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Electronic and optical properties of two-dimensional InSe

from a DFT-parameterized tight-binding model

S. J. Magorrian, V. Zólyomi, and V. I. Fal’ko
National Graphene Institute, University of Manchester,

Booth St E, Manchester, M13 9PL, United Kingdom

We present a tight-binding (TB) model and k · p theory for electrons in monolayer and few-layer
InSe. The model is constructed from a basis of all s and p valence orbitals on both indium and
selenium atoms, with tight-binding parameters obtained from fitting to independently computed
density functional theory (DFT) band structures for mono- and bilayer InSe. For the valence and
conduction band edges of few-layer InSe, which appear to be in the vicinity of the Γ point, we
calculate the absorption coefficient for the principal optical transitions as a function of the number
of layers, N . We find a strong dependence on N of the principal optical transition energies, selection
rules, and optical oscillation strengths, in agreement with recent observations1. Also, we find that
the conduction band electrons are relatively light (m ∝ 0.14 − 0.18me), in contrast to an almost
flat, and slightly inverted, dispersion of valence band holes near the Γ-point, which is found for up
to N ∝ 6.

I. INTRODUCTION

Two-dimensional (2D) crystals are atomically thin
films of van der Waals materials that are stable when
exfoliated from the three-dimensional crystal due to
the weak nature of the interaction holding the individ-
ual layers together2. Examples of such materials in-
clude graphite3, boron nitride4, and transition metal
dichalcogenides5, which have shown that properties of
monolayer and bilayer crystals may strongly differ from
the bulk properties of these layered compounds. Many of
the transition metal dichalcogenides have been shown to
possess optical properties that make them well suited for
use in photodetectors and other optical or optoelectronic
applications6–15.

Another chalcogenide currently emerging as a high po-
tential material for use on optical applications is the lay-
ered hexagonal metal chalcogenide InSe, atomically thin
films of which are possible to fabricate16–21. While in its
bulk form InSe22–36 is a direct gap semiconductor37, its
electronic structure undergoes significant changes upon
exfoliation to few-layer or monolayer thickness, with par-
ticularly interesting optical properties observed in recent
experiments1,38. Density functional theory (DFT) calcu-
lations for single layer crystals of InSe39,40 predict a large
increase in the band gap as compared to bulk crystals,
with the valence band maximum slightly shifted from the
Γ point. Despite being a van der Waals layered material,
bulk InSe has a light effective mass for electrons in the
conduction and valence band across the layers. There-
fore, it is expected that the band gap18,39,41 and related
physical properties of few-layer InSe will exhibit a strong
dependence on the number of layers.

In this work we develop a tight-binding (TB) model
of atomically thin InSe, tracing the dependence of elec-
tronic and optical properties on the number of layers (N)
in the film. We use density functional theory (DFT) to
parametrize the model and apply a scissor correction to
compensate for the underestimation of the band gap. In-

deed, we find that as compared to the majority of other
layered materials with van der Waals coupling between
consecutive layers, which have the out-of-plane electron
mass heavier than the in-plane mass, in InSe this relation
is reversed leading to a strong N -dependence of the band
gap. Also, the stacking of consecutive layers in few-layer
γ-InSe similar to A-B-C stacking in graphite breaks the
mirror-plane symmetry of monolayer InSe, which should
be expected to affect optical selection rules and SO cou-
pling in few-layer InSe.
We use the TB model developed here to predict the

band structure of few-layer InSe, and we develop a k · p
model to predict the optical properties, with the matrix
elements of the momentum operator obtained from the
TB model. We provide estimates for the band edge opti-
cal absorption coefficient as a function of the number of
layers. The paper is structured as follows.
In Section II we discuss the crystal structure of InSe.

In Section III we present the model of monolayer InSe
and in Section IV we expand it to bilayer InSe. In Sec-
tion V we apply the model to few-layer InSe. In Section
VI we present a 4-band k ·p theory model, and we calcu-
late the momentum matrix elements and the band edge
optical absorption in few-layer InSe, which enables us to
interpret the recent experimental results in Ref.1. The
k · p theory in section VI also describes spin-orbit cou-
pling terms in mono- and few-layer InSe.

II. CRYSTAL STRUCTURE AND SYMMETRY

The crystalline structure of monolayer InSe considered
in this study takes the form of hexagonal III-VI chalco-
genides in M2X2 stoichiometry, where M is a metal atom
of group III and X is a chalcogen atom of group VI.
The structure is illustrated in Fig. 1a-c. A unit cell
of the monolayer consists of four ions - one metal and
one chalcogen in each of two sublayers.
The monolayer crystal has point-group symmetry

D3h = C3v ⊗ σh (see Fig. 2) which includes z → −z
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FIG. 1. (Color online) Schematic of InSe illustrating a top view in the xy plane (a) and a side view in the xz plane (b) of the
monolayer structure, indicating inequivalent hoppings included in the tight binding model, top (c) and side (d) views of the
γ-stacked bilayer, and a side view of the trilayer crystal structure (e) with included interlayer TB hoppings indicated. Shaded
region is the unit cell, with * indicating the chosen position of the unit cell origin. The In atoms are marked as M and Se
atoms as X in the figure. The lattice parameters of the monolayer crystal according to the local density approximation39 are
a = 3.953 Å, dMM = 2.741 Å, and dXX = 5.298 Å.

mirror symmetry (M1, or σh reflection). This symmetry
operation effectively swaps the sublayers. From a top-
down view, the crystal exhibits a honeycomb structure
in the xy plane, where A sites are occupied by metal
ions and B sites by chalcogen ions, possessing rotational
symmetry centered at each atomic position (R3, or C3

rotation) and mirror symmetry (M2, or σv reflection) in
the yz plane (and equivalent planes generated by R3).
The Bravais lattice is given by

a1,2 =
a

2
x̂±

√
3a

2
ŷ,

Ri = l1ia1 + l2ia2,

(1)

where l1i and l2i are integers, and the full crystal struc-
ture is given by

RM1i = Ri −
a

4

[

x̂+
ŷ√
3

]

+
dMM

2
ẑ,

RM2i = Ri −
a

4

[

x̂+
ŷ√
3

]

− dMM

2
ẑ,

RX1i = Ri +
a

4

[

x̂+
ŷ√
3

]

+
dXX

2
ẑ,

RX2i = Ri +
a

4

[

x̂+
ŷ√
3

]

− dXX

2
ẑ,

(2)

where M1(2)i/X1(2)i is a In/Se atom in the top (bottom)
sublayer. The structure of γ-InSe is shown in Fig. 1e.
The monolayers are stacked such that chalcogen atoms in
the top layer are directly above the metal atoms in the
layer below, while the chalcogen atoms in the bottom
layer are not directly below the metal atoms in the layer
above. The vector between a chalcogen atom and the
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metal atom directly below it is

−
[

az −
dXX + dMM

2

]

ẑ (3)

while the vectors between a chalcogen atom and the near-
est chalcogen atoms in the layer below are

−
[

az −
dXX + dMM

2

]

ẑ+ ri (4)

where ri (i=1,2,3) are the vectors between nearest-
neighboring M-X pairs in the top sublayer of a mono-
layer. az =8.32 Å is the distance along z between the
central xy plane of each layer. The structure parameters
for monolayer InSe are given in the caption of Fig. 1.
It is important to note here that, due to the stack-

ing, the point symmetry of the material is reduced from
that of the monolayer. Bulk and few-layer γ-InSe exhibit
only C3v symmetry while in the monolayer we have D3h

symmetry. The main difference between the two cases
is that the M1 symmetry of the monolayer is broken by
the stacking when we have more than one layer; this has
important consequences for the optical matrix element,
which is discussed below. In the bulk adjacent mono-
layers are related by 31 and 32 screw axes along z. The
space group symmetry for the bulk crystal is R3m.

III. TB MODEL FOR MONOLAYER INSE

A. Hamiltonian

To describe InSe in a TB model, we construct our basis
from the s and p orbitals of In (group III) and Se (group
VI) atoms, and consider all possible hoppings between
these orbitals up to second-nearest neighbor interactions.
The Hamiltonian takes the form

H =
∑

f

(H0f +Hff +Hff ′) . (5)

where the sum over f = 1, 2 runs over the sublayers in the
model, and f ′ = 2(1) when f = 1(2). Here, H0f contains
terms arising from the on-site energies of the orbitals,
while Hff and Hff ′ describe the hopping interactions
within and between the sublayers, respectively, detailed
below. Motivated by the dominant orbital contributions
in DFT data for bands with energies near the Fermi level,
we start from an atomic orbital basis including s and p
orbitals in the valence shells of M and X atoms. H0f

takes the form

H0f =
∑

i

[

εMsm
†
fismfis +

∑

α

εpαm
†
fipαmfipα

+εXsx
†
fisxfis +

∑

α

εpαx
†
fipαxfipα

]

,

(6)

where the sum in i goes over all unit cells in the crystal,
while α = x, y, z. Parameters εMs and εXs are on-site
energies for the s orbitals of metal and chalcogen ions
respectively, while εMpα and εXpα are on-site energies for

the relevant p orbitals. m
(†)
fis is the annihilation (creation)

operator for an electron in orbital s on ion Mf in unit

cell i. m
(†)
fipα, is an annihilation (creation) operator for a

pα orbital.

Hff contains the hopping terms arising from intra-
sublayer interactions, and is formed of the contributions

Hff = H
(1)
ff +H

(2M)
ff +H

(2X)
ff +H

(3)
ff (7)

where H
(1)
ff includes nearest-neighbor hoppings for M-X

pairs (labeled T(1) in Fig. 1), while H
(2M)
ff and H

(2X)
ff

include hoppings for nearest pairs of like ions (M-M and

X-X), (labeled T(2M) and T(2X)), and H
(3)
ff includes hop-

pings between next-nearest M-X pairs (labelled T(3)).
The contributions are

H
(1)
ff =

∑

<Mfi,Xfj>

[

T (1)
ss x

†
fjsmfis − T

(1)
Ms−Xp

∑

α

R
MfiXfj
α x†fjpαmfis + T

(1)
Mp−Xs

∑

α

R
MfiXfj
α x†fjsmfipα

+
∑

α,β

([

δαβT
(1)
π − (T (1)

π + T (1)
σ )R

MfiXfj
α R

MfiXfj

β

]

(x†fjpβmfipα)
)



+ h.c.

(8)
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H
(2M)
ff =

∑

<Mfi,Mfj>

[

T (2M)
ss m†

fjsmfis − T (2M)
sp

∑

α

R
MfiMfj
α m†

fjpαmfis

+
∑

α,β

([

δαβT
(2M)
π − (T (2M)

π + T (2M)
σ )R

MfiMfj
α R

MfiMfj

β

]

(m†
fjpβmfipα)

)



+ h.c.

(9)

H
(2X)
ff =

∑

<Xfi,Xfj>

[

T (2X)
ss x†fjsxfis − T (2X)

sp

∑

α

R
XfiXfj
α x†fjpαxfis

+
∑

α,β

([

δαβT
(2X)
π − (T (2X)

π + T (2X)
σ )R

XfiXfj
α R

XfiXfj

β

]

(x†fjpβxfipα)
)



+ h.c.

(10)

H
(3)
ff =

∑

<Mfi,Xfj′>

[

T (3)
ss x

†
fj′smfis − T

(3)
Ms−Xp

∑

α

R
MfiXfj′

α x†fj′pαmfis + T
(3)
Mp−Xs

∑

α

R
MfiXfj′

α x†fj′smfipα

+
∑

α,β

([

δαβT
(3)
π − (T (3)

π + T (3)
σ )R

MfiXfj′

α R
MfiXfj′

β

]

(x†fj′pβmfipα)
)



+ h.c.

(11)

where the sum over < Mfi, Xfj > is over nearest-
neighboring M-X pairs within a sublayer, and <
Mfi,Mfj >, < Xfi, Xfj >, and < Mfi, Xfj′ > are over
nearest M-M, X-X and next-nearest M-X pairs respec-
tively. In considering the hoppings between the various s
and p orbitals we have made the two-center approxima-

tion, as set out by Slater and Koster42. T
(1)
ss is the hop-

ping integral for nearest-neighboring s orbitals, T
(1)
Ms−Xp

and T
(1)
Mp−Xs take into account s− p hopping, while T

(1)
π

is the component of p − p hopping where the p orbitals
are parallel to each other and perpendicular to the vec-

tor between the ions (hopping vector) and T
(1)
σ is the

hopping between the components of the p orbitals lying

along the hopping vector. R
MfiXfj
α takes account of the

component of a p orbital along the hopping vector, and
thus has the form

R
MfiXfj
α =

RXfj
−RMfi

|RXfj
−RMfi

| · α̂ (12)

where α̂ is a unit vector along α.
The inter-sublayer hopping is written as

Hff ′ = H
(1)
ff ′ +H

(2)
ff ′ +H

(3)
ff ′ (13)

where

H
(1)
ff ′ =

∑

i

[

T
′(1)
ss m†

f ′ismfis − T
′(1)
sp

∑

α

R
MfiMf′i
α m†

fipαmf ′is

+
∑

α,β

([

δαβT
′(1)
π − (T

′(1)
π + T

′(1)
σ )R

MfiMf′i
α R

MfiMf′i

β

]

(m†
f ′ipβmfipα)

)



 ,

(14)

H
(2)
ff ′ =

∑

<Mfi,Xf′j>

[

T
′(2)
ss x†f ′jsmfis − T

′(2)
Ms−Xp

∑

α

R
MfiXf′j
α x†2jpαm1is + T

′(2)
Mp−Xs

∑

α

R
MfiXf′j
α x†f ′jsmfipα

+
∑

α,β

([

δαβT
′(2)
π − (T

′(2)
π + T

′(2)
σ )R

MfiXf′j
α R

MfiXf′j

β

]

(x†f ′jpβmfipα)
)



+ h.c.

(15)
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H
(3)
ff ′ =

∑

<Mfi,Mf′j>

[

T
′(3)
ss m†

f ′jsmfis − T
′(3)
sp

∑

α

R
MfiMf′j
α m†

fjpαmf ′is

+
∑

α,β

([

δαβT
′(3)
π − (T

′(3)
π + T

′(3)
σ )R

MfiMf′j
α R

MfiMf′j

β

]

(m†
f ′jpβmfjpα)

)



 ,

(16)

B. DFT band structures of monolayer and bulk

InSe and parametrization of monolayer TB model

The DFT data to which we fit and compare the TB
model of InSe in this section are obtained using the LDA
exchange-correlation functional as set out in Ref. 39 for
In2X2 materials. In these calculations the VASP code43

is used to describe the materials in a plane-wave basis.
The cutoff energy for the plane-wave basis is 600 eV and
the vertical separation between repeated images of the
monolayer is set to 20 Å to ensure that any interactions
between them would be negligible. The Brillouin zone is
sampled by a 12× 12 k-point grid.

As semilocal density functional theory underestimates
the band gap, we apply the “scissor” correction δEg to
the DFT energy gaps, as employed before in the studies of
other semiconductors44–49, as follows. A calculation with
the LDA returns the band gap for bulk InSe as 0.41 eV as
compared to the bulk experimental value of 1.40 eV at
low temperature32,50 (1.25 eV at room temperature17).
Hence, we subtract δE0K

g ≈ 0.99 eV from the energies of
all valence band states while keeping the conduction band
energies unchanged for bulk, few-layer, and monolayer
InSe. For optics, this scissor correction is equivalent to
adding δE0K

g to the energies of all interband transitions
(labeled A and B in Fig. 2), which we identify upon
analyzing wave functions in the bands of monolayer and
few-layer InSe (at room temperature, we use δE300K

g ≈
0.84 eV).

In the following we fit the TB model to the scissor
corrected DFT band structure, and call this scissor cor-
rected tight-binding (TB-SC). We do this by applying
a constrained least squares minimization procedure to
the difference between the TB and the scissor corrected
DFT band energies. While the procedure is in princi-
ple straightforward, in practice one must take care, in
particular with the choice of bands to use for the fitting
procedure. For comparison, we also perform a fit to the
original DFT data to obtain a parametrization without
scissor correction (TB).

On diagonalization the model yields 16 bands – 8 even
(symmetric) and 8 odd (antisymmetric) under z → −z.
As one progresses further in energy away from the con-
duction band edge and valence band edge the assump-
tion that s and p orbital contributions dominate begins
to break down, with significant d orbital contributions
at energies far away from the band edges. In addition,
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FIG. 2. (Color online) Comparison between DFT and TB
band structures of monolayer InSe. The TB band structure
fitted to the scissor corrected DFT data (DFT-SC) is plotted
with solid lines (TB-SC), the TB model fitted to the uncor-
rected DFT bands is plotted with dashed lines, and the DFT
bands are plotted with dotted lines. Red lines are z → −z
even bands, blue lines odd bands. Zero of energy set at the
bottom of the conduction band. The left hand axis shows
DFT energies after scissor correction of 0.99 eV (see text),
the right hand axis the raw DFT energies. The lowest con-
duction band (c) and the highest three valence bands (v, v1,
v2) are symmetry assigned according to their symmetry at
the Γ-point, as determined by group theory. The character
table for the irreducible representations of the point group
D3h = C3v ⊗ σh, with the irreps labeled by the names of the
representations of point group C3v with a + or − superscript
denoting the character of the σh reflection, is shown in the
inset. The TB fit to the scissor-corrected band structure is
also shown (solid lines). Vertical lines marked A and B de-
note the principal optical transitions; of these, transition A is
forbidden by symmetry.

the DFT calculation is less accurate in the higher energy
unoccupied bands. We therefore fit the model to 7 DFT
bands - the 5 highest energy valence bands (3 even, 2 odd)
and the 2 lowest energy conduction bands (1 even, 1 odd),
using bands 3-6 of the 8 even model bands, and bands
3-5 of the odd model bands. As our primary purpose is a
good quantitative fit to the valence and conduction band
edges, we give extra weights to these points during the
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FIG. 3. Orbital decomposition for fitted bands for InSe from both DFT data, and fitted model with (TB-SC) and without
(TB) scissor correction. Marker size is proportional to normalized contribution.

fitting procedure. The fit is carried out over a grid of 141
points in k-space covering the irreducible portion of the
Brillouin zone.

Table I presents the parameters obtained in the fit for
InSe with scissor correction taken into account (TB-SC)
and without it (TB) for sake of completeness. Fig. 2
shows the TB band structure (TB-SC) and the DFT data
(DFT-SC) to which the fit was applied for InSe; the TB
band structure without scissor correction (TB) is also
plotted in comparison to the raw DFT data (DFT). The
model gives a good reproduction of the DFT bands, both
with and without scissor correction. Note that slight dif-
ferences can be found between the shape of the fitted
bands when comparing the fit to the raw DFT data and
the scissor corrected bands, and the parameter sets differ
accordingly.

Alongside the energies predicted by our model Hamil-
tonian, it is useful to check the orbital decomposition,
found in the normalized eigenvectors, against that given
by the DFT results. We define Cnk(o) as the coefficient
of the eigenfunction of band n, orbital o, at wave vector
k. Fig. 3 shows the results of such a comparison for
InSe, between the modulus square of the overlap integral
between the DFT wave function and the spherical har-

monics centered on each atom, normalized against the
total of s and p orbitals, and the equivalent |Cnk(o)|2 as
calculated in the TB model. Larger markers indicate a
more dominant contribution. Table II gives the numer-
ical contributions for the conduction band (c (z → −z
odd)), the valence band (v (z → −z even)) and the next
two (twice degenerate) bands just below the valence band
at Γ. We obtain a reasonable qualitative agreement be-
tween the model and DFT results.

C. Spin-orbit coupling

Fig. 4 shows the LDA band structure of the monolayer
with spin-orbit coupling taken into account. The split-
ting is small, particularly so in the region of the Γ-point,
we therefore neglect it in the TB model. In the k · p
theory (see section VI), we include spin-orbit coupling to
quantify how small it is near the Γ-point, and to show
how it is expected to behave at a larger number of layers.
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TABLE I. Fitted parameters (eV) for the TB model of InSe
based on DFT data with (TB-SC) and without (TB) scissor
correction, as shown in Figure 2.

TB-SC TB
εMs -7.174 -7.595

εMpx = εMpy -2.302 -3.027
εMpz 1.248 0.903
εXs -14.935 -15.188

εXpx = εXpy -7.792 -8.045
εXpz -7.362 -7.615

T
(1)
ss 0.168 0.331

T
(1)
Ms−Xp 2.873 2.599

T
(1)
Mp−Xs -2.144 -2.263

T
(1)
π 1.041 0.977

T
(1)
σ 1.691 1.342

T
(2M)
ss -0.200 -0.248

T
(2M)
sp -0.137 -0.113

T
(2M)
π -0.433 -0.561

T
(2M)
σ -1.034 -1.130

T
(2X)
ss -1.345 -1.451

T
(2X)
sp -0.800 -0.843

T
(2X)
π -0.148 -0.110

T
(2X)
σ -0.554 -0.613

T
(3)
ss 0.821 0.793

T
(3)
Ms−Xp 0.156 0.179

T
(3)
Mp−Xs -0.294 -0.323

T
(3)
π 0.003 -0.015

T
(3)
σ -0.455 -0.477

T
′(1)
ss -0.780 -0.518

T
′(1)
sp -4.964 -4.644

T
′(1)
π -0.681 -0.769

T
′(1)
σ -4.028 -4.052

T
′(2)
ss 0.574 0.472

T
′(2)
Ms−Xp -0.651 -0.544

T
′(2)
Mp−Xs -0.148 -0.138

T
′(2)
π 0.100 0.082

T
′(2)
σ 0.343 0.373

T
′(3)
ss -0.238 -0.187

T
′(3)
sp -0.048 -0.065

T
′(3)
π -0.020 -0.052

T
′(3)
σ -0.151 -0.168

IV. BILAYER INSE: INTER-LAYER HOPPING

PARAMETERIZED USING DFT

We now extend the TB model to describe coupling be-
tween consecutive layers in N -layer InSe. For this, we
consider a bilayer and include hops in the z-direction,
XX, XM, and MX as depicted in Fig. 1d. The Hamilto-
nian can be written as

H = H1 +H2 +H1,2 (17)

where H1 and H2 describe the individual monolayers

-3

-2

-1

 0

 1

Γ K M Γ

E
n

e
rg

y
 (

e
V

)

LDA SOC

FIG. 4. LDA band structure of 1L-InSe with spin-orbit cou-
pling taken into account.

comprising the bilayer structure, and H1,2 describes the
interaction between them and can be written as

H1,2 = HX1,M2
+HM1,X2

+HX1,X2
(18)

where each term corresponds to a category of hopping
interactions as labeled in Fig. 1d. The vertical M-X
contribution is

HX1,M2
=

∑

i

[

t(XM)
ss m†

(2)1isx(1)2is

+t
(XM)
Xs−Mp

m†
(2)1ipz

x(1)2is

−t(XM)
Xp−Ms

m†
(2)1isx(1)2ipz

+t(XM)
π

∑

α=x,y

m†
(2)1ipα

x(1)2ipα

−t(XM)
σ m†

(2)1ipz
x(1)2ipz

]

+ h.c.

(19)

The creation and annihilation operators now have ad-

ditional indices for layers and sublayers, e.g. x
(†)
(n)2is an-

nihilates (creates) an electron on layer n (n = 1, 2), atom
X, in sublayer 2, in orbital s. The sum over i runs over
all unit cells in the crystal. We denote inter-layer hop-
ping parameters with a lowercase t. For the other M-X
inter-layer interaction we have
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TABLE II. The relative spherical harmonic character of the plane-wave wave function (modulus square of the overlap integral
between the DFT wave function and the spherical harmonics centered on each atom) on the valence s and p orbitals of In and
Se atoms in monolayer InSe at the Γ-point, in the conduction band (c), the valence band (v), and the two twice degenerate
bands just below the valence band (v1 and v2), as labeled in Fig. 2. The equivalent contribution found in the scissor corrected
TB model is given in square brackets. The Γ-point symmetry classification of the bands is noted in brackets. Atoms are listed
in order of increasing z coordinate. Band energies (in eV) are provided relative to the conduction band edge, where EDFT

is the band energy from DFT and EDFT−SC = EDFT − δE0K
g is the value obtained after applying scissor correction. The

energies corresponding to ~ωA and ~ωB are marked in bold.

c (A−

1 ) v (A+
1 ) v1 (E−) v2 (E+)

EDFT (eV) 0 −1.80 −2.05 −2.13
EDFT−SC (eV) -2.79 -3.04 -3.12
Se1 0.09[0.00]s 0.00[0.01]s 0.22[0.24]px(y) 0.21[0.24]px(y)

0.17[0.22]pz 0.35[0.36]pz
In1 0.23[0.16]s 0.03[0.10]s 0.03[0.01]px(y) 0.04[0.01]px(y)

0.01[0.12]pz 0.12[0.02]pz
In2 0.23[0.16]s 0.03[0.10]s 0.03[0.01]px(y) 0.04[0.01]px(y)

0.01[0.12]pz 0.12[0.02]pz
Se2 0.09[0.00]s 0.00[0.01]s 0.22[0.24]px(y) 0.21[0.24]px(y)

0.17[0.22]pz 0.35[0.36]pz

HM1,X2 =
∑

<i,j>

[

t(XX)
ss x†(2)1jsm(1)2is +

∑

α

R
M(1)2iX(2)1j
α

(

t
(MX)
Mp−Xsx

†
(2)1jsm(1)2ipα

− t
(MX)
Ms−Xpx

†
(2)1jpα

m(1)2is

)

+
∑

α,β

(

δαβt
(MX)
π − (t(MX)

σ + t(MX)
π )R

M(1)2iX(2)1j
α R

M(1)2iX(2)1j

β

)

x†(2)1jpβ
m(1)2ipα



+ h.c.

(20)

while X-X hoppings are included in the form

HX1,X2
=

∑

<i,j>

[

t(XX)
ss x†(2)1jsx(1)2is +

∑

α

R
X(1)2iX(2)1j
α t(XX)

sp

(

x†(2)1jsx(1)2ipα
− x†(2)1jpα

x(1)2is

)

+
∑

α,β

(

δαβt
(XX)
π − (t(XX)

σ + t(XX)
π )R

X(1)2iX(2)1j
α R

X(1)2iX(2)1j

β

)

x†(2)1jpβ
x(1)2ipα



+ h.c.

(21)

where the sums over< i, j > are over nearest-neighboring
X-X pairs and next-nearest-neighboring M-X pairs in ad-
jacent sublayers. The inter-layer interactions included
add 14 parameters to the model. When expressed in ma-
trix form in a k-space basis, the bilayer model gives a
32 × 32 matrix, which we diagonalize to obtain a set of
32 bands.

To obtain the parameters, we fit the TB band struc-
ture to the DFT band structure of bilayer InSe obtained
within the local density approximation. In the DFT cal-
culation the monolayer geometry was kept fixed and the
inter-layer distance set to 8.32 Å, which corresponds to
the experimentally known separation in γ-InSe17. We
search for the ideal set of inter-layer hopping parameters
to achieve the best least squares fit between the two band
structures while keeping the inter-layer hopping parame-

ters obtained in the monolayer model unchanged. In the
monolayer we fitted the model to DFT data for 7 bands
near the Fermi level. In the bilayer these bands split into
subbands forming 14 bands in total, all of which are taken
into account in the fitting procedure. As in the mono-
layer, we fit to the scissor-corrected DFT data, since the
dependence of the optical transition matrix elements on
N is significantly affected by the size of the band gap -
this is explored in detail in appendix C.

The results of the fitting are presented alongside the
DFT data for bilayer γ-InSe in Fig. 5, with the inter-
layer TB parameters given in Table IV. We highlight the
8 bands derived from the monolayer bands c, v, v1, and
v2; we label these c

′, c, v, v1, v
′
1, v2, v

′, and v′2. The zero
of energy is set at the bottom of the conduction band.
We provide the orbital decomposition of the Γ-point wave
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FIG. 5. (Color online) Band structures from DFT (dotted
lines) and TB (solid lines with scissor correction and dashed
lines without it) for bilayer γ-InSe. Zero of energy is set to the
bottom of the conduction band. The left hand axis shows the
scissor corrected DFT energies, the right hand the original
energies. The inset shows a magnified view of the Γ-point
region in the valence band.

functions in Table III.

V. TB MODEL FOR FEW-LAYER INSE: 2D

BANDS AND GAPS

Applying our TB model to few-layer InSe requires the
generalization of the bilayer model as follows. As in the

bilayer, we consider the interactions between the nearest-
neighboring X-X pairs and nearest and next-nearest M-X
pairs on adjacent monolayers. This gives us a Hamilto-
nian of the form

H =

N
∑

n=1

Hn +

N−1
∑

n=1

Hn,n+1 (22)

where N is the total number of layers, Hn is the mono-
layer Hamiltonian on layer n as set out above, andHn,n+1

takes into account inter-layer interactions between adja-
cent layers n and n+ 1. It has the form

Hn,n+1 = HXn,Mn+1 +HMn,Xn+1 +HXn,Xn+1 . (23)

The vertical M-X contribution is

HXn,Mn+1 =
∑

i

[

t(XM)
ss m†

(n+1)1isx(n)2is

+t
(XM)
Xs−Mp

m†
(n+1)1ipz

x(n)2is

−t(XM)
Xp−Ms

m†
(n+1)1isx(n)2ipz

+t(XM)
π

∑

α=x,y

m†
(n+1)1ipα

x(n)2ipα

−t(XM)
σ m†

(n+1)1ipz
x(n)2ipz

]

+ h.c.

(24)

For the other M-X inter-layer interaction we have

HMn,Xn+1
=

∑

<i,j>

[

t(XX)
ss x†(n+1)1jsm(n)2is +

∑

α

R
M(n)2iX(n+1)1j
α

(

t
(MX)
Mp−Xsx

†
(n+1)1jsm(n)2ipα

− t
(MX)
Ms−Xpx

†
(n+1)1jpα

m(n)2is

)

+
∑

α,β

(

δαβt
(MX)
π − (t(MX)

σ + t(MX)
π )R

M(n)2iX(n+1)1j
α R

M(n)2iX(n+1)1j

β

)

x†(n+1)1jpβ
m(n)2ipα



+ h.c.

(25)

while X-X hoppings are included in the form

HXn,Xn+1
=

∑

<i,j>

[

t(XX)
ss x†(n+1)1jsx(n)2is +

∑

α

R
X(n)2iX(n+1)1j
α t(XX)

sp

(

x†(n+1)1jsx(n)2ipα
− x†(n+1)1jpα

x(n)2is

)

+
∑

α,β

(

δαβt
(XX)
π − (t(XX)

σ + t(XX)
π )R

X(n)2iX(n+1)1j
α R

X(n)2iX(n+1)1j

β

)

x†(n+1)1jpβ
x(n)2ipα



+ h.c.

(26)

where the sums over< i, j > are over nearest-neighboring
X-X pairs and next-nearest-neighboring M-X pairs in ad-

jacent sublayers. When expressed in matrix form in a
k-space basis, the N -layer model gives a 16N ×16N ma-
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TABLE III. Relative weights on the valence s and p orbitals of In and Se atoms in 2-layer InSe at the Γ-point, for the bands
labeled in Fig. 5. The equivalent contribution found in the scissor corrected TB model is given in square brackets. Atoms are
listed from bottom to top of 2L crystal. Band energies are provided relative to the lowest conduction band edge (c). EDFT

is the Γ-point energy value obtained using DFT and EDFT−SC = EDFT − δE0K
g is the value obtained after subtracting the

scissor correction. The bands v1, v
′

1, v2, and v′2 are double degenerate at the Γ-point. The energies corresponding to ~ωA and
~ωB are marked in bold.

c′ c v v1 v′1 v2 v′ v′2
EDFT (eV) 0.69 0.00 -1.21 -1.81 -1.88 -1.91 -2.00 -2.03
EDFT−SC (eV) -2.20 -2.80 -2.87 -2.90 -2.99 -3.02
Se1 0.06[0.00]s 0.05[0.00]s 0.01[0.01]s 0.06[0.07]px(y) 0.20[0.06]px(y) 0.15[0.36]px(y) 0.00[0.01]s 0.01[0.00]px(y)

0.03[0.07]pz 0.11[0.15]pz 0.18[0.23]pz 0.16[0.14]pz
In1 0.10[0.05]s 0.12[0.11]s 0.03[0.07]s 0.01[0.00]px(y) 0.04[0.01]px(y) 0.03[0.00]px(y) 0.00[0.03]s 0.00[0.00]px(y)

0.06[0.05]pz 0.00[0.07]pz 0.06[0.01]pz 0.07[0.02]pz
In2 0.06[0.09]s 0.12[0.07]s 0.00[0.03]s 0.03[0.01]px(y) 0.00[0.00]px(y) 0.01[0.00]px(y) 0.05[0.08]s 0.03[0.01]px(y)

0.00[0.07]pz 0.02[0.05]pz 0.07[0.02]pz 0.06[0.01]pz
Se2 0.01[0.00]s 0.07[0.00]s 0.01[0.01]s 0.17[0.22]px(y) 0.01[0.01]px(y) 0.05[0.04]px(y) 0.02[0.01]s 0.19[0.21]px(y)

0.16[0.17]pz 0.03[0.07]pz 0.14[0.15]pz 0.15[0.19]pz
Se3 0.01[0.00]s 0.06[0.00]s 0.01[0.01]s 0.16[0.19]px(y) 0.02[0.01]px(y) 0.04[0.03]px(y) 0.02[0.01]s 0.20[0.25]px(y)

0.16[0.18]pz 0.04[0.07]pz 0.14[0.15]pz 0.15[0.19]pz
In3 0.06[0.07]s 0.11[0.08]s 0.00[0.02]s 0.03[0.00]px(y) 0.00[0.00]px(y) 0.01[0.00]px(y) 0.05[0.10]s 0.04[0.01]px(y)

0.01[0.03]pz 0.02[0.07]pz 0.08[0.02]pz 0.06[0.01]pz
In4 0.11[0.07]s 0.11[0.09]s 0.04[0.07]s 0.01[0.00]px(y) 0.03[0.00]px(y) 0.04[0.00]px(y) 0.00[0.04]s 0.00[0.00]px(y)

0.07[0.08]pz 0.00[0.05]pz 0.06[0.00]pz 0.07[0.02]pz
Se4 0.07[0.00]s 0.05[0.00]s 0.01[0.00]s 0.04[0.01]px(y) 0.19[0.40]px(y) 0.17[0.06]px(y) 0.00[0.01]s 0.02[0.02]px(y)

0.04[0.07]pz 0.10[0.14]pz 0.19[0.22]pz 0.16[0.15]pz

TABLE IV. Inter-layer hopping parameters (eV) for scissor-
corrected γ-InSe as defined in the Hamiltonian (Eq. (18)).

t
(XX)
ss t

(XX)
sp t

(XX)
π t

(XX)
σ

−0.647 −0.626 −0.137 −0.830

t
(MX)
ss t

(MX)
Xs−Mpz

t
(MX)
Xpz−Ms

t
(MX)
π t

(MX)
σ

−0.397 0.112 −0.734 0.193 0.011

t
(XM)
ss t

(XM)
Xs−Mpz

t
(XM)
Xpz−Ms

t
(XM)
π t

(XM)
σ

-0.238 0.042 −0.233 −0.398 0.450

trix, which we diagonalize to obtain a set of 16N bands.
The matrix elements are given in the Appendix.

For the parameterization of the model we retain the
hopping parameters from the bilayer model, correspond-
ing to the approximation that the TB parameters will be
the same for all values of N . Fig. 6 shows the results of
this extrapolation of the TB model to N = 3, 4, and 5.

The bottom right panel of Fig. 6 shows the vertical
band gaps at Γ according to the TB model at varying
number of layers. If the band structure of bulk γ−InSe
is available along kz, one can extract the effective masses
along the kz axis in the valence and conduction band,
m∗

vz and m∗
cz respectively, and use these to apply the kz

size-quantization gap model to approximate the expected
gap for an N -layer structure, Eg(N). This approxima-
tion strictly speaking only works for N ≫ 1, but can be

easily extended to few-layer materials using the following
asymptotic formula

Eg(N) = Eg(∞) +
~
2

2m∗
r

[

π

az

1

(N +N0)

]2

, (27)

with m∗
r =

m∗
czm

∗
vz

m∗
cz +m∗

vz

= 0.032me;N0 = 2.28, obtained

from fitting to vertical gaps from the TB model. The
parameter N0 is present to allow the model to retain
its validity at a small number of layers, in which case
the traditional effective mass model would need to be
used with a general boundary condition, ∂zψ = αψ, to
take into account that the wave function is pushed to
the surface of the few-layer slabs, as we see in the wave
functions calculated using the TB model. The behavior
described by Eq. (27) is shown by a solid line in the
right-hand lower panel in Fig. 6.

VI. 4-BAND k ·p THEORY FOR N- LAYER INSE

AND INTERBAND OPTICAL TRANSITIONS

In the following we present a simple k ·p model for the
c, v, v1, and v2 bands in Fig. 2. In monolayer InSe these
bands can be assigned the irreducible representations of
point group D3h as seen in Fig. 2. The 4-band k · p
Hamiltonian can be written as
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FIG. 6. (Color online) TB band structures for N = 3, 4 and 5 layer γ-InSe. Zero of energy is set to the bottom of the conduction
band. The bottom right panel shows the dependence of the vertical gap at the Γ point relative to the bulk material on the
number of layers in N -layer InSe, compared with a fit to the modified kz size-quantization gap model model, Eq. (27).

H =









Hc
~αNe
cme

k ·A+ Ezdz
~βNe
cme

A 0
~αNe
cme

k ·A+ Ezdz Hv 0 0
~βNe
cme

A 0 Hv1 0
0 0 0 Hv2









(28)

where the diagonal components are the single band k · p
Hamiltonians for the bands c, v, v1, and v2 as discussed
below, while the off-diagonal components correspond to
the interaction between the electrons and photons re-
quired to describe optical transitions between the bands
c and v, as well as between the bands c and v1. The one-
band k·p description of the valence and conduction band
is a straightforward polynomial expansion described be-
low, while for bands v1 and v2 a suitable two-component
Hamiltonian needs to be constructed that describes both
branches in each band.

The bottom of the conduction band in 1L-InSe is
quadratic in shape and can be described by the Hamil-
tonian

Hc = ~
2k2/2mc + γcszk

3 cos(3φ) + κc(N)(k× s)lz (29)

where k is the electron wave-vector measured from the
Γ-point, mc is the effective mass at the conduction band
minimum (listed in the caption of Fig. 7) and the second
term in the Hamiltonian describes the spin-orbit splitting
in the vicinity of the Γ-point, and sz = ±1/2. The mag-
nitude of the coupling constant is γc = 1.49(1) eVÅ3 as
found by fitting the energy splitting between the two spin
components in the conduction band up to wave vectors
less than 0.06 1/Å. The spin-orbit splitting according to
the local density approximation is presented in Fig. 4.
The lack of a splitting along the Γ −M line is in agree-
ment with the trigonal symmetry exhibited by the second
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TABLE V. The parameters in Eq. (30) after fitting to the
topmost valence band in the band structures of 1L, 2L, and
3L–InSe, with the zero of energy set to the valence band edge.
The critical carrier density required to achieve the Lifshitz
transition in the valence band is given as nLT .

1L 2L 3L
E0 (eV) -0.078 -0.069 -0.056
E2 (eVÅ2) 2.915 4.767 5.318
E4 (eVÅ4) -38.057 -106.817 -163.540
E6 (eVÅ6) 206.551 896.029 1894.272
E′

6 (eVÅ6) 3.050 5.658 6.500
E8 (eVÅ8) -450.034 -2982.703 -8844.573
nLT (1013cm−2) 7.3 3.6 1.8

term in the k ·p Hamiltonian in Eq. (29). The last term
in Eq. (29) appears in NL-InSe only for N > 1 and
is present due to the breaking of the mirror-plane sym-
metry. The coefficient κc is expected to depend on the
number of layers.
The N highest valence bands in NL-InSe are

“sombrero-shaped”39. The highest valence band can be
fitted around the Γ-point with an 8th order polynomial
function as follows:

Hv(k, φ) =Ev + E2k
2 + E4k

4+

E6k
6 + E8k

8 + E′
6k

6 cos(6φ)+

γvszk
3 cos(3φ) + κv(N)(k× s)lz

(30)

where the E′
6 coefficient describes the hexagonal

anisotropy. The fitted parameters are summarized in
Table V. Note that the valence band takes the shape
of an inverted sombrero which has been demonstrated
to lead to a Lifshitz transition upon hole doping in the
monolayer39. The sombrero shape and the associated
Lifshitz transition persists with increasing N but slowly
vanishes as we approach the bulk limit. Accordingly, the
critical carrier density required to achieve the transition
decreases with increasing N , as shown in Table V.

The last two terms in Eq. (30) describe the spin-orbit
splitting similar to Eq. (29). The magnitude of γv ac-
cording to a fit to the spin-orbit splitting in 1L-InSe for
wave vectors less than 0.06 1/Å is γv = 3.11(5) eVÅ3.
Note that the polynomial fit is valid in a 4-5 times larger
range than the fit for the spin-orbit splitting.
The bands v1 and v2 are double degenerate at the Γ-

point and can each be described by a two-component k·p
model as described by the Hamiltonian

Hv1(2)
= Ev1(2)

+
k2

2m
+
k2x − k2y
2m′ σx +

2kxky
2m′ σy (31)

where σx(y) are the Pauli matrices. This Hamiltonian
transforms according to the E irrep. of the symmetry
group C3v (see Fig. 2). Eq. (31) can be fitted to the

DFT band structure to obtain the effective masses. In
the band v1 we obtain m = 0.31 and m′ = 0.45, and in
the band v2 we obtain m = 0.30 and m′ = 0.45 in units
of me.
In Fig. 7a we show the energies of the A and B op-

tical transitions at the Γ-point (energies |Ev| and Ev1,
respectively), where we apply the low-temperature scis-
sor correction to the transition energies as discussed in
Section III B. On the right hand side we show the same
data with T = 300K scissor corrections for reference to
room temperature measurements. The scissor corrected
transition energies are summarized in the caption of Fig.
7.
To describe the coupling of the principal interband

transition, A, between the conduction (c) and valence (v)
bands to an in-plane vector potential A carried by an in-
coming photon, A ·P, we rely on the following formula
for the interband momentum operator P51:

Pcv(k) = 〈c|P |v〉 = me

~
〈c| ∇kH |v〉

=
me

~

∑

o,o′

C∗
ck(o)Cvk(o

′)∇kHo,o′(k),
(32)

where the sum over o, o′ runs over the orbitals in the
model, Cc(v)k(o) is the coefficient of the eigenfunction
of the conduction(valence) band, orbital o, at k, Ho,o′ =
〈o|H |o′〉, andme is the free electron mass. We can there-
fore calculate the interband momentum matrix element
using the above TB parameterization, with the matrix
elements of the Hamiltonian and the eigenfunctions of
the valence and conduction bands obtained directly from
the TB model.
The TB matrix elements, seen in Fig. 7b, are linear at

small k and the slope of this linear regime increases with
an increasing number of layers. The latter observation is
in line with the result that the momentummatrix element
in the monolayer is zero. The finding that the matrix
element is linear near the Γ-point allows the introduction
of the dimensionless parameter α through the relation
Pcv ≃ ~αk which is taken into account in Eq. (28).
For coupling to the electric field associated with out-

of-plane polarized light, we can also calculate the out-of-
plane dipole matrix element dz = e 〈c| z |v〉 between the
valence and the conduction band. Since the crystal is
finite in the z direction we calculate the dipole matrix
element directly as

dz(k) = e 〈c| z |v〉 (k) = e
∑

o

C∗
ck(o)Cvk(o)z(o) (33)

where the sum over o is over all orbitals in the unit cell,
Cc(v)k(o) is the coefficient of the conduction (valence)
band eigenfunction for orbital o at k, and z(o) is the z-
coordinate, w.r.t. the mean plane of the crystal, of the
atom on which orbital o sits.
The optical absorption coefficient for band edge ab-

sorption can be calculated from dz using Fermi’s golden
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FIG. 7. (Color online) Transition properties of band edge excitations: (a) dependence of the energies of the principal transitions
A and B on the number of layers N in few-layer InSe according to DFT, with scissor corrections applied at T = 0K (left hand
axis) and T = 300K (right hand axis), in comparison to experimental data measured at T = 300K taken from Ref. 1 (b) TB
matrix elements for the x and y components of the interband momentum for the A–line for N = 2, 3, 4 and 5 layer γ-InSe
(c) The dz matrix element and β, and (d) the absorption coefficient, gA(θ) for incoming light arriving at the angle θ = π/4
as a function of the number of layers N and gB at θ = π/2 for in-plane polarized light, obtained using the scissor-corrected
TB model. Below we list the DFT-calculated energy gap EDFT

A/B and transition energies ~ω0K
A/B and ~ω300K

A/B obtained using
scissor correction at low and room temperature, the conduction band effective mass (mc in units of the free electron mass), the
parameters α and β for the A– and B–transitions, and the values of dz, for N = 1, 2, 3.

N EDFT
A/B (eV) ~ω0K

A/B (eV) ~ω300K
A/B (eV) mc (me) α β (~/Å) |dz|(eÅ)

1 1.602 / 1.933 2.734 / 3.066 2.584 / 2.916 0.188 0.000 1.096 1.68
2 1.031 / 1.695 2.164 / 2.827 2.014 / 2.677 0.148 0.082 1.055 2.87
3 0.796 / 1.601 1.929 / 2.734 1.779 / 2.584 0.132 0.132 1.119 3.72

rule. A perturbation of Ezdz where Ez is the electric field
of the incoming photon, the rate of energy absorption in
a material of dipole moment dz is

∆W = ~ω
2π

~
gSE

2
zd

2
z

∑

p

δ(εc(p)− εv(p)− ~ω) (34)

where ~ω is the photon energy, gS = 2, and εc(p) and
εv(p) are the band edge dispersions in the conduction
and the valence band, respectively, as determined by k ·p
theory. The absorption coefficient g(θ) as a function of

the angle θ between the incoming photon and the sur-
face can be calculated simply by dividing ∆W by the
absorbed energy, which is the flux of the Poynting vector
over the visible area of the unit cell,

Wtot = A sin(θ)
c

4π
E2

z

1

cos(θ)
(35)

where A is the unit cell area. Evaluating this expression
yields for the absorption at Γ
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gA(θ) = 8π
e2

~c
|dz/e|2

~ωmc

~2
cot(θ) (36)

where mc is the conduction band effective mass.
For coupling of the transition between bands c and v1,

B, with in-plane polarized light, A ·P, we evaluate P as

Pcv1 =
me

~

∑

o,o′

C∗
ck(o)Cv1k(o

′)∇kHo,o′(k), (37)

from which we find how the transition B absorbs in-plane
polarized light, at Γ,

gB = 8π
e2

~c
β2 mc

~ωm2
e

, (38)

where β = |Pcv(1)| has finite values at Γ, listed in the
caption to Fig. 7 for N = 1, 2, 3. In Fig. 7d we show
the dependence of gA(θ = π/4) and gB on the number of
layers N ; while gA exhibits a strong dependence on N ,
gB is almost constant.

VII. CONCLUSIONS

We have developed a TB model to describe monolayer
and few-layer indium selenide which takes into account
all s and p orbitals of constituent atoms. We have used
first principles density functional theory to parametrize
the model. We have found that:

• inclusion of s and p orbitals and hoppings to
second-nearest-neighbors is sufficient to describe
the energies of the bands near the band edge,

• the interband optical matrix element obtained from
our model exhibits a linear k-dependence in agree-
ment with DFT calculations, and

• the matrix element vanishes in the monolayer due
to symmetry.

We used the model to find the optical absorption co-
efficient in few-layer InSe: of the two principal optical
transitions the absorption coefficient of the lower energy
transition (A line), corresponding to band edge absorp-
tion between the conduction and the valence band, slowly
increases with the number of layers, while the absorption
for the higher energy transition (B line) saturates quickly
to ≈ 10 %.
Also, we find that the conduction band electrons are

relatively light (m ∝ 0.14 − 0.18me), in contrast to an
almost flat dispersion of valence band holes near the Γ-
point, which is found for up to N ∝ 6. The latter prop-
erty of the valence band suggests that this material may
experience a phase transition due to many-body effects
into either a ferromagnetic state as suggested for the sim-
ilar material GaSe52, or into a Peierls-type charge density
wave due to a strong electron-phonon coupling53.

The other members of the family of hexagonal III-VI
semiconductors, such as GaSe54, have a similar crystal
structure in the monolayer, and the TB model in section
III could be extended to cover these materials. However,
few-layer GaSe has a different consecutive layer arrange-
ment, hence this will be covered in a future work55.
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Appendix A: Monolayer Hamiltonian matrix

elements

1. Mirror plane symmetry

In a basis containing all s and p valence orbitals the
Hamiltonian will be a 16 × 16 matrix. We can reduce
the system to two 8 × 8 matrices by making use of the
M1 symmetry of the crystal structure, which will require
that the wavefunction be even or odd w.r.t. exchange of
the two sublayers. We therefore construct a new basis
from even and odd combinations of our orbitals:

m
(±)
is

†
=

1√
2
(m†

1is ±m†
2is),

x
(±)
is

†
=

1√
2
(x†1is ± x†2is),

m
(±)
ipα

†
=

1√
2
(m†

1ipα ±m†
2ipα),

x
(±)
ipα

†
=

1√
2
(x†1ipα ± x†2ipα),

m
(±)
ipz

†
=

1√
2
(m†

1ipz ∓m†
2ipz),

x
(±)
ipz

†
=

1√
2
(x†1ipz ∓ x†2ipz),

(A1)

where α = x, y and pz orbitals have an extra (−) sign on
the bottom sublayer contribution as the direction of pz is
reversed under M1. A matrix constructed in the above
basis will be block-diagonal, as mixing between even and
odd states would break M1 symmetry.
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2. Representation

To calculate our Hamiltonian we express it in a k-space

basis, constructing a matrix with elements Hab = akHb
†
k

where a
(†)
k and b

(†)
k are the annihilation (creation) opera-

tors for the orbitals in our basis at wave vector k in the
Brillouin zone. The operators a

(†)
k can be expressed with

the real space annihilation (creation) operators a
(†)
i as

ak =
1√
Nlatt

∑

i

eik·Riai (A2)

where Ri is the position of the real space orbital ai, and
Nlatt is the number of lattice sites.
Relying on the symmetry adapted basis, we represent

our Hamiltonian as two 8 × 8 matrices in the k-space
basis with elements of the form:

H
(±)
ab = a

(±)
k Hb

(±)†
k . (A3)

Now substituting in the original forms of the even and
odd basis, we get for two orbitals where neither are pz

H
(±)
ab =

1

2
[a1k ± a2k]H[b†1k ± b†2k]

=
1

2

[

a1kHb
†
1k + a2kHb

†
2k ± a1kHb

†
2k ± a2kHb

†
1k

]

.

(A4)

As the system and the Hamiltonian are even underM1

we can observe that

a1kHb
†
1k = a2kHb

†
2k

a1kHb
†
2k = a2kHb

†
1k

(A5)

and hence

H
(±)
ab = a1kHb

†
1k ± a2kHb

†
1k. (A6)

In the case where orbital a is pz we have

H
(±)
ab = a1kHb

†
1k ∓ a2kHb

†
1k. (A7)

We therefore need only consider H0, H11 and H12 in
the calculation of our Hamiltonian matrix. We can then
diagonalize the even and odd parts of the Hamiltonian
separately, obtaining a set of 8 bands for each. The ma-
trices have the form

H(±) =

































H
(±)
Ms,Ms

H
(±)
Ms,Mpx

H
(±)
Ms,Mpy

H
(±)
Ms,Mpz

H
(±)
Ms,Xs

H
(±)
Ms,Xpx

H
(±)
Ms,Xpy

H
(±)
Ms,Xpz

H
(±)∗
Ms,Mpx

H
(±)
Mpx,Mpx

H
(±)
Mpx,Mpy

H
(±)
Mpx,Mpz

H
(±)
Mpx,Xs

H
(±)
Mpx,Xpx

H
(±)
Mpx,Xpy

H
(±)
Mpx,Xpz

H
(±)∗
Ms,Mpy

H
(±)∗
Mpx,Mpy

H
(±)
Mpy,Mpy

H
(±)
Mpy,Mpz

H
(±)
Mpy,Xs

H
(±)
Mpy,Xpx

H
(±)
Mpy,Xpy

H
(±)
Mpy,Xpz

H
(±)∗
Ms,Mpz

H
(±)∗
Mpx,Mpz

H
(±)∗
Mpy,Mpz

H
(±)
Mpz,Mpz

H
(±)
Mpz,Xs

H
(±)
Mpz,Xpx

H
(±)
Mpz,Xpy

H
(±)
Mpz,Xpz

H
(±)∗
Ms,Xs

H
(±)∗
Mpx,Xs

H
(±)∗
Mpy,Xs

H
(±)∗
Mpz,Xs

H
(±)
Xs,Xs

H
(±)
Xs,Xpx

H
(±)
Xs,Xpy

H
(±)
Xs,Xpz

H
(±)∗
Ms,Xpx

H
(±)∗
Mpx,Xpx

H
(±)∗
Mpy,Xpx

H
(±)∗
Mpz,Xpx

H
(±)∗
Xs,Xpx

H
(±)
Xpx,Xpx

H
(±)
Xpx,Xpy

H
(±)
Xpx,Xpz

H
(±)∗
Ms,Xpy

H
(±)∗
Mpx,Xpy

H
(±)∗
Mpy,Xpy

H
(±)∗
Mpz,Xpy

H
(±)∗
Xs,Xpy

H
(±)∗
Xpx,Xpy

H
(±)
Xpy,Xpy

H
(±)
Xpy,Xpz

H
(±)∗
Ms,Xpz

H
(±)∗
Mpx,Xpz

H
(±)∗
Mpy,Xpz

H
(±)∗
Mpz,Xpz

H
(±)∗
Xs,Xpz

H
(±)∗
Xpx,Xpz

H
(±)∗
Xpy,Xpz

H
(±)
Xpz,Xpz

































(A8)

The elements are calculated as set out above. For the
calculation of the Bloch phase factors we can reduce the
hopping vectors to three sets, as the Brillouin zone is
two-dimensional. These are for M-X hoppings

r1 =

[

0
− a√

3

]

, r2 =

[ −a
2

a
2
√
3

]

, r3 =

[ a
2
a

2
√
3

]

, (A9)

and for M-M and X-X hoppings between ions in the same
sublayer (k · x = 0 for M-M hopping between the two
sublayers, where the ions are directly above each other)
there are six such vectors

r4,7 = ±a1, r5,8 = ±a2, r6,9 = ±(a1 + a2). (A10)

For next-nearest M-X pairs (T (3)) we have

r10 =

[

0
2a√
3

]

, r11 =

[ −a
− a√

3

]

, r12 =

[

a
− a√

3

]

. (A11)

The k-dependence then appears in the model through
combinations of the Bloch phase factors calculated using



16

these vectors

f1 = eik·r1 + eik·r2 + eik·r3 ,

f2 = eik·r2 − eik·r3 ,

f3 = eik·r2 + eik·r3 ,

f4 = 2eik·r1 − eik·r2 − eik·r3 ,

f5 = 4eik·r1 + eik·r2 + eik·r3 ,

f6 = 2 [cos(k · r4) + cos(k · r5) + cos(k · r6)] ,
f7 = 2 [cos(k · r4) + cos(k · r5) + 4 cos(k · r6)] ,
f8 = 2 [cos(k · r4) + cos(k · r5)] ,
f9 = 2 [cos(k · r4)− cos(k · r5)] ,
f10 = 2i [sin(k · r4) + sin(k · r5) + 2 sin(k · r6)] ,
f11 = 2i [sin(k · r4)− sin(k · r5)] ,
f12 = eik·r10 + eik·r11 + eik·r12 ,

f13 = eik·r11 − eik·r12 ,

f14 = eik·r11 + eik·r12 ,

f15 = 2eik·r10 − eik·r11 − eik·r12 ,

f16 = 4eik·r10 + eik·r11 + eik·r12 .

(A12)

The symbols L1 and L2 are the magnitudes of the hop-
ping vectors for M-X intra- and inter-sublayer hoppings,
respectively, and are given by

L1 =

√

a2

3
+

(dXX − dMM )2

4
,

L2 =

√

a2

3
+

(dXX + dMM )2

4
,

L3 =
√

a2 + d2MM ,

L4 =

√

4a2

3
+

(dXX − dMM )2

4
.

(A13)

The matrix elements are:

a. Diagonal elements

H
(±)
Ms,Ms

= εMs ± T ′(1)
ss + f6

[

T (2M)
ss ± T ′(3)

ss

]

H
(±)
Mpx,Mpx

= εMpx
± T ′(1)

π + f6

[

T (2M)
π ± T ′(3)

π

]

− f7
4

[

T (2M)
π + T (2M)

σ ± a2

L2
3

(

T ′(3)
π + T ′(3)

σ

)

]

H
(±)
Mpy,Mpy

= εMpx
± T ′(1)

π + f6

[

T (2M)
π ± T ′(3)

π

]

− 3f8
4

[

T (2M)
π + T (2M)

σ ± a2

L2
3

(

T ′(3)
π + T ′(3)

σ

)

]

H
(±)
Mpz,Mpz

= εMpz
± T ′(1)

σ + f6

[

T (2M)
π ±

(

T ′(3)
π − d2MM

L2
3

[

T ′(3)
π + T ′(3)

σ

]

)]
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H
(±)
Xs,Xs

= εXs + f6T
(2X)
ss

H
(±)
Xpx,Xpx

= εXpx
+ f6T

(2X)
π − f7

4
(T (2X)

π + T (2X)
σ )

H
(±)
Xpy,Xpy

= εXpx
+ f6T

(2X)
π − 3f8

4
(T (2X)

π + T (2X)
σ )

H
(±)
Xpz,Xpz

= εXpz
+ f6T

(2X)
π

b. M-X Off-diagonal elements

H
(±)
Ms,Xs

= f1(T
(1)
ss ± T ′(2)

ss ) + f12T
(3)
ss

H
(±)
Ms,Xpx

= −f2a
2





T
(1)
Ms−Xp

L1
±
T

′(2)
Ms−Xp

L2



+
f13a

L4
T

(3)
Ms−Xp

H
(±)
Ms,Xpy

=
f4a

2
√
3





T
(1)
Ms−Xp

L1
±
T

′(2)
Ms−Xp

L2



− f15a

L4

√
3
T

(3)
Ms−Xp

H
(±)
Ms,Xpz

= −f1
2





(dxx − dMM )T
(1)
Ms−Xp

L1
±

(dXX + dMM )T
′(2)
Ms−Xp

L2



− f12(dXX − dMM )

2L4
T

(3)
Ms−Xp

H
(±)
Mpx,Xs

=
f2a

2





T
(1)
Mp−Xs

L1
±
T

′(2)
Mp−Xs

L2



− f13a

L4
T

(3)
Mp−Xs

H
(±)
Mpy,Xs

= − f4a

2
√
3





T
(1)
Mp−Xs

L1
±
T

′(2)
Mp−Xs

L2



+
f15a

L4

√
3
T

(3)
Mp−Xs

H
(±)
Mpz,Xs

=
f1
2





(dXX − dMM )T
(1)
Mp−Xs

L1
∓

(dXX + dMM )T
′(2)
Mp−Xs

L2



+
f12(dXX − dMM )

2L4
T

(3)
Mp−Xs

H
(±)
Mpx,Xpx

= f1(T
(1)
π ± T ′(2)

π )− f3a
2

4

[

T
(1)
π + T

(1)
σ

L2
1

± T
′(2)
π + T

′(2)
σ

L2
2

]

+ f12T
(3)
π −

[

f14a
2

L2
4

(

T (3)
π + T (3)

σ

)

]

H
(±)
Mpy,Xpy

= f1(T
(1)
π ± T ′(2)

π )− f5a
2

12

[

T
(1)
π + T

(1)
σ

L2
1

± T
′(2)
π + T

′(2)
σ

L2
2

]

+ f12T
(3)
π −

[

f16a
2

L2
4

(

T (3)
π + T (3)

σ

)

]

H
(±)
Mpz,Xpz

= f1

[

T (1)
π ∓ T ′(2)

π −
(

dXX − dMM

2L1

)2

(T (1)
π + T (1)

σ )±
(

dXX + dMM

2L2

)2

(T ′(2)
π + T ′(2)

σ )

]

+ f12

[

T (3)
π −

(

dXX − dMM

2L4

)2

(T (3)
π + T (3)

σ )

]
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H
(±)
Mpx,Xpy

= HMpy,Xpx
= −f2a

2

4
√
3

[

T
(1)
π + T

(1)
σ

L2
1

± T
′(2)
π + T

′(2)
σ

L2
2

]

− f13a
2

L2
4

√
3

(

T (3)
π + T (3)

σ

)

H
(±)
Mpx,Xpz

= −f2a
4

[

(dXX − dMM )(T
(1)
π + T

(1)
σ )

L2
1

± (dXX + dMM )(T
′(2)
π + T

′(2)
σ )

L2
2

]

+
f13a(dXX − dMM )

2L2
4

(

T (3)
π + T (3)

σ

)

HMpz,Xpx
= −f2a

4

[

(dXX − dMM )(T
(1)
π + T

(1)
σ )

L2
1

∓ (dXX + dMM )(T
′(2)
π + T

′(2)
σ )

L2
2

]

+
f13a(dXX − dMM )

2L2
4

(

T (3)
π + T (3)

σ

)

H
(±)
Mpy,Xpz

=
f4a

4
√
3

[

(dXX − dMM )(T
(1)
π + T

(1)
σ )

L2
1

± (dXX + dMM )(T
′(2)
π + T

′(2)
σ )

L2
2

]

− f15a(dXX − dMM )

2
√
3L2

4

(

T (3)
π + T (3)

σ

)

HMpz,Xpy
=

f4a

4
√
3

[

(dXX − dMM )(T
(1)
π + T

(1)
σ )

L2
1

∓ (dXX + dMM )(T
′(2)
π + T

′(2)
σ )

L2
2

]

− f15a(dXX − dMM )

2
√
3L2

4

(

T (3)
π + T (3)

σ

)

c. M-M, X-X off-diagonal elements

H
(±)
Ms,Mpx

= −f10
2

[

T (2M)
sp ± a

L3
T (3)
sp

]

H
(±)
Ms,Mpy

= −f11
√
3

2

[

T (2M)
sp ± a

L3
T (3)
sp

]

H
(±)
Ms,Mpz

= ∓
[

T ′(1M)
sp + f6

dMM

L3
T (3)
sp

]

H
(±)
Mpx,Mpy

= −f9
√
3

4

[

T (2M)
π + T (2M)

σ ±
(

T (3)
π + T (3)

σ

)]

H
(±)
Mpx,Mpz

= ∓f10dMMa

2L2
3

[

T (3)
π + T (3)

σ

]

H
(±)
Mpy,Mpz

= ∓f9dMMa

2L2
3

[

T (3)
π + T (3)

σ

]

H
(±)
Xs,Xpx

= −f10
2
T (2X)
sp

H
(±)
Xs,Xpy

= −f11
√
3

2
T (2X)
sp

H
(±)
Xpx,Xpy

= −f9
√
3

4
(T (2X)

π + T (2X)
σ )

H
(±)
Xs,Xpz

= H
(±)
Xpx,Xpz

= H
(±)
Xpy,Xpz

= 0

Appendix B: Inter-layer Hamiltonian matrix

elements

The Hamiltonian for bilayer γ-InSe is expressed in the
form

H =

[

H1L Hc

H†
c H1L

]

(B1)

where H1L is the 16 × 16 monolayer Hamiltonian, ex-
pressed in the original atomic basis (M1, M2, X1, X2,
as opposed to the even/odd basis used above), and Hc

includes the inter-layer interactions. We write Hc as

Hc =









0 0 0 0
0 0 HM(1)2,X(2)1

0
0 0 0 0

HX(1)2,M(2)1
0 HX(1)2,X(2)1

0









(B2)

where HX(1)2,M(2)1
represents the vertical M-X interac-

tions, and has the form

HX(1)2,M(2)1
=







Xs,Ms 0 0 Xs,Mpz

0 0 0 0
0 0 0 0

Xpz
,Ms 0 0 Xpz

,Mpz






. (B3)

The elements themselves are

Xs,Ms = t(XM)
ss , (B4)

Xs,Mpz
= t

(XM)
Xs−Mpz

, (B5)

Xpz
,Ms = −t(XM)

Xpz−Ms
, (B6)

Xpx
,Mpx

=Xpy
,Mpy

= t(XM)
π (B7)

Xpz
,Mpz

= −t(XM)
σ . (B8)
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HX(1)2,X(2)1
represents the X-X interactions, with

HX(1)2,X(2)1
=







Xs, Xs Xs, Xpx
Xs, Xpy

Xs, Xpz

Xpx
, Xs Xpx

, Xpx
Xpx

, Xpy
Xpx

, Xpz

Xpy
, Xs Xpy

, Xpx
Xpy

, Xpy
Xpy

, Xpz

Xpz
, Xs Xpz

, Xpx
Xpz

, Xpy
Xpz

, Xpz






.

(B9)

In the expressions for the elements, Lc is the length of
the inter-layer X-X hop, and is given by

Lc =

√

a2

3
+ (az − dXX)

2
. (B10)

The elements are

Xs, Xs = f1t
(XX)
ss

Xs, Xpx
= −f2

a

2Lc
t(XX)
sp

Xs, Xpy
= f4

a

2
√
3Lc

t(XX)
sp

Xs, Xpz
= f1

az − dXX

2Lc
t(XX)
sp

Xpx
, Xs = −Xs, Xpx

Xpy
, Xs = −Xs, Xpy

Xpz
, Xs = −Xs, Xpz

Xpx
, Xpx

= f1t
(XX)
π − f3

[

a

2Lc

]2

(t(XX)
π + t(XX)

σ )

Xpy
, Xpy

= f1t
(XX)
π − f5

[

a

2
√
3Lc

]2

(t(XX)
π + t(XX)

σ )

Xpz
, Xpz

= f1

[

t(XX)
π −

[

az − dXX

Lc

]2

(t(XX)
π + t(XX)

σ )

]

Xpx
, Xpy

= − f2√
3

[

a

2Lc

]2

(t(XX)
π + t(XX)

σ )

Xpx
, Xpz

= f2
a (az − dXX)

(2Lc)2
(t(XX)

π + t(XX)
σ )

Xpy
, Xpz

= − f4√
3

a (az − dXX)

(2Lc)2
(t(XX)

π + t(XX)
σ )

Xpy
, Xpx

= Xpx
, Xpy

Xpz
, Xpx

= Xpx
, Xpz

Xpz
, Xpy

= Xpy
, Xpz

(B11)

In the case of the non-vertical M-X hops we have

HM(1)2,X(2)1
=







Ms, Xs Ms, Xpx
Ms, Xpy

Ms, Xpz

Mpx
, Xs Mpx

, Xpx
Mpx

, Xpy
Mpx

, Xpz

Mpy
, Xs Mpy

, Xpx
Mpy

, Xpy
Mpy

, Xpz

Mpz
, Xs Mpz

, Xpx
Mpz

, Xpy
Mpz

, Xpz







(B12)

with matrix elements

Ms, Xs = f∗1 t
(MX)
ss

Ms, Xpx
= f∗2

a

2LM
t
(MX)
Ms−Xp

Ms, Xpy
= −f∗4

a

2
√
3LM

t
(MX)
Ms−Xp

Ms, Xpz
= f∗1

az − 1
2 (dXX + dMM )

2LM
t
(MX)
Ms−Xp

Mpx
, Xs = −f∗2

a

2LM
t
(MX)
Mp−Xs

Mpy
, Xs = f∗4

a

2
√
3LM

t
(MX)
Mp−Xs

Mpz
, Xs = −f∗1

az − 1
2 (dXX + dMM )

2LM
t
(MX)
Mp−Xs

Mpx
, Xpx

= f1t
(MX)
π − f∗3

[

a

2LM

]2

(t(MX)
π + t(MX)

σ )

Mpy
, Xpy

= f1t
(MX)
π − f∗5

[

a

2
√
3LM

]2

(t(MX)
π + t(MX)

σ )

Mpz
, Xpz

= f∗1 t
(MX)
π

− f∗1
(az − 1

2 (dXX + dMM ))2

L2
M

(t(MX)
π + t(MX)

σ )

Mpx
, Xpy

= − f∗2√
3

[

a

2LM

]2

(t(MX)
π + t(MX)

σ )

Mpx
, Xpz

= −f∗2
a
(

az − 1
2 (dXX + dMM )

)

(2LM )2
(t(MX)

π + t(MX)
σ )

Mpy
, Xpz

=
f∗4√
3

a
(

az − 1
2 (dXX + dMM )

)

(2LM )2
(t(MX)

π + t(MX)
σ )

Mpy
, Xpx

=Mpx
, Xpy

Mpz
, Xpx

=Mpx
, Xpz

Mpz
, Xpy

=Mpy
, Xpz

(B13)

where the length of the hop LM is given by

LM =

√

a2

3
+

(

az −
1

2
(dXX + dMM )

)2

. (B14)

For greater numbers of layers we build up the matrix
such that H1L is on the diagonal blocks, with adjacent
diagonal blocks connected by Hc and H†

c .

Appendix C: Comparison between scissor corrected

TB, uncorrected TB, and DFT optical matrix

elements

For comparison, we also obtain the matrix elements
from density functional theory and from a TB model
without scissor-correction. In a DFT calculation utiliz-
ing a plane-wave basis, the momentum matrix element is
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TABLE VI. Inter-layer hopping parameters (eV) for γ-InSe,
without scissor-correction, as defined in the Hamiltonian (Eq.
(18)).

t
(XX)
ss t

(XX)
sp t

(XX)
π t

(XX)
σ

−0.731 −0.461 −0.119 −0.761

t
(MX)
ss t

(MX)
Xs−Mpz

t
(MX)
Xpz−Ms

t
(MX)
π t

(MX)
σ

−0.152 0.072 −0.504 0.198 0.015

t
(XM)
ss t

(XM)
Xs−Mpz

t
(XM)
Xpz−Ms

t
(XM)
π t

(XM)
σ

-0.332 0.042 −0.208 −0.393 0.347

straightforward to calculate as

Pcv(v1) =
∑

j

C ′∗
c,j · C ′

v(v1),j
·Gj, (C1)

where C ′
c,j , C

′
v(v1),j

andGj are the plane-wave coefficients

and the reciprocal lattice vectors taken into account in
the plane-wave basis set, respectively. dz is calculated in
DFT by real space integration on a sufficiently fine grid.
The intralayer TB parameters for the uncorrected model
are given in Table I in the main text, while the interlayer
parameters are given in Table VI.
In the main text we apply a scissor correction to the

DFT band structure in order to account for the under-
estimation of the band gap. It should be noted that the
scissor correction is necessary for another reason as well.
The TB model, when fitted to DFT band structures with-
out scissor correction, agrees well with the DFT results
for dz at small N (see Fig. 10a). However, the extrapola-
tion to large N is considerably larger, and the saturation
much slower, than that for the TB model calculated with
scissor correction. Likewise, the coefficient of the linear
regime (Fig. 9) is also larger if the scissor correction is
omitted. In essence, uncorrected DFT overestimates dz
matrix elements, whereas the scissor correction leads to
a significant reduction in dz, and in turn a reduced ab-
sorption.
The origin of the reduction in dz when applying the

scissor correction lies in the effect the scissor correction
has on the TB wave functions for N > 1. Fig. 11a shows
the modulus square of the chalcogen pz TB wave function
coefficients as a function of the sublayer index in 19-layer
InSe. The wave function reduces towards the edge of the
slab but a clear finite value remains at the very edge,
due to a substantial oscillation in the coefficients, which
gives a substantial contribution to dz. Fig. 11b shows
the same wave function coefficients after scissor correc-
tion. Note that the relative weight of the coefficient at
the edge has now decreased, as has the aforementioned
oscillation, which leads to an overall smaller dz and a
faster saturation with increasing N .

The physics behind the reduction of the wave function
at the edge is the relative reduction of the inter-layer
interaction as compared to the intra-layer interaction,
which is a direct consequence of the scissor correction.
By increasing the gap without changing the band width
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|px |(kx ) TB
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FIG. 8. (Color online) Comparison between the TB and DFT
matrix elements for the x components of the interband mo-
mentum for N = 2, 3, 4 and 5 layer γ-InSe.

FIG. 9. (Color online) Comparison between the scissor cor-
rected and uncorrected TB results for the α parameter.

caused by inter-layer hopping, the intra-layer hopping be-
comes stronger while the inter-layer hopping remains at
the same magnitude. This can be understood within a
chain model, which we discuss below.

The core message here is that the scissor correction
has an effect on the wave functions and in turn on the
optical properties of InSe slabs, and should be taken into
account when modeling few-layer InSe.

Appendix D: Chain model for few-layer InSe at Γ

The simplest way to describe a layered semiconductor
is by approximating each layer with a dimer, each atom
hosting a single basis orbital x1 and x2. In this case, the
monolayer can be described by a single hopping integral
t and the Hamiltonian will be
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FIG. 10. (Color online) Comparison between the scissor cor-
rected and uncorrected TB results for the dz matrix element
(a) and the band edge absorption (b).

H = t
∑

i

x†2ix1i + h.c. (D1)

where x
(†)
2i annihilates (creates) an electron on sublayer

2, site i. Expressed in matrix form the Hamiltonian is

H =

[

0 t
t 0

]

. (D2)

The Hamiltonian of a few-layer structure is

H =
∑

i



t
∑

(n)

(x†(n)2ix(n)1i)

+t′
N−1
∑

(n)=1,2

(x†(n)2ix(n+1)1i)



+ h.c.

(D3)

where (n) is the layer index, and the inter-layer inter-
action is described by the hop t′. As an example, the
matrix form of a bilayer can be written as

FIG. 11. (Color online) Distribution of the Xpz TB wave
function coefficients along the slab in 19-layer InSe, without
(a) and with (b) scissor correction.

H =







0 t 0 0
t 0 t′ 0
0 t′ 0 t
0 0 t 0






, (D4)

which has the following eigenvalues:

1

2

(

t′ +
√

4t2 + t′2
)

,

1

2

(

−t′ +
√

4t2 + t′2
)

,

1

2

(

t′ −
√

4t2 + t′2
)

,

1

2

(

−t′ −
√

4t2 + t′2
)

.

(D5)

In this chain model, the ratio t′/t characterizes the
strength of the inter-layer interaction with respect to the
intra-layer coupling. Let us now assume that we can de-
scribe few-layer InSe with such a model, with some values
for the two hopping parameters obtained from DFT cal-
culations. When we implement a scissor correction, we
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FIG. 12. (Color online) Distribution of the wave function
coefficients along the slab in 19-layer InSe according to the
chain model, with hopping ratios t′/t = 0.8 (a) and t′/t = 0.4
(b).

leave the inter-layer hop t′ unchanged while we increase
the magnitude of t since, in the monolayer, the band gap
from this model is simply 2t. Hence, a scissor correction
translates to a decrease in the ratio t′/t.

This finding allows us to demonstrate the qualitative
effect of the scissor correction. Fig. 12 shows the modu-
lus square of the coefficients Cv/c of the chain model wave
functions in the valence and conduction band. Panel a)
corresponds to t′/t = 0.8, while panel b) to t′/t = 0.4.
The visible reduction of the wave function along the edges
upon decreasing t′/t is in agreement with the effects of
the scissor correction on the full model (see Fig. 11).
Similarly, if we now plot the dz matrix element from the
chain model (Fig. 13) we find that the matrix element un-
dergoes significant reduction when we decrease t′/t, just
like it happened in the full model when we implemented
the scissor correction there (see Fig. 10a).
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V. Falko, Applied Physics Letters 105, 221909 (2014).

19 G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R.
Kudrynskyi, C. J. Mellor, P. H. Beton, L. Eaves, K. S.
Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden,
N. R. Wilson, and A. Patanè, Advanced Materials 27,
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