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The configurations of nine different non-metals doped silicon carbide (NM-SiC) were
structured by using the density functional theory (DFT). The magnetic, electronic, and
optical properties of each NM-SiC are investigated at the most stable structure with the
maximum binding energy. Although the O-, Si-, and S-SiC systems are still non-magnetic
semiconductors, the N- and P-SiC systems have the properties of the magnetic
semiconductors. The H-, F-, and Cl-SiC systems exhibit the half-metal behaviors, while
the B-SiC system converts to magnetic metal. The redistribution of charges occurs
between non-metals atoms and adjacent C atoms. For the same doping position, the
more charges are transferred, the greater the binding energy of the NM-SiC system. The
work function of the NM-SiC systems is also adjusted by the doping of NM atoms, and
achieves the minimum 3.70 eV in the P-SiC, just 77.1% of the original SiC. The absorption
spectrum of the NM-SiC systems occurs red-shift in the ultraviolet light region,
accompanying the decrease of absorption coefficient. These adjustable magnetic,
electronic, and optical performances of NM-SiC expand the application fields of two-
dimensional (2D) SiC, especially in designing field emission and spintronics devices.
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INTRODUCTION

The last few decades, 2D materials (Li and Kaner, 2008; Liu et al., 2014; Zhong et al., 2019; Luo et al.,
2021) have been extensively used in optoelectronics (Stankovich et al., 2006; Bratschitsch, 2014; Cui
et al., 2021a; Sun et al., 2021), catalysis (Ziletti et al., 2015; Wang et al., 2018), spintronic devices
(Komsa et al., 2012; Sun et al., 2017a; Li et al., 2021), energy conversion (Pospischil et al., 2014; Cui
et al., 2020a; Sun et al., 2019; Sun and Schwingenschlo€gl, 2020), and gas sensing (Kooti et al., 2019;
Cui et al., 2020b) for their unique structural, optical, electronic and magnetic properties (Eddy and
Gaskill, 2009; Castelletto et al., 2014; Yuan et al., 2018; Sun and Schwingenschlögl, 2021).
Considering the high thermal capability and carrier mobility of bulk SiC (Mélinon et al., 2007;
Susi et al., 2017; Ferdous et al., 2019), the theoretical and experimental research on 2D SiC has
aroused significant attention (Hsueh et al., 2011; Chowdhury et al., 2017; Chabi and Kadel, 2020).
Although density functional theory predicts that 2D SiC has a graphene-like structure with
alternating Si and C atoms (Lambrecht et al., 1993; Bekaroglu et al., 2010), the difficulty in
stable 2D SiC synthesis has put the research on a standstill (Lin, 2012). Recently, Chabi et al.
(2021) fabricated the stable 2D SiC monolayer by wet exfoliation, and predicted the potential
applications in integrated microelectronics circuits and light-emitting devices. This work promotes
the enthusiasm for the 2D-SiC and SiC-based systems.
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Earlier studies on other 2Dmaterials provide much valuable
guidance for the actual application of 2D SiC. Both doping and
adsorption are shown to be the effective methods to regulate
the 2D material properties (Tang et al., 2018; Cui et al., 2021b).
For instance, in transition metal (TM) doping, the orbital
hybridization between the TM atom and the substituted
atom arouses a robust local magnetization in a 2D material,
stimulates the design of spintronics devices (Sun et al., 2017b;
Yuan et al., 2020). This potent magnetism has been predicted
when the Si or the C atom in SiC system is substitutes by TM
atoms, such as, Mn atom (Bezi Javan, 2016; Luo et al., 2017;
Wu et al., 2019).

When 2D materials are absorbed or doped by non-metals
(NM) atoms, such as, H, N, O, and Cl et al., the orbital
hybridization between the NM atom and the substituted
atom will not only cause a magnetization in the host 2D
material, but also low down the work function which effects
the electrons-emitting ability (He et al., 2010; Luo and Shen,
2018). Moreover, the absorption spectrum of 2D material can
be tuned to improve the photocatalysis ability by the injection
of NM atoms (Cui et al., 2021c). All these predict that NM-SiC
systems can be used in spintronics, field emitters, and
photocatalysis regions. To the best of our knowledge, the
magnetic, electrical, and optical properties of NM-SiC are
still unclear. To maximize the 2D-SiC advantage, we
investigated the magnetic, electronic, and optical behaviors
of nine stable NM doped SiC systematically. Our results show
that the properties of these NM-SiC system are changed after
the doping of NM atoms. Although the O-, Si-, S-SiC systems
are still non-magnetic semiconductors, the N- and P-SiC
systems exhibit the properties of the magnetic
semiconductors. The H-, F-, and Cl-SiC systems emerge the
half-metal behaviors, while the B-SiC is converted to magnetic
metal. The work function of the P-SiC is adjusted as low as
3.7 eV, just 77.1% of the 2D-SiC. The red-shift of the

absorption spectrum occurs in the ultraviolet light region.
These results demonstrate the potential application of NM-
SiC in spintronics and field electron-emitting devices.

COMPUTATIONS DETAILS

Vienna Ab Initio Simulation Package was employed to
investigate the characteristics of non-metal doped SiC, such
as, the band structures, bonding energy, charge transfer,
magnetic properties, and work function (Kresse and
Furthmüller, 1996). The exchange-related interactions were
expressed as the Perdew–Burke–Ernzerhof functions (PBE)
based on Generalized gradient approximation (GGA) (Kresse
and Joubert, 1999; Perdew et al., 1996). The DFT-D3 of
Grimme was used to resolve the weak dispersion forces
(Heyd et al., 2003). The cut-off energy of the plane wave
was chosen at 550 eV. A 4 × 4×1 NM-SiC supercell
substituted by one non-metal atom is structured as depicted
in Figure 1A. The Brillouin zone consists of 3 ×

FIGURE 1 | The (A) crystal structure, (B) energy band structure, and (C) density of states of intrinsic 2D SiC.

TABLE 1 | The doping position, binding energy (Eb), charge transfer (C), band gap
(Eg), and magnetic moment (Mtotal) of the NM-SiC systems.

Doping style Position Eb C (e) Mtotal (μB) Eg (eV)

H SSi −4.874 −0.188 2.982 0
B SSi −15.006 −1.843 0.553 0
N SSi −14.627 +0.832 1 1.250
O SC −10.136 +1.692 0 1.959
F SC −5.735 +0.812 1 0
Si SSi −14.682 −2.516 0 2.541
P SSi −13.498 −1.772 1 2.483
S SSi −10.995 −0.450 0 2.130
Cl SC −4.209 +0.596 1 0
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3×1 Monkhorst-Pack k-point grids (Grimme et al., 2010). A
15 Å vacuum layer was set in the vertical direction of SiC. All
systems are complete relaxed to ensure that the systems reach

the most stable states, where the total energy change is lower
than 10−5 eV/atom and the Hellmann-Feynman force on each
atom is less than 0.01 eV/Å. Then the frequency-dependent

FIGURE 2 | The band structures of NM-SiC systems: (A) H-SiC, (B) B-SiC, (C) N-SiC, (D) O-SiC, (E) F-SiC, (F) Si-SiC, (G) P-SiC, (H) S-SiC, (I) Cl-SiC. The pink
lines and the blue lines represent the spin-up, and the spin-down components of energy levels, respectively. The Fermi level is shifted to zero.
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dielectric response theory is used to investigate the optical
properties of the NM-SiC systems in random-phase
approximation (RPA) (Hybertsen and Louie, 1986).

RESULTS AND DISCUSSION

The pristine SiC exhibits a complete planar structure, the
calculated lattice parameter is 3.10 Å, as shown in Figure 1A.
Figure 1B illustrates that 2D SiC is a direct band semiconductor
with a gap of 2.52 eV. The density of states (DOS) diagram in
Figure 1C demonstrates that the conduction band of SiC is
determined by the p orbit of Si, while the valence band is
contributed by the p orbit of C primarily. All these results
agree with the previous report (Chabi et al., 2021), which
confirms the validity of our computational models.

Binding energy is an important parameter reflecting the
structural stability of system, and described as follows,

Eb � ENM+SiC − (ESiC + ENM) (1)
Where Eb is the bonding energy, corresponding to the energy
difference of the systems before and after doping. ENM+SiC

denotes the energy of the non-metal doped SiC, ESiC
represents the energy of the original SiC with one vacancy,
ENM is the energy of the doping atom, respectively. The
negative binding energy implies that the NM-SiC system has
better stability than that before. A larger value indicates a more
stable system. The binding energies were calculated at all possible
high symmetry doping positions. For 2D SiC, the two possible
substituted sites are the SSi (substitute Si atom), and the SC
(substitute C atom).

Table 1 lists the parameters of the nine NM-SiC systems
with most robust Eb. All the NM-SiC systems present high
stability. The steadiest doping position of the NM-SiC systems

varies with the doping atoms. The atoms, such as, H, B, N, Si, P,
and S, prefer to locate at the position SSi, while the O, F, and Cl
atoms select the position SC. For those configurations
structured at the position SSi, the B-SiC system exhibits the
most potent binding energy. For those configurations at the
position SC, the O-SiC system has the largest binding energy.
For the same doping position, the stronger the binding energy,
the greater the interaction of the NM with the neighboring
atoms. The following researches on NM-SiC systems are
explored on these steadiest configurations.

The band structures of the nine different NM-SiC systems
are illustrated in Figure 2. It can be seen that the energy band
structures of NM-SiC systems are similar to the original SiC
system to a large extent. The appearance of the impurity levels
causes the change in the SiC band structure. The O-, Si-, and
S-SiC are still nonmagnetic semiconductors, and the
corresponding band gaps are 1.959 eV (O), 2.541 eV (Si),
and 2.130 eV (S), respectively. The H-, B-, N-, F-, P-, and
Cl-SiC systems exhibit magnetism for the asymmetry
between the spin-up and spin-down components of the
energy levels. Among them, the B-SiC is converted to
magnetic metal because that Fermi level intersects with
both the spin-up and the spin-down components. The H-,
F-, and Cl-SiC systems exhibit the half-metal behaviors, and
the Fermi level only intersects with the spin-down
component. The N- and P-SiC systems convert to
magnetic semiconductors with band gaps of 1.250 eV (N)
and 2.483 eV (P), respectively.

To analyze the magnetism of NM-SiC systems, the spin-
polarized charge density ρ is calculated,

ρ � ρup − ρdown (2)
where ρup and ρdown are the up spin-polarized charge density and
the down spin-polarized charge density, respectively.

FIGURE 3 | The spin-polarized charge density of the metal-doped SiC system. The pink and blue areas represent the contribution of the spin-up, and the spin-
down components, respectively. The isovalue is set to 0.001 e/Å3.
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Figure 3 illustrates the spin-polarized charge density
distributions of the magnetism H-, B-, N-, F-, P-, and Cl-SiC
systems. It can be seen that the spin-polarized charge occurs

near the doping atoms and the neighboring atoms. The
corresponding magnetism is primarily caused by the doping
NM atoms, while the adjacent atoms make a smaller
contribution. For metals, the magnetic moment is calculated

FIGURE 5 | The work function of the intrinsic SiC and NM-SiC systems.

FIGURE 6 | The absorption spectrum of intrinsic SiC and NM-SiC
systems.

FIGURE 4 | The charge density difference of the NM-SiC system. The isovalue is set to 0.001 e/Å3. The pink and the blue regions represent the gain, and the loss of
the charge. The negative sign indicates the NM atoms act as charge donors, while the positive sign indicates the NM atoms act as charge acceptors.
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as 2.982 μB (H), 0.553 μB (B), 1 μB (F), and 1 μB (Cl). When we
compare the semiconductor N-,O-, Si, P, and S-SiC systems,
it can be seen that the magnetic moment exhibits a regular
change with atomic number, 1 μB (N), 0 μB (O), 0 μB (Si),
1 μB (P), and 0 μB (S), respectively. The doping atoms with
the same family cause the same magnetic moment, such as, N
and P, O and S. This phenomenon can be explained by
comparing with the stable non-magnetic SiC. The valence
electron difference between the doping atom and the
substituted atom are 1 (N), 2 (O), 0 (Si), 1 (P), and 2 (S),
respectively. When equal amounts of charge refill the vacancy
of the substituted atom, the redundant electrons begin to fill
the impurity level with the exclusion principle. And then the
corresponding magnetism is formed. This adjustable
magnetism expands the application of NM-SiC in nano-
spintronics devices.

The injection of impurity atoms causes the redistribution
of charges between the doping and the substituted
atoms, which leads to the change in electronic properties
of 2D SiC. The charge density difference (CDD) is calculated
as follows,

Δρ � ρTotal − (ρSiC+ρNM) (3)

where ρTotal, ρSiC and ρNM represent the charge density of the
NM-SiC, the original SiC, and the NM atom, respectively. Δρ
is the charge density difference of the systems before and after
doping. As depicted in Figure 4, the charge transfer occurs
between the doping NM atom and the neighboring atoms. The
charge transfer is calculated by Bader charges (Henkelman
et al., 2006; Sanville et al., 2007), which are, -0.188|e| (H),
-1.843|e| (B), +0.832|e| (N), +1.692|e| (O), +0.812|e| (F),
−2.516|e| (Si), −1.772|e| (P), -0.450|e| (S), and +0.596|e|
(Cl), respectively. The negative sign implies the loss of
charge, while the positive sign appears as the obtain of
charge. For the N-, O-, F-, and Cl-SiC systems, NM atoms
act as acceptors obtaining some charge. For the H-, B-, Si-, P-,
and S-SiC systems, NM atoms act as charge donors. A larger
Bader charge indicates a more potent charge transfer. For the
same doping position, a larger charge transfer indicates a
stronger covalent bond interaction between the NM atom and
the neighboring atoms (Pino-Rios et al., 2020), corresponding
to a more potent binding energy of NM-SiC, as listed in
Table 1.

As an important electrical parameter of 2D SiC, work
function is described as the minimum energy required to
make the internal electrons escape into the vacuum. A
smaller work function implies a stronger emitting electron
capacity. As shown in Figure 5, although the work function of
the pristine SiC is 4.82 eV, the work function of NM-SiC
systems is regulated between 3.70 and 5.15 eV, covering the
range of the traditional field electron emission devices
4.50–5.15 eV (Yu et al., 2009; Jiao et al., 2012; Cai et al.,
2014; Soo et al., 2014). The work function of the H- and
B-SiC are larger than the pristine SiC, while the N-, O-, F-, P-,
S-, and Cl-SiC systems are lower than the pristine SiC. The
work function reaches the minimum 3.70 eV in the P-SiC, just

77.1% of the pristine SiC. The NM-SiC systems exhibit the
potential in the design of field electron emitter.

Moreover, the changes in the optical absorption spectrum
were investigated. As shown in Figure 6, the intrinsic SiC has
two acute absorption peaks in the ultraviolet region, and the
higher is located at 50.1 nm wavelength with an absorption
coefficient of 9.8×105 cm−1. The optical absorption spectrum
of NM-SiC varies with the doping atoms. The absorption
spectrum occurs red-shift in the ultraviolet light region, and
obtains the largest deviation in the P-SiC system.1 The
absorption coefficient of NM-SiC experiences a greatly
decrease. The absorption properties of NM-SiC systems are
adjusted by the doping of the NM atoms.

CONCLUSION

The magnetic, electronic, and optical properties of nine NM-
SiC systems were investigated by density functional theory
systematically. The steadiest configuration of each NM-SiC
system is confirmed at the doping position with the maximum
binding energy. Our results show that the optimal doping
position varies with the NM atoms. The atoms H, B, N, Si, P,
and S prefer to locate at the position SSi, while the O, F, and Cl
select the position SC. The doping of the NM atoms causes the
change in the properties of SiC system. Although the O-, S-,
and Si-SiC systems are still non-magnetic semiconductors, the
N- and P-SiC systems have the properties of the magnetic
semiconductors. The H-, F-, and Cl-SiC systems exhibit the
half-metal behaviors, while the B-SiC system converts to
magnetic metal. The charges transfer between the NM
atoms and the adjacent C atoms. For the same doping
position, a more significant charge transfer indicates
stronger binding energy of NM-SiC. The redistribution of
charge causes the change in the work function of NM-SiC.
In the N-, O-, F-, P-, S-, and Cl-SiC systems, the work function
exhibits a decrease, and it achieves the minimum 3.70 eV in the
P-SiC, just 77.1% of the pristine SiC. Compared with the
pristine SiC, the absorption peaks intensity of each NM-SiC
is decreased. The absorption spectrum occurs red-shift in the
ultraviolet light region. All these results indicate the possibility
of tuning the electronic, magnetic performance of NM-SiC by
the doping of suitable non-metal atoms. This study provides
theoretical guidance for designing 2D SiC-based spintronics
and field emission devices.
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