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Optical spectroscopy of conjugated molecules is described by using collective electronic
coordinates, which represent the joint dynamics of electron-hole pairs. The approach
relates the optical signals directly to the dynamics of charges and bond orders (electronic
coherences) induced by the radiation field and uses only ground-state information, thus
avoiding the explicit calculation of excited molecular states. The resulting real-space
picture is reminiscent of the normal-mode analysis of molecular vibrations and offers a
unified framework for the treatment of other types of systems including semiconductor
nanostructures and biological complexes. Spatial coherence displayed in two-dimen-
sional plots of the five electronic normal modes that dominate the optical response of
poly( p-phenylene vinylene) oligomers with up to 50 repeat units (398 carbon atoms) in
the 1.5- to 8-electronvolt frequency range suggests a saturation to bulk behavior at about
five repeat units.

Spectroscopy allows chemists and physicists
to probe of the dynamics of vibrations and
electronic excitations within molecules and
solids. The theoretical models used for inter-
preting molecular spectra compared with
those for extended solids are usually quite
different, and certain systems, such as clus-
ters and polymers, are not readily treated by
either of these limiting cases. There is par-
ticular interest to understand the optical
spectra of large polymers, which are extend-

ed conjugated molecules such as poly(p-phe-

nylene vinylene) (PPV) oligomers (Fig. 1)
that have interesting optical applications.

Electronic and optical properties of
small conjugated chains can be interpreted
molecularly in terms of their global many-

electron eigenstates obtained from quan-

tum-chemistry methods (1, 2). Large poly-

mers also can be analyzed with semi-
conductor band theories that focus on the
dynamics of electron-hole pairs (3). The
size-scaling of the optical response and the
transition between these two regimes has
not been fully explored for the lack of ade-

quate theoretical methods. It is very hard to
obtain the complete set of eigenstates,
which carry considerably more information
than necessary for the calculation of
spectra, for large molecules with strong
electron correlations (as occurs in conjugat-
ed chains). Band theories, however, neglect
electronic correlation effects, and because
they are formulated in momentum (k)
space, they do not lend themselves easily to
real-space chemical intuition.

The collective-electronic oscillator
(CEO) representation (4, 5) provides a hy-

brid formulation that bridges the gap be-

tween the chemical and semiconductor
points of view. This model uses an electron-

hole picture in real space, overcomes many
of the difficulties associated with the former
approaches, and provides a physically intu-

itive link between electronic structure and
optical properties, that is, the optical prop-

erties are related directly to the motions of
charges and electronic coherences, thus
avoiding the need to calculate the global
(many-electron) eigenstates. The electronic
oscillators, unlike the electronic orbitals,
are directly observable spectroscopically
(4–6). Despite the quantum nature of elec-

tronic motions, the collective oscillators are
classical (7, 8), which relates well with
chemical intuition. Typically only a few
oscillators dominate the response, greatly
simplifying the theoretical description. A
real-space picture of linear absorption that
pinpoints the origin of each optical transi-
tion is obtained by two-dimensional (2D)
display of the electronic mode matrices.
Our results provide a unified description of
the optical response of small and large mol-
ecules as well as bulk materials.

The CEO Approach

The oscillator picture that we use here is
more familiar in the analysis of vibrational
spectroscopy (9), in which the coherent mo-

tions of various atoms with well-defined am-

plitude and phase relations are represented
by collective nuclear coordinates—the nor-
mal modes. The normal modes provide a
natural coordinate system and allow an al-
ternative classical real-space interpretation
of infrared or Raman spectra (9, 10) instead
of a description in terms of transitions among
specific vibrational states. The normal
modes of nuclear vibrations are simply super-

positions of the 3N nuclear displacements.
Extending this concept to electronic mo-

tions is not straightforward, however, be-

cause spectroscopic observables are highly
averaged, and following the complete many-

electron dynamics is neither feasible nor
desirable. For this reason, the oscillator
picture is normally not used for electronic
spectroscopy.

In this article we show how a CEO
picture can be rigorously established for op-

tical excitations of conjugated molecules.
We demonstrate how a natural set of elec-

tronic coordinates can be constructed by
using the reduced single-electron density
matrix (4, 5, 11) and how it offers tremen-

dous conceptual as well as computational
advantages. Consider a conjugated mole-

cule described by a basis set {fn} of N
atomic orbitals. [For simplicity we use in the
calculations presented below the Pariser-
Parr-Pople (PPP) Hamiltonian where each
carbon atom has a single p orbital (6, 12).
N then coincides with the number of car-
bon atoms.] The system can be described by
the Fermi operators cn

1 and cn representing
the creation and annihilation, respectively,
of an electron in fn. The complete many-

electron wave function representing the
system’s ground state will be denoted cg(x),
x being the complete set of electronic co-

ordinates. The reduced single-electron
ground-state density matrix is then defined
as the expectation value (13)

#rnm[^cgucn
1cmucg& (1)

(Spin indices have been omitted for brevi-
ty.) The physical significance of #r has been
recognized since the early days of quantum
chemistry (14). We first note that #r is an
N 3 N matrix. The density matrix carries
considerably less information than the com-

plete many-electron wave function (making
it much easier to calculate); however, this
information is sufficient to calculate all op-
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Fig. 1. Geometry and atom labeling of PPV oligo-
mers. Bond angles are 120°, except a(r6,7, r7,8) 5
128°, and the distances are r1,2 5 r2,3 5 r3,4 5
r4,5 5 r5,6 5 r6,1 5 1.39 Å, r6,7 5 1.44 Å, and
r7,8 5 1.33 Å.

ARTICLE

www.sciencemag.org z SCIENCE z VOL. 277 z 8 AUGUST 1997 781



tical properties and develop an intuitive
physical picture of the optical response.
[cg(x) allows us to calculate the expectation
values of products of arbitrary numbers of cn

at cn
1, whereas #r only gives the binary

products, which represent operators that de-

pend on a single electron, hence its name.]
#r is thus the quantum analog of the single-

particle distribution in classical statistical
mechanics (15). The ground-state density
matrix #rnm may be obtained by using stan-

dard quantum chemistry packages. Its diag-

onal elements (n 5 m) represent the charge
at the mth atom, whereas the off-diagonal
elements (n Þ m) reflect the strength of
chemical bonding between each pair of at-
oms and are known as the bond orders.
Bond order is thus associated with a phase
relation (electronic coherence) between or-
bitals. The eigenvectors of #r known as the
natural orbitals provide a convenient basis
set for performing configuration interaction
calculations and for interpreting chemical
reactivity (16, 17).

When the molecule is driven by an ex-

ternal electric field (such as provided by a
photon in a spectroscopic measurement), its

wave function (and consequently, the re-

duced density matrix) becomes time-depen-

dent, such that r(t) 5 #r 1 dr(t). The
matrix elements drnm(t) represent the
changes induced in the density matrix by
the electric field. drnn(t) is the net charge
induced on the nth atom, whereas drnm(t),
n Þ m, is a dynamical bond order represent-
ing the joint amplitude of finding an elec-

tron on atom m and a hole on atom n.
Quantum chemistry techniques that cal-

culate properties such as polarizabilities by
using the many-body wave functions rapidly
become more complicated with molecular
size and are therefore limited to small mol-
ecules. Furthermore, in most practical
chemical applications we need much less
information than is carried by the complete
eigenstates. This makes it hard to develop a
simple intuitive understanding of various
trends. A time-dependent procedure for cal-
culating dr(t) directly for a molecule inter-
acting with an external electric field ε(t)
can be obtained by starting with the Heisen-

berg equation of motion for cn
1cm. This

equation is not closed, because higher order
products will show up when the time deriv-

ative is calculated. Writing equations of mo-

tion for these higher order products will
yield increasingly higher order products.
This is the famous hierarchy of many-body
(classical and quantum) dynamics. To over-
come this difficulty we need a truncation
procedure. The simplest procedure assumes
that the many-body wave function is given
by a single Slater determinant at all times
and yields the time-dependent Hartree-Fock
(TDHF) equations of motion (18):

dṙ 5 Adr 1 Bdrdr 2 ε~t!mdr (2)

The coefficients (A, B, and m) in these
equations are readily available and depend
on the original Hamiltonian and on #r
(which is the essential input in the present
approach). Figure 2 displays #r of a linear
30-atom polyacetylene chain as well as the
induced density matrix dr(v) [the Fourier
transform of dr(t)] to first order in the
external field [ε(t)], for three frequencies
corresponding to the lowest peaks in the
optical absorption. #r is almost diagonal;
only nearest neighbors have significant off-
diagonal elements. This result is in agree-

ment with our elementary picture of chem-

ical bonding. Optical excitations, however,
induce electronic coherences between at-
oms that are much farther apart, as is clearly
seen in Fig. 2, B, C, and D.

With Eq. 2 the time-dependent density
matrix (and optical excitations) can be cal-
culated directly from #r. By understanding
the mechanism for the creation of the co-

herence, we can develop a new type of
chemical intuition and relate the optical
response directly to the motions of charges
and bond orders. This is an attractive
alternative to the conventional descrip-

tion of spectra in terms of transitions
among eigenstates. Both pictures are cor-
rect, and for historical reasons, chemical
intuition is traditionally based on eigen-

states. However, we argue that the real-
space picture is much more natural, intu-

itive, and easier to implement once the
proper terminology is developed. To illus-
trate this point, consider the variation of
optical properties such as the electronic
band gap and its oscillator strength or the
magnitude of the off-resonant polarizabil-
ity with molecular size. These properties
strongly depend on size for short chains
and level off at about 20 to 30 double
bonds, where they attain the bulk values
(19). It is impossible to visualize this co-

herence size by examining the molecular
orbitals. These orbitals are completely de-

localized, change gradually and continu-

ously with chain length, and contain no
signatures of this coherence size. In con-

trast, by looking at the induced density
matrix one can immediately note the co-

herence size associated with its off-diago-
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Fig. 2. Contour plots of density matrices of a 30-carbon polyacetylene chain. (A) Ground-state density
matrix #r; (B, C, and D) frequency-dependent density matrices dr(v) at v 5 2.5, 3.5, and 4.7 eV (496,
354, and 264 nm) corresponding to the lowest three dominant peaks in the absorption spectrum. The
axes represent the individual carbon atoms, and the color code is shown in Fig. 4.
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nal section. This coherence size, which
measures how far apart different atoms
communicate, controls the scaling of op-

tical properties with size, as will be dem-

onstrated below.
At this point, we return to the analogy

with classical molecular vibrations. The
displacements of nuclear positions from
their equilibrium values satisfy nonlinear
equations of motion resulting from the
anharmonic force fields. Infrared and Ra-

man spectra are usually interpreted by us-
ing normal modes obtained by diagonaliz-
ing the linear (harmonic) part of these
equations of motion. Normal modes are
natural collective coordinates for atomic
displacements. Nonlinear (anharmonic)
effects can be treated as perturbations. In
complete analogy, drnm(t) represent the
displacements of the electronic density
matrix elements from their equilibrium
(ground state) values #rnm. The nonlinear
TDHF equations are the electronic coun-

terpart of the classical Newtons’ equations
of motion of nuclear displacements. By
diagonalizing the linearized TDHF equa-

tions, we obtain a set of collective elec-

tronic normal modes. The induced density
matrix can then be expanded as a super-
position of these collective modes in the
same way that an atomic nuclear displace-

ment is a superposition of the vibrational
normal modes. Each normal mode (elec-

tronic oscillator) with frequency Vn is de-

scribed by a coordinate Qn and momentum
Pn. Qn and Pn are also N 3 N matrices (5).
These N2/4 coordinates and momenta al-
low us to represent the time-dependent
density matrix in the form (4)

dr~t! 5 O
n51

N2/4

an~t!Qn 1 bn~t!Pn (3)

The time-dependent coefficients an and
bn are obtained by solving the TDHF
equations.

The optical polarization is related to the
charge distribution and may be expressed in
terms of the diagonal elements of dr(t). The
polarization along the z axis is given by

^3~t!& 5 Oezn drnn~t! (4)

where zn is the z coordinate of the nth atom,
and e is the electronic charge.

In the CEO method (4, 5), the N2 ma-

trix elements of dr(t) are obtained by solv-

ing the closed nonlinear TDHF equations
of motion (4). These equations map the
calculation of the optical response onto the
dynamics of coupled electronic oscillators
(analogous to calculating molecular vibra-

tions), thus avoiding the tedious calculation
of the global (many-electron) wave func-

tions. Infrared and Raman spectra are great-
ly simplified by selection rules that allow us

to include only a few modes in the calcula-

tion. The same is true for the electronic
normal modes: Only a few dominant modes
typically determine the spectra, thus greatly
simplifying the physical picture and reduc-

ing the computational effort.

2D Real-Space Analysis of
Optical Responses

We investigated the electronic excitations
of PPV oligomers (Fig. 1) (6, 20–27) and
analyzed their scaling with size. Recent in-

terest in PPV is connected with its possible
use as a photoconductor (28, 29), as a
candidate for electroluminescent devices, or
for optical switches.

The p molecular orbitals of PPV have
been classified as either localized (l) or
delocalized (d) (26, 28). The former have
an electron density on carbon atoms 1, 2,
4, and 5 (Fig. 1), whereas the latter are
delocalized over all carbon atoms. The
experimental absorption spectrum of PPV
thin film (21) shown in Fig. 3A (dashed
line) is typical for other PPV derivatives
(21, 25, 28). It has a fundamental (d 3
d*) band at 2.5 eV (496 nm) (I), two weak
peaks at 3.7 eV (335 nm) (d 3 d*) (II)
and 4.8 eV (258 nm) (l3 d* and d3 l*)
(III), and a strong (l3 l*) band at 6.0 eV
(207 nm) (IV). Peak II originates from
electron correlations (26, 28) and is
missed by HF calculations. The calculated
spectrum of PPV(10) shown in Fig. 3A (solid
line) closely resembles the experimental
spectrum and has similar features at 2.83 (I),
3.3 (II), 4.5 (III), and 5.6 eV (IV) (438, 376,
276, and 221 nm). In addition, it shows a
fifth band centered at 7.0 eV (177 nm) (V).
The oscillator strengths fn of PPV(10) are
shown in Fig. 3A.

By displaying the dominant oscillators in
the site representation, we obtain a new
picture that relates the optical properties
directly to motions of charges in the system,
without introducing electronic eigenstates.
The extent of spatial coherence then pro-

vides a view of the underlying coherence
sizes. A 2D plot of #r of PPV(10) is shown in
Fig. 4A. The coordinate axes represent re-

peat units along the chain, and the absolute
values of matrix elements are depicted by
different colors. Similar to Fig. 2, #r is dom-

inated by the diagonal and near-diagonal
elements, reflecting the bonds between near-
est neighbors. A single unit of Fig. 4A on an
expanded scale is shown in Fig. 4B with the
atom labeling given in Fig. 1. It reflects
bond-strength distribution over the benzene
ring (elements 1 to 6), strong double bond
(elements 7 and 8), and weaker single bond
(elements 6 and 7) of the vinylene group.
This bonding pattern is to be expected from
the molecular structure.

We next examine the coordinates Qn

and momenta Pn of the dominant elec-

tronic oscillators. Vibrational normal
modes represent coherent displacements
of various atoms, and these electronic
modes represent the displacements of the
electronic density matrix with respect to
#r. The diagonal elements reflect induced
charges on various atoms, whereas the off-
diagonal elements represent dynamical
fluctuations of interatomic chemical
bonding (4–6). Our calculations show
that the absorption is dominated by five
oscillators denoted I to V. The coordinate
and momentum eigenvectors of the oscil-
lator responsible for the lowest absorption
peak I of PPV(10) are shown in Fig. 4, C
and D. The same quantities for the second
oscillator corresponding to peak II are
shown in Fig. 4, F and G. Despite the
different structures of these electronic
modes, the delocalization pattern of the
off-diagonal elements representing elec-

tronic coherence between different atoms
is similar. Both modes are delocalized and
can be viewed as d 3 d* transitions. Qn

and Pn clearly show that the weak coher-
ences between the phenylene ring of the
ith repeat unit, and the vinylene group of
the i 1 1-st repeat unit are enhanced by
optical excitation. In addition, a weak
dynamical coherence develops between
the ith and the i 1 2-nd repeat units.
These figures illustrate that finite size ef-
fects are limited to the terminating repeat

Fig. 3. (A) Absorption spectrum of PPV(10) (the
imaginary part of a Eq. 1. Dashed line, experimen-
tal absorption of a PPV thin film (24); solid line,
absorption lineshape of PPV(10) obtained with 12
effective modes calculation with linewidth Gn 5
0.1 eV. The vertical lines represent oscillator
strengths f n, n 5 1, K 2/4 of PPV(10) obtained by
the full TDHF. (B) The frequency-dependent in-
verse participation ratio of the induced density
matrix.
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units and that the momenta are more delo-

calized than the coordinates for a single
unit. The coherence size, that is, the “width”
of the momentum density matrix along the
coordinate axes, where the coherences de-

crease to 10% of their maximum values, is
five repeat units. The same modes for a
longer chain [PPV(20)] displayed in Fig. 4, E
and H, are virtually identical to those of
PPV(10). Therefore, 10 repeat units already
resemble the infinite chain as far as the

optical spectrum is concerned.
The coordinate and momentum of peak

III of PPV(10) are shown in Fig. 5, A and B.
This mode is delocalized with a coherence
size similar to modes I and II; however, its
structure along the oligomer chain is very
different—bonding is weak at the center
and strong toward the edges. The electronic
modes are most suitable for investigating
charge transfer processes and photoconduc-

tivity (28, 29). The strong local optical

dipoles along the chain can affect charge
transfer and electron hopping. Oscillator
III, which has the strongest optical coher-
ences induced at the chain ends (see Figs.
5A and 4B), should play an important role
in effects involving charge separation.

The coordinates and momenta of the
high-frequency peaks IV and V of PPV(10)

(Fig. 5, D, E, G, and H) are completely
localized on a single-repeat unit. This be-

havior is markedly different from polyacety-
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lene, where the electronic coherence size
increases monotonically for the higher fre-

quency modes (Fig. 2) (5). The coordinates
of these modes for a single PPV unit on an
expanded scale are shown in Fig. 5, F and I.
For peak IV the optically induced coher-
ences only involve the phenylene ring car-
bon atoms 1, 2, 4, and 5 (Fig. 1), in agree-

ment with the results obtained in (26, 28).
The oscillator responsible for peak IV rep-

resents several nearly degenerate localized
oscillators (Fig. 3A). The high-frequency

peak V predicted by our calculations lies
beyond the experimentally studied frequen-

cy range. It corresponds to localized and
weakly delocalized transitions involving the
vinylene group atoms 7 and 8, and the
phenylene ring atoms 3 and 6. A weak
coherence between the vinylene groups of
neighboring repeat units is observed as well.

Even though the CEO approach is ei-
genstate-free, it is instructive to establish its
connection to the more traditional eigen-

state representation. The nth oscillator rep-

resents the optical transition between the
ground state cg and the nth excited state
cn. The matrices representing the coordi-
nate Qn and momentum Pn are given by
(Qn)mn 5 ^cnucm

1cnucg& 1 ^cgucm
1cnucn&,

(Pn)mn 5 ^cnucm
1cnucg& 2 ^cgucm

1cnucn&. Qn

and Pn thus carry considerably reduced in-

formation about the global eigenstates ucn&.
A different perspective on these modes is
obtained by expanding them in the molec-

ular orbital representation using a basis set
of pair molecular orbital pairs. Let us denote
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the creation and annihilation operator for
the ith molecular orbital as ci

1 and ci, re-

spectively. We then have

Qn 5 O
i,j

N2/4

ai,j
n ~ci

1cj 1 cj
1ci! (5)

where i runs over initially unoccupied or-
bitals (particles) and j denotes occupied
orbitals (holes) (Fig. 6A). The coefficients,
a normalized as •i,j ai,j

n  5 1, represent the
contribution of the j 3 i transition to the
nth oscillator. Note that the indices n, m
used earlier represent localized atomic or-
bitals whereas i, j denote delocalized molec-

ular orbitals. To illustrate how various mo-

lecular orbitals contribute to our five dom-

inant electronic modes, we have introduced
the following two quantities

Rn~ j ! 5 O
i

@ai,j
n #2 and Pn 5

1

Oi,j@ai,j
n #2

(6)

where i, j 5 1, . . . , N/2, and n 5 I, II, . . . ,
V. Rn( j) represents the total contribution of
the jth molecular orbital to all orbital pairs
appearing in the nth oscillator. Rn( j) for the
five dominant oscillators in PPV(10) are dis-
played in Fig. 6B. RI( j) is relatively localized
in the vicinity of the HOMO-LUMO tran-

sition (between the highest occupied and
lowest unoccupied orbitals), whereas addi-
tional pairs of orbitals contribute to the
higher modes. The inverse participation ra-

tio Pn measures the number of orbital pairs
that contribute significantly to the nth oscil-
lator. In the absence of electronic correla-

tions, each oscillator represents a single tran-

sition between an occupied and an unoccu-

pied orbital (in the quantum chemistry ter-
minology) or a single particle-hole pair (in
the semiconductor terminology) and Pn 5 1.
In this case, the oscillator and molecular
orbital pair descriptions coincide. In a corre-

lated electronic structure, each mode be-

comes a linear combination (that is, a wave
packet) of orbital pairs as represented by Eq.
5, and Pn increases. Pn is thus a useful mea-

sure of electronic correlations. The values of
Pn given in Fig. 6B show that the higher
oscillators are more collective and contain
gradually increasing numbers of electron-

hole pair states. The oscillators III and V
corresponding to d3 l* transitions have the
most collective character. Such strongly cor-
related excitations require extensive config-

uration-interaction calculations in an eigen-

states approach. Here they appear naturally
through the modes. The CEO is most attrac-

tive when Pn is large because in a very effi-
cient way it lumps the important effects of
correlations directly into the observables.
The collective nature of optical excitations
at different frequencies can be analyzed by
expanding the induced density matrix in
molecular orbitals dr(v) 5 •i,j ai,j(v)(ci

1cj

1 cj
1ci). We can then define a frequency-

dependent participation ratio P(v) by re-

placing ai,j
n with ai,j(v) in Eq. 6. (A normal-

ization •i,juai,j(v)u 5 1 is assumed). P(v)
displayed in Fig. 2B is a weighted average of
the participation ratios Pn of the contribut-
ing electronic oscillators.

We have used the molecular orbital rep-

resentation to analyze the nature of mode
III. Its coordinate in the molecular orbital
representation is shown in Fig. 4C. The
figure clearly shows that only a few molec-

ular orbitals close to HOMO-LUMO con-

tribute to this transition. The strongest or-
bitals can be identified as either delocalized
or localized, and mode III corresponds to l
3 d* and d 3 1* transitions. Our calcula-

tions further show that the frequencies of
modes I, II, and III are red-shifted and
gradually saturate with increasing chain
length, whereas the frequencies of modes IV
and V are not affected by size. These find-

ings are consistent with the delocalized and
localized nature of the two groups of modes
respectively as displayed in Figs. 4 and 5.

Discussion and Other
Applications

The main reason for the success of the CEO
representation is the following. An optical
excitation moves an electron from some
occupied orbital to an unoccupied orbital,
thereby creating an electron-hole pair. The
natural description of the optical response
should therefore be based on following the
simultaneous and coupled dynamics of this
pair; the two indices of the density matrix
carry precisely this information. Molecular
eigenstates, however, use a single-particle
basis set. Correlations are incorporated
through an extensive configuration interac-

tion calculation. By working in a space of
higher dimensionality (the pair) we capture
the essential physics of the system, and even
the simplest (TDHF) factorization yields an
adequate description. In a single-particle
basis, a much more extensive numerical
effort is needed. A real-space analysis of
linear absorption that pinpoints the origin
of each optical transition is obtained by
displaying the electronic mode matrices
graphically. The fact that only a few oscil-
lators typically dominate the response
greatly simplifies the theoretical descrip-

tion. The weak anharmonicities that justify
the harmonic picture may be attributed to
the large delocalization size. On the other
hand, in atoms collective excitations have
been found to converge to local modes rath-

er than to normal modes (30). In semicon-

ductors, the electron-hole pairs are loosely
bound and form Wannier excitons (3). In
molecular aggregates, each pair is tightly
bound and can be considered as a single
particle (Frenkel exciton) (31, 32). Conju-

gated polymers are intermediate between
these two extremes, and the collective os-
cillators in conjugated polymers can be
viewed as charge-transfer excitons. The
CEO thus offers a unified description of
different materials and allows a direct com-

parison of their optical properties (33).
Also, one can go beyond the PPP Hamilto-

nian and the TDHF approximation and
include additional variables and use a dif-
ferent ansatz for the wave function (34).
Technically the calculation of optical prop-
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Fig. 6. (A) Origin of the collective electronic oscil-
lators. Each transition between an occupied and
an unoccupied orbital represents an electron-hole
oscillator. In a molecule with Ne occupied (elec-
tron) and Nh unoccupied (hole) orbitals we have
altogether Ne 3 Nh, oscillators. For a system with
a filled valence and empty conduction band de-
scribed by a “minimal basis set,” Ne 5 Nh 5 N/2,
and the number of oscillators is N 2/4. The collec-
tive oscillators Qn can be represented as super-
positions of the electron-hole oscillators (see Eq.
7). (B) The molecular orbital contributions and the
inverse participation ratios of orbital pairs corre-
sponding to the five dominant modes of PPV(10)
absorption. The inverse participation ratio P n

measures the effective number of electron-hole
pairs contributing to a given collective oscillator.
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erties with summation over states is also
unified and universal. However, very differ-
ent approximate schemes and terminologies
are usually used in the calculation of the
eigenstates of various systems, prohibiting a
clear comparison and obscuring the origin
of differences. The electronic oscillator pic-

ture applies to all materials by simply
changing parameters (such as the electron
hole mass, the Coulomb interaction, and
the hopping matrix elements) (35).

We next review the computational advan-

tages of the electronic oscillator approach.
The sum-only states method becomes rapidly
more expensive with molecular size. Both cal-
culating the eigenstates and performing the
necessary summations over them are intracta-

ble for large systems. Knowing the complete
set of eigenstates allows the calculation of any
optical response including to strong fields.
This is therefore an “all or nothing” approach.
The oscillator approach carries less informa-

tion but for considerably less effort. Compu-

tational time of configuration interaction cal-
culations scales as N6; the CEO procedure
scales only as N2. Our results allow the inter-
pretation of the most interesting crossover
region toward the bulk.

The significance of the oscillator pic-

ture is even more pronounced when non-

linear optical properties are calculated (4,
5). Interference effects in the sum-over-
states approach result in an almost com-

plete cancellation of large positive and
negative contributions to optical suscepti-
bilities (36, 37), which limits the accuracy
and makes approximate calculations dan-

gerous (because innocent approximations
may lead to huge errors). One conse-

quence of this is that individual terms do
not have the correct scaling with size. The
latter is only obtained once all of the
terms are carefully combined. In the oscil-
lator picture these cancellations are built
in from the start and each separate con-

tribution to the susceptibility scales prop-

erly. The present discussion focuses on the
resonant response. However, the real-
space approach has been shown to provide
an adequate description of the scaling and
saturation of off-resonant linear and non-

linear polarizabilities (4, 5).
We further note that by treating the

electronic degrees of freedom as oscillators
we can couple them more naturally to nu-

clear degrees of freedom, which constitute
another set of oscillators. The incorporation
of nuclear notions thus becomes much more
straightforward compared with the eigen-

state representation and lends itself more
easily to semiclassical approximations.

The oscillator approach allows us to de-

velop a natural framework for the interpre-

tation and the design of molecules with
specific properties. Instead of asking which

of the many-electron states are most rele-

vant, we can explore how different regions
of the molecule couple and affect each oth-

er. We can translate dr(t) into a nonlocal
response function anm(t), which shows how
the interaction with a field at point n affects
the polarization at point m (38). The total
polarizability is given by summing this
quantity over n and m a(t) 5 •nm anm(t).
The nonlocal character of the response is
intimately connected with the electronic
coherence of the induced density matrix.
One can then address directly the effects of
donor-acceptor substitutions and geometry.

Electronic motions may now be probed
directly on the femtosecond time scale and
the nanometer length scale by nonlinear
spectroscopic techniques. This has been re-

cently demonstrated in semiconductor
quantum wells (39), single-molecule spec-

troscopy (40–42), and Rydberg atoms (43).
The CEO approach should allow us to an-

alyze the temporal and spatial microscopic
dynamics underlying energy and electron
transfer processes in substituted conjugated
molecules by using real-space wave packets
representing the single-electron density ma-

trix. A physical picture for coherent versus
incoherent electron transfer processes can
then be developed in terms of off-diagonal
or diagonal pathways, respectively, of the
electronic density matrix.

The CEO is conceptually similar to den-

sity functional theory, which aims at calcu-

lating the ground state with an energy func-

tion that depends only on the charge den-

sity, that is, the diagonal elements of the
density matrix in a localized basis (44). The
CEO is a natural extension of density func-

tional theory that includes the electronic
coherences contained in off-diagonal ele-

ments. These carry the key information
about electronic excitations and allow the
calculation of spectra with only ground-

state information.
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