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Abstract
Global and electronic markets are increasingly forcing man-
ufacturing enterprises to become more competitive. As a
result, many manufacturing enterprises are seeking to man-
age their supply chains more effectively. Product differentia-
tion timing is one important factor in supply chain
management. Under an early product differentiation pro-
cess, finished products are manufactured and stored in a
distribution center until delivery. Under a delayed product
differentiation process, partially completed product compo-
nents are manufactured and stored in a distribution center;
later, based on demand information, finished products are
completed from the product components. The difference in
value between early product differentiation and delayed
product differentiation is the value of postponement. Prior
research has analytically shown that the value of postpone-
ment is affected by information precision in demand fore-
casts. In this article, we investigate whether adding a
market-making electronic broker to a supply chain increases
the value of postponement. We hypothesize that it may do so
by providing greater accuracy in demand forecasting. We
test this relationship by comparing the results of several
agent-based simulations that vary between early and late
differentiation strategies and the use of an electronic broker. 

1.  Introduction

The attention given to issues surrounding supply chain
management continues to grow. Beginning with early
research on channel structure[10][13] and coordination
[19][29], the scope of supply chain considerations has
broadened to include, for example, communication strate-
gies in supply chains [30], multi-market coordination issues
[9], as well as material management concerns [23]. Supply
chain management considerations now reach across the per-
sonal computer industry, clothing, and the automobile man-
ufacturing industry, to name a few [15][16][18]. And the
role of information technology is now recognized as an
important and valuable component of supply chain effec-
tiveness [27]. 
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Of particular interest in this paper is the role of informa-
tion technology in delayed product differentiation in a sup-
ply chain. The value of delayed product differentiation was
originally posited by Alderson [7], who suggested that
demand information might better be used later in the distri-
bution channel where it was presumed to be more accurate
to guide the form, identity and distribution of products. This
stream of research has continued, so that recently Lee and
Tang [24] have modeled the costs/benefits of redesign strat-
egies for delayed differentiation, and Anand and Mendel-
son[8] have modeled delayed differentiation in a supply
chain to analyze the effects of information in postponement
strategies. 

In this paper, we employ a simulation approach to ana-
lyze the impact of an electronic broker [14][35] on the value
of postponement in a supply chain (defined as the difference
in profits between early and late product differentiation). We
focus on the impact of an electronic broker because it
increases the precision of demand information, and in doing
so may affect postponement strategies in the distribution
channel. 

This paper is organized as follows: In section 2, we dis-
cuss the issues related to delayed product differentiation. In
Section 3, we list hypotheses that are later tested. In section
4, we discuss the methods we use to test our hypotheses, the
use of simulations as well as the benchmarking of our
model. In section 5, we present the results of our study.
Finally, in section 6, we discuss the implications of our
research findings.

2.  The Value of Postponement

Demand uncertainty is increasing in a number of mar-
kets. Because of increased product proliferation, diminished
lead times, global differences in product specifications and
preferences, the requirements for firms to produce more
product variations with less forecasting information are
increasing. Anand and Mendelson point out that these devel-
opments are particularly salient for fast clock-speed indus-
tries such as hi-tech, as well as industries with long
production and lead times such as the fashion industry.
Product proliferation has a large impact on hi-tech industries
because quickly diminishing value of inventories makes
managing the supply chain through maintaining large
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amounts of safety stock highly expensive. In the case of the
fashion industry, long production lead times require that the
creation of clothing is done before sufficient demand infor-
mation is available for making style decisions that are com-
patible with the upcoming seasons. 

One consideration in obviating the demand uncertainty
problems associated with the above examples is known as
postponement, or delayed product differentiation
[39][43][48][49][24]. Under postponement, the differences
that make up product variety are added as late in the supply
chain as is possible, in order to take advantage of better and
more recent demand information. Thus, with postpone-
ment, laser printers sent to Europe are not fitted with the
appropriate power supply until after their destination is
decided. So, too, with the laser printers that are sent to loca-
tions in the United States, with the appropriate power sup-
ply added later as well. 

The difference in profits between early differentiation
(e.g. making finished laser printers before their destination
is identified) and delayed differentiation (making finished
laser printers only after their destination is identified) is
known as the value of postponement. The value of post-
ponement for a given production process is contingent on a
variety of factors such as demand correlation, demand vari-
ation, and information precision and timing[8]. So, for
example, in the case of demand correlation, the value of
postponement is very small when product demand is highly
correlated, (e.g. when roughly equal demand exists for both
European and American version of a laser printer, making
the demand for one region's products a good predictor of
the demand for another region's products.) Concerning
demand variation, when overall product demand changes
sharply from period to period, the value of postponement is
high. 

In the remaining sections, we consider the impact of an
electronic broker on the value of postponement, and juxta-
pose our finding to those of Anand and Mendelson's analyt-
ical results.

3.  Impacts of an Electronic Broker

The model of an electronic broker used in our research
is based on the Custom Mass Production (CMP) model dis-
cussed in [14]. Fundamentally, the model entails joining
together buyers with locally unique preferences, in a global
electronic format, to form a market that suppliers can serve
in a cost-effective way. The model was characterized as an
electronically brokered CMP channel that allowed buyers
to acquire customized products at prices that reflected
economies of scale. This was achieved through buyer con-
solidation: using collaborative filtering to identify like-
minded buyers, negotiating satisfactory product configura-
tions to allow for self-generated market niches, and negoti-
ating contracts with various suppliers. The model assumed
that there were more similarities in buyers' custom prefer-
ences than traditional market research methods could detect
or suppliers could exploit through traditional distribution
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channels. The CMP broker, then, represents individual
buyers in a multi-stage bargaining action. 

Within the bounds of supply chain management, a
CMP broker changes the characteristics of Information
Precision. We assume that because a CMP broker helps
define product configurations that are agreed upon by a
group of individuals, individual make-to-order requests
may instead become batched, make-to-order requests. In
the case of information precision, we assume that infor-
mation precision in demand forecasting becomes certain
insofar as large scale orders are made through buyer con-
solidation, and forecasting for non-stock items is obviated
with the presence of a CMP broker. 

 With regard to supply chain management, and particu-
larly focusing on the value of postponement, we are inter-
ested in evaluating the effects of a CMP broker along
several dimensions: 1) inventory costs in early and late
differentiation, 2) lead times in early and late differentia-
tion, and 3) the overall value of postponement. We are
also interested in evaluating whether early or delayed dif-
ferentiation is the best strategy to use when a supply chain
is enabled by a CMP broker. 

Within this realm of inquiry, we ask two questions.
First, because work done by Anand and Mendelson [8]
showed that the value of postponement increased in
demand variability and information precision, and
because a CMP-broker facilitates greater information pre-
cision in demand forecasting, we believe it is likely that
an CMP-broker enabled supply chain will increase the
value of postponement over a non CMP-broker supply
chain. Thus, in our first hypothesis, we state:
• H1: A CMP-broker enabled supply chain will, in the

face of increasing demand variability, produce a
greater value of postponement than a non-brokered
supply chain.
Second, because Anand and Mendelson[8] showed that

the value of postponement falls with demand correlation,
but that it increases with information precision, we
believe it is likely that a CMP-broker enabled supply
chain will have a greater value of postponement as
demand correlation decreases than a non-brokered supply
chain. This is because of the additive effect anticipated by
a CMP-broker's greater information precision regarding
demand forecasting. Thus, our second hypothesis is as
follows:
• H2: A CMP-broker enabled supply chain will, in the

face of decreasing demand correlation, produce a
greater value of postponement than a non-brokered
supply chain.

4.  Methodology

To evaluate the effects of a CMP-broker on a supply
chain, we employ a simulation methodology. The use of
simulations in research has broadened over time to
include a widening range of applications, ranging as far as
to evaluate descriptions of bounded rational but adaptive
economic systems[12][11], normative implications char-
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acterized by intentional rational economic behavior[32] as
well as issues as complex as organizational learn-
ing[22][21]. Within the topic of this paper, simulations
have also been used to evaluate supply chain characteris-
tics[20]. 

The limitations of simulations include the fact that they
are dependent upon researchers' theoretical assumptions
and the initializing values of the independent variables.
Some of these concerns may be obviated by changing the
assumptions of the model or by altering the initial variables
or both, and performing a sensitivity analysis over the man-
ifold versions of the model. The problems of simulations
generally include, as with any abstraction, their omission of
detail, limiting somewhat the complexity of individuals and
decisions and processes. Additional problems include
attempting to verify the models under consideration.

To capture the salient characteristics of the supply chain
in our study, we began by recognizing that there are five
elements of a simulation[44].
• Researcher specified assumptions about the model being

tested 
• Parameters (fixed values and control variables)
• Inputs, or independent variables
• Algorithms, or process decision rules that convert input

values to outputs
• Outputs, or dependent variables 
We explain these elements in the sections that follow, and
detail the Swarm implementation tool kit, which we used as
a simulation platform, in appendix A.

4.1  Modeling Assumptions

Our simulation model of a supply chain is based on a
simple, three-node chain described in [8]. They compared
Inventory, Sales, and Profits under delayed and early differ-
entiation to quantify the value of postponement (VOP).
They assumed the same demand and cost environments for
early and delayed differentiation, and found the following
relationships (which we used to benchmark and verify our
simulation model): 
(1) Delayed differentiation (DD) reduces inventory costs
(2) DD increases VOP
(3) VOP increases in Demand variability 
(4) Profits fall with Demand variability
(5) VOP falls with Demand Correlation 
(6) DD reduces average inventory 
(7) Profits increase under DD with increased information
precision
All of the above relationships were benchmarked and con-
firmed with our simulation model.1 

4.2  Fixed Simulation Parameters

Our simulations actually consist of two models; one for
delayed differentiation (DD) and one for early differentia-
tion (ED). The two models are identical in all respects,

1 There is some ambiguity with assumption 4 for ED. This is illustrated in 
section 6. 
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xcept for the way in which they use information to guide
he manufacturing process. Both models have parameters
hat were identically fixed during all simulations. They
ncluded the following parameters.

Model parameters. In addition to the basic structure of
the supply chain, both models also define how orders
and parts move between and within nodes of the sup-
ply chain. Numeric values define the order and part
forwarding times, production times, inventory costs,
and startup inventory quantity. In the simulations, the
startup inventory quantity was zero, initial production
time was 0.2 hours for each part, while the customiza-
tion time was 0.1 hours for each part. Inventory costs
were computed as the holding time multiplied by a
fixed cost: (PartexitTime - PartarrivalTime) * cost. For
manufactures, the cost was $0.40 per part, while the
cost was $0.60 per part for distributors. 
Order and part parameters. All orders originate at cus-
tomers, pass through a broker, arrive at the distribution
node and then are passed onto the manufacturing
nodes. All parts originate at a supplier and are passed
onto the manufacturing nodes.
Part parameters. In the DD model, finished product A
is manufactured from parts 2 and 6, where 2 is manu-
factured from parts 0 and 1. The ED (early differentia-
tion) model has a similar fixed structure. (See figures 1
and 2.)
Timing parameters. All simulations were run for 50
days with a time step of 1.0 hour. A simple exponential
forecasting function was used to predict demand quan-
tity for finished products. The formula was as follows:
Forecasted Demand = 

α * Actual Demand + (1 - α) * Forecasted Demand
Actual Demand ≡ Actual demand from previous period
Forecasted Demand ≡ Forecasted demand from previous
period.

The forecast horizon was 10 days. The parameter, α, 
was set at 0.5. 

.3  Independent Simulation Variables

Information precision in conjunction with demand cor-
elation and variability were the independent simulation
ariables. Information precision is a measure of the accu-
acy of the incoming demand information as it is passed
rom the broker to the most “upstream” node of the supply
hain. The demand variables of correlation and variability
oncern the configuration of orders as they are passed
rom the broker to the supply chain. 

The simulations relied on the following definitions for
he independent variables.

Demand correlation. Consider the market demand for
quantities of two products, A and B, at time t. The cor-
relation between these demand quantities, DQA and
DQB, is one if DQA = DQB and less than one if DQA ≠
DQB. Demand correlation = DQA/DQB, where DQA ≤
DQB. 
Demand variability. The market demand for a quantity
of a product A at time t can be represented as normal
$10.00 (c) 2000 IEEE 3
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distribution over a range, [low,high]. If low = high, then
there is no variability in DQA at each time t. Obviously,
the larger the value (high - low), the more variability in
the demand quantity. Demand variability = (high - low),
where for each time t, DQ = Normal Distribution
[low,high]. 

• Information precision. Generally, for each of the above
types of demand information (DI), one can assume that
the information received by the supply chain is accurate.
That is, DIreceived = DIactual. However, demand informa-
tion can be inaccurate.
Let ρ be the precision of the demand information (DI).
Then, we model DIreceived as follows:

DIreceived = DIactual + (DIactual * ρ)

Thus, if ρ is 0, then the demand information is accurate; 
that is, DIreceived = DIactual. However, if ρ is 1, then the 
demand received is twice the actual demand. Thus, in 
this model, imprecise demand information consistently 
overestimates the actual demand.

The experiments consisted of simulations with different
values of information precision for different configuration
of demand information. 

4.4  Simulation Functions

The simulation begins with the arrival of orders. Each
node of the supply chain fulfills orders that arrive from its
“upstream” nodes by producing products from parts that
arrive from its “downstream” nodes. Two production poli-
cies were considered: build-to-stock (BTS) and build-to-
forecast (BTF). These basic simulation functions are
described below.
• Order arrival. Orders arrive for each product after each

arrival interval elapses. Each order has an associated
quantity described as a normal distribution. A supply
chain node that receives a customer order for a finished
product can send orders to its own suppliers for any nec-
essary parts. Thus, a customer order can create a cascade
of orders through the supply chain network. In the simu-
lation, a node fulfills its orders by one of two production
policies under the constraints of the fixed simulation
parameters (see section 4.2). 

• Build to Stock Production. In a build-to-stock (BTS)
production policy, a node produces products as a means
to maintain a specific quantity of inventoried prod-
ucts[28]. The inventory quantity held is determined
using an economic order quantity model: 

• Build to Forecast Production. In a build-to-forecast
(BTF) production policy, a node produces products as a
means to fulfill an expected quantity of future orders, as
determined by a forecast[28]. As orders arrive at a node,
the node can continually update its expectation of future
orders. (Section 4.2 defined the exponential forecasting
function used.)

EOQ 2 demanQuantity× orderCost×( )
inventoryCost
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Information sharing. Supply chain nodes can share
information. For example, an “upstream” node can
share its demand forecast with a “downstream” node.
This allows the downstream node to update its demand
forecast to be consistent with the upstream node. Fig-
ures 1 and 2 illustrate such information sharing.
Part arrival. Part arrival is similar to order arrival. 

.5  Dependent Simulation Variables

Each simulation run tracks a number of dependent
ariables, including: cycle time, fulfillment rate, inventory
ost, and capital utilization. Inventory cost is the focus on
he following experiments and discussion. However, cycle
ime and capital utilization are referenced as well. Each of
hese is defined below.

Inventory cost. Inventory costs are computed for each
node. It is the holding time multiplied by a fixed cost:
(PartexitTime - PartarrivalTime) * cost. The graphs of sec-
tion 5 illustrate the total inventory costs for all nodes of
the supply chain excluding the suppliers or customers.
Cycle time. Cycle times are computed for the most
upstream node of each supply chain. It is the order ful-
fillment period: (ProductexitTime - OrderarrivalTime). 
Capital utilization. Capital utilization is computed for
each node. It is the percentage of time that a node is
busy: (BusyTime / TotalTime). 

ach of these dependent variables were used to assess the
ffects of information precision and different configura-
ions of demand information. 

.6  Benchmarking the Models

We applied two general methods to benchmark our
imulation models. First, we compared the analytic results
nand and Mendelson with our simulation results. Our

nalysis of inventory costs partially overlaps. Thus, we
ere able to make a general comparison between our sim-
lated inventory costs and their analytically derived costs.
These results are discussed in sections 5.) Second, we
ere able to duplicate the results of the information shar-

ng strategies and manufacturing policies reported in[41].
n fact, our simulation uses the same simulation frame-
ork; however, the components are configured to repre-

ent the Anand and Mendelson models.
Our simulation models are based on the three-node

upply chain described in (Anand and Mendelson, 1999).
heir model consists of a supplier, a manufacturer, and a
istribution center. The manufacturer produces products
sing a Build-to-Stock policy. Next, the distribution cen-
er uses market demand information to produce a finished
roduct from the intermediate manufactured product. Our
imulation models are essentially the same.

Figures 1 and 2 illustrate the two supply chain models.
oth models consist of a supplier (S), two manufacturing
odes (M1, M2), and a distributor (D). While not illus-
rated, a common broker is prepended onto the head of the
upply chain before the distributor; it is in contact with the
onsumer market. 
10.00 (c) 2000 IEEE 4
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While the two models manufacture the same products
using the same number of parts, they differ in their means
of manufacturing. As illustrated in figure 1, early differenti-
ation produces products through independent streams of
manufacturing. For example, product A is manufactured
first by constructing the intermediate product 2 from parts 0
and 1. Finally, A is constructed by combining intermediate
product 2 with part 6. 

In contrast to the early differentiation model, the
delayed differentiation model uses a common intermediate
product to produce both final products. For example, as
illustrated in figure 2, product A is manufactured first by
constructing the common intermediate product 12 and then
combining it with part 13.

In both models, demand information concerning the
quantity of each final product is passed on from the distrib-
utor to the final manufacturing process (M2). Such demand
information is used to forecast future demand and thereby
determine the quantity of products to be manufactured.
However, such demand information is not passed onto the
initial manufacturing process (M1). Thus, manufacturing
processes M1 and M2 use a Build-to-Stock and Build-to-
Forecast policies, respectively[28]. These are the same pol-
icies as those of Anand and Mendelson. They are used to
model existing policies as well as the actual information
disconnect that occurs from the earlier time of the interme-
diate manufacturing to the later time of product customiza-
tion. That is, the intermediate manufacturing node M1 must
begin manufacturing before an accurate forecast of the
product mix is known. At a later time, customization can
done by manufacturing node M2, when a better demand
forecast is available. Thus, M1 does Build-to-Stock while
M2 does Build-to-Forecast. 

Figure 1. Early differentiation supply chain model.

S M1 M2 D

Demand informationProduct flow

0,1⇒2

3,4⇒5

2,6⇒A

5,7⇒B

A

B

x,y⇒z

z is produced from x & y

Figure 2. Delayed differentiation supply chain model.

S M1 M2 D

Demand informationProduct flow

10,11⇒12 12,13⇒A

12,14⇒B

A

B

x,y⇒z

z is produced from x & y
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.  Experiments

Here, we report the results of 48 simulations. To pro-
ide an understanding of how these simulations were gen-
rated, table 1 is provided. It can be used to compare the
esults between early and delayed differentiation for
emand correlation with perfect (CMP broker supplied)
emand information. 

Table 1 illustrates an empty experiment report table for
omparing early and delayed differentiation for demand
uantity correlation with perfect information precision (ρ
 0). (The dependent variable values for each of the four
imulations are not shown.) This table illustrates just one
f a number of experiments run. For each of the demand
ariables (correlation and variability), six different values
ere considered. For each of those experiments, two dif-

erent values of information precision were considered.
uch experiments were conducted for both ED and DD.
hus, a total of 48 simulations were run (2 * 2 * 6 * 2). 

.1  Information Precision

The broker generates demand information that is
assed to the distributor and then to the second manufac-
urer (M2). For each final product, the demand informa-
ion indicates the quantity requested by a customer.
emand information can be accurate; that is, DIreceived =
Iactual. However, demand information can be inaccurate.

See section 4.2.) Moreover, note that the introduction of
isinformation occurs as each node. Thus, the effect is

umulative from node D to node M2 (where information
haring is provided). 

In each of the following experiments, information pre-
ision, ρ, was considered at 0 (CMP broker) and 2 (no
roker). Additionally, each experiment also shows the
esults of modifying another variable—specifically,
emand quantity correlation and demand quantity vari-
bility. 

.2  Demand Correlation

For different values of demand quantity correlation,
igure 3 illustrates the inventory costs for early differentia-
ion (ED), while figure 4 illustrates the inventory costs for
elayed differentiation (DD). The X-axis represents dif-
erent degrees of demand quantity correlation, from 6 to
, where 1 is high correlation. These map to the following
rder quantities for products A and B. 
1)A[5,5] B[5,5]
2)A[4,4] B[6,6]
3)A[3,3] B[7,7]
4)A[2,2] B[8,8]

(ρ = 0) Early 
Differentiation

Delayed
Differentiation

Low Demand (correlation)
High Demand (correlation)

Table 1: An empty result form for four simulations (ρ = 0).
$10.00 (c) 2000 IEEE 5
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Figure 3. Inventory costs vs. demand correlation for early differentiation.
(5)A[1,1] B[9,9]
(6)A[0,0] B[10,10]
The range [low,high] indicates the normal distribution from
which an order quantity will be drawn. 

Figure 3 illustrates how inventory costs decrease with
increasing order quantity correlation for early differentia-
tion (ED). The effect is most understandable with perfect
information precision (CMP broker) and for delayed differ-
entiation, as illustrated in figure 4. 

Figure 5 illustrates the savings in inventory costs
obtained by delayed differentiation over early differentia-
tion for Broker and No Broker. This can be considered the
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alue of postponement as obtained through inventory cost
avings. Notice that the value of postponement decreases
n demand quantity correlation. Intuitively, it confirms
hat, as variability of the product mix decreases, the need
o postpone the decsion concering product mix decreases;
oroever, a more accurate product mix can be estab-

ished.

.3  Demand Variability

For different values of demand quantity variability, fig-
res 6 and 7 illustrate the inventory costs for early and
elayed differentiation. The X-axis represents different
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Figure 4. Inventory costs vs. demand correlation for delayed differentiation.Figure 4. Inventory costs vs. demand correlation for delayed differentiation.
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Figure 5. Value of postponement for demand quantity correlation.
degrees of demand quantity variability, from 1 to 6. These
map to the following order quantities for products A and B. 
(1)A[5,5] B[5,5]
(2)A[4,6] B[4,6]
(3)A[3,7] B[3,7]
(4)A[2,8] B[2,8]
(5)A[1,9] B[1,9]
(6)A[0,10] B[0,10]
Again, the range [low,high] indicates the normal distribu-
tion from which an order quantity will be drawn.

Figure 6 illustrates how inventory costs increase with
increasing order quantity variability for early differentia-
tion, while figure 7 illustrates the reverse for late differenti-
ation. 

Figure 8 illustrates the savings in inventory costs
obtained by delayed differentiation over early differentia-
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ion for Broker and No Broker. Notice that the value of
ostponement increases in demand quantity variability.

.  Discussion

In section 3, we posed two hypotheses to test. Here, we
iscuss how the simulation results illuminate the hypothe-
es. Note that all graphs show the “bullwhip effect”[25].
orrester illustrated this classic demand amplification, in
hich a slight disturbance in demand at the retail level is

mplified as it moves through the channel[17].

.1  H1: Value of Postponement Increases as 
emand Variability Increases

Hypothesis H1 states that: 
Figure 6. Inventory costs vs. demand variability for early
differentiation.
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elayed differentiation.
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Figure 8. Value of postponement for demand variability.
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• H1: A CMP-broker enabled supply chain will, in the
face of increasing demand variability, produce a greater
value of postponement than a non-brokered supply
chain.

Figure 8 illustrates that the value of postponement increases
with increasing demand variability. For lower and interme-
diate demand variability, VOP is greater for a brokered sup-
ply chain than a non-broker supply chain. For high demand
variability, the effect is more ambiguous. This may be due
to the decreasing effect of delayed differentiation. That is,
as one of the product quantities reaches zero (data point 6),
delayed differentiation has no effect as there is only one
product stream (cf., [8]).

Introducing a broker can improve the inventory costs in
either a ED or DD supply chain. Table 2 shows the average
inventory costs and their decrease with the introduction of a
broker for demand variability. Note that both ED and DD
benefit in the neighborhood of 36 to 43 percent with the
introduction of a broker. 

6.2  H2: Value of Postponement Increases as 
Demand Correlation Increases

Hypothesis H2 states that:
• H2: A CMP-broker enabled supply chain will, in the

face of decreasing demand correlation, produce a greater

Average Inventory Costs

Variability % ∆

ED
Broker $15,206

35.7%
No Broker $23,660

DD
Broker $12,121

43.1%
No Broker $21,304

Table 2: Average Costs and the Percentage Improvement.
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value of postponement than a non-brokered supply
chain.

Prior research indicates that:
While greater correlation increases ED profits, its effect on DD
profits is ambiguous. However, the net effect on VOP is unam-
biguous: it falls with demand correlation.—[8]. 

Figures 3 and 4 show that inventory costs fall for both ED
and DD. Thus, profits increase with demand correlation.
Moreover, figure 5 confirms that VOP decreases with
demand correlation.

For increasing demand correlation, the value of post-
ponement is greater for a CMP-broker than for non-bro-
ker. However, in both cases VOP falls in increasing
demand correlation. Said another way, VOP increases as
demand becomes less correlated. Moreover, it increases at
a greater rate under the CMP-broker. 

Table 3 shows the average inventory costs and their
decrease with the introduction of a broker for demand cor-
relation. Again, the VOP is higher for a broker than a non-
broker, both ED and DD benefit in the neighborhood of
40 to 45 percent with the introduction of a broker.

7.  Conclusion

Based on the assumption that a CMP electronic broker
increases information precision, we have tested several of

Average Inventory Costs

Correlation % ∆

ED
Broker $17,797

40.1%
No Broker $29,716

DD
Broker $15,218

45.2%
No Broker $27,758

Table 3: Average Costs and the Percentage Improvement.
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its hypothesized effects on the value of postponement in a
simple supply chain. Generally, is has been illustrated that a
CMP broker in a supply chain increases the value of post-
ponement in both early and delayed product differentiation.
Moreover, a CMP broker improves a delayed product dif-
ferentiation supply chain more than it improves a early
product differentiation supply chain. Yet, because there is
typically a significant cost associated with redesigning sup-
ply chains to take advantage of delayed differentiation, our
results may provide an alternative option for redesign that
may prove nearly as profitable as delayed differentiation.
That alternative is to simply introduce a CMP broker. While
the specificity of our simulation does not provide the neces-
sary level of detail to make this calculation a straightfor-
ward one, it does suggest that additional research into the
sensitivity of parameters and related trade-offs is poten-
tially useful.
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9.  Appendix

We implemented the two supply chain models using a
supply chain simulator developed within the Swarm simu-
lation tool kit. 

Swarm is a multi-agent software platform for the simulation of
complex adaptive systems. In the Swarm system the basic unit
of simulation is the swarm, a collection of agents executing a
schedule of actions. Swarm supports hierarchical modeling
approaches whereby agents can be composed of swarms of
other agents in nested structures.[31]

While a number of researchers have used Swarm to simu-
late supply chains (e.g., [20]), we choose the supply chain
simulation framework developed by Strader, Lin and
Shaw[26][40][41]. In their framework, an entity (or node)
in supply chain network (SCN) ...

is composed of several agents, such as an order management
agent, an inventory management agent, and a SCN manage-
ment agent. An entity with manufacturing capability includes a
production planning agent, a capacity planning agent, a materi-
als planning agent, a shop floor control agent, and manufactur-
ing systems agent. A SCN Entity Swarm holds entity level
information such as suppliers, customers, order transfer delay
time, and product delivery time, which are accessible by internal
agents and other entities. The encapsulated agents perform cer-
tain functions in enabling the movement of information and mate-
rial within the entity and between entities.—[41] 

In [41], Strader, Lin and Shaw describe the interactions
among these node subprocesses.

... an entity ScnESwarm A receives an order from its customer
ScnESwarm C. The order flows to the order management agent
(OrdM). According to the customer lead times, the inventory
availability information (from InvM), the production plan (from
PrdP), and the manufacturing capacity (CapP), the order man-
agement agent assigns a due date to the order. If the products
are in stock, the order is filled by shipping the products from
inventory. If the products are in receiving, the due date is set
according to the delivery date of the products. 
For an entity with manufacturing capability, the order is for-
warded to the production-planning agent (PrdP) where the
schedule for making the products is planned. The capacity-plan-
ning agent (CapP) and the material-planning agent (MatP) are
partner agents in generating achievable build plans. The material
planning obtains build plans from the production-planning agent
to allocate materials for manufacturing. It also contributes infor-
mation about material availability to production planning for
scheduling. The capacity planning agent (CapP) plans capacity
by taking the build plan from PrdP and sends capacity usage
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information to PrdP for scheduling the build plan. The SCN
management agent (ScnM) takes the order information to
choose suppliers in allocating material sources...

s can be inferred from the above descriptions, the
trader, Lin and Shaw simulation framework provides a
ich, detailed, accurate representation of a supply chain
etwork. Using their framework, we implemented the two
upply chain models illustrated in figures 1 and 2. Next,
e conducted experiments to uncover the differences
etween the two models with respect to information preci-
ion, demand correlation, and demand variability as
ffected by an order broker.
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