 75 to 300 nm. All
photovoltaic parameters slightly improved (or were nearly constant) as the thickness of
PEDOT:PSS increased. If the maximum power conversion efficiency is the main criteria for
determining the optimum thickness of PEDOT:PSS, then it can be inferred from the figure
that 300 nm is the optimum thickness of PEDOT:PSS for all the devices, and among these,
the device containing an ETL with Zn(O,S) shows the highest power conversion efficiency.
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Figure 3. Shows the photovoltaic parameters of (a) open-circuit voltage, (b) short-circuit cur-
rent, (c) fill factor, and (d) power conversion efficiency as a function of PEDOT:PSS thick-
ness for ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au,
ITO/PFN-Br/PTB7:PC70BM/PEDOT:PSS/Au, respectively.

Now, the question arises of how the electron transport layer can affect the thickness of
the hole transport layer. The simple answer is that the overall power conversion efficiency
depends on the balance of both the electron and hole carriers collected at their respective
electrodes [45,46], which in turn directly depends on the nature of the transport layer.
Therefore, each device behaves differently as a function of the PEDOT:PSS layer thickness.

3.2. Optimization PEDOT:PSS Doping Density

The doping density of PEDOT:PSS was optimized in the next stage. Figure 4 shows the
photovoltaic parameters such as the open-circuit voltage, short-circuit current, fill factor,
and power conversion efficiency as a function of the PEDOT:PSS doping density from 1012

to 1021 cm−3 for the Zn(S, O), ZnSe, and PFN-Br devices. Similar to how the thickness of
PEDOT:PSS depends on the nature of the electron transport layer as discussed above, the
doping density of PEDOT:PSS also depends on the nature and parameters of the electron
transport layer. Generally, the proper doping process increases the conductivity and hence
improves the overall charge transport process of PEDOT:PSS as a hole transport layer.
In Figure 4, the complex photovoltaic responses of the proposed devices can be seen as
a function of the doping density, and the nearly constant open-circuit voltage response
especially at a higher doping density confirms the formation of the ohmic contact between
the anode and BHJ active layer regardless of the doping of the PEDOT:PSS for all the
devices [47]. Similarly, the short-circuit current abruptly increased at ~1016 cm−3 and then
became relatively constant, especially for the Zn(O,S) and ZnSe devices. As the maximum
power conversion efficiency is the main criteria to determine the optimum doping of
PEDOT:PSS, then it can be inferred that efficiency increased up to 1018 cm−3 for all devices
and then became nearly constant so it can be justified that the 1018 cm−3 is the optimum
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doping of PEDOT:PSS for each device. Although the Zn(S,O) and ZnSe devices offered
relatively good efficiency, the PFN-Br device showed poor photovoltaic performance.
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Figure 4. The photovoltaic parameters of (a) open-circuit voltage, (b) short-circuit current,
(c) fill factor, and (d) power conversion efficiency as a function of the PEDOT:PSS doping den-
sity for ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au,
ITO/PFN-Br/PTB7:PC70BM/PEDOT:PSS/Au, respectively.

3.3. Optimization of Electron Transport Layer Thickness

The thickness optimization of the electron transport layer is more crucial compared
to PEDOT:PSS because it not only helps to improve the electron transportation and col-
lection process but also offers a path to the photons to manage the solar harvesting in
the PTB7:PC70BM as the active layer. So, the electron transport layer interacts with the
bulk-heterojunction layer on one side and the transparent ITO on the other side. Figure 5
shows the photovoltaic parameters such as open-circuit voltage, short-circuit current, fill
factor, and power conversion efficiency as a function of the Zn(S,O), ZnSe, and PFN-Br
layers’ thicknesses, which varied from 75 nm to 300 nm. Except for PFN-Br, the electron
transport layers (Zn(S,O) and ZnSe) showed very similar photovoltaic responses. For
the three devices, the maximum power conversion efficiencies were obtained at 75 nm.
Generally, the thin electron transport layer poses some advantages such as higher built-in
potential and efficient electron transport. The extra built-in potential plays a significant
role in the further dissociation of excitons into the free charge carriers and offers extra drift
force to further improve the transport to their respective electrodes [48,49]
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Figure 5. The photovoltaic parameters of (a) open-circuit voltage, (b) short-circuit current, (c) fill factor,
and (d) power conversion efficiency as a function of electron transport layer (Zn(O,S), ZnSe, PFN-Br)
thickness for TO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au,
ITO/PFN-Br/PTB7:PC70BM/PEDOT:PSS/Au, respectively.

3.4. Optimization of Electron Transport Layer Doping

In the next step of the simulation, the doping density of the electron transport layer
of each device was optimized. Like the hole transport layer, the optical and electrical
characteristics of the electron transport layer can also be modified by appropriate doping.
The proper doping of the electron transport layer causes a reduction in the bulk resistance
of the transport layer, which in turn helps to improve the charge transport as well as the
charge collection process and hence the overall photovoltaic performance by the formation
of ohmic contact with the transparent ITO electrode [50–52].

Figure 6 shows the photovoltaic parameters such as open-circuit voltage, short-circuit
current, fill factor, and power conversion efficiency as a function of the electron transport
layer doping density for the Zn(S,O), ZnSe, and PFN-Br devices, respectively. Very com-
plicated photovoltaic responses were observed, where all devices showed improvements
in their photovoltaic parameters with the increasing doping density but at different rates.
The PFN-Br device showed significant improvements, especially after doping at 1016 cm−3.
Both the ZnSe and Zn(O,S) devices showed very similar increasing responses with the
increasing doping density. From the results it can be inferred that the 1020 cm−3 doping
density was the optimum electron transport layer doping density for all the devices, giving
the maximum possible power conversion efficiency.
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Figure 6. The photovoltaic parameters of (a) open-circuit voltage, (b) short-circuit current, (c) fill factor, and
(d) power conversion efficiency as a function of the electron transport layer (Zn(O,S), ZnSe, PFN-Br) doping
density for ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au,
ITO/PFN-Br/PTB7:PC70BM/PEDOT:PSS/Au, respectively.

3.5. Optimization of BHJ Active Layer Thickness

As an n-i-p-type device structure was used for all the proposed photovoltaic devices,
where a PTB7:PC70BM bulk-heterojunction layer was used as an insulator layer; therefore,
only thickness optimization is required here for the PTB7:PC70BM bulk-heterojunction layer.
The thickness optimization of an active BHJ layer is a key challenge for the improvement
of photovoltaic responses. The optimum thickness of the BHJ layer is the compromise of
many factors. On one side, the thickness should be so thin that it allows the dissociation of
excitons into free electrons and hole pairs and as well as efficiently transports these free
charges toward their respective electrodes [53–55]. On the other side, the thickness of the
active layer should be thick enough to absorb most of the photons that fall on its surface
and generate as many electron–hole pairs as possible. Generally, it is observed from the
literature that most of the reported BHJ layer thicknesses for efficient polymer solar cells lie
in the range of 80 to 150 nm [56–58].

Figure 7 shows the photovoltaic parameters such as open-circuit voltage, short-circuit
current, fill factor, and power conversion efficiency as a function of the active layer thickness
for the Zn(S, O), ZnSe, and PFN-B devices, respectively. The figure demonstrates that the
open-circuit voltages of all the devices decreased with the increasing BHJ layer thickness
because at higher thicknesses, more recombinations take place, which in turn causes a
lower open-circuit voltage.
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Figure 7. The photovoltaic parameters of (a) open-circuit voltage, (b) short-circuit current, (c) fill
factor, and (d) power conversion efficiency as a function of the PTB7:PCBM active layer thickness for
ITO/Zn(O,S)/PTB7:PCBM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PCBM/PEDOT:PSS/Au, ITO/PFN-
Br/PTB7:PCBM/PEDOT:PSS/Au, respectively.

Both short-circuit current and power conversion efficiency behaved with nearly sim-
ilar responses. However, initially, efficiency increased and reached a maximum value
(approximately 125 nm) and then started to decrease. So, it can be inferred from the above
discussion that all the parameters discussed above gave the optimum thickness of the
BHJ layer at 125 nm to give the maximum power conversion efficiency for the proposed
solar cell.

3.6. Overall Photovoltaic Response of the Proposed Devices

The overall photovoltaic current-voltage response of the proposed ITO/ETL/PTB7:
PC70BM/PEDOT:PSS/Au devices were simulated and compared as shown in Figure 8,
where each layer of each device was already fully optimized concerning film thickness
and doping density. Here, Table 2 shows the photovoltaic parameters of each optimized
device calculated from the simulated photocurrent responses (Figure 8). The simulation
results clearly demonstrate that all devices performed very well, and their maximum power
conversion efficiencies were found to be 17.15%, 15.81%, and 15.09% for the Zn(O,S), ZnSe,
and PFN-Br devices, respectively.
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Figure 8. The overall photovoltage parameters of the optimized devices ITO/Zn(O,S)/PTB7:
PC70BM/PEDOT:PSS/Au, ITO/ZnSe/PTB7:PC70BM/PEDOT:PSS/Au, ITO/PFN-Br/PTB7:PC70BM/
PEDOT:PSS/Au, respectively.

Table 2. The overall photovoltaic parameters for the optimized Zn(O,S), ZnSe, and PFN-Br devices.

ETL Voc (Volt) Jsc
(mA/cm2) FF (%) PCE (%)

Zn(O,S) 0.8549 28.376 70.69 17.15
ZnSe 0.8551 28.370 65.15 15.81

PFN-Br 0.8546 28.255 62.49 15.09

The photovoltaic parameters such as the open-circuit voltages and short-circuit cur-
rents of the devices were found to offer more or less very similar maximum values within
a very small range, which demonstrates that the fill factor was the decisive parameter
for the selection of the highly efficient photovoltaic Zn(O,S) device compared to the other
photovoltaic devices, as shown in Table 2. The fill factor (FF) is a very crucial photo-
voltaic parameter that demonstrates how the illuminated current-voltage response can be
compared with a squared (ideal) current-voltage response for a given organic solar cell.
Mathematically, the fill factor can be expressed as

FF =
Pin

JSCVOC
=

Vmax Jmax

JSCVOC
(8)

where Pin, Vmax, Jmax, JSC, and VOC are the input power, maximum voltage, maximum
current, short-circuit current, and open-circuit voltage, respectively. There are several
independent parameters, such as mobility, series resistance, shunt resistance, morphology,
and molecular weight, of both host and dopants that can significantly affect the fill factor in a
very complex way [59,60]. From Table 2, it can be observed that Zn(O,S) offered the highest
(70.69%) fill factor compared to ZnSe (65.15%) and PFN-Br (62.49), which could be attributed
to the relatively lower built-in potential of Zn(O,S) with the PTB7:PC70BM BHJ layer [61].
Such a lower built-in potential not only improves the photovoltaic diode parameters but
also improves the electron collection efficiency and hence the fill factor for the efficient
photovoltaic responses. So, it can be justified that these parameters were optimized for
the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au device to give the maximum power
conversion efficiency of 17.15% compared to the other proposed devices.
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4. Conclusions

In this study, a comparatively new polymer BHJ active material PTB7:PC70BM was sand-
wiched between efficient hole and electron transport materials. Consequently, in order to
determine the most efficient solar cell, we proposed ITO/ETL/PTB7:PC70BM/PEDOT:PSS/Au
with different electron transport layers, such as zinc oxysulfide (Zn(O,S)), zinc selenide
(ZnSe), and poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-
alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br), for the photovoltaic devices. Each ETL
material was selected based on the energy bandgap compatibility between the ITO and
PTB7:PC70BM active layer and other physical parameters. In the first stage, we opti-
mized each layer and then simulated the photovoltaic responses through SCAPS-1D. From
the photo current-voltage characteristics, it was observed that all devices behaved with
nearly similar responses, whereas the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au de-
vice showed a maximum efficiency of up to 17.15% (Voc = 0.85 V, Jsc = 28.37 mA/cm2, and
FF = 70.69%). It was also observed that these photovoltaic parameters, such as open-circuit
voltage and short-circuit current, were the same for all devices, except for the fill factor.
It demonstrated that the fill factor was the decisive parameter for maximum efficiency
compared to the other proposed devices. The fill factor itself depends on many indepen-
dent parameters such as mobility, series resistance, shunt resistance, morphology, and the
molecular weight of both hosts. Therefore, it can be assumed that all these parameters were
optimized for the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au device to give the highest
power conversion efficiency of 17.15% compared to the other proposed devices.
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