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Electronic Compensation Technique
to Mitigate Nonlinear Phase Noise

Keang-Po Ho, Senior Member, IEEE, and Joseph M. Kahn, Fellow, IEEE

Abstract—Nonlinear phase noise, often called the Gordon—-Mol-
lenauer effect, can be compensated electronically by subtracting
from the received phase a correction proportional to the received
intensity. The optimal scaling factor is derived analytically and
found to be approximately equal to half of the ratio of mean non-
linear phase noise and the mean received intensity. Using optimal
compensation, the standard deviation of residual phase noise is
halved, doubling the transmission distance in systems limited by
nonlinear phase noise.

Index Terms—Fiber nonlinearities, phase detection, phase noise.

I. INTRODUCTION

ORDON and Mollenauer [1] showed that when optical

amplifiers are used to compensate for fiber loss, the inter-
action of amplifier noise and the Kerr effect causes phase noise,
even in systems using constant-intensity modulation. This
nonlinear phase noise, often called the Gordon—Mollenauer
effect or, more precisely, self-phase modulation-induced
nonlinear phase noise, corrupts the received phase and limits
transmission distance in systems using phase-shift keying
(PSK) or differential phase-shift keying (DPSK) [2]-[4].
These classes of constant-intensity modulation techniques
have received renewed attention recently for long-haul and/or
spectrally efficient wavelength-division multiplexing (WDM)
applications [5]-[7].

It has been shown recently that the received intensity can be
used to compensate the nonlinear phase noise [8], [9]. Previous
compensation methods have used a nonlinear optical component
[8] or a phase modulator [9]. In this paper, we describe how to
perform the compensation using electronic circuits. We analyti-
cally derive the optimal correction factor for this electronic com-
pensation, which can also be applied to optimize the methods of
[8] and [9]. We show analytically that optimal compensation can
halve the standard deviation (STD) of the nonlinear phase noise,
doubling the transmission distance in systems whose dominant
impairment is nonlinear phase noise.

The remainder of this paper is organized as follows. Sec-
tion II introduces the electronic technique for compensation of
nonlinear phase noise, and Section III presents a derivation of
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the optimized compensator and provides numerical results. Sec-
tions IV and V present discussion and conclusions, respectively.

II. ELECTRONIC COMPENSATION OF NONLINEAR PHASE NOISE

We consider a system with multiple fiber spans using an op-
tical amplifier in each span to compensate for fiber loss. For
simplicity, we assume that each span is of the same length, and
that an identical optical power is launched into each span. Fol-
lowing the model of [1], we neglect the effects of dispersion.
In the linear propagation regime, the electric field launched in
the kth span is equal to By, = Eg + ny + no + ... + ng,
k = 1...N, where Ej is the transmitted (launched) signal,
and ng, k = 1...N, is the complex amplifier noise at the
kth span. For a system using binary phase-shift keying (BPSK),
Ey € £A. The variance of ny, is E{|ng|?} = 20%,k =1...N,
where o is the noise variance per span per dimension. In the
linear regime, ignoring the fiber loss of the last span and the am-
plifier gain required to compensate it, the signal received after
N spansis Ey = Ey+ ni 4+ no + ... + ny. In this paper, we
consider only the noise within a filter bandwidth matched to the
signal, i.e., only self-phase modulation-induced nonlinear phase
noise.

Nonlinear phase noise is accumulated span by span, and the
overall nonlinear phase noise is equal to [1]

oNL = VLet {|Eo + n1|* + |Eo + n1 + na|® + -+
+|Eo+n1 4+ ny|?} (1)

where ~ is the nonlinear coefficient of the fiber and L.g
is the effective nonlinear length per fiber span. In the pres-
ence of nonlinear phase noise, the received electric field is
Er = Enexp(jonL). The expression (1) is applicable to
any system configuration using identical fiber spans, using
appropriate values of v and L.g determined by the fiber type,
loss coefficient, and span length.

In PSK systems, an optical phase-locked loop (PLL) [10] can
be used to receive the in-phase and quadrature components of
the received electric field E'r. In DPSK systems, a pair of inter-
ferometers [6] can be used to obtain both in-phase and quadra-
ture differential components of the received electric field Eg.

Fig. 1(a) shows an example of a homodyne optical receiver
using an optical PLL to detect both in-phase and quadrature
components of the received electric field Er (e.g., see [10,
Fig. 5]). A 90° optical hybrid is used to combine the signal
with a phase-locked local oscillator (LO) laser, yielding four
combinations with relative phase shifts of 0°, 180°, 90°, and
270°. A pair of balanced photodetectors provides in-phase and
quadrature photocurrents ; and iy, representative of cos(¢r)
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and sin(¢p), the corresponding complex components of Eg.
In systems where the dominant noise source is amplified
spontaneous emission from optical amplifiers, a synchronous
heterodyne optical receiver can also be used without loss of
sensitivity [11].

Fig. 2 shows the simulated distribution of the received electric
field E'r for a BPSK system with N = 32 spans, after detec-
tion by a coherent receiver as in Fig. 1(a). Note that although
the optical PLL of Fig. 1(a) actually tracks out the mean non-
linear phase shift (¢n), nonzero values of (¢nr) have been
preserved in plotting Fig. 2 to better illustrate the nonlinear
phase noise. The received optical signal-to-noise ratio (SNR)
is p, = A%?/(2No?) = 18, corresponding to a bit error ratio
(BER) of 10~ in the linear regime without nonlinear phase
noise.! In Fig. 2(a), the mean nonlinear phase is (¢xr) = 1 rad,
corresponding to the case when the variance of nonlinear phase
noise approximately equals the variance of linear phase noise
[1]. Fig. 2(b) illustrates the case (¢n1,) = 2 rad. The helical-
shaped distributions in Fig. 2 arise because the nonlinear phase
rotation is correlated with the received intensity [8], [9]. Fig. 2
also shows spiral curves that separate the plane into two decision
regions. These decision regions resemble the Yin-Yang logo
of Chinese mysticism and are called the “Yin-Yang detector”
below. The Yin-Yang detector uses strictly electronic techniques
to compensate nonlinear phase noise, and hence, it differs signif-
icantly from the optical [8] and electrooptical [9] compensation
techniques considered previously. The optimal spiral curves are
derived in the next section.

In this paper, we describe two methods to electronically
compensate nonlinear phase noise in a coherent receiver such
as in Fig. 1(a). The simplest method, shown in Fig. 1(b), is
the Yin-Yang detector with decision regions separated by
spiral curves, like those shown in Fig. 2. Once the mean
nonlinear phase shift (¢n1,) is known, one can implement
the spiral-boundary decision device using a lookup table. An
alternate method, shown in Fig. 1(c), employs a compensator
that subtracts from the received phase a correction proportional
to the received intensity. The compensator is followed by a
straight-boundary decision device.

III. THE OPTIMAL COMPENSATOR

In this section, we derive the optimal compensator for the
receiver of Fig. 1(c). We then determine the optimized spiral
decision boundaries for the receiver of Fig. 1(b). The reduction
in the STD of nonlinear phase noise is also presented in this
section.

In an V-span system, the optimal linear compensator can be
derived by finding a scale factor o to minimize the variance of
the residual nonlinear phase shift ¢n1, + aPy. The corrected
phase estimate is ¢ — aPy, where ¢ is the phase of the re-
ceived electric field E'g.

First, we consider a simple mathematical problem. For a real
variable A = |Ey| and two complex circular Gaussian random

IThroughout this paper, the SNR p. is defined over a filter bandwidth
matched to the signal bandwidth. Our reasons for this definition are discussed
in Section IV.
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Fig. 1. (a) Typical coherent receiver detecting both in-phase and quadrature
components of the received electric field Er. (b) Nonlinear phase noise is
compensated by using a spiral-boundary decision device. (c) Nonlinear phase
noise is compensated by using a compensator, followed by a straight-boundary
decision device.

variables ¢1 and &5, both |A+¢;|? and |A+¢; +&o|? are noncen-
tral x-squared distributed random variables with two degrees of

freedom. From [12], the mean and variance of |A + & |? are
_ 42 2
Mmiate, > = A"+ 207 (2)
oare: = f (01) = 44%07 + 4o} 3)

where E{|¢1|?} = 207 is the variance of &;. In (3), the variance
of the random variable |A + &;|? is defined as a function of
f(a?). After some algebra, the covariance between |A + &;]?
and |[A + & + &|? is found to be

E{(JA+&]* = miate,)

X(|A+51+52|2—m|A+§1+§2|2)}:f(‘ff)~ )
The covariance relationship (4) is obvious, because |A + & |2
does not depend on, and is not correlated with, the random vari-
able &.
Using (2)—(4), the variance of the nonlinear phase of (1) is
found to be

N

N
0 (N) = (vLear)® | Y f(ko®) +2) (N = k) f(ko?)
k=1 k=1

[®)
The first summation of (5) corresponds to all the terms
U|2E0+n1+___+nk‘2, the variances of |Eg + ny + --- + ng|?.
The second summation of (5) corresponds to all the covariance
terms between Eg + n1 + - - - + ny|? and

|Eo+n1+ - 4 nesr|*+ -+ [Eo+ny + -+ nn|
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Fig. 2. Simulated distribution and decision regions of received signal with nonlinear phase noise for various mean nonlinear phase shifts: (a) {(¢x1.) = 1 rad

and (b) (d)NL) = 2 rad.

Substituting (3) into (5), we obtain

2
JéNL = gN(N-i— 1)(7[/0&0)2 [(2N+ 1)|E0|2
+(N?+ N +1)0?] . ©6)

Similar to (5), the variance of the residual nonlinear phase
shift ¢, + Py is found using (3) and (5) to be

Totary (@) = (YLe)? |05 (N = 1) + (@ = 1)*f(No?)

N-1

—2(a—1) Z f(ko?)|. @)

k=1
The optimal scale factor can be found by
doiNL+aPN (Oé)/da = 0 to obtain

Yoy f(ko?)
T fNen)

solving

®)

a=1

After some algebra, the optimal scale factor is found to be

N+1 |Ep>+ 242
2 [Eo2 + No2

N+1
5

o= _’yLeff ~ _’yLeff (9)

The approximate equality in (9) is valid at high SNR. The vari-
ance of the residual nonlinear phase shift is reduced from (6) to

JiNL-i-O/PN = (N - 1)N(N + 1)(7Leff(7)2
Eol* + 2N 02| Ey|? + 241 54
| Eo 3
3(|Eo|? + No2)

(10)

For high SNR and large number of fiber spans, the variance
of the residual nonlinear phase shift is

> _ N3(yLego| o)) {¢n1)? 1
T¢nr+aPy ~ 3 -6 . (1D
and the variance of the nonlinear phase shift is
s 4N? (yLegro| Eol)® _ 2(pnL)?
Tpr, ™ 3 =—3 (12)

S

where the mean nonlinear phase shift is

(¢x1) = NyLegt [|Eo|* + (N + 1)0?] &~ NvyLegt|Eo|*.
13)
The approximation in (12) is the same as that in [1].

Note that the optimal scale factor (9) is approximately equal
to one-half the ratio of the mean nonlinear phase shift (13) to the
mean received intensity | Eg|? + 2No? ~ |Ep|*. From (11) and
(12), the phase noise variance can be reduced by a factor of four
by using optimal compensation of the nonlinear phase noise.

To our knowledge, the optimized scale factor (9) and variance
of residual phase noise (10) have been derived here for the first
time. While the theory of [4] is considered a more complicated
system with a particular pulse shape, the simple approximation
in (6) or (12) may yield more useful insight. We should note that
in [9], simulation was used to optimize the scale factor, yielding
a result corresponding to (9). Our analytical optimization of the
scale factor serves as an independent verification of those sim-
ulation results.

Fig. 3 shows the distribution of the corrected signal £, =
Eg exp(—jaPy), assuming the same parameters as Fig. 2. The
distributions shown in Fig. 3 have been rotated by the mean
phase (¢n1, + aPx), so that the decision regions become the
right and left half-planes. Comparing Fig. 2 to Fig. 3, we see that
the phase correction has dramatically reduced the STD of the
nonlinear phase shift. Note that, ignoring a rotation, the phase
distribution in Fig. 3(b) is similar to that in Fig. 2(a).

The above derivation yielded the optimal value of the scale
factor « for the compensator of Fig. 1(c). In the receiver shown
in Fig. 1(b), the optimized spiral decision boundaries are given
by rotated versions of ¢ + ap? = 0, where p and ¢ are the
radius and phase in polar coordinates. These optimized decision
boundaries are shown in Fig. 2. Besides the number of fiber
spans, the parameters that determine the decision boundaries are
the mean nonlinear phase shift (¢xr1,) and the SNR p;.

Decoding the corrected electric field E. using the half-plane
decision regions shown in Fig. 3 is equivalent to decoding the
received electric field E'r using the Yin-Yang decision regions
shown in Fig. 2.

Fig. 4 shows the STDs o4, and 04y, +apPy, given by (6)
and (10), as functions of the mean nonlinear phase shift {(¢nr.,)
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Fig. 3. Simulated distribution of corrected signal using optimal correction factor for various mean nonlinear phase shifts: (a) (¢n1,) = 1 rad and (b) (¢n1.) =

2 rad.

of (13), for N = 8 and 32 spans. Fig. 4 assumes SNR= 18, like
Fig. 2 and 3. Fig. 4 also shows the approximations

T, 7 0.1925(¢nr) and 0y, 4apy = 0.0962(pxr)  (14)

obtained from (12) and (11), as dotted lines. When the correc-
tion factor (9) is employed, the STD of the residual nonlinear
phase shift o4, +ap, is nearly independent of the number of
fiber spans, and is very close to the approximation in (14). For
a given value of the mean nonlinear phase shift (¢n1,), the STD
of the nonlinear phase shift o4, decreases with increasing V.
For N = 32, 04y, is indistinguishable from the approximation
given by (14). Fig. 4 demonstrates that for large N, our phase
correction scheme reduces the STD of nonlinear phase noise by
a factor of two.

IV. DISCUSSION

Gordon and Mollenauer [1] estimated that the nonlinear
phase noise-limited transmission distance is limited to a value
such that the mean nonlinear phase shift is (¢n1,) = 1 rad.
From Fig. 4 and (14), this corresponds to an STD of
Opnr. ~ 0.1925 rad. Because a mean phase contains neither
information nor noise, while the STD of phase o4, is an
indicator of system impairment, we can restate the condition for
maximum transmission distance in terms of the STD of phase
as 04y, ~ 0.1925 rad. Using our phase correction scheme
(or the Yin-Yang detector) and allowing the STD of corrected
phase to take on the same value, i.e., 04y, +apy = 0.1925 rad,
corresponds to a mean nonlinear phase shift of (¢n1,) = 2 rad.
Because the mean nonlinear phase shift is proportional to the
number of fiber spans, as shown in (13), doubling the mean
nonlinear phase shift doubles the number of fiber spans, and
thus doubles the transmission distance, assuming that nonlinear
phase noise is the primary limitation.

In (11) and (12), and also (6) and (10), the variances of both
nonlinear phase noise and residual nonlinear phase noise are
seen to depend fundamentally on only two parameters: the SNR
ps and the mean nonlinear phase shift (¢nr,). The SNR is deter-
mined by the data rate, launched power, span loss, and optical
amplifier noise figure. The mean nonlinear phase shift (13) is
determined by the number of fiber spans, launched power, span
length, fiber loss coefficient, and nonlinear coefficient.
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Mean nonlinear phase shift, <¢ > (rad)

Fig. 4. The standard deviation of nonlinear phase noise (with and without
optimal compensation) as a function of the absolute mean nonlinear phase shift
[{¢n1.)| for N = 8 and 32 spans.

While the foregoing discussion has focused on BPSK, the use
of DPSK has generated much more interest recently [4]-[9].
In a DPSK system, information is encoded in phase differences
between successive symbols, and is decoded using the differen-
tial phase ¢r(t + T') — ¢r(t), where T is the symbol interval.
When the differential phase is corrupted by the nonlinear phase
shift difference ¢n1.(t + T) — N1 (), the impact of nonlinear
phase noise can be compensated by decoding ¢r(t + T) —
(bR(t) — Oz[PN(t + T) — PN(t)], where PN(t + T) - PN(t) is
the power difference between successive symbols. The optimal
scale factor for DPSK systems is precisely analogous to that for
BPSK systems, and optimal compensation also approximately
doubles the transmission distance. The nonlinear phase noise
can also be compensated by either a spiral-boundary decision
device [as in Fig. 1(b)] or a compensator followed by a straight-
boundary decision device [as in Fig. 1(c)]. The optimal com-
pensator can also reduce the STD of nonlinear phase noise by a
factor of two.

A practical coherent receiver, such as the one shown
in Fig. 1(a), may yield the in-phase and quadrature
components cos(¢gr) and sin(¢r) [10]. In order to cor-
rect the received phase as in ¢r — «aPy, the corrected
quadrature components can be calculated using elec-
tronic signal processing techniques, as cos(¢p — aPy) =
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sin(¢r) sin(aPy)+ cos(¢pr) cos(aPy) and sin(pr—aPy) =
sin(¢r) cos(aPy)— cos(dr) sin(aPy).

Other types of nonlinear phenomena may also limit the trans-
mission distance in WDM systems. The interaction of the Kerr
effect and optical amplifier noise also induces intensity noise
[13], which we have ignored in this paper. Like [1], [8], and [9],
this paper ignores all dispersion and filtering effects.

The SNR defined in this paper (ps) is defined over a filter
bandwidth matched to the signal. If the optical SNR (OSNR)
is measured using an optical spectrum analyzer over an optical
bandwidth BW,¢, the SNR defined here is related to the mea-
sured OSNR as p; = 2 OSNR x BW,p¢/ Reym, Where Roym
is the signal symbol rate and the factor of two assumes a polar-
ization-insensitive optical spectrum analyzer. By using this def-
inition of SNR, instead of the conventional definition of OSNR,
we can express the key results of this paper in a form that is in-
dependent of the system date rate.

Following the model of [1], this paper assumes that dispersion
does not cause significant distortion of signal pulses. By incor-
porating a factor of 1/2, (1) can be made approximately appli-
cable to soliton systems, which rely upon dispersion to support
the waveform [4], [14].

This paper cannot resolve the question of whether nonlinear
phase noise is the primary limitation for PSK and DPSK sys-
tems. Nonetheless, as the electronic compensation technique de-
scribed here can reduce the impact of nonlinear phase noise, this
phase noise becomes less likely to be the dominant impairment.

V. CONCLUSION

In systems using BPSK or DPSK, the impact of nonlinear
phase noise can be reduced by using electronic circuits to im-
plement the Yin-Yang decision regions shown in Fig. 2. Equiv-
alently, the received phase can be compensated as described
above, in which case the receiver should employ the half-plane
decision regions shown in Fig. 3. The optimal compensation
factor has been derived analytically for the first time. This com-
pensation halves the STD of the residual nonlinear phase shift,
permitting a doubling of the number of fiber spans and of the
transmission distance, assuming that nonlinear phase noise is
the dominant system impairment.
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