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Electron transport experiments on two lateral quantum dots coupled in series are reviewed. An

introduction to the charge stability diagram is given in terms of the electrochemical potentials of both

dots. Resonant tunneling experiments show that the double dot geometry allows for an accurate

determination of the intrinsic lifetime of discrete energy states in quantum dots. The evolution of

discrete energy levels in magnetic field is studied. The resolution allows one to resolve avoided

crossings in the spectrum of a quantum dot. With microwave spectroscopy it is possible to probe the

transition from ionic bonding (for weak interdot tunnel coupling) to covalent bonding (for strong

interdot tunnel coupling) in a double dot artificial molecule. This review is motivated by the relevance

of double quantum dot studies for realizing solid state quantum bits.
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I. INTRODUCTION

Quantum dots are man-made submicron structures in
a solid, typically consisting of 103

– 109 atoms and a com-
parable number of electrons (Kouwenhoven et al.,
1997). In semiconductor quantum dots all electrons are
tightly bound, except for a small number of free elec-
trons, which can range from zero to several thousands.
For the quantum dot devices considered in this review,
the starting point for fabrication is formed by a hetero-
structure consisting of different semiconductor materials
(GaAs/AlGaAs). The free electrons are strongly con-
fined to the interface between GaAs and AlGaAs, form-
ing a two-dimensional electron gas (2DEG). Confine-
ment in the other two dimensions is accomplished by
locally depleting the 2DEG, via etching techniques or
metal gate electrodes. The resulting structure is weakly
coupled to source and drain electrical contacts by tunnel
barriers, connecting it to the outside world.*Electronic address: wilfred@tomoko.phys.s.u-tokyo.ac.jp
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An important element of electronic transport through
quantum dots is Coulomb blockade (Averin and
Likharev, 1986, 1991; Grabert and Devoret, 1992; Kou-
wenhoven et al., 1997). An extra electron can only be
added to the dot if enough energy is provided to over-
come the Coulomb repulsion between the electrons.
Next to this purely classical effect, the confinement in all
three directions leads to quantum effects that strongly
influence electronic transport at low temperature. In
particular it leads to the formation of a discrete (0D)
energy spectrum, resembling that of an atom. This and
other similarities have therefore led to the name artifi-
cial atoms for quantum dots (Kastner, 1993).

The next logical step after studying individual quan-
tum dots is to study systems of more than one dot.
Where single quantum dots are regarded as ‘‘artificial
atoms,’’ two quantum dots can be coupled to form an
‘‘artificial molecule.’’ Depending on the strength of the
interdot coupling, the two dots can form ioniclike (weak
tunnel coupling) or covalentlike bonds (strong tunnel
coupling). In the case of ionic bonding the electrons are
localized on the individual dots. The binding occurs, be-
cause a static redistribution of electrons leads to an at-
tractive Coulomb interaction. Weakly, electrostatically
coupled quantum dots with negligible interdot tunnel
conductance are covered by orthodox Coulomb block-
ade theory (Averin and Likharev, 1991). In the case of
covalent bonding, two electron states are quantum-
mechanically coupled. The main requirement for cova-
lent binding is that an electron can tunnel many times
between the two dots in a phase-coherent way. Here the
electron cannot be regarded as a particle that resides in
one particular dot, but it must be thought of as a coher-
ent wave that is delocalized over the two dots. The
bonding state of a strongly coupled artificial molecule
has a lower energy than the energies of the original
states of the individual dots. This energy gain forms the
binding force between the two dots.

Stimulated by the on-going miniaturization of inte-
grated circuits, electrostatically coupled quantum dots
have been proposed for application as (classical) logic
gates (Nomoto et al., 1996; Orlov et al., 1997). An impor-
tant motivation for this review is the recent idea of using
coupled quantum dots for quantum computation. The
theoretical possibility to perform certain tasks in a much
more efficient way using a ‘‘quantum computer’’ instead
of a ‘‘classical computer’’ has stimulated the search for
physical realizations of the basic building block of a
quantum computer: the quantum bit. In principle, any
quantum two-level system can be used as such a qubit.
An approach using coupled quantum dots was suggested
by Loss and DiVincenzo in which an electron spin on
each dot acts as a qubit (Loss and DiVincenzo, 1998). By
temporarily coupling the two spins, entanglement of the
qubits can be realized. Alternatively, there are also
quantum dot proposals in which the charge degree of
freedom is exploited to form the qubit (Barenco et al.,
1995; Landauer, 1996; Brum and Hawrylak, 1997; Za-
nardi and Rossi, 1998).

In this review we concentrate on electron transport
through lateral double quantum dots coupled in series.
All devices have been fabricated and all experiments
have been performed at Delft University of Technology
and NTT Basic Research Laboratories. By now there
exists an extensive literature on experimental studies of
electron transport through double lateral quantum dots
coupled in series,1 and lateral double dots coupled in
parallel.2 Vertical double quantum dot structures3 fall
outside the focus of this review. In vertical structures,
the characteristics of the tunnel barriers are set by the
growth parameters of the heterostructure, limiting the
experimental tunability. Besides that, the gate geometry
used in these devices makes it difficult to address dots
independently.

As a first step to understanding double dot systems we
introduce the stability diagram (Pothier et al., 1992), or
honeycomb diagram, in Sec. II. It is a convenient tool in
the analysis of double dot transport properties. Reso-
nant tunneling experiments discussed in Sec. III show
that the resonant widths are only determined by the life-
time of the discrete energy states, independent of the
electron temperature. In Sec. IV we discuss level spec-
troscopy in a magnetic field. The double dot geometry
offers sufficient energy resolution to probe intradot level
repulsion. In Sec. V we present microwave spectroscopy
measurements on a quantum dot molecule. We illustrate
the transition from a weakly coupled double dot to a
strongly coupled double dot, by discussing a two-level
system in Sec. V.A. Although being a clear simplifica-
tion, the mapping of the double dot on a two-level sys-
tem grasps much of the physics of the experiments pre-
sented in Sec. V. Irradiation with microwaves leads to
photon assisted tunneling (PAT) (Secs. V.B and V.C),
which turns out to be a powerful tool not only to reveal
the character of the interdot coupling, but also to quan-
titatively determine the bonding strength.

II. STABILITY DIAGRAM

In this section we introduce the stability—or
honeycomb—diagram that visualizes the equilibrium
charge states of two serially coupled dots.

1Electron-transport measurements in double lateral quantum
dots coupled in series are described in Kemerink and Molen-
kamp (1994); Molenkamp et al. (1995); van der Vaart et al.

(1995); Waugh et al. (1995, 1996); Blick et al. (1996, 1998);
Dixon et al. (1996); Fujisawa and Tarucha (1996, 1997a,
1997b); Livermore et al. (1996); Dixon (1998); Fujisawa et al.

(1998); Ishibashi et al. (1998); Oosterkamp, Fujisawa, et al.

(1998); Oosterkamp, Godijn, et al. (1998); Jeong et al. (2001).
2Electron-transport measurements in double lateral quantum

dots coupled in parallel are described in Hofmann et al. (1995);
Adourian et al. (1996, 1999); Dixon (1998).

3Electron-transport measurements in vertical double quan-
tum dots are described in Reed et al. (1989); Tewordt et al.

(1992); Schmidt et al. (1997); Austing et al. (1998, 2001);
Tarucha et al. (1999); Amaha et al. (2001).
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A. Linear transport regime

1. Classical theory

We start with a purely classical description in which
the influence of discrete quantum states is not taken into
account yet (Pothier et al., 1992; Ruzin et al., 1992;
Dixon, 1998). The double dot is modeled as a network
of tunnel resistors and capacitors (Fig. 1). The number
of electrons on dot 1(2) is N1(2) . Each dot is capacitively
coupled to a gate voltage Vg1(2) through a capacitor
Cg1(2) and to the source (S) or drain (D) contact
through a tunnel barrier represented by a tunnel resistor
RL(R) and a capacitor CL(R) connected in parallel. The
dots are coupled to each other by a tunnel barrier rep-
resented by a tunnel resistor Rm and a capacitor Cm in
parallel. The bias voltage V is applied to the source con-
tact with the drain contact grounded (asymmetric bias).
In this section we consider the linear transport regime,
i.e., V'0. If cross capacitances (such as between Vg1

and dot 2), other voltage sources, and stray capacitances
are negligible, the double dot electrostatic energy reads
(a full derivation is given in the Appendix)

U~N1 ,N2!5

1

2
N1

2EC11

1

2
N2

2EC21N1N2ECm

1f~Vg1 ,Vg2!, (1)

f~Vg1 ,Vg2!5

1

2ueu
$Cg1Vg1~N1EC11N2ECm!

1Cg2Vg2~N1ECm1N2EC2!%

1

1

e2 H 1

2
Cg1

2 Vg1
2 EC11

1

2
Cg2

2 Vg2
2 EC2

1Cg1Vg1Cg2Vg2ECmJ ,

where EC1(2) is the charging energy of the individual dot
1(2), ECm is the electrostatic coupling energy, and 2ueu is
the electron charge. The coupling energy ECm is the
change in the energy of one dot when an electron is
added to the other dot. These energies can be expressed
in terms of the capacitances as follows:

EC15

e2

C1 S 1

12

Cm
2

C1C2

D , (2)

EC25

e2

C2 S 1

12

Cm
2

C1C2

D ,

ECm5

e2

Cm S 1

C1C2

Cm
2 21D .

Here C1(2) is the sum of all capacitances attached to dot
1(2) including Cm : C1(2)5CL(R)1Cg1(2)1Cm . Note
that EC1(2) can be interpreted as the charging energy of
the single, uncoupled dot 1(2) multiplied by a correction
factor that accounts for the coupling. When Cm50, and
hence ECm50, Eq. (1) reduces to

U~N1 ,N2!5

~2N1ueu1Cg1Vg1!2

2C1

1

~2N2ueu1Cg2Vg2!2

2C2
. (3)

This is the sum of the energies of two independent dots.
In the case when Cm becomes the dominant capacitance
(Cm /C1(2)→1), the electrostatic energy is given by

U~N1 ,N2!5

@2~N11N2!ueu1Cg1Vg11Cg2Vg2#2

2~C̃11C̃2!
.

(4)

This is the energy of a single dot with a charge N1

1N2 and a capacitance of C̃11C̃2 , where C̃1(2)5C1(2)

2Cm is the capacitance of dot 1(2) to the outside world.
Thus a large interdot capacitance Cm effectively leads to
one big dot.

The electrochemical potential m1(2)(N1 ,N2) of dot
1(2) is defined as the energy needed to add the N1(2)th
electron to dot 1(2), while having N2(1) electrons on dot
2(1). Using the expression for the total energy Eq. (1),
the electrochemical potentials of the two dots are

m1~N1 ,N2![U~N1 ,N2!2U~N121,N2!

5S N12

1

2 DEC11N2ECm

2

1

ueu
~Cg1Vg1EC11Cg2Vg2ECm!, (5)

m2~N1 ,N2![U~N1 ,N2!2U~N1 ,N221 !

5S N22

1

2 DEC21N1ECm

2

1

ueu
~Cg1Vg1ECm1Cg2Vg2EC2!. (6)

The change in m1(N1 ,N2) if, at fixed gate voltages, N1 is
changed by 1, m1(N111,N2)2m1(N1 ,N2)5EC1 , is
called the addition energy of dot 1 and equals the charg-
ing energy of dot 1 in this classical regime. Similarly, the
addition energy of dot 2 equals EC2 , and m1(N1 ,N2

11)2m1(N1 ,N2)5m2(N111,N2)2m2(N1 ,N2)5ECm .
In the next section we will discuss the addition energy in

FIG. 1. Network of tunnel resistors and capacitors represent-
ing two quantum dots coupled in series. The different elements
are explained in the text. Note that tunnel barriers are charac-
terized by a tunnel resistor and a capacitor, as indicated in the
inset.
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the quantum regime, where also the spacing between
discrete energy levels plays a role.

From the electrochemical potentials in Eqs. (5) and
(6) we construct a charge stability diagram, giving the
equilibrium electron numbers N1 and N2 as a function
of Vg1 and Vg2 . We define the electrochemical poten-
tials of the left and right leads to be zero if no bias
voltage is applied, mL5mR50. Hence the equilibrium
charges on the dots are the largest values of N1 and N2

for which both m1(N1 ,N2) and m2(N1 ,N2) are less than
zero. If either is larger than zero, electrons escape to the
leads. This constraint, plus the fact that N1 and N2 must
be integers, creates hexagonal domains in the
(Vg1 ,Vg2)-phase space in which the charge configura-
tion is stable.

For completely decoupled dots (Cm50) the diagram
looks as in Fig. 2(a). The gate voltage Vg1(2) changes the
charge on dot 1(2), without affecting the charge on the
other. If the coupling is increased, the domains become
hexagonal [Fig. 2(b)]. The vertices of the square do-
mains have separated into ‘‘triple points.’’ When Cm be-
comes the dominant capacitance (Cm /C1(2)→1), the
triple-point separation reaches its maximum [see Fig.
2(c)]. The double dot behaves like one dot with charge
N11N2 , as seen from Eq. (4).

We are considering the linear regime of conductance,
implying mL2mR52ueuV'0. In order to obtain a mea-
surable current, the tunnel barriers need to be suffi-
ciently transparent. At the same time, however, the tun-
nel barriers need to be sufficiently opaque to ensure a

well-defined electron number on each dot. For double
dots coupled in series, a conductance resonance is found
when electrons can tunnel through both dots. This con-
dition is met whenever three charge states become de-
generate, i.e., whenever three boundaries in the honey-
comb diagram meet in one point. In Fig. 2(d) two kinds
of such triple points are distinguished, (d) and (s), cor-
responding to different charge transfer processes. At the
triple point (d), the dots cycle through the sequence

~N1 ,N2!→~N111,N2!→~N1 ,N211 !→~N1 ,N2!,

which shuttles one electron through the system. This
process is illustrated by the counterclockwise path e and
the diagram of an electron sequentially tunneling from
the left lead to the right in Fig. 2(d). At the other triple
point (s), the sequence is

~N111,N211 !→~N111,N2!→~N1 ,N211 !

→~N111,N211 !,

corresponding to the clockwise path h in Fig. 2(d). This
can be interpreted as the sequential tunneling of a hole
in the direction opposite to the electron. The energy dif-
ference between both processes determines the separa-
tion between the triple points (d) and (s), and is given
by ECm , as defined in Eq. (2).

The dimensions of the honeycomb cell (see Fig. 3) can
be related to the capacitances using Eqs. (5) and (6).
From

m1~N1 ,N2 ;Vg1 ,Vg2!5m1~N111,N2 ;Vg11DVg1 ,Vg2!
(7)

we obtain

DVg15

ueu

Cg1
(8)

and similarly we can derive

DVg25

ueu

Cg2
. (88)

From

m1~N1 ,N2 ;Vg1 ,Vg2!5m1~N1 ,N211;Vg11DVg1
m ,Vg2!

(9)

we obtain

FIG. 2. Schematic stability diagram of the double dot system
for (a) small, (b) intermediate, and (c) large interdot coupling.
The equilibrium charge on each dot in each domain is denoted
by (N1 ,N2). The two kinds of triple points corresponding with
the electron transfer process (d) and the hole transfer process
(s) are illustrated in (d). The region in the dotted square in
(b) is depicted in more detail in Fig. 5.

FIG. 3. Schematic stability diagram showing the Coulomb
peak spacings given in Eqs. (8) and (10). These spacings can be
determined experimentally by connecting the triple points.
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DVg1
m

5

ueuCm

Cg1C2
5DVg1

Cm

C2
(10)

and similarly we can derive

DVg2
m

5

ueuCm

Cg2C1
5DVg2

Cm

C1
. (108)

However, for a full characterization of all capacitances
in the system an analysis in the nonlinear transport re-
gime is required, as is discussed in Sec. II.B.

Above we assumed that Vg1 and Vg2 only couple di-
rectly to the respective dots. In practice, however, there
is a finite cross capacitance from one gate to the other.
The respective cross capacitances result in a change of
the slope of the charge domain boundaries in the hon-
eycomb diagram. From Figs. 2(b) and 3 it is clear that
both kinds of triple points (d and s) form a square
lattice. However, with finite cross capacitances the posi-
tions of the triple points move to lower Vg1(2) for in-
creasing Vg2(1) .

2. Quantized states

The discussion of the stability diagram so far has been
completely classical. However, the strong confinement of
electrons in the dots can lead to the formation of a dis-
crete energy spectrum. To account for the quantized en-
ergy states in the dot, we need to incorporate their en-
ergies in the electrochemical potential. The
electrochemical potential for adding an electron into en-
ergy level n of dot i is denoted by m i ,n . Within the con-
stant interaction model, m i ,n is the sum of the classical
electrochemical potential m i

class and the single-particle

energy En : m i ,n5m i
class

1En . In the classical regime we
found that the addition energy (the change in electro-
chemical potential needed to add an extra electron)
equals the charging energy EC1 (for dot 1) or EC2 (for
dot 2). In the quantum regime, the addition energy for
the (N111)th electron occupying discrete level m , with
the N1th electron occupying discrete level n , becomes

m1,m~N111,N2!2m1,n~N1 ,N2!5EC11~Em2En!

5EC11DE . (11)

Similarly, we find EC21DE for the addition energy of
dot 2. Note that for a (spin-)degenerate level DE can be
zero. The dimensions of the honeycomb cell as given in
Eqs. (8) and (10), and depicted in Fig. 3 for the classical
regime, change as follows:

DVg1(2)5
ueu

Cg1(2)
S 11

DE

EC1(2)
D , (12)

DVg1(2)
m

5

ueuCm

Cg1(2)C2(1)
S 11

DE

ECm
D . (13)

The electronic configuration that gives the lowest pos-
sible total energy in dot 1(2), is referred to as the dot
1(2) ground state. Any configuration with a higher total
energy is referred to as an excited state. The electro-
chemical potential for adding the N1(2)th electron to the
lowest unfilled energy level of the (N1(2)21)-electron
ground state is labeled m1,0(N1 ,N2) $m2,0(N1 ,N2)%. The
electrochemical potential for adding the N1(2)th electron
to a higher unfilled level of the (N1(2)21)-
electron ground state—or to any unfilled level
of an (N1(2)21)-electron excited state—is by
definition labeled m1,1(N1 ,N2), m1,2(N1 ,N2), . . .
$m2,1(N1 ,N2), m2,2(N1 ,N2), . . . %.

In Figs. 4(a) and (b) two schematic representations
are given, showing the electrochemical potentials in the
leads and dots in the linear regime (mL2mR52ueuV
'0). The ground-state electrochemical potentials
m1,0(1,0) and m2,0(0,1) align within the small bias win-
dow, allowing an electron to tunnel from left to right.
This is an example of an electron transfer process as
depicted in Fig. 2(d). Note that an alignment of an arbi-
trary combination of electrochemical potentials in dot 1
and dot 2 does not necessarily lead to a current. For
example, the alignment of m1,0(1,0) and m2,0(1,1) does
not result in current through the double dot in the linear
regime. In the linear regime electron transport occurs
via ground states, whereas the excited states start to play
a role in nonlinear transport, as will be discussed in Sec.
II.B. In the following discussion of the linear regime the
ground state of dot 1(2) is denoted by m1(2)(N1 ,N2)
(without the discrete level index).

A more detailed picture of a honeycomb cell in the
linear regime, marked by the dashed square in Fig. 2(b),

FIG. 4. Schematic diagrams of the electrochemical potentials m i ,n(N1 ,N2) in dots and leads in the linear regime. The first
subscript indicates either the lead (L,R) or the dot (1,2). The second subscript refers to the nature of the dot energy state (ground
state, n50, or nth excited state). (a) Electron transfer process through the ground states of both dots. (b) Same process given in
a more economic representation, also showing some excited states.
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is given in Fig. 5. The configuration of the ground-state
electrochemical potentials is given in schematic dia-
grams on some places in the stability diagram. The
dashed lines, which are extensions of the solid lines
forming the honeycomb cells, help to find the position of
both electrochemical potentials on a certain place. A

crossing of dashed lines [as in the charge domains (0,1)
and (1,0)] indicates that two electrochemical potentials
align, but does not result in a current through the double
dot.

3. Experimental stability diagrams

Before discussing some experimental stability dia-
grams, we introduce the two kinds of lateral double dot
devices being studied in this review. For the first type,
only metal gate electrodes are used to confine the elec-
trons in the 2DEG beneath. For the second type we use
a combination of metal gates and dry etching to realize
confinement.

A scanning electron microscope (SEM) image of the
first device is shown in Fig. 6(a). Metal gates are depos-
ited on top of a GaAs/AlGaAs heterostructure with a
2DEG 100 nm below the surface (van der Vaart et al.,
1995). Applying a negative voltage to all gates depletes
the 2DEG underneath them and forms two quantum
dots. Current can flow from the large electron reservoir
on the left via the three tunnel barriers induced by the
gate pairs 1-F, 2-F, and 3-F to the reservoir on the right.
The transmission of each tunnel barrier can be con-
trolled individually by the voltage on gates 1, 2, or 3. A
single quantum dot can be defined in the 2DEG by ap-
plying only a voltage to gates 1, 2, I, and F (dot 1) or to
gates 2, 3, II, and F (dot 2). In this way, the individual
dots can be characterized and their properties compared
to those of the double dot.

The second device is schematically shown in Fig. 6(b).
First a channel is defined in the 2DEG by focused-ion-
beam (FIB) or electron-cyclotron-resonance (ECR)
etching of an Al0.3Ga0.7As/GaAs modulation-doped het-
erostructure (Fujisawa and Tarucha, 1996). A double
quantum dot can be formed by applying negative volt-
ages to gates GL, GC, and GR.

FIG. 5. Region within the dotted square of Fig. 2(b), corre-
sponding with the ‘‘unit cell’’ of the double dot stability dia-
gram. Four different charge states can be distinguished, sepa-
rated by solid lines. At the solid line connecting the two triple
points, the charge states (0,1) and (1,0) are degenerate. At the
other solid lines the electrochemical potential of at least one
dot is zero and thus equals the electrochemical potential of the
leads. The dashed lines are the extensions of the solid lines
within the honeycomb cells. The triple points lie on the cross-
ing points between the solid lines. The schematic diagrams
show the configuration of the ground-state electrochemical po-
tentials on the corresponding place in the honeycomb diagram.

FIG. 6. Double quantum dot devices. (a) SEM micrograph of a double dot defined by metallic gates (light gray areas). The
ungated 2DEG (100 nm below the surface) has a mobility of 2.33106 cm2/V s and an electron density of 1.931015 m22 at 4.2 K.
The dimensions of the dots defined by the gate pattern are 3203320 nm2 (dot 1, left) and 2803280 nm2 (dot 2, right). (b)
Schematic diagram of a double dot defined by a combination of dry etching and metallic gates. The carrier concentration and
mobility of the ungated 2DEG (100 nm below the surface) at 1.6 K and in the dark are 331011 cm22 and 83105 cm2/V s,
respectively. The lithographic distance between the ethched trenches (black lines), w , is typically 0.5 mm. The effective width of
the channel, wch , can be tuned by voltages on the in-plane gates (IPG’s). The gate electrodes are ;40 nm wide (lg) and are
separated by lLC5160 nm and lCR5220 nm. A double quantum dot (dot 1, D1; dot 2, D2) can be formed by applying negative
gate voltages to gates GL, GC, and GR. A microwave field can be applied to the center gate GC.
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All experiments have been performed in a dilution
refrigerator with a base temperature of 10–15 mK. The
effective electron temperature in the leads is higher and
can vary between ;40 and ;100 mK. A significant
source of heating is the noise coming from the measure-
ment electronics. The filters, used to attenuate the noise,
have to be effective over a very large bandwidth. They
consist of a distributed RC network, usually a thin resis-
tive wire going through a conducting medium such as
copper powder or silver epoxy. The filters are installed
at low temperature to minimize the thermal noise of the
resistors inside. The filters are integrated with the
sample holder in such a way that all sample wires are
carefully shielded once they are filtered.

To effectively create a double quantum dot, all gate
voltages need to be tuned properly. The cross capaci-
tances between the various gate electrodes make it dif-
ficult to vary just a single parameter without affecting
the others. The stability diagram is of great value in set-
ting up and characterizing a double quantum dot. Figure
7 illustrates the process of the creation of a double dot in
a device similar to the one in Fig. 6(b). The starting
point is the creation of a single large dot formed by the
outer tunnel barriers, GL and GR. The measured stabil-
ity diagram [Fig. 7(a)] resembles Fig. 2(c). The succes-
sive stability diagrams are measured for increasingly
negative voltages on the middle gate electrode, GC, thus
reducing the coupling between the dots. It is clearly seen
that going from Fig. 7(a) to Fig. 7(d), the stability dia-
gram gradually evolves into the characteristic honey-
comb structure. The edges of the honeycomb cells are
visible due to off-resonance current. At the edges of a
honeycomb cell, the electrochemical potential of one of
the dots aligns with its neighboring lead (see Fig. 5). By
a process called co-tunneling (Averin and Nazarov,
1992), transport can still take place via an intermediate
virtual state. Co-tunneling processes are suppressed by
increasing the tunnel barriers (i.e., making the gate volt-
ages more negative), as can be seen from Fig. 7.

Figure 8(a) shows a detail of a stability diagram ob-
tained in the device shown in Fig. 6(a). The edges of the
honeycomb cells are indicated by dashed lines. The
triple points within the black square are well separated,
whereas the other ones are still grown together. To sepa-
rate also those points outside, the gate voltage on the

middle barrier has to be tuned towards more negative
values.

B. Nonlinear transport regime

1. Classical theory

We assume that the bias voltage is applied to the left
lead (mL52ueuV) and that the right lead is grounded

FIG. 7. Experimental gray-scale plots of stability diagrams in a
device similar to that shown in Fig. 6(b) for increasingly nega-
tive gate voltage on the middle gate electrode, GC. Dark
(light) gray scale corresponds to large (small) current through
the double dot. GL is swept between 2500 mV and 2530 mV,
GR between 2840 mV and 2900 mV, GC52660 mV (a),
2670 mV (b), 2690 mV (c), and 2720 mV (d).

FIG. 8. (a) Experimental gray-scale plot of a stability diagram
in the device of Fig. 6(a) at small bias voltage, V515 meV.
Dark (light) gray scale corresponds to large (small) current
through the double dot. The dashed lines indicate the honey-
comb cells. (b) Region within the black rectangle of (a) at
large bias voltage, V5120 meV. The triple points have grown
into triangles and show clear resonant tunneling lines (black
stripes), as discussed in Sec. II.B.2. The shape of the triangles
is accentuated by dashed lines.

FIG. 9. Region within the dotted square of Fig. 2(a), corre-
sponding to the unit cell of the double dot stability diagram, at
finite bias voltage. The solid lines separate the charge domains.
Classically, the regions of the stability diagram where current
flows are given by the gray triangles. In the case of one discrete
level per dot, as in the schematic pictures, resonant tunneling is
only possible along the side of the triangle that coincides with
the line connecting the original triple points (d and s). How-
ever, also in this case inelastic tunneling and co-tunneling still
contribute to a finite current within the gray triangles.
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(mR50). The bias voltage is coupled to the double dot
through the capacitance of the left lead CL and hence
also affects the electrostatic energy of the system. The
bias dependence can be accounted for by replacing
Cg1(2)Vg1(2) with Cg1(2)Vg1(2)1CL1(2)V in Eq. (1),
where CL1(2) is the capacitance of the left lead to dot
1(2) (see the Appendix).

The conductance regions at finite bias change from
triple-points to triangularly shaped regions (Fig. 9). The
conditions 2ueuV5mL>m1 , m1>m2 , and m2>mR50
determine the boundaries of the triangular regions. The
dimensions of the triangles dVg1 and dVg2 (see Fig. 9)
are related to the applied bias voltage as follows:

a1dVg15

Cg1

C1
ueudVg15ueVu,

a2dVg25

Cg2

C2
ueudVg25ueVu, (14)

where a1 and a2 are the conversion factors between
gate voltage and energy. Combining Eqs. (8), (10), and
(14), we can calculate the values of the total capaci-
tances C1,2 and mutual capacitance Cm .

2. Quantized states

For sufficiently large bias voltages, multiple discrete
energy levels can enter the bias window. In this case, not
only ground states, but also excited states contribute to
the conductance. For the illustrative case of two levels
per dot, the four possible alignments of the electro-
chemical potentials are shown in Fig. 10. Note that the
electrochemical potentials are drawn for the situation
where one electron is on the double dot and a second
one is tunneling on to it. Due to Coulomb blockade, not
less than one and not more than a total of two electrons
is allowed on the double dot. The labeling of the elec-

trochemical potentials, using the notation introduced in
Sec. II.A.2, is straightforward, except for tunneling
through the excited state of dot 1 in Figs. 10(c) and (d).
Although the second electron is tunneling into the low-
est level available in dot 1, this level is only accessible
because dot 1 is in an excited state. For that reason, we
choose the label m1,1(2,0) [instead of m1,0(2,0)]. The suc-
cessive alignment of ground and excited states leads to
resonances within the conductance triangles, as shown in
Fig. 10(e). The off-resonance conductance in the gray
triangles is due to inelastic processes (van der Vaart
et al., 1995; Fujisawa et al., 1998) and co-tunneling
(Averin and Nazarov, 1992). Note that V is so large that
the two triangles partly overlap.

Figure 8(b) shows the triple points within the black
rectangle of Fig. 8(a) at finite bias. The triangular re-
gions are clearly visible as well as the resonances within
the triangles. The growth of the triangular regions with
increasing bias voltage is illustrated in Fig. 11. Whereas

FIG. 10. Schematic diagrams showing the possible alignments of the electrochemical potentials in the case of two levels per dot.
(a) The first electrochemical potentials to align correspond to the ground states of both dots, G1 and G2 . (b) When moving down
the levels in the right dot, the next states to align are the ground state of the left dot, G1 , and the first excited state of the right
dot, X2 . (c) Shifting the levels of the right dot further down results in transport through the first exited state of the left dot, X1 ,
and the right dot ground state, G2 . (d) Finally, the excited states X1 and X2 align. (e) Schematic stability diagram corresponding
to the finite bias diagrams. The black solid lines within the gray triangles correspond, from bottom to top, to the level alignments
shown in (a)–(d), respectively.

FIG. 11. Experimental gray-scale plots of stability diagrams in
the nonlinear regime, obtained in the device of Fig. 6(a). Dark
(light) gray scale corresponds to large (small) current through
the double dot. The bias voltage between source and drain
contacts is 2200 mV (a) and 21 mV (b). Note that the nega-
tive bias voltage leads to a reversed orientation of the triangles
in comparison to Fig. 10(e).
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only the ground state resonance is observed in Fig.
11(a), multiple resonances appear within the triangles of
Fig. 11(b).

III. RESONANT TUNNELING

In this section we discuss resonant tunneling experi-
ments through the double dot of Fig. 6(a) with discrete
energy levels (van der Vaart et al., 1995). We show that,
under appropriate conditions, the resonance widths are
only determined by the lifetime of the discrete energy
states, independent of the electron temperature in the
leads. A small asymmetric deviation from the Lorentz-
ian resonance shape is attributed to inelastic tunnel pro-
cesses.

The current-voltage (I-V) curves of the single quan-
tum dots in Fig. 12 provide two clear signatures for the
presence of both Coulomb blockade effects and discrete
levels. At low bias voltages, the current through the dot
is suppressed by the Coulomb blockade (Kouwenhoven
et al., 1997). Increasing the bias voltage lifts the block-
ade. The current shows a stepwise increase: each time
when an additional level enters the bias window 2ueuV ,
an extra transport channel is opened and the current
increases (Guéret et al., 1992; Johnson et al., 1992; Su
et al., 1992; Foxman et al., 1993). Hence the voltage
spacing of the current steps directly reflects the energy
spacing of the levels. For the average level spacing d we
obtain d15125 meV for dot 1 (upper inset) and d2

5225 meV for dot 2 (lower inset). The difference in
these two energies reflects the different lithographic
sizes of the two dots [see Fig. 6(a)]. We note that the
level spacing appears to be roughly uniform, without
even-odd modulation due to spin degeneracy of electron
states, in line with other recent results on lateral double
quantum dots (Stewart et al., 1997; Fujisawa et al., 2001).
Accounting for the depletion areas, we estimate that dot
1 has an effective diameter of 240 nm and contains
about N1590 electrons, while dot 2 has an effective di-

ameter of 200 nm and contains roughly N2

560 electrons. Using the Fermi energy EF at bulk den-
sity, we estimate d1'2EF /N15150 meV and d2

'2EF /N25230 meV. This is in good agreement with
the estimates obtained from the I-V curves. From the
dimensions of the Coulomb diamonds (Pothier et al.,
1992; Kouwenhoven et al., 1997) we obtain the charging
energies EC for adding an electron to the dot: EC1

51.1 meV (dot 1) and EC251.8 meV (dot 2).
We focus on the role of the discrete levels and con-

sider the charging energies as constant offsets in the
transport conditions. Figure 12 shows an I-V curve of
the double dot with all three tunnel barriers set in the
weak-tunneling regime. The Coulomb blockade sup-
presses the current through the double dot at low bias
voltages. At larger bias the current shows sharp reso-
nances. The spacing of the resonances is about 250 meV.
This is of the same order as the level spacing in the
single dots. Note that the reason why it is possible to
clearly separate two types of structures in the I-V curves
(one due to Coulomb blockade, the other due to dis-
crete levels) is the fact that the dot charging energies are
much larger than the average level spacing of the dots.

The same resonances are seen when we sweep the
gate voltage. Figure 13 shows the current through the
double dot versus the gate voltage on gate 1, Vg1 , with
V5280 mV. This corresponds to a vertical cut through a
stability diagram as shown in Fig. 11. The current shows
three groups of sharp resonances separated by regions
of zero current with a period DVg159 mV in gate volt-
age Vg1 . With only dot 1 formed, we observe Coulomb
oscillations as a function of Vg1 with the same period
DVg1 ; each period thus corresponds to a change of one
electron in dot 1, while keeping the number of electrons
on dot 2, N2 , constant. DVg1 corresponds to the hori-
zontal dimension of the honeycomb unit cell, as indi-
cated in Fig. 3 in Sec. II.A.1.

FIG. 12. I-V curve of the double dot, showing sharp reso-
nances in the current when two discrete levels align. Upper
inset: I-V curve of dot 1. Lower inset: I-V curve of dot 2. Both
insets show a suppression of the current at low voltages due to
the Coulomb blockade and a stepwise increase of the current
due to the discrete energy spectrum of the dot (from van der
Vaart et al., 1995).

FIG. 13. Current through the double dot versus gate voltage
Vg1 using a bias voltage V5280 mV. Inset: The current
through the double dot as a function of Vg3 with V51 mV,
showing that the number of resonances increases with bias
voltage (from van der Vaart et al., 1995).
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When elastic tunnel processes are the dominant trans-
port mechanism, the current through the double dot is
resonantly enhanced only when two levels in dot 1 and 2
align, as explained in Sec. II.B.2. Tuning the level align-
ment with V or Vg1 gives rise to the sharp resonances in
Figs. 12 and 13. Resonant tunneling through the double
dot is illustrated in the schematic potential landscape of
the double dot in Fig. 14. This figure shows a few of the
levels in dot 1 (levels 1 to 5) and dot 2 (levels a and b).
The electrostatic potentials w1 and w2 are tuned in such
a way that transport through the double dot is possible
only via the charge states (N1 ,N2)→(N111,N2)
→(N1 ,N211)→(N1 ,N2). The finite bias voltage gives
an electron from the left reservoir three choices to tun-
nel into dot 1: it can tunnel to one of the unoccupied
levels 3, 4, or 5. This changes the electrostatic potential
w1 by the charging energy EC1 (the levels are drawn at
the positions applicable after an electron has occupied
one of them). When dot 1 relaxes to the ground state
(the incoming electron occupying level 3), the electron
can tunnel via level a to the right reservoir.

Note that if dot 1 does not immediately relax to the
ground state, but remains in an excited state, with an
electron occupying either level 4 or 5, electron transport
through the double dot is temporarily blocked. The elec-
tron is ‘‘trapped’’ within dot 1. Only after relaxation to
the ground state a next tunnel event can occur. If the
relaxation rate is small on the scale of the tunneling
rates through the barriers, the inclusion of levels 4 and 5
within the bias window could therefore lead to a de-
crease of the current through the double dot. On the
other hand, in case of fast relaxation, the enhanced tun-
nel probability when also the levels 4 and 5 lie within the
bias window could lead to an increase in the current.
Note that next to intradot relaxation, also inelastic tun-
neling from level 4 or 5 to either level a or b can occur.
This process is accompanied by emission of a boson
[usually phonons (Fujisawa et al., 1998)] and contributes
to the off-resonance current in Fig. 13.

The resonances in a particular group in Fig. 13 can be
identified with the energy diagram of Fig. 14. The first
resonance occurs when level 3 aligns with level a (peak
3-a). This corresponds to the rightmost peak in Fig. 13.
Increasing 2ueuw1 by making Vg1 more negative, brings

transport off resonance until level 2 aligns with a (peak
2-a) followed by the third peak 3-b. Continuing to
sweep Vg1 increases the energy of level 3 above the elec-
trochemical potential mL of the left reservoir. This
blocks transport and removes an electron from dot 1
permanently. The next group of resonances is observed
when Vg1 is changed by one Coulomb oscillation period
DVg1 (see Fig. 13). Note that the number of resonances
decreases in the next two groups. Sweeping Vg1 also
shifts the levels in dot 2, due to a small cross capacitance
between gate 1 and 2. Transport is possible until level a
is shifted above mL (Vg1,2470 mV).

The level spacing is obtained by converting gate volt-
age to energy (Grabert and Devoret, 1992). This yields
an energy separation of resonances 2-a and 3-a by 70
meV, which is the energy separation of levels 2 and 3. In
the same way we find for levels a and b a separation of
200 meV. Both values are in good agreement with the
typical values we found above. On increasing V , we ob-
serve that the number of resonances in a particular
group increases. The inset to Fig. 13 shows approxi-
mately 11 resonances as Vg3 is swept. These observa-
tions are in agreement with the resonant tunneling pic-
ture of Fig. 14: when V is larger, more levels can align.

Generally, the relaxation rate to the ground state is
not necessarily higher than the tunnel rate through the
dot. In Fig. 15 the amplitude of the ground-state reso-
nance (see lower curve) clearly decreases with increas-
ing bias voltage. At the same time new resonances ap-
pear, having a larger amplitude than the ground-state

FIG. 14. Schematic potential landscape of the double quantum
dot, where mL and mR denote the electrochemical potentials of
the left and right reservoirs and V the bias voltage across the
double dot. The 0D states in dot 1 are denoted by levels 1 to 5
and in dot 2 by levels a and b (from van der Vaart et al., 1995).

FIG. 15. Current through the double dot of Fig. 6(a) versus the
voltage on gate 3, Vg3 , for bias voltages, V , between 0.2 mV
(lower trace) and 1.6 mV (upper trace). The traces have been
given an offset proportional to their bias voltage for clarity.
The dotted lines denote the positions in Vg3 where the ground-
state level enters and leaves the bias voltage window, respec-
tively.
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resonance. This implies that in general transport
through excited states can play a significant role.

When a discrete level in dot 1 is at a distance much
larger than the thermal energy, kBT , from the electro-
chemical potential of the left lead, dot 1 acts as low-
temperature-pass filter for dot 2 (Kouwenhoven, 1995;
van der Vaart et al., 1995), such that only cold electrons
contribute to the current [see Fig. 16(a)]. If the energy
levels in the dots are separated by more than kBT , the
occupation of excited states becomes suppressed. This
effectively leaves the dot at zero temperature. Hence the
double dot geometry allows for an accurate measure-
ment of the intrinsic linewidth of the discrete levels,
which is not averaged by the Fermi-Dirac distribution of
the electrons in the reservoirs. In other words, an energy
resolution better than kBT can be obtained. The line
shape of a resonance is Lorentzian when only elastic
tunneling is important (Nazarov et al., 1993; Stoof,
1997). In our geometry (assuming a bias voltage suffi-
ciently large such that electrons must tunnel from the
left lead to the left dot to enter the system, and must
tunnel from the right dot to the right lead to leave it
again) the current is given by

I~DE !5e
G3ut12u

2

~DE/h !2
1

G3
2

4
1ut12u

2S 21

G3

G1
D

, (15)

where DE is the energy difference between two discrete
energy levels in the two dots, G1 is the tunnel rate from
the left lead to dot 1, ut12u is the modulus of the tunnel
coupling between the two dots, and G3 is the tunnel rate
from dot 2 to the right lead. Note that for elastic tunnel-
ing the resonance width is only determined by the life-
time of the 0D states and independent of temperature.

Figure 16(b) shows a single resonance (black dots).
The right-hand side of the peak fits very well with the
Lorentzian line shape of Eq. (15) (solid line), while the
left-hand side shows a deviation from the Lorentzian fit.
The only free fit parameter is the full width at half maxi-
mum, FWHM55 meV. From the maximum current and
the width of the resonance we find with Eq. (15) a tun-
nel coupling ut12u'0.2 meV and a tunneling rate between

the right dot and the right lead G3'10 meV. We note
that for a full characterization of all parameters in Eq.
(15) one needs data at both positive and negative bias
voltages. For comparison, we have fitted the resonance
with a thermally broadened resonance I(DE)
;cosh(DE/2kT)22 (dashed line) (Beenakker, 1991).
The top is fit very well for T534 mK, but there is a large
deviation in both tails of the resonance. On the right-
hand side, the deviation can be accounted for by the
Lorentzian broadening. At the left-hand side, the devia-
tion consists of two components. The first one is the
same Lorentzian broadening as observed on the right-
hand side. The second one, however, is an asymmetric
contribution only occurring on this side of the reso-
nance. The asymmetric contribution to the current ap-
pears at the side where an electron tunnels from a
higher to a lower electrochemical potential. Upon re-
versing the sign of V , we find that the asymmetry ap-
pears at the other side of the resonance. As shown in
Fujisawa et al. (1998), this is due to inelastic tunnel pro-
cesses. In such a process, an electron can tunnel inelas-
tically and spontaneously emit its energy as a photon or
a phonon.

IV. MAGNETIC FIELD SPECTROSCOPY

In this section we measure the energy evolution ver-
sus magnetic field B of energy states near the Fermi
energy EF in the double quantum dot shown in Fig. 6(a).
The magnetic field is applied perpendicularly to the
plane of the dots. As a function of B and the voltage on
gate 3, Vg3 , we observe crossings and anticrossings be-
tween Coulomb peaks. The resolution is high enough
that avoided crossings in the spectrum of a quantum dot
can be resolved (Oosterkamp, Godijn, et al., 1998). To
our knowledge, these are the only existing data reveal-
ing intradot level repulsion in a quantum dot system.

The experiments are performed in the weak-coupling
limit, such that mixing between quantum states in one
dot with states in the other dot or in the leads is negli-
gible (see Sec. V). We sweep the gate voltages over
small ranges and focus on a particular charging transi-
tion; i.e., transitions between (N111,N2) and (N1 ,N2

11) only. Since we discuss only one transition at a time,
we can, for simplicity, leave out the charging energies
from the discussion and concentrate on the alignment of
discrete energy levels.

Using the notation introduced in Sec. II.A.2, we label
the accompanying electrochemical potentials
m1,n(N1 ,N2) for dot 1 and m2,n(N1 ,N2) for dot 2 (or
simply m1(2),n). The condition for tunneling between the
lowest possible states, i.e., from ground state to ground
state, is m1,0(N111,N2)5m2,0(N1 ,N211). To tunnel
from the first excited state of dot 1 to the ground state of
dot 2, the condition becomes m1,1(N111,N2)
5m2,0(N1 ,N211). The changes in the electrochemical
potential m1,n112m1,n and m2,n112m2,n are typically
;150– 200 meV.

Figure 17(a) shows a typical set of current traces for
different magnetic fields while sweeping Vg3 . The bias

FIG. 16. (a) Schematic electrochemical potential diagram, in
which dot 1 acts as a low-temperature-pass filter for dot 2. (b)
Enlarged resonance measured in a device of the design shown
in Fig. 6(a), using a bias voltage of 400 meV. The data points
(black dots) are fit to a Lorentzian line shape (solid line). For
comparison we plot a thermally broadened resonance with a
fitted temperature T534 mK (dashed line) (from van der
Vaart et al., 1995).
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voltage V51.2 mV is such that several discrete levels in
each dot are between the electrochemical potentials of
the two leads. This is similar as in the inset to Fig. 13,
but now measured for different magnetic fields. The
change in Coulomb peak position versus B ,
DVg3

peak(DB), is proportional to the difference in the B

evolution of the electrochemical potentials m1,n(B) and
m2,n(B),

Dm~DB !5@m1,n~B1DB !2m1,n~B !#

2@m2,n~B1DB !2m2,n~B !#

5aDVg3
peak~DB !, (16)

where a is the conversion factor between Vg3 and the
electrostatic potential of dot 2. Note that if the states
m1,n(B) and m2,n(B) have the same B dependence, the
Coulomb peak position does not change. The change of
m1,n(B) and m2,n(B) with B is dominantly caused by the
B dependence of the quantized energy states in the re-
spective dots. Depending on the angular momentum and
spin of a state, its energy can either increase or decrease
with B . The energy resolution of Dm(DB) is ;5 meV,
corresponding to kBT;50 mK.

The data in Fig. 17(a) contain several interesting fea-

tures. First, we observe crossings between different
peaks as well as anticrossings (two are indicated by ar-
rows). Second, pairs of peaks exhibit the same B depen-
dence. These are general features that we observe at
several charge transitions (that is, for several choices of
N1 ,N2). Independent measurements on one of the indi-
vidual dots also show states evolving in pairs below B
;0.5 T. The observed pairing and (anti)crossing of the
Coulomb peaks in the double dot experiments can then
be explained as shown schematically in Fig. 17(b). Sup-
pose two levels in one dot have an anticrossing in their
B dependence. Then two paired levels in the other dot,
having the same B dependence, both probe this anti-
crossing. At the points where two Coulomb peaks actu-
ally cross, two levels in dot 1 align with two levels in dot
2 simultaneously (though only one electron can tunnel
at a time, due to Coulomb blockade).

For the interpretation of the data as schematically
given in Fig. 17(b), tunneling through the excited state
of dot 1 is a key ingredient. If dot 1 would relax to its
ground state much faster than the tunnel rate through
the barriers after an electron has tunneled onto it via
m1,1 , we would only observe the lower anticrossing pair
in the right-most diagram of Fig. 17(b). However, our
data suggest a relatively slow relaxation rate between
the excited and ground state of dot 1. Recent experi-
ments on (single) quantum dots have shown that indeed
relaxation times can be of the order of ms or longer
when relaxation to the ground state involves electron
spin flips (Fujisawa et al., 2001, 2002). The condition for
the relaxation rate from the excited state to the ground
state in dot 2 is more subtle. The electron can tunnel
onto dot 2 via m2,1 and leave dot 2 either directly or after
a relaxation process from m2,1 to m2,0 has occurred (this
second possibility requires m2,0>mR). For transport
through the double dot, the relaxation rate in dot 2 does
not necessarily need to be slow as well in order to see
both pairs of anticrossing levels. However, if the relax-
ation rate would be too high, the anticrossing as shown
in the middle diagram of Fig. 17(b) would smear out.
The constant level spacing m1,12m1,0 in dot 1 [see left
diagram of Fig. 17(b)] could be explained by an ex-
change energy, e.g., when the upper level would corre-
spond to a spin singlet state and the lower level to a spin
triplet (Tarucha et al., 2000).

V. MICROWAVE SPECTROSCOPY

In this section we present microwave (0–50 GHz)
spectroscopy experiments (Fujisawa and Tarucha, 1997a,
1997b; Kouwenhoven et al., 1997; Oosterkamp et al.,
1997) on double quantum dots for different coupling
and microwave power regimes (Oosterkamp, Fujisawa,
et al., 1998; van der Wiel et al., 1999). We use photon
assisted tunneling (PAT) processes, as described below
in Secs. V.B and V.C, to measure the energy differences
between states in the two dots of the devices shown in
Figs. 6(a) and (b). Depending on the strength of the
interdot coupling, the two dots can form ioniclike (van
der Vaart et al., 1995; Blick et al., 1996; Livermore et al.,

FIG. 17. (a) Current through the double dot sweeping the volt-
age on gate 3, Vg3 , at different magnetic fields, B . The curves
have been given an offset for clarity. From the left-most to the
right-most curve, B increases from 300 to 600 mT in 3-mT
increments. The conversion factor a between Vg3 and the elec-
trostatic potential of dot 2, a5263 meV/mV, is determined
through independent measurements from which we deduced
the energy scale, indicated by the vertical arrow in the lower
left corner (a does not change in this magnetic-field range). (b)
The first two diagrams show how levels may evolve in each of
the two dots as a function of B . When these four levels are
scanned along each other by sweeping Vg3 , this results in peak
positions as sketched in the right-most diagram.
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1996; Fujisawa and Tarucha, 1997a, 1997b) or covalent-
like bonds (Blick et al., 1998; Oosterkamp, Fujisawa,
et al., 1998; van der Wiel et al., 1999). In the first case,
the electrons are localized on individual dots, while in
the second case, the electrons are delocalized over both
dots. The covalent binding leads to a bonding and anti-
bonding state, whose energy difference is proportional
to the tunneling strength between the dots.

For the microwave experiments we make use of a co-
axial cable. From room temperature to the 1-K pot, a
0.085-in. semirigid Be-Cu (inner and outer conductor)
coaxial cable is used. From the 1-K pot to the mixing
chamber, we use a 0.085-in. semirigid stainless-steel (in-
ner and outer conductor) coax. From the mixing cham-
ber to the sample, various types of low attenuation semi-
rigid or flexible coaxial cable can be used, since here the
thermal conductivity is no longer a constraint. Finally,
the coaxial cable is capacitively coupled (typically
through a 10-pF capacitor) to one of the gate electrodes
of the sample, usually the center gate. This gate is ca-
pacitively coupled to both dots, and hence part of the
incident power can generate a microwave oscillating po-
tential across the center barrier.

A. Two-level systems

When electrons can tunnel coherently from one dot to
the other at appreciable rates, the eigenstates become
delocalized, extending over the entire double dot sys-
tem. In principle, these are quantum-mechanical many-
body states of the two coupled dots. It is very difficult to
give a full description of such a many-body system. We
discuss here the elementary case of a quantum-
mechanical two-level system, which is useful for grasp-
ing the physics of a tunnel-coupled double dot. Basically,
we only take into account the topmost occupied level in
each dot and neglect the interaction with electrons in
lower energy levels. This simplified picture can be justi-
fied as long as transitions occur between the ground
states of both dots, and has been fruitfully applied in
literature on double quantum dots before (Stafford and
Wingreen, 1996; Stoof and Nazarov, 1996; Hazelzet
et al., 2001).

We first consider a double dot consisting of two well-
separated dots, described by a total Hamiltonian H0

(Cohen-Tannoudji et al., 1977), with eigenstates uf1&
and uf2& , and eigenenergies E1 and E2 [Fig. 18(a)],

H0uf1&5E1uf1&,

H0uf2&5E2uf2&. (17)

We then introduce a finite tunnel coupling between the
levels in both dots described by the Hermitian matrix T,
which for simplicity (Cohen-Tannoudji et al., 1977) we
assume to be purely nondiagonal,

T5S 0 t12

t21 0
D , t125t21* , t215ut21ue

iw. (18)

One obtains a new Hamiltonian, H5H01T, with delo-
calized eigenstates ucB& (bonding state) and ucA& (anti-
bonding state), and eigenvalues EB and EA ,

HucB&5EBucB& ,

HucA&5EAucA&. (19)

The new eigenvalues can be expressed in terms of the
eigenvalues of the uncoupled double dot and the tunnel
matrix elements as follows:

EB5EM2A1

4
~DE !2

1ut12u
2,

EA5EM1A1

4
~DE !2

1ut12u
2, (20)

where EM5
1
2 (E11E2) and DE5E12E2 and ut12u

5ut21u. The eigenstates ucB& and ucA& in the basis of uf1&
and uf2& are written

ucB&52sin
u

2
e2iw/2uf1&1cos

u

2
e iw/2uf2&,

ucA&5cos
u

2
e2iw/2uf1&1sin

u

2
e iw/2uf2& (21)

with tan u52ut12u/DE . Figure 18(b) shows the eigenener-
gies of the coupled two-level system as function of DE .
The renormalized energy difference DE* is given by

DE*5EA2EB5A~DE !2
1~2ut12u!

2. (22)

Note that the effect of the coupling is stronger for small
DE , i.e., close to the crossing of the unperturbed ener-

FIG. 18. Schematic diagrams of a two-level system. (a) Unper-
turbed energy levels E1 and E2 (solid lines), and energy levels
belonging to the bonding state, EB , and the antibonding state,
EA . (b) Energies EB and EA versus the energy difference
DE5E12E2 . For vanishing coupling (ut12u'0), the levels
cross at the origin (dashed straight lines). For nonzero cou-
pling, an ‘‘anticrossing’’ occurs: the curves belonging to EB and
EA as function of DE are branches of a hyperbola (solid lines)
whose asymptotes are the unperturbed levels (see also Cohen-
Tannoudji et al., 1977).
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gies E1 and E2 . Where E1 and E2 cross (DE50), we
have an anticrossing of EA and EB , with EA2EB

52ut12u, the minimum bonding-antibonding energy dif-
ference. For large DE , the eigenenergies of the coupled
double dot approach the eigenenergies of the uncoupled
dots, E1 and E2 . The general solution of the time-

dependent Schrödinger equation can be written in the
form

uc~ t !&5le2iEAt/\ucA&1me2iEBt/\ucB& . (23)

With Eq. (21), uc(t)& can be expressed in terms of uf1&
and uf2& . Since uf1& and uf2& are not eigenstates of the
total Hamiltonian H, they are no longer stationary
states. If the system is in state uf1& at time t

50 @ uc(0)&5uf1&] the probability P12(t) of finding it in
the state uf2& at time t is

P12~ t !5u^f2uc~ t !&u2

5

4ut12u
2

4ut12u
2
1~DE !2 sin2FA~DE !2

1~2ut12u!
2

t

2\
G .

(24)

Equation (24) describes a coherent charge oscillation in
the double dot system.

B. Photon assisted tunneling in weakly coupled dots

If the interdot coupling is weak, electrons are strongly
localized on the individual dots. In Sec. II.A.2 we saw
that we expect a resonant current through the double
dot system if mL>m15m2>mR . If we represent a
weakly coupled double dot by a two-level system, we
need the discrete energy levels E1 and E2 to align within
the bias window. We will only consider the discrete,
quantum contribution to the electrochemical potentials
and therefore (see Sec. II.A.2) m15E1 and m25E2 .

An additional time-varying potential Vac cos(2pft)
can induce inelastic tunnel events when electrons ex-
change photons of energy hf with the oscillating field
(frequency f is typically 1–75 GHz in our experiments).
This inelastic tunneling with discrete energy exchange is
known as photon assisted tunneling (PAT) (Kouwen-
hoven, Jauhar, McCormick, et al., 1994; Kouwenhoven,
Jauhar, Orenstein, et al., 1994; Blick et al., 1995). PAT
through a single quantum dot with well resolved discrete
0D-states is reviewed in van der Wiel et al. (2002). PAT
is an invaluable spectroscopic tool for studying the en-
ergy spectra of quantum dots. A theoretical study of
PAT in double dots is given in Stoof and Nazarov (1996)
and Hazelzet et al. (2001). A voltage drop Vac cos(2pft)
across a tunnel barrier modifies the tunnel rate through
the barrier as (Tien and Gordon, 1963; Kouwenhoven,
Jauhar, McCormick, et al., 1994)

G̃~E !5 (
n52`

`

Jn
2~a !G~E1nhf !. (25)

Here n50,61,62, . . . , and G̃(E) and G(E) are the tun-
nel rates at energy E with and without an ac voltage,
respectively. Jn

2(a) is the square of the nth-order Bessel

function of the first kind, evaluated at a5eVac /hf ,
which describes the probability that an electron absorbs
(n.0) or emits (n,0) n photons of energy hf . Thus
the effect of the interaction between a single-electron
state with a classical, oscillating field is that the energy
state E is split in a set of states E1nhf (see inset to Fig.
19). The power of PAT as a spectroscopic tool lies in the
fact that PAT can only take place if the energy differ-
ence DE equals an integer number times the photon
energy hf : DE5nhf , see Fig. 20. For the multiple pho-
ton processes (unu.1) to take place, the microwave
power needs to be sufficiently large.

To use PAT as a spectroscopic tool, we can make use
of the configurations shown in Fig. 20. In the pumping

FIG. 19. Squared Bessel functions of the first kind, Jn
2(a), for

n50, 61, 62. The inset schematically shows the development
of sidebands of the original energy as a consequence of the
microwave field. A positive (negative) n corresponds to the
absorption (emission) of n photons during the tunnel process.
Elastic tunneling corresponds to n50.

FIG. 20. Schematic electrochemical potential diagrams of pho-
ton assisted tunneling (PAT) in a weakly coupled double quan-
tum dot. As we only consider the discrete, quantum contribu-
tion to the electrochemical potentials, m15E1 and m25E2 .
The upper diagrams (a) and (b) show absorption of a photon
with energy hf5DE in the so-called pumping configuration.
Although V50, an electron can tunnel from left to right
through the dot (a), or vice versa (b). The lower diagrams
show absorption (c) and (stimulated) emission (d) of a photon
with energy hf5DE in the large bias configuration.
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configuration (Stafford and Wingreen, 1996; Brune et al.,
1997), the double dot is operated at zero-bias voltage.
Absorption of a photon with energy hf5DE leads to
pumping of an electron from left to right [Fig. 20(a)] or
vice versa [Fig. 20(b)]. The advantage of this configura-
tion is that relaxation due to spontaneous emission may
occur, but it does not affect the current. Figure 21 sche-

matically shows how the honeycomb unit cell of Fig. 5
changes in the presence of a microwave field.

Alternatively, the double dot can be operated in the
large bias regime as depicted in Figs. 20(c) and (d). In
this regime, in the case of weak coupling with ut12u
!DE , hf , \GL ,R , the dc PAT current is given by (Stoof
and Nazarov, 1996)

IPAT5eut12u
2GR (

n52`

`

Jn
2~a !Y S 1

4
GR

2
1~n2pf2DE/h !2D . (26)

The current is composed of a number of satellite peaks,
separated by the photon energy hf and all with width
GR . Note that the satellite peaks can become of the
same order of magnitude as the main resonance, but
that they have a smaller width than the main resonance.
The PAT experiment described below is performed on a
weakly coupled dot in the large bias regime.

The double dot, shown in Fig. 6(a), is tuned such that
only one level in each dot contributes to electron trans-
port. The gate voltages are used to shift the level in dot
1 and in dot 2. The resonance in the lowest trace in Fig.
22(a) arises from the alignment of the two levels. The
other traces are measured while applying a microwave
signal. The satellite resonances are due to PAT processes
which involve the emission (left satellite peak) or ab-
sorption (right satellite peak) of one photon. Figure
22(b) shows that the energy separation of the satellite
peaks from the main peak DE depends linearly on fre-

quency between 1 and 50 GHz. As we will discuss below,
this linearity implies that the tunnel coupling is negli-
gible. The electrons are localized on the individual dots
and they have an ionic bonding. The line proportional to
2hf is taken from data at higher microwave powers
where electrons absorb or emit two photons during tun-
neling.

As the microwave power is increased, more satellite

FIG. 21. Schematic of a double quantum dot stability diagram
in the weak coupling and linear transport regime irradiated by
microwaves with frequency f . Next to the triple points, finite
current is measured along the PAT lines at a distance dPAT

from the line m1(1,0)5m2(0,1), where DE5hf . The various
PAT processes are illustrated by the electrochemical potential
diagrams.

FIG. 22. Weakly coupled double quantum dot in the low mi-
crowave power regime. (a) The upper schematic pictures illus-
trate three configurations of the discrete energy level in the left
dot relative to the level in the right dot (thick solid lines). The
electrochemical potentials of the leads are indicated by thinner
solid lines. The bottom curve shows the current as a function
of the voltage on gate 1, Vg1 [see Fig. 6(a)], for source-drain
voltage, V5500 mV without applying microwaves. A single
resonance occurs when two levels align. The other curves,
which have been offset for clarity, show the current when mi-
crowaves with frequency f from 4 to 10 GHz are applied. Now,
two additional satellite resonances occur when the two levels
are exactly a photon energy apart (their positions are high-
lighted by black dots). The corresponding photon-assisted tun-
neling processes are illustrated in the upper diagrams. (b) Dis-
tance between main resonance and first two satellites as a
function of the applied frequency from 1 to 50 GHz. The dis-
tance is transferred to energy through DE5kDVg1 where k is
the appropriate capacitance ratio for our device that converts
gate voltage to energy. The agreement between data points
and the two solid lines, which have slopes of h and 2h , dem-
onstrates that we observe the expected linear frequency de-
pendence of the one- and two-photon processes.

15van der Wiel et al.: Electron transport through double quantum dots

Rev. Mod. Phys., Vol. 75, No. 1, January 2003



peaks appear corresponding to the absorption of mul-
tiple photons, which are observed up to n511 (see Fig.
23). A high power microwave field strongly perturbs
tunneling. This is reflected by the nonlinear dependence
of the peak heights on microwave power. In the right
inset to Fig. 23 the peak heights of the main peak and
the first four photon satellite peaks are shown, which
agree well with the expected squared Bessel function
behavior shown in Fig. 19.

C. Photon assisted tunneling in strongly coupled dots

The large bias configuration of Figs. 20(c) and (d) was
successfully employed to study PAT in a weakly coupled
double dot system. For the microwave spectroscopy of a
strongly coupled double dot we will make use of the
pumping configuration shown in Fig. 24. With increasing
the coupling between the dots, the spontaneous emis-
sion rate from the higher level to the lower one in-
creases as well. The advantage of the pumping configu-
ration is that these processes can lower the amount of
current, but they do not smear out the resonances. The
experiments for strong interdot coupling are performed
on the device shown in Fig. 6(b).

Figure 24(a) schematically shows the bonding and an-
tibonding states in the double dot for DE50. When mi-
crowave radiation is applied with a frequency such that
hf5DE*5EA2EB52ut12u, electrons are pumped from
the left lead to the right lead and vice versa. Since the
weight of the bonding and antibonding wave function is
distributed equally over both dots [see Fig. 24(a)], there
is no net current. However, if we detune the levels
(uDEu.0) the weight gets distributed asymmetrically as
shown in Figs. 24(b) and (c) and a net current is gener-
ated by applying microwave radiation matching hf
5DE*. Note that for frequencies hf,2ut12u no PAT is
possible.

FIG. 23. Weakly coupled double quantum dot in the high mi-
crowave power regime. The main graph shows current versus
gate voltage. The dashed curve is without microwaves and con-
tains only the main resonance. The solid curves are taken at 8
GHz for increasing microwave powers resulting in an increas-
ing number of satellite peaks. At the right side of the main
peak, these correspond to photon absorption. V5700 mV and
the photon energy hf532 meV at 8 GHz. At the highest power
we observe 11 satellite peaks, demonstrating multiple photon
absorption. Left inset: schematic diagram showing multiphoton
absorption. Right inset: height of the first four satellite peaks
as a function of the microwave amplitude. The observed de-
pendence shows the expected Bessel function behavior given
in Fig. 19.

FIG. 24. Schematic electrochemical potential diagrams of PAT
in a strongly coupled double quantum dot in the pumping con-
figuration. The diagrams show the bonding state with wave
function cB and energy EB (lower dashed line), and the anti-
bonding state with wave function cA and energy EA (upper
dashed line) in combination with the eigenenergies E1 and E2

of the weakly coupled double dot (solid lines). (a) E15E2

50, DE*5EA2EB52ut12u. Irradiation with photons with en-
ergy hf52ut12u leads to PAT, but the net current through the
double dot remains zero. (b) By lowering 2ueuw1 and increas-
ing 2ueuw2 the weight of the wave functions is redistributed
such that net electron transport from left to right occurs. (c) By
increasing 2ueuw1 and lowering 2ueuw2 the weight of the wave
functions is redistributed such that net electron transport from
right to left occurs.

FIG. 25. Schematic of a double quantum dot stability diagram
in the strong coupling and linear transport regime irradiated
by microwaves with frequency f . The bonding and antibonding
states are assumed to be singly occupied. At the solid hyper-
bolic lines either mB or mA equals zero, marking the separation
of charge domains. At the dashed hyperbolic lines either mB or
mA equals zero as well, but electron transport is blocked. The
triple points of the weakly coupled double dot (d and s) de-
velop into the black and white crescent, respectively. At the
position of the black and white square no current occurs, as
explained in the text. At a distance dPAT from the dotted line
connecting the crescents, DE*5hf and PAT occurs. The vari-
ous configurations of the electrochemical potentials are also
illustrated.
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Multiphoton processes occur if the condition DE*

5nhf (unu.1) is met. Besides allowing for these higher-
order photon processes, a high power microwave field
also renormalizes the tunnel coupling to a smaller value.
The energy splitting DE* now becomes (van der Wiel
et al., 1999)

DE*5A~DE !2
1@2J0~a !ut12u#

2. (27)

An electron is excited from the bonding to the antibond-
ing state if the condition hf5DE* is fulfilled, or con-
versely

DE5A~hf !2
2@2J0~a !ut12u#

2. (28)

Figure 25 schematically shows the stability diagram
for a strongly coupled double dot in the presence of a
microwave field. Here we assume that the bonding and
antibonding states can only be occupied by a single elec-
tron. In other words, we assume spinless electrons. This
assumption is motivated by recent observations that the
level spacing in lateral quantum dots appears to be
roughly uniform, without even-odd modulation ex-
pected due to spin degeneracy of electron states (Stew-
art et al., 1997; Fujisawa et al., 2001). The triple points of
the weakly coupled double dot, denoted by d and s,
develop into a black and a white crescent, respectively.
The length of these crescents increases with ut12u.

Moving along the dotted line connecting the crescents
from lower left to upper right, first the bonding state
aligns with the electrochemical potentials of the leads
(at the black crescent). Current through the double dot
is possible via the electron transfer process of Fig. 2(d).
At the black square, the antibonding state aligns with
the leads. However, current is blocked, since an extra
electron is already added to the double dot and the
charging energy ECm is not available yet. At the white
square, the electrochemical potential for adding the sec-
ond electron to the bonding state aligns with the leads.
As we assumed single occupation of the delocalized
states, current is blocked here as well. When arriving at
the white crescent, the electrochemical potential for
adding the second electron to the double dot in the

FIG. 26. Strongly coupled double dot in the low-power regime.
(a) Current through the double dot as function of the energy
difference between the level in the left and the right dot. The
current trace is taken from the stability diagram in (b) at the
position indicated by the arrow. The diagrams depict the dis-
crete levels E1 and E2 in the two dots for the case that the
coupling is weak (solid lines) and the bonding and antibonding
states in the case of strong coupling (dotted lines). The PAT
processes leading to a negative (left diagram) and a positive
current (right diagram) are indicated. (b) Gray-scale plot of
the current through the double dot versus the energy level
difference DE and the total energy E t . The bias voltage is 6
mV and the applied microwave frequency is 16 GHz such that
hf566 meV. The dashed lines divide the stability diagram in
four regions of stable electron numbers. In between the two
triple points clear features of photon-assisted tunneling are
seen. The black arrow indicates the position of the trace shown
in (a).

FIG. 27. Measured pumped current through the strongly
coupled double dot. Gates GL and GR are swept simulta-
neously in such a way that we vary the energy difference DE .
The different traces are taken at different microwave frequen-
cies, and are offset such that the right vertical axis gives the
frequency. The main resonance is absent as we have set V

50. The satellite peaks typically have an amplitude of 0.5 pA.
For weakly coupled dots the satellite peaks are expected to
move linearly with frequency, thereby following the straight
dashed lines. In contrast, we observe that the satellite peaks
follow the fitted dotted hyperbola hf5@DE2

1(2ut12u)
2#1/2 us-

ing the coupling ut12u as a fitting parameter.
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(empty) antibonding state becomes available. This en-
ables the hole transfer process of Fig. 2(d).

The black bars at a distance dPAT from the dotted line
connecting the crescents denote the places where DE*

5hf and PAT occurs for small microwave power. Note
that PAT is only possible if the photon energy exceeds
the coupling energy, hf>2ut12u. Depending on the level
configuration, pumping results in a negative or positive
contribution to the current, as shown in Fig. 26(a) (here
we choose I.0 for an electron moving from left to
right). Figure 26(b) shows a part of the corresponding
stability diagram between two triple points, clearly
showing the energy regions of constant charge and extra
transport lines due to PAT.

Figure 27 shows measured current traces as a function
of the uncoupled energy splitting DE , where from top to
bottom the applied microwave frequency is decreased
from 17 to 7.5 GHz in 0.5-GHz steps. At the highest
frequencies, the distance between the pumping peaks is
close to 2DE . However, the peak distance decreases
faster than linearly as the frequency is lowered; in fact
the peaks follow the dotted hyperbola rather than the
dashed straight lines. The distance goes to zero when the
frequency approaches the minimum energy gap between
bonding and antibonding states, hf52ut12u. The coupling
between the dots can be decreased by changing the gate
voltage on the center gate to more negative values, or by
applying a magnetic field perpendicular to the sample.
In Fig. 28(a) we plot half the spacing between the posi-

tive and negative satellite peaks as a function of fre-
quency. The microwave power is kept as low as possible
in order to meet the condition eVac!hf . In that case

J0
2(a)'1 and the general relation Eq. (28) reduces to

DE5A~hf !2
2~2ut12u!

2. (29)

Different symbols correspond to different center gate
voltage settings and magnetic fields. The solid lines are
fits to Eq. (29). The good agreement with Eq. (29) dem-
onstrates the control over the formation of a covalent
bonding between the two dots and that the condition
eVac!hf is satisfied.

We now discuss the case eVac*hf . As can be seen in

Fig. 19, J0
2(a) deviates from 1 in this case and cannot be

neglected as before (van der Wiel et al., 1999). In Fig.
28(b) we show the power dependence for the case of a
coupling of 60 meV and a microwave frequency of 16
GHz, as indicated by the circle in Fig. 28(a) (similar
results have been obtained for other couplings and mi-
crowave frequencies). The inset to Fig. 28(b) shows the
measured PAT current as a function of DE for different
powers. The absolute value of the microwave power at
the position of the double quantum dot is unknown.
Therefore we use a relative microwave power scale,
which is expressed in terms of the attenuation of the
microwave source signal. The positions of the PAT
peaks at the lowest power are indicated with two dashed
lines. Increasing the microwave power from the lowest

FIG. 28. (a) Half the spacing in gate voltage between the positive and negative satellite peaks as a function of frequency for
eVac!hf . Gate voltage spacing has been transferred to energy difference DE [see also figure caption to Fig. 22(b)]. Different
curves correspond to different tunnel couplings ut12u. Solid lines are theoretical fits to Eq. (29). In the limit of weak coupling, this
reduces to DE5hf , which is indicated by the dashed line. The resulting values for 2ut12u are given in the figure. The coupling is
varied by applying different voltages to the center gate or by changing the magnetic field (l, B53.3 T; j, B52.2 T; other curves,
B50 T). The circle marks a coupling of 60 meV and frequency of 16 GHz (dotted line). (b) Strongly coupled double dot
(2ut12u560 meV) in the high microwave power regime for f516 GHz [along dotted line in (a)]. The inset shows the measured PAT
current as a function of DE for different powers. The positions of the PAT peaks at the lowest power are indicated with two
dashed lines. The PAT peak separation becomes larger for increasing microwave power. For higher powers, multiphoton processes
can also take place, which result in extra current peaks. In the main part, half the PAT peak separation in energy as function of the
relative microwave power is shown. The solid line is a fit to Eq. (28), f516 GHz, 2ut12u560 meV. Because of the relative power
scale, the fitting curve has been adjusted horizontally to obtain the best fit.
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value, the PAT peak separation becomes larger, which is
in agreement with Eq. (28). For higher powers, multi-
photon processes can also take place, which result in
extra current peaks. Figure 28(b) shows half the PAT
peak separation energy as function of the relative micro-
wave power. The solid line is a fit with Eq. (28), f
516 GHz, 2ut12u560 meV. Because of the relative
power scale, the fitting curve has been adjusted horizon-
tally to give the best fit. We thus see that the microwave
power effectively reduces the coupling between the dots.
This can be explained by the fact that the levels spend
on average less time in alignment. The reduction of the
coupling is further illustrated by the vertical dotted line
in Fig. 28(a) at f516 GHz. At 233 dB the energy sepa-
ration equals hf , which implies that the higher micro-
wave power has effectively reduced the coupling be-
tween the dots. We can obtain an estimate of the power
by noting that J0

2(a) has its first zero for a5eVac /hf

52.4 such that here Vac50.16 mV.

VI. CONCLUSIONS

By coupling two quantum dots in series, we obtain a
system with fundamentally different behavior and possi-
bilities in comparison to a single quantum dot. In this
review we have discussed the suitability of a double
quantum dot system in determining the intrinsic lifetime
of quantum states and in probing intradot level repul-
sion. Next to the added value as a spectroscopic instru-
ment, the double dot manifests itself as an artificial mol-
ecule. By changing the interdot coupling, we have been
able to tune the double dot from an ioniclike bonded to
a covalentlike bonded molecule. We note that many
phenomena discussed in this review (e.g., resonant tun-
neling, photon-assisted tunneling) have their direct ana-
log, and have been experimentally studied, in supercon-
ducting charge systems.

Now that the ability to create and manipulate double
quantum dots has been shown, the next challenge lies in
the study and time control of coherent phenomena in
these systems. The experiments described in this review
mainly deal with the behavior of the electron’s charge in
a double quantum dot. However, the electron spin deco-
herence time is expected to be much longer than the
charge decoherence time in quantum dot systems, which
is at most a few ns (Huibers et al., 1998; Oosterkamp,
Fujisawa, et al., 1998). Based on estimates for the deco-
herence time T2* of an ensemble of electrons in GaAs
(Kikkawa et al., 1997; Kikkawa and Awschalom, 1998;
Awschalom and Kikkawa, 1999), the single-electron spin
decoherence time is expected to be on the order of or
larger than 100 ns. Recent theoretical work even pre-
dicts 1–100 ms spin decoherence times (de Sousa and
Das Sarma, 2002).

Future experiments will focus on the role of the elec-
tron spin and its relaxation and decoherence times (T1

and T2 , respectively), being crucial for the proposed
quantum bit schemes based on coupled electron spins in
double quantum dots (Loss and DiVincenzo, 1998). The
relaxation time T1 in quantum dots has been experimen-

tally shown to be as long as 200 ms if the relaxation
involves a spin flip (Fujisawa et al., 2002). The determi-
nation of the spin decoherence time T2 , which is the
most relevant time scale for quantum computing pur-
poses, will be an experimental challenge for the near
future.

We conclude that our work on double quantum dots
so far, in combination with the predictions for the spin
decoherence time in these kinds of systems, forms a
promising point of departure for further study on the
suitability of double quantum dots as quantum coherent
devices.
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APPENDIX: ELECTROSTATIC ENERGY OF QUANTUM

DOTS

In this appendix we derive the electrostatic energy of
a single and double quantum dot system (Pothier et al.,
1992; Ruzin et al., 1992; Dixon, 1998).4 Before address-
ing these specific systems, we briefly discuss the method
followed.5

1. Electrostatics of a system of N conductors

Consider a system consisting of N conductors. A ca-
pacitance can be defined between each conductor and
every other conductor as well as a capacitance from each
of the N conductors to ground. This results in a total of
N(N11)/2 capacitors. The capacitor between node j
and node k has a capacitance c jk and stores a charge
q jk . The total charge on node j is the sum of the charges
on all of the capacitors connected to node j ,

Q j5 (
k50

N

q jk5 (
k50

N

c jk~V j2Vk!. (A1)

4Ruzin et al., have an eror in their Eq. (9), namely, the nu-
merator (2C1C id ij). For i5j , this relation gives (2C1C1)
when it should read (2C1C2), and vice versa.

5For a discussion of the electrostatics of a charging network
see http://qt.tn.tudelft.nl/;hadley/set/electrostatics.html
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Here V j is the electrostatic potential of node j and
ground is defined to be at zero potential, V050. The
charges on the nodes are linear functions of the poten-
tials of the nodes so this can be expressed more com-
pactly in matrix form

QW 5CVW , (A2)

where C is called the capacitance matrix. A diagonal
element of the capacitance matrix C jj is the total capaci-
tance of node j ,

C jj5 (
k50,kÞj

N

c jk . (A3)

An off-diagonal element of the capacitance matrix is mi-
nus the capacitance between node j and node k , C jk

5Ckj52c jk . The electrostatic energy of this system of
conductors is the sum of the electrostatic energy stored
on the N(N11)/2 capacitors and can be conveniently
expressed using the capacitance matrix

U5

1

2
VW •CVW 5

1

2
VW •QW 5

1

2
QW •C

21QW . (A4)

Voltage sources can be included in the network by
treating them as nodes with large capacitances to ground
and large charges on them such that V5Q/C . In this
case, it is numerically difficult to compute the inverse of
the capacitance matrix since it contains large elements.
However, it is not necessary to invert the entire capaci-
tance matrix since the voltages on the voltage sources
are already known. Only the voltages on the other nodes
need to be determined. These voltages can be deter-
mined by writing the relation between the charges and
the voltages as

S QW c

QW
v

D 5S Ccc Ccv

C
vc C

vv

D S VW c

VW
v

D . (A5)

Here QW c and VW c are the charges and the voltages on the

charge nodes, QW
v

and VW
v

are the charges and the volt-
ages on the voltage sources, and the capacitance matrix
has been expressed in terms of four submatrices. The
voltages on the charge nodes are then

VW c5Ccc
21~QW c2Ccv

VW
v
! (A6)

and the electrostatic energy can be calculated with Eq.
(A4).

2. Single quantum dot

We write the total charge Q1 on the dot as the sum of
the charges on all the capacitors connected to the dot
(see Fig. 29)

Q15CL~V12VL!1Cg~V12Vg!1CR~V12VR!

⇒Q11CLVL1CgVg1CRVR5C1V1 , (A7)

where C1 is the total capacitance coupled to the dot,
C15CL1Cg1CR . The capacitance matrix Ccc only has
one element. Using Eq. (A4) and substituting Q1

52(N12N0)ueu, we find

U~N1!5

@2~N12N0!ueu1CLVL1CgVg1CRVR#2

2C1
,

(A8)

where N0 is the number of electrons on the dot when all
voltage sources are zero, which compensates the positive
background charge originating from donors in the het-
erostructure.

3. Double quantum dot

We write the total charge Q1(2) on dot 1(2) as the sum
of the charges on all the capacitors connected to dot 1(2)
(see Fig. 30),

Q15CL~V12VL!1Cg1~V12Vg1!1Cm~V12V2!,

Q25CR~V22VR!1Cg2~V22Vg2!1Cm~V22V1!.
(A9)

We can write this as

S Q11CLVL1Cg1Vg1

Q21CRVR1Cg2Vg2
D5S C1 2Cm

2Cm C2
D S V1

V2
D ,

(A10)

where C25CR1Cg21Cm . The above expression in the
form of Eq. (A6) reads

S V1

V2
D5

1

C1C22Cm
2 S C2 Cm

Cm C1
D

3S Q11CLVL1Cg1Vg1

Q21CRVR1Cg2Vg2
D . (A11)

The electrostatic energy of the double dot system can
now be calculated using Eq. (A4). For the case VL

5VR50 and Q1(2)52N1(2)ueu this becomes

FIG. 29. Network of capacitors and voltage nodes used to cal-
culate the electrostatic energy of a single quantum dot.

FIG. 30. Network of capacitors and voltage nodes used to cal-
culate the electrostatic energy of a double quantum dot.
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U~N1 ,N2!5

1

2
N1

2EC11

1

2
N2

2EC21N1N2ECm

1f~Vg1 ,Vg2!, (A12)

f~Vg1 ,Vg2!5

1

2ueu
$Cg1Vg1~N1EC11N2ECm!

1Cg2Vg2~N1ECm1N2EC2!%

1

1

e2 H 1

2
Cg1

2 Vg1
2 EC11

1

2
Cg2

2 Vg2
2 EC2

1Cg1Vg1Cg2Vg2ECmJ
with

EC15e2
C2

C1C22Cm
2 , EC25e2

C1

C1C22Cm
2 ,

ECm5e2
Cm

C1C22Cm
2 . (A13)
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