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Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for re-
search. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured
through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative
predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of
EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative
predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory
tests) used to define phenotypes in a structured format. We identified natural language processing as an im-
portant tool to improve case identification rates. Efforts and incentives to increase the implementation of in-
teroperable EMRs will markedly improve the availability of clinical data for genomics research.
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INTRODUCTION

Electronic medical records (EMRs) have been promoted as essential
to improving healthcare quality (1–4). Although current adoption
rates remain low, recent government efforts may markedly increase
the use of EMRs in clinical settings (5–9). The U.S. Centers for Medi-
care and Medicaid Services recently finalized a definition for “mean-
ingful use” of EMRs, which defines standards for the recording and
use of data in EMRs to promote quality care (10, 11). This standard,
coupled with significant financial incentives and penalties, is in-
tended to promote widespread adoption of EMRs within the U.S.
healthcare system.

Understanding the strengths and limitations of current EMR data
capture is crucial for identifying linkages between disease susceptibility
and clinical presentation. In clinical care, EMRs serve to document clin-
ical observations and patient-provider interactions and generate billing
documentation. Clinical data captured in EMRs may have a secondary
application in the research setting. In parallel with increasing EMR
adoption, high-throughput DNA sequencing has made available mil-
lions of DNA sequence reads for genetic investigations (12). Under-
standing the current feasibility of linking clinical data captured in
EMRs and genome sequencing data has important implications for
genetics research and the promise of personalized medicine (13–15).

Genome-wide association studies (GWAS) require accurate classi-
fication of disease phenotypes to maintain adequate statistical power
(16, 17). The Electronic Medical Records and Genomics Network
(eMERGE) (18) aims to determine whether data captured through rou-
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tine clinical care using EMRs can identify disease phenotypes with
sufficient positive and negative predictive values (PPVs and NPVs) for
application in GWAS. If successful, identification of disease pheno-
types using EMR data may enable efficient and rapidly scalable genetic
research. Specifically, greater efficiency may be gained by undertaking
genome-wide single-nucleotide polymorphism (SNP) genotyping only
once. EMR data may be used to determine whether the individual asso-
ciated with each DNA sample is used as a case, a control, or neither for
multiple phenotypes, facilitating a GWAS for each phenotype. The mar-
ginal cost of each GWAS after the initial genotyping expense is then
limited to the costs involved with establishing and validating the oper-
ational EMR-based phenotype definition and the costs of performing
the association analyses. Indeed, as genotyping costs continue to rapidly
decline, efficient and cost-effective means to identify phenotypic data
from EMRs takes on increasing importance (19).

However, it is unclear whether current EMR implementation cap-
tures clinical data adequately to identify patients for research aimed at
identifying the genetic basis of disease susceptibility. The eMERGE
consortium has a unique opportunity to evaluate the utility of current
EMRs for genomic research and to identify key areas for improvement.
Here, we determine whether data recorded in EMRs for routine clinical
care at five U.S. study sites can be used to define phenotypes for ge-
nomic research, and discuss the challenges and lessons learned in using
data extracted from existing EMRs for GWAS.
RESULTS

We analyzed EMR data collected from five eMERGE study sites to
identify cases with one of five different disease phenotypes: dementia,
cataracts, peripheral arterial disease, type 2 diabetes, and cardiac con-
duction defects. Table 1 lists the primary phenotypes, biorepository
description, and EMR characteristics for each study site. Three sites
used an internally developed EMR system for both inpatient and out-
patient care; the remaining two sites used commercial EMR systems.
One site used different EMR systems for inpatient and outpatient care.
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Some EMR systems captured data primarily from free-text documents
(unstructured data), and others from a mix of structured data collec-
tion and free-text notes. Three sites used robust but different natural
language processing (NLP) tools to extract structured data from
free-text reports (20–25). Each study site had a separate DNA bio-
repository (linked to the EMR through a unique research identifier) to
house biological samples for genotyping (26–29). With a single excep-
tion, all sites used an opt-in consent model to recruit participants into
the biorepository. For our purposes, we analyzed only patients with
records in both the institution’s biorepository and EMR.

Data required to define the clinical gold standard for the five selected
disease phenotypes across study sites most commonly required only
one category of data (for example, diabetes could be defined by labo-
ratory tests alone, and peripheral arterial disease by a single radiological
test), with one condition requiring two categories (Table 2). However,
www
algorithms to identify the same phenotypes using EMR data required
multiple categories of data, ranging from one to four categories (for
example, diagnostic information, medications, and laboratory tests), with
additional data categories required to identify covariates and exclusion
criteria. In the example of type 2 diabetes, the EMR-derived phenotype
required diagnoses, laboratory tests, and medications to identify likely
type 2 diabetes cases and used diagnoses to specifically exclude cases
of type 1 diabetes. All sites used demographic, diagnoses, and medication
data in their phenotype definitions.

The three study sites using internally developed, text-based EMRs
required significant NLP efforts to extract concepts from free-text doc-
uments, with each using a different NLP platform. At these study sites,
use of NLP tools enabled disease phenotype definitions using data stored
in unstructured clinical notes (for example, ophthalmological examina-
tions) and text-based reports [for example, radiology test results and
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Table 1. Comparison of electronic medical records (EMRs) and biorepositories at five eMERGE institutions. GHC, Group Health Cooperative; NLP,
natural language processing.
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Institution
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Biorepository
overview
Recruitment
model
Repository size
(race/ethnicity)
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EMR summary
slationalMedicine.org 20 A
Primary
phenotype
pril 2011 Vol 3
Phenotyping
methods*
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t

Group Health
(Seattle, WA)
GHC Biobank
 Disease-specific
cohort
4000 (>96%
Caucasian)
on
Comprehensive
vendor-based EMR

since 2004
Dementia
 g
Structured data
extraction, free-text
searches, manual

chart review
ce
m

ag
.o

r

Alzheimer’s Disease
Patient Registry and
Adult Changes in
Thought Study
20+ years pharmacy data

15+ years ICD9 data
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Marshfield Clinic
Research Foundation
(Marshfield, WI)
Personalized Medicine
Research Project
Population-based
 20,000 (98%
Caucasian)
Comprehensive internally
developed EMR since

1985
Cataracts
tm
Structured data
extraction, NLP,

intelligent character
recognition
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Geographically defined
cohort within an
integrated regional
health care system
75% participants have
20+ years medical history
lo
ad
Mayo Clinic

(Rochester, MN)

Vascular Diseases
Biorepository
Disease-specific
cohort
3500 (>96%
Caucasian)
w
n

Comprehensive internally
developed EMR since

1995
Peripheral
arterial

disease (PAD)
Structured data
extraction, NLP
D
o

Mayo Clinic
Non-Invasive

Vascular Laboratory
and Exercise Stress

Testing Lab
40-year history of
data extraction
Northwestern University
(Chicago, IL)
NUgene Project
 Population-based
 10,000 (12%
AA, 8% Hispanic)
Comprehensive
vendor-based inpatient
(2001) and outpatient

(1999) EMRs
Type 2
diabetes
Structured data
extraction,

free-text searches
Northwestern-affiliated
hospitals and

outpatient clinics
20+ years ICD9 data
Vanderbilt University
(Nashville, TN)
BioVU P
opulation-based,
opt-out consent

model
92,000 (11% AA)
 Comprehensive internally
developed EMR since

2000
Cardiac
conduction
Structured data
extraction, NLP
Vanderbilt Clinic,
diverse outpatient

population
35+ years medical
history data
*Structured data extraction refers to retrieving EMR data that have been stored in a predefined format.
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electrocardiogram (ECG) reports]. Sites without NLP tools or experience
with limited phenotype definitions included only data available in a
structured format, and therefore readily extractable from the EMR.

Across all five study sites, the percent of data captured and stored
in a structured format consistently met or exceeded the current “mean-
ingful use” final rule requirements (that is, goals for structured data
capture and use defined by the Office of the National Coordinator
www
to promote quality improvement using EMRs), with the notable excep-
tion of allergies and smoking status. Height, weight, and race/ethnicity,
although satisfying the meaningful use requirements, demonstrated
varying capture rates across sites. Only one institution with a vendor-
based EMR had any data on family history stored in a structured
format. At other sites, family history information was stored only in
clinician notes and this information could not be extracted readily
Table 2. Data categories for defining a clinical gold standard, an EMR-derived phenotype, and covariates and exclusion criteria.
Primary
phenotype
Data categories
1 1

1 1

>
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Phenotyping
methods
Clinical gold standard
 EMR-derived phenotype

Phenotype cohort

(for example, covariates
and exclusion criteria)
11
Dementia
 6
, 2

0

Demographics, clinical notes
(clinician documentation of mental

status and histopathological
examination data)
Diagnoses, medications
 Demographics, laboratory
tests, radiology reports
Structured data
extraction, free-text
searches, manual

chart review
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r

Cataracts
m

Clinical notes (ophthalmologic
examination)
Diagnoses, procedure codes
 Demographics, medications
ep
te
Structured data
extraction, NLP,

intelligent character
recognition
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S
Peripheral arterial
disease
Radiology test results (ankle-brachial
index or arteriography)
Diagnoses, procedure codes,
medications, radiology test results
Demographics
 Structured data
extraction, NLP
rg
Type 2 diabetes
 Laboratory tests
.o
Diagnoses, laboratory tests,
medications

D
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emographics, laboratory tests,
height, weight, family history,

smoking history
Structured data
extraction,

free-text searches
em
Cardiac conduction
 ECG measurements
 ECG report results
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nc
Demographics, diagnoses,
procedure codes, medications,

laboratory tests
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Table 3. Data completeness and type by common clinical categories. Mean-
ingful use goal for % data recorded in EMR and type listed for comparison.
S, structured data; U, unstructured data; M, mixture of structured and un-
structured data; GHC, Group Health Cooperative; MCRF, Marshfield Clinic
Research Foundation; Mayo, Mayo Clinic; NU, Northwestern University;
VU, Vanderbilt University.
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GHC
 MCRF
 Mayo
 NU
 VU
 Meaningful use goal
nl
o

Number
 2790
 19,771
 3336
 8161
 81,952
ow
Age
 100% (S)
 100% (S)
 00% (S)
 100% (S)
 00% (S)
 >50% (S)
D

Gender
 100% (S)
 100% (S)
 00% (S)
 100% (S)
 00% (S)
 >50% (S)
Race/ethnicity
 84% (S)
 69% (S)
 94% (S)
 84% (S)
 80% (S)
 >50% (S)
Home address
 100% (M)
 100% (S)
 96% (S)
 100% (M)
 N/A*
Height
 76% (S)
 96% (S)
 98% (M)
 92% (S)
 64% (M)
 >50% (S)
Weight
 79% (S)
 91% (S)
 98% (M)
 96% (S)
 78% (M)
 >50% (S)
Blood pressure
 59% (S)
 97% (S)
 62% (M)
 97% (S)
 80% (M)
 >50% (S)
Diagnoses
 100% (S)
 100% (S)
 85% (S)
 99% (S)
 91% (S)
 >80% (S)
Laboratory tests
 100% (S)
 98% (S)
 81% (S)
 99% (S)
 97% (S)
 >40% (S)
Medication
 100% (S)
 99% (S)
 95% (M)
 97% (M)
 87% (M)
 >80% (S)
Allergies
 54% (M)
 39% (M)
 50% (M)
 94% (M)
 83% (U)
 >80% (S)
Smoking history (any)
 86% (S)
 77% (U)
 94% (M)
 73% (M)
 90% (U)
 >50% (S)
Smoking history (detailed numeric)
 54% (M)
 N/A
 94% (U)
 12% (M)
 0%
 >50% (S)
Family history
 20% (M)
 (U)
 (U)
 36% (M)
 (U)
*Addresses are removed from the Vanderbilt biorepository in the de-identification process.
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even with NLP. To define study phenotypes, no site required data cat-
egories with low rates of capture in the EMRs (allergies, family history).

Despite variations in categories and completeness of data capture
across sites (Table 3), four of the five study sites achieved PPVs of
close to 100% for use of EMR data alone to identify their primary
disease phenotype (Table 4). One site achieved a lower PPV of 73%
using EMR data to identify cases with dementia. Absolute numbers of
cases identified by EMR ranged from 747 to 2950 cases. Of sites with
unselected noncohort biorepositories, rates of case identification ranged
from 3.6 to 13.4% of the total eligible population. Sites using disease-
specific biorepositories had case identification rates of 26.8 to 50.3% of
the total population, which, after excluding known controls, repre-
sented 71 and 90% of the cases identified through prospective cohort
collection. NPVs ranged from 98 to 100% for the three sites generating
control cases using electronic algorithms.

To assess the additional benefit of NLP, we performed a comparison
of the number of cases identified using structured data alone compared
with that using both structured data and NLP at one site (Vanderbilt
University). At this site, the use ofNLP tools identified 129%more cases
of QRS duration (2950 versus 1288) than did the use of structured data
and string matching only, while maintaining a PPV of 97%.
DISCUSSION

In our study, data captured in EMRs for routine clinical care proved
adequate to define five disease phenotypes across five different study
sites with robust PPV and NPV. Encouragingly, several recent reports
(30–32) demonstrate that GWAS based on EMR-derived phenotypes
successfully replicated identification of genetic sequences associated
with increased disease risk. Although we could achieve high PPVs using
case identification algorithms based on data captured through routine
clinical care, we note some attrition in the number of cases identified by
this approach compared with disease-focused prospective case identifi-
cation. In our study, electronic algorithms identified 71 and 90% of the
possible cases within two prospectively collected disease cohorts. Reduc-
tion in case identification rates may be compensated for by the effi-
ciency and scalability of electronic algorithms across EMRs.
www
Across the five unique EMRs, diagnosis codes, medications, and lab-
oratory tests were readily extracted to identify phenotypes for GWAS.
Race/ethnicity, family history, exposure history (for example, smoking),
and environmental exposures were documented less frequently across
all EMRs and, where present, often were captured in free-text form
(for example, clinicians notes) and without consistent or standard no-
menclature. Capturing interpreted test results that are typically not
recorded as structured data elements (for example, arterial Doppler
and ECG data) and clinician diagnoses (such as found on a problem list)
generally required NLP. As a result, significant informatics efforts were
required to tailor algorithms to each institution’s EMR to accurately
identify each phenotype.

Both “home-grown” and commercial EMRs demonstrated high PPV
rates across the primary phenotypes. Given the far wider population
using commercial EMRs in routine clinical care, this finding suggests
potential for broad dissemination of our approach to identify cases and
controls for genetic analyses to achieve well-powered studies, although
the impact of differences among commercial EMR systems is unclear.
Regardless of EMR type, study sites leveraged strengths in EMR data
quality and site-specific data extraction methods to optimize pheno-
typing algorithms, often using data categories with a high proportion
of structured data at sites without NLP capacity.

Historically, institutions with significant free-text documentation in
their EMRs developed or adapted robust NLP tools to extract data for
further analysis (20, 33, 34). NLP enabled sites to improve case finding
by searching across a wider range of EMR data categories. The obser-
vation that NLP tools allowed identification of 129% more cases than
were identified using purely structured data and string matching only
emphasizes the value of information captured in free text and is con-
sistent with previous studies (35–37). As a consortium, eMERGE iden-
tified use of NLP to extract data from text documents as a critical tool
to improve data quality for phenotyping. Sites with NLP experience
shared best practices with other consortium sites to develop NLP ca-
pacity at all sites. However, in our study, even sites without NLP tools
successfully identified their primary phenotype, and one site success-
fully replicated previously identified genotype-phenotype associations
for five diseases, including type 2 diabetes (31). Certain phenotype
identification algorithms, such as those for type 2 diabetes, were im-
Table 4. Performance of algorithms to identify cases and controls from
Table 4. Performance of algorithms to identify cases and controls from E
Marshfield Clinic Research Foundation; Mayo, Mayo Clinic; NU, Northwe
 EMRs for five primary phenotypes.

Rs for five primary phenotypes. GHC, Group Health Cooperative; MCRF,
ern University; VU, Vanderbilt University.
GHC
 MCRF
.Scien
Mayo
ceTranslationalMedicine
NU
.org 20 April 2011 Vol
VU
Primary phenotype
 Dementia
 Cataract
 Peripheral arterial
disease
Type 2 diabetes
 Cardiac conduction
(quantitative trait)
EMR data sources
to define phenotype
Diagnoses, medications
 Diagnoses, procedures,
medications
Procedure reports
 Diagnoses, laboratory
tests, medications
Diagnoses, laboratory
tests, medications,

ECG results
Method to validate
EMR phenotype
Physician review*
 Trained chart reviewers
 Compared to clinical
gold standard
Physician review
 Physician review
Number of cases/controls
 747/2043
 2642/1322
 1679/1657
 756/777
 2950
Biospecimen number
 2790
 19,771
 3336
 8161
 81,952
% of total
biospecimen pool
26.8
 13.4
 50.3
 9.3
 3.6
PPV (case/control) (%)
 73
 98/98
 94/99
 98/100
 97
*Review team included two physicians, a psychometrician, a neuropsychologist, and a study nurse.
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plemented without use of sophisticated NLP; other algorithms, such as
those for identifying cardiac conduction problems, were implemented
with a combination of NLP and structured data extraction. This var-
iation reflected institutional informatics capacity and a bias toward se-
lection of phenotypes using data captured in structured formats at
sites without NLP capacity. Sites without NLP capacity may be limited
to identifying phenotypes using only data categories captured in
structured fields. Approaches using only structured data could still
achieve comparable PPVs, but would have lower case identification
rates. However, efficient access to data across the entire spectrum of
clinical EMRs can compensate for lower identification rates to identify
adequate numbers for genetic studies.

Some data categories consistently reflected low rates of structured
data capture (Table 3). The EMRs in this study used Office of Man-
agement and Budget categories for race/ethnicity (38). Here, low rates
of documentation of race and ethnicity in the EMRs are consistent
with previous studies of routine physician practice (39). However, low-
er rates of race and ethnicity documentation in EMRs may not signif-
icantly affect subsequent genetic studies. For genetic studies, ancestry
estimates derived from genotype data are often used in primary asso-
ciation analyses rather than self-reported race/ethnicity, although the
latter adds important sociocultural information independent of genetic
ancestry that may be useful in more refined analyses (40). Similarly, in
our study, family history was primarily documented in clinician notes
and was not readily extracted even with NLP tools. One site with a
vendor-based EMR featured a family history section enabling a mixture
of structured and unstructured data capture, but attracted low rates of
physician documentation. Our findings are consistent with previous
studies, although current efforts are under way to promote standardized
collection of key elements of family history within EMRs (41–43).

Environmental exposures play a significant role in expression of dis-
ease in genetically susceptible populations (44–47). Unfortunately,
environmental factors, such as exposure to environmental toxins or con-
taminants, are rarely captured in existing EMRs, with the notable ex-
ception of smoking status. Substantial improvements in methods to
collect and link environmental data to clinical data in EMRs may enable
future studies of the association between disease and environment (48).

In our chart review, we identified a number of common data qual-
ity issues. Foremost, the absence of information may not reflect the
absence of condition. Depending on the institution, significant care
might be rendered at outside institutions and therefore would not appear
in the study site’s EMR. To address this limitation, we defined mini-
mum data requirements (for example, two documented clinical visits)
to enhance the opportunity for clinical documentation beyond a single
visit. We encountered instances of structured results violating accept-
able ranges of possibility (for example, a weight of 1000 kg and a
height of 15 cm), requiring post-extraction censoring of impossible
values. Lack of data equivalency posed challenges in merging data
within a single EMR and across EMRs. Often, data are imprecisely
labeled such that different measures might be inappropriately mixed
together. For example, laboratory tests with similar names (for exam-
ple, glucose) might represent different tests (for example, blood glucose
concentration versus urine glucose concentration). Similarly, diagnostic
certainty differed depending on whether the diagnoses were entered
in clinical notes or for billing purposes and differed across sites due
to local billing practices (49). We identified use of data standards for
EMR documentation as a necessary foundation to improve data qual-
ity and achieve data equivalence across sites. As a consortium, we used
www
the federally endorsed Consolidated Health Informatics (CHI) standards
(LOINC, ICD9/SNOMED, and RxNorm) to promote data equivalen-
cy, and facilitate data sharing between sites (50–52). Phenotyping al-
gorithms most commonly included diagnosis codes, medications, and
laboratory tests, which are well covered by the CHI standards ICD9,
RxNorm, and LOINC, respectively.

Our study sites represented academic medical centers or institutions
with significant research programs and may have a greater focus on rig-
orous data collection for potential future research, limiting the general-
izability of our findings to non–research-oriented clinical care settings.
However, recent national initiatives may promote more complete and
standardized data collection across EMR-enabled clinical care settings.
Greater adherence to standardized data collection may facilitate the
role of EMRs in research and enable the sharing of phenotype defini-
tions across EMR systems. The Centers for Medicare and Medicaid
Services and the Office of the National Coordinator have written reg-
ulations defining meaningful use of EMRs that promote the recording
of structured data and define coding standards for data categories such
as diagnoses, laboratory tests, and medications. Clear documentation
in EMRs is a necessary goal to achieve meaningful use and enables mea-
surement and improvement in quality of care. Achieving this goal like-
wise improves the quality and volume of data available for research.
Significant financial incentives for achieving meaningful use of an EMR
(up to $63,750 per provider over 4 years) may increase the future avail-
ability of structured and standardized data from EMRs. Although EMR
data may not capture the nuance of the human-human interaction be-
tween patient and provider, accurate and structured capture of diagnosis,
laboratory test, and medication data, supplemented with text mining
tools, has proved useful for identifying disease phenotypes for GWAS
within the eMERGE network.

Widespread adoption of EMRs creates the potential for a quantum
shift forward in the availability of longitudinal, real-world clinical data
for genetics research. Our study suggests that current EMRs used for
routine clinical care can be used to identify phenotypes for genetic studies.
Future investment in the dissemination, standardization, and compre-
hensive capture of phenotypic and environmental data in EMRs will
help to achieve rapidly scalable phenotyping efforts to match the pro-
liferation of genomics data.
MATERIALS AND METHODS

Using data from their EMR, each member of the eMERGE consorti-
um selected a primary study phenotype and developed algorithms to
identify the phenotype. We characterized EMRs as either internally or
commercially developed and quantified the historical extent of data
collection and primary methods and tools available to define pheno-
types from the EMR (Table 1). We identified the primary consent mod-
el, recruitment numbers, and demographics of each biorepository. All
sites received approval from their institutional review board for the con-
duct of this study.

We identified categories of EMR data used to define the five pri-
mary phenotypes (Table 2). At four of the five sites, as part of biore-
pository enrollment, additional data were collected on patients through
an enrollment questionnaire (that is, additional data collection out-
side of the clinical EMR); the fifth site (Vanderbilt University) used
an opt-out, de-identified collection model that precluded collection of
biorepository-specific information.
.ScienceTranslationalMedicine.org 20 April 2011 Vol 3 Issue 79 79re1 5
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For each data category, we generated a measure of data complete-
ness, defined as percent of the cohort with at least one recorded entry
within the EMR for each data category. We classified the type of data
in each category as structured, unstructured (predominantly free text),
or mixed. We defined structured data as numeric data or text data
captured and stored in a predefined format as consistent with the cur-
rent meaningful use definition. Unstructured data refer to data fields
(for example, clinical notes) that typically require subsequent process-
ing to be useful for phenotype identification algorithms. To identify a
comparable cohort in each EMR, we defined study patients as those
enrolled within the site’s biorepository who had at least two in-person
visits to the healthcare institution documented within the EMR. For
the analyses presented here, study patients were not limited to those
with one of the primary phenotypes.

To determine the accuracy of defining phenotypes using EMR data
alone, we reviewed 100 clinical charts from the EMR at each site. Three
sites used clinician chart review as the standard to confirm the primary
phenotype from the records. One site used the clinical gold standard
for their primary phenotype. The remaining site used trained EMR
chart abstractors to confirm the primary phenotype. We measured
the PPV of EMR data to correctly identify cases for the primary phe-
notype compared with chart review (the standard). For three of the five
phenotypes, we measured the NPV of EMR data to correctly identify
control cases for the primary phenotype compared with the chart re-
view standard. One of the study sites measured a quantitative trait (QRS
duration, a measure of cardiac conduction) precluding measurement of
an NPV. For the remaining phenotype—dementia—sufficient research
quality control subjects were available from an ongoing prospective co-
hort study, and there was concern that reliable identification of controls
from EMR data would be prohibitively difficult (53, 54).
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