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�e ability to precisely control themorphology and dimension coupled with the tunable surface reactivity has led to the widespread
investigation of nanomaterials for various device applications. �e associated high surface area to volume ratio implies that large
numbers of atom are residing on the surface and are available for interaction. Accordingly, nanomaterials have demonstrated the
potential to realize sensors with ultrahigh sensitivities and fast response kinetics. �e smaller size further provides the possibility
of miniaturization and integration of large number of devices. All these properties makes them an attractive candidate for the
fabrication of electronic nose or e-nose. E-nose is an intelligent chemical-array sensor system thatmimics themammalian olfactory
system.�e present paper critically reviews the recent development in the �eld of nanomaterials based e-nose devices. In particular,
this paper is focused on the description of nanomaterials for e-nose application, speci�cally on the promising approaches that
are going to contribute towards the further development of this �eld. Various issues related to successful utilization of dierent
nanomaterials for commercial application are discussed, taking help from the literature. �e review concludes by brie�ng the
important steps taken towards the commercialization and highlighting the loopholes that are still to be addressed.

1. Introduction

�e term “electronic nose” was coined in 1988 byGardner and
Bartlett wherein they de�ned e-nose (EN) as “an instrument
which comprises an array of electronic chemical sensors
with partial speci�city and appropriate pattern recognition
system, capable of recognizing simple, or complex odors”
[1, 2]. It is interesting to note that not everything that can be
measured with the help of EN has a smell or odor and hence
sometimes the word can bemisleading. More appropriately it
can be de�ned as “an intelligent chemical-array sensor system
that mimics the mammalian olfactory system” (Figure 1)
[3–5]. It is important to note that EN functions are less in
comparison to that of human nose applications as they are
mostly developed for desired applications. �at is to say that
an EN nose developed for biosensor cannot be used for other
applications like food quality or environmental monitoring.
ENs are application speci�c, that is, an all purpose ideal
EN is not available. EN can however be used for more

applications wherein the sensor array employed needs to
generate a response. For example, EN developed for chemical
sensors can be used for measuring the food quality in
particular alcoholic beverages and food freshness’s. In both
the application the sensor sees only the odor it is exposed
to and accordingly, with the appropriate training period
can be used to classify, identify, and sometimes quantify
the odorant. As shown in Figure 1, the main components
of the EN include an array of chemical sensors, electronic
circuitry, and data analysis so�ware. Additionally, it may also
consist of a sampling, �ltering, and conditioning system (for
a reproducible collection of the mixture). It is clearly evident
that the EN comprises the technical equivalent of every part
of mammalian nose. Incorporation of all the components
into a single device leads to the increase in the size of an
EN. A comparison between natural and arti�cial olfactory
system clearly indicates that still natural systems are the
best and surpasses the advantages oered by the arti�cial
systems [6]. However, when speci�c application is considered
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Figure 1: Schematic showing the comparison between mammalian olfactory system and an electronic nose.
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Figure 2: Wealth of interesting nanostructures for potential EN application (a) NPs, (b) nanorods, (c) NWs, (d) nanobelts, (e) nanosheets,
and (f) multipods.

the arti�cial system advantageously surpasses the natural
olfactory systems.

With the advent in nanoscience and nanotechnology,
novel nanomaterials (both organic and inorganic) and tech-
niques with potential use for EN applications are being
developed. Figure 2 shows the wealth of interesting nanos-
tructures that have demonstrated the potential for EN appli-
cations. �e abundance of nanomaterials like nanospheres,
nanocubes, nanobipyramids, nanopencils, NWs, nanotubes,
nanobelts, nanorings, and nanohelixes has led to the upsurge
in their synthesis and possible applications. �e associated
high surface area to volume ratio of the nanomaterials is
particularly advantageous for the sensor application as most
of thematerial ismade available for interactionwith the target
analytes. Fast response time (<ms), high sensor response
values signifying better separation between the interfering

responses, detection of very low concentrations, and smaller
training periods are some of the advantages. However, there
are reports on the developments of the EN based on nano-
materials but realizing a complete commercial device is still
a daunting challenge.�e present paper critically reviews the
recent development in the �eld of nanomaterials based EN
devices. In particular, this review paper is focused on the
description of nanomaterials for EN application, speci�cally
on the promising approaches that are going to contribute
toward the further development of this �eld. Various issues
related to successful utilization of dierent nanomaterials
including 1D and 2D structures for commercial application
are discussed taking help from the literature. �e review
concludes brie�ng the important steps taken towards the
commercialization and highlighting the loopholes that are
still to be addressed. Considering the vast research span and
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Figure 3: Arti�cial olfactory sensing systems and their applications. Published with permission from Sankaran et al. [6], Copyright © 2012
Elsevier.

the number of papers that are being added to the literature
many of the important papers are more likely to be missed;
however, a proper care has been taken so as to include all
the important papers that are being published prior to and
in the course of this paper. I hope that the present paper will
be helpful for understanding the importance and eective use
of nanomaterials in realizing commercial “electronic nose”
devices.

1.1. EN Applications. Figure 3 shows the �eld in which
ENs demonstrated potential applications [6]. ENs have been
successfully employed in the detection of food quality [7–
12], waste water management [13], �ammable liquids [14],
and environment: air pollution [15], water pollution [16, 17],
beauty and health care [18–21], medical diagnostics [22–27],
and warfare [28–30]. In determination of food safety the
most common use is for the determination of quality of
tea [31], milk, alcoholic beverages [32–35], fruits [36, 37],
meats and �shes [38–40], cheese, and other dairy products
[7, 41, 42]. EN for gas sensors have been demonstrated for
methane [43], ethanol, toluene, o-xylene [44], CO, and CH4
[45]. In medical diagnostics, ENs have been demonstrated to
be successful for detection of various biomolecules including
cancer biomarkers [46] necessary for early diagnosis and
faster treatment. One of the major advantages of arti�cial
system over the natural EN is that the data is interpreted
without any bias. Natural EN have the risk of false human
sensory evaluations and poor decision making as they are
dependent on the physiological and psychological status.

2. Components of E-Nose

Figure 4 shows a schematic of the simpli�ed and complete EN
device. It consists of three main components, namely,

(i) multiple sensor array,

(ii) data acquisition system, and

(iii) pattern recognition algorithm.

2.1. Multiple Sensor Array. Multiple sensor array (MSA) is
an array of the sensing elements (sensors) which are able to
transduce chemical changes or interactions into measureable
signals. Chemical sensors, which are the heart of the system,
can be divided into three categories according to the type
of sensitive material used: inorganic crystalline materials
(e.g., semiconductors, as in MOSFET structures, and metal
oxides), organic materials and polymers, and biologically
derived materials [47]. �e sensing elements are chosen
depending on the type of analyte/gas that is required to be
detected. One of the requirement of MSA is that it should
be a balanced combination of identical and dierent types
of sensors. One of the important questions for fabricating
an EN device is “what type of sensors should be used—
identical or dierent?” Identical sensors are required for
the improvement in the precision, and dierent sensors are
required for cross-veri�cation of data. Another important
question is that “how many sensors one should use?” �e
answer to the question lies in the information that is sought.
If the background is unknown, mixtures are present, or back-
ground gases are changing in concentration, more number
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Figure 4: Schematic of a simpli�ed and complete EN.

of sensorsare needed to avoid ambiguity in interpreting the
output signal pattern, and accomplish optimal discrimination
avoiding false alarm signatures. Additionally, EN can be
trained to ignore some of the bad sensors and select sensors
important for a particular task. A limited number of sensors
are used only when the information sought is to distinguish
between a series of pure substances maintained at known
concentration.

2.2. Data Acquisition System. �e data acquisition system is
responsible for capturing the signals provided by the sensor
array and then delivering them to the process processing or
computing system that has the appropriate so�ware for pro-
cessing such information. �e control and data acquisition
systems can be integrated into a single device, which can be
a data acquisition card, a microcontroller, a (Digital Signal
Processor) DSP or a computer. Reliable connections between
electrodes andmeasuring device are ensured for reproducible
and quality data. It must also have adequate power stage
to handle the elements that consume more power. �e data
acquisition system must be capable of handling and storing
data frommultiple sensors simultaneously.�e group of such
data is initially used for preparation of the data bank.

2.3. Pattern Recognition Algorithm. �eaim of pattern recog-
nition algorithm (PRA) is to classify, identify, and where
necessary quantify the vapor or odors of concern based on
the data stored in data-bank. Patterns or �nger prints from
known analytes are used to construct a database and train a
pattern recognition system so that the unknown analytes can
subsequently be classi�ed and identi�ed. �ere are various
methods used to facilitate this process. �e processes can be
divided mainly into three groups.

2.3.1. Graphical Analysis. �esimplest formof data reduction
is graphical analysis useful for comparing samples or com-
paring aroma identi�cation elements of unknown analytes

relative to those of known sources in reference libraries.
An array of sensors that individually respond to vapors can
produce a distinguishable response pattern for each separate
type of analyte or mixture. Each individual sensor responds
to a variety of gases, but the pattern of dierential responses
across the array produces a unique pattern for each gas, that
is, a distinct �ngerprint for each type of gas [48]. �e pattern
of changes (optical: intensity; electrical: resistance or current
magnitude) on the array is diagnostic of the vapor, while
the amplitude of the patterns indicates the concentration of
the vapor. �ere are various techniques employed for this
purpose, like bar graph, polar, and oset polar plots.

2.3.2. Multivariate Data Analysis. Multivariate data analysis
(MDA) comprises a set of techniques for the analysis of
data sets with more than one variable by reducing high
dimensionality in a multivariate problem when variables are
partly correlated, so they can be displayed in two or three
dimensions. MDA is based on the principle of multivariate
statistics, which involves observation and analysis of more
than one statistical outcome variable at a time. �ere are
varieties of multivariate data analysis methods, like

(i) principal component analysis (PCA),

(ii) canonical discriminate analysis (CDA),

(iii) featured within (FW), and

(iv) cluster analysis (CA).

For EN data analysis, MDA is very useful when sensors
have partial-coverage sensitivities to individual compounds
present in the sample mixture. Multivariate analysis can
be divided into untrained or trained techniques. Untrained
techniques are used when a database of known samples has
not been previously built, therefore, it is not necessary nor
intended for recognizing the sample itself, but for making
comparisons between dierent unknown samples to discrim-
inating them. �e simplest and most widely used untrained
MDA technique is principal component analysis. PCA is
most useful when no known sample is available or when hid-
den relationships between samples or variables are suspected.
On the contrary, trained or supervised learning techniques
classify unknown samples on the basis of characteristics of
known samples or sets of samples with known properties that
are usually maintained in a reference library that is accessed
during analysis.

2.3.3. Network Analysis. Network analysis provides the cru-
cial relationships and associations between many objects of
dierent types that are not apparent from isolated pieces of
information. �ere are various techniques employed for the
purpose, for example,

(i) arti�cial neural network (ANN) and

(ii) radial basis function (RBF).

�e arti�cial neural network (ANN) is the best known
and most evolved analysis techniques. An arti�cial neural
network, o�en just called a neural network, is a mathematical
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model inspired by biological neural networks. A neural
network consists of an interconnected group of arti�cial
neurons, and it processes information using a connectionist
approach to computation. In most cases a neural network
is an adaptive system that changes its structure during a
learning phase. Neural networks are used to model complex
relationships between inputs and outputs or to �nd pat-
terns in data [49, 50]. Various instrument-training methods
are employed through pattern-recognition algorithms that
look for similarities and dierences between identi�cation
elements of known patterns found in an analyte-speci�c
reference library. �e training process requires a discrete
amount of known sample data to train the system and is
very e�cient in comparing unknown samples to known
references. �e result of ANN data analysis usually is in the
form of a percentage match of identi�cation elements in the
sample with those of patterns from known sources in the
reference library.

From graphical to network analysis, precision increases
on the cost of increase in complexity. �e choice of method
utilized depends on the type of available input data acquired
from the sensors and the type of information that is sought.
A vast amount of research is devoted to the development of
application speci�c and appropriate PRA and reference to
them can be found in the journal “Journal of Multivariate
Analysis” by Elsevier.

3. Classification of EN

EN are generally classi�ed based on the detection principle
involved or the type of sensor used. �ese includes the
following.

3.1. Optical Sensor Systems. Herein the modulation of optical
properties, namely, absorption, transmission, �uorescence,
optical layer thickness, polarization, and so forth are mea-
sured [51].

3.2. Mass and IonMobility Spectrometry. For mass spectrom-
etry the dierent components of the analytes are separated by
measuring the mass to charge ratio under the application of
electric and/ormagnetic �elds [52, 53]. In case of ionmobility
along with the reduced mass and charge, the mobility of the
ions is also measured [54–56]. �ese techniques however
suer from the drawback of technical complexity and vaccum
operation.

3.3. Gas Chromatography. �e sample, transported by the
mobile phase (gas), is directed over the stationary phase
(liquid or solid) and interacts with it. Depending on physical
and chemical properties, such as the boiling point, the polar-
ity, H-bonding, and polarizability, the a�nity of each single
substance for the stationary phase is dierent. �e partition
behavior determines the retention time of the components
and, consequently, the order of elution [57].

3.4. Infrared Spectrometry. �e characteristic absorption
bands give information regarding the type of chemical bonds.

And hence can be employed for the determination of single
or multiple chemicals through unique �ngerprint spectrum
and using appropriate pattern recognition algorithm [58, 59].

3.5. Chemical Sensors. �ese work on the principle of change
in the properties (electrical, mechanical, optical, and piezo-
electric) of the sensing material as a result of chemical
interaction with the test gas or analyte. �e ENs based
on this principle are highly popular and widely used due
to their simple operation, ability to control and tailor the
dierent process parameters, and close resemblance to the
mammalian olfaction. �ese are o�en divided into the metal
oxide sensors [60], metal oxide �eld eect transistor, surface
and bulk acoustic wave, and conducting polymers [61].
Chemiresistive/FET-based sensors are highly exploited due
to the low cost, low power consumption,miniaturization, and
multiplexing capabilities [62].

As mentioned above various techniques and materials
have demonstrated their applicability for the possible EN
applications. However, EN based on nanomaterials is looked
upon as a next generation technique ful�lling almost all the
requirements of future technologies and commercial health
and beauty product [63]. �ese include ease of synthesis,
miniaturization, control over dimensions, and tunable sur-
face reactivity.

4. Why Nanomaterials?

�eability to precisely control the dimensions of both organic
and inorganic nanomaterials has led to an upsurge in the
�eld of their synthesis [64–66]. �e associated high surface
area to volume ratio and the �nite or quantum size eects
have led to many new interesting phenomenon’s in physics,
chemistry, biology, and materials science [67]. �is has lead
to a new �eld of “Nanoscience and Nanotechnology.” Of
the various applications being investigated, nanomaterials
have emerged as a general platform for the direct electrical
detection of biological and chemical species with enhanced
sensing characteristics [68–72].

One of the most attractive classes of materials for func-
tional nanodevices is semiconductors or in particular metal
oxides [73, 74].�ey oer the advantages of simple operation
and ease of fabrication, simple precursors and the potential
for compatibility with microelectronic processing, low cost,
and lowpower consumption. Sensors are characterized by the
three basic factors, namely, receptor, transducer, and utility
[75]. �e receptor function takes account of the interaction
of target molecules with the sensor surface while the trans-
ducer function basically transforms the interaction into a
measurable response (usually electrical). �e third factor,
utility, determines the eective utilization of surface and bulk
grains for the measured response. �e transducer function is
deeply correlated to the microstructure of the elements, that
is, the grain size (D) and the depth of the surface space-charge
layer (L). �e sensors response is drastically enhanced when
grain size D is ≤ 2L. Another way to tailor the response is by
means of controlling Lwhich can be achieved by introducing
defect states or midgap states by means of doping or surface
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modi�cation [76]. It has been demonstrated that reduction in
the grain size close to the Debye length or mean free path of
an electron results in the exponential increase in the sensor
response [77, 78]. In order to improve the sensing response
eorts have been directed primarily to realize smaller and
smaller structures that can be eectively utilized for achieving
sensors with improved response characteristics or the so-
called “next generation sensors.” �e enhanced response in
these cases is attributed to the high surface area to volume
ratio enabling high surface reactivity. Accordingly, various
nanomaterials are being synthesized and investigated for
possible sensing applications. �e basic nanoforms include
nanoparticles, nanowires (NWs), nanotubes, and nanobelts
[79]. Along with this dierent 3D heterostructures like
nanomultipods, nanorings, nanohelixes, nano�owers, and
so forth are also being investigated in great detail [80–87].
Nanomaterials oer various advantages that includes

(i) high surface area to volume ratio;

(ii) enhanced and tunable surface reactivity;

(iii) faster response kinetics;

(iv) size and eective Debye length comparable to the size
of analytes;

(v) crystalline dislocation-defect free structure with pre-
cise chemical composition, surface, and terminations;

(vi) high crystallinity implies superior stability;

(vii) ease of incorporation into microelectronic devices;

(viii) possibility of high integration densities and;

(ix) smaller size implies low power consumption;

(x) and low cost.

Of the dierent forms nanoparticles, NWs, and nan-
otubes (NTs) have been investigated in detail. Although,
nanoparticles-based sensors exhibited superior sensing prop-
erties; however, they suer from the drawback of poor
structural stability or degradation due to grain coalescence
when operated for longer time or at high operating tem-
peratures [88]. Incorporation of microadditives has been
demonstrated to improve the thermal stability and decrease
the eective grain size [89]. Presence of additives (5–10%)
over the sensor surface signi�cantly reduces the surface
diusion inhibiting the grain growth [90]. Introduction of
high concentrations of additives could drastically change the
material property aecting adversely the sensing properties.
Higher loading implies large number of structural defects
implying pinning of the surface Fermi level and limitation
on the Fermi level shi� [91]. A room temperature sensor
based on nanoparticles have also been reported, but a strong
dependence on humidity is observed for these sensors, which
is also a major concern [92].

One dimensional (1D) structures, namely, NTs and NWs
with associated high aspect ratio, that is, length to diameter
ratio of 20 or larger, are promising for sensing applications.
�eir use as a sensingmaterial should reduce instabilities and
dri� in electrical properties. A high degree of crystallinity
and atomic sharp terminationsmake themvery promising for

better understanding of sensing principles and for the devel-
opment of a new generation gas sensor [93–96]. �e main
advantages of 1-D nanomaterial-based sensors are enhanced
sensitivity, spatial resolution, temporal stability, and rapid
response associated with individual structures crucial from
device point of view [97]. Accordingly, NWs and NTs are
looked upon as a potential candidate for realizing next gener-
ation sensors. Compared to other nanomorphologies, NWs
oer the advantages of relatively simple preparation methods
allowing large-scale production, ease of fabrication, and
manipulation. As a gas sensing material both NWs and NTs
provide the advantages of tunable surface reactivity by means
of controlling the aspect ratio and tailored loading of target
speci�c receptor species or catalyst. �eir length serve as
resistance free pathway for electron transfer thereby improv-
ing the reaction kinetics, that is, response and recovery time.
�e longer length provides a mean to measure the response
using a four probe con�guration avoiding the contribution
arising from electrode contact. Ease of fabrication, that is,
controlled growth in both the horizontally and the vertically
aligned direction is the added advantage. Although, various
1D nanomaterials-based sensors are reported; however, most
of them are still in a noncommercial state.�e reason for this
could be assigned to the problems associated with them that
includes nonuniform growth, poor control over density and
distribution, reproducible contact with electrodes, and the
sensor geometry.

5. EN Based on Nanomaterials

With the advancement in microelectromechanical sys-
tems (MEMS), nanoelectromechanical systems (NEMS) very
large-scale integration (VLSI), and nanoscience various novel
nanostructures are successfully being employed in the fabri-
cation of EN device [98, 99]. �e smaller aspect ratio struc-
tures like nanoparticles (NPs), nanospheres, and nanocubes
are generally used as a �lm for the sensing applications. On
the other hand high aspect ratio structures have the potential
to be incorporated singly, in multiples or as a �lm for sensing
applications.�e following section reviews the dierent ways
in which nanomaterials can be used for EN applications. EN
based on dierent nanomaterials, their detection principle
and target molecules are summarized in Table 1.

5.1. Isolated and Single Nanostructures. One-dimensional
structures are particularly important as they can be eectively
utilized for developing EN based on single structures. �e
power requirement for single structure based devices is less
∼few tens of microwatts and hence one can envisage the EN
and energy harvesting devices on a single unit. Besides, the
high aspect ratio and the variation along the length could
eectively be used as variables resulting in individual and
dierent sensing elements as demonstrated successfully by
Sysoev et al. [100]. In particular, a simple and excellent per-
forming EN based on single SnO2 nanobelt (NB) was realized
using a combination of bottom-up fabrication protocols with
the state-of-the art microfabrication methods. Figure 5(a)
shows the schematic of the EN. �e linear discriminate



ISRN Nanomaterials 7

Table 1: EN based on dierent nanomaterials and their detection principle and target molecules.

Sr. number Sensing material Target Principle References

Single nanomaterial

1 SnO2 NB Ethanol, isopropyl alcohol, toluene, Chemiresistive [83–86]

Multiple nanomaterial

2 Polypyrrole NTs Helional gas Chemiresistive [176]

3 Polypyrrole NTs Amyl butyrate FET [177]

4

5 SnO2 NWs Ethanol, CO and 2-propanol Chemiresistive [87]

6 SnO2 NWs Ethanol, Water Chemiresistive [178]

7
SnO2, In2O3, and TiO2

NWs
H2, CO Chemiresistive [179]

8 CNT Eugenol, 2–4 DNT, heptanal FET [180]

9 CNT
Amyl butyrate, pentyl valerate (PV), butyl butyrate

(BB), and propyl butyrate (PB)
FET [181]

Nanomaterials �lm

10 ZnO NPs Chinese liquors Chemiresistive [182]

11 SnO2 NPs + Ag/Pt H2 Chemiresistive [183]

12 Graphene Amyl butyrate FET [109]

13 Au NPs DNB, TNT, DNT Chemiresistive [184]

14 Diamond NPs DNT, DMMP, NH3 SAW resonators [185]

15 Si-NWs Cancerous cells chemiresistive [186]

16 Si- NWs TNT FET [187]

Nanocomposites

17 CNT + SnO2 Whiskey, methanol Chemiresistive [188]

18 PNC + CNT Water, toluene Chemiresistive [189]

19 PNC Lung cancer Chemiresistive [190]

analysis (LDA) performed over the responses from the EN
successfully discriminated four gases, namely, ethanol, CO,
isopropanol, and toluene as shown in Figure 5(b). �e multi-
sensor data related to dierent analytes are clearly separated
from each other and the average Mahalanobis distance (MD)
between analyte-dependent data clusters at the LDA feature
space was ∼33 units (Figure 5(c)). Additionally, the EN was
demonstrated to detect low concentration complex aromatic
compounds (glühwein, champagne, vermouth, and brandy)
even under the strong background of ethanol.

Use of dierent type of sensing elements in the sensor
array would lead to improvement in the selectivity as well as
increase in the detection limits of target molecules. Recently,
Hu et al. have developed a method to incorporate an array of
single NWs; palladium (Pd), polypyrrole (PPy), polyaniline
(PANI), and zinc oxide (ZnO)—from three material types—
metal, conducting polymer, and metal oxide—on a single
chip as shown in Figure 6 [101]. Use of four dierent type of
sensing elements facilitated a well separated sensing patterns
for the detection of CO, methanol, NO2, and H2 even at
extremely low concentration levels (625 ppb).

�e allotropes of carbon basically single walled nan-
otubes (SWNTs) and graphene have been widely investigated
for possible chemical and biosensing applications [102].

Graphene is a two-dimensional (2D) crystalline monolayer

made of sp2-hybridized carbon atoms arranged in a honey-
comb lattice. In a way, it is the basic building block for all
the other carbon nanomaterials. For example, folding up a
graphene sheet into a cylinder along a certain lattice vector
could result in the formation of SWNT [103]. Both these
structures, namely, CNTs and graphene have the simplest
chemical composition and atomic bonding con�guration
with higher surface area-to-volume ratio. �is coupled with
the size and surface comparable to the biomolecules has
resulted in the detection limits down to single molecule
levels [104, 105]. Although, these structures have demon-
strated a potential of single molecule detection they have not
yet reached to the deliverable stage. �is is predominantly
because of the problems associated with the device-to-device
heterogeneity arising from the variation in the morphology
(diameter and aspect ratio), alignment, and accordingly
receptor loading. Besides, this also raises a question over the
possible system integration for uniform device array mass
production [101].

5.2.MultipleNanomaterials. Baik et al. have demonstrated an
EN based on SnO2 multiple NW array (direct contact) using
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Figure 5: (a)�e schematic presentation of the single NB EN and variation of the NB parameters along its length, (b) the LDA processing of
the response of the single SnO2 NBEN to the binarymixture of humidi�ed (RH = 50%) synthetic air with the analyte at 30 ppm concentration
for four gases: ethanol, isopropyl alcohol, toluene, and CO. �e classi�cation LDA ellipses correspond to normal distribution of data at 0.99
con�dence level. Top LDA plane corresponds to the processing of the response of all the 10NB segments to 5 gases, including the synthetic air;
two other LDA planes have been built under a decreasing number of NB sensor (7 and 3) segments involved in the analysis. (c) �e increase
of Mahalanobis distance at the LDA feature space between data clusters related to various analytes versus number of NB sensor segments
involved in the analysis. Published with permission from Sysoev et al. [100], Copyright © 2013 American Chemical Society.

heterogeneous catalysis as functionalizing strategy as shown
in Figure 7 [106]. Decorating the NWs surface with dierent
metal nanoparticles is akin to functionalizing them with
chemically speci�c moieties. �e EN could unequivocally
discriminate three gases, namely, H2, CO, and C2H4 when
the sensor responses were classi�ed using linear discriminant
analysis (LDA). SnO2 NWs have also been used as gradient
microarray sensors to realize EN [107]. �e electronic nose
systems were observed to detect and distinguish between
reducing gases in air at ppb concentration level.�e discrim-
inating power of the system is de�ned by the density and
morphological inhomogeneity of the NW array.

�e unique anisotropic morphologies and the abundant
structure tuning capabilities have led to a widespread inves-
tigation of Si-NWs-based sensing devices [108]. It is still
the most prevalent electronic material compatible with most
of the standard fabrication and processing techniques. Its
diameter can easily be tuned to the scale of 10–100 nm
which is comparable to many chemical and biological target
molecules. It has been used in realizing optical/�uorescent
sensing, noble metal-enabled surface enhanced Raman scat-
tering (SERS) biosensing, and FET-based electrochemical

and biosensing [109, 110]. In case of FET-based sensing the
surface of SiNWs serves as a gate which is modi�ed with
the receptors selective towards a particular biomolecule [111].
Attachment of biomolecule over the surfaces leads to a corre-
sponding change in the carrier density inside the NWs. Using
this simple approach detection of protein, pH, biomarkers,
peptides, and viral peptides have been demonstrated. A
review by Wang et al. critically address the dierent sensors
realized using SiNWs and the future of these devices [112].

5.3. Nanomaterials Film. �e ability to precisely control the
size, (monodispersity) shape, and functional groups on the
surface of nanostructures has led to an upsurge in their use for
sensing applications. Ibañez et al. have critically reviewed the
chemiresistive sensors based on chemically modi�ed metal
and alloyed nanoparticles ([113, 114] and references within).
In particular, sensing properties of metals such as Au, Pt, Pd,
Ag, and alloys of thesemetals with several modi�cations have
been explored, including functionalization with organic self-
assembled monolayers (SAMs), polymers, surfactants, ions,
and biomolecules, depending on the sensing application.
Dierent methods have been used to realize a sensor, these
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include drop casting, air brushing, spin-coating, inkjet print-
ing, microdispensing, immersion, microcontact printing,
place-exchange cross-linking precipitation, and liquid phase
cross-linking. Of the dierent NPs being investigated Au
NPs have demonstrated a good potential to realize better
sensorswith tunable surface reactivity, that is, selectivity [115].
Recently, Broza et al. have demonstrated the feasibility of Au
NPs- and Pt NPs-based chemiresistive sensors for identifying
the breath-print of early-stage lung cancer (LC) and for short-
term followup a�er LC-resection [116]. �e chemiresistive
sensor were realized by drop-casting the solutions onto
semicircular microelectronic transducers. Figure 8 shows the
breadth print of early-stage malignant tumors: discriminant
factor analysis of the sensing signals that were collected
from the nanomaterial-based sensors before and a�er lung
resection. �ere results clearly elucidate the fact that the
NPs-based sensors do hold the potential for point of care
diagnostics and medical care.

Additionally, Au NPs were also found to be useful for
identi�cation and generation of volatile �ngerprints of cancer
speci�c genetic mutations [117]. �is work is of crucial
signi�cance as this may lead to the development of safer,

prompt, and righteous interventions improving the quality
of the treatment and end results. Kong et al. demonstrated
that the �uorescence (FL) intensity of protein-directed syn-
thesized Au NPs can be enhanced signi�cantly (20-fold) on
Ag plasmonic substrates [118]. Using this, a sensor array was
developed that can successfully identify 10 kinds of protein.
�e protein analytes upon interaction with AuNPs in�uences
the �uorescence process (decrease/increase) thereby provid-
ing distinct FL image patterns that can be used to identify and
classify dierent protein molecules.

Chemiresistive FET based on other nanostructures,
namely, carbon nanotubes (CNT), Si NWs, and Pt NPs
have been shown to be eective in determination of VOCs
released from the breadth associated with various diseases
like lung, breast, colorectal, prostate, and colon cancer [119–
124]. On the similar context using SiNWs, Lieber et al. have
demonstrated ultrasensitive real-time detection of various
biological and chemical species including proteins, nucleic
acids, small molecules, and viruses [125–127]. Conducting
polymers especially NWs/NTs of polypyrrole, PEDOT, Pyr-
role propylic acid (PPA), and P3CA have been found useful
for the detection of cancer antigen 125 (CA125), thrombin
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and human serum albumin, bacteriophages/viruses, DNA,
spores, biotin, and glucose [128–130].

Nanomaterials-based chemiluminescence (CL) is also a
promising and alternative technique that has been used eec-
tively for determination of VOC’s, sugars/arti�cial sweet-
eners, protein sensing, and cell discrimination [131–134].

Kong et al. have demonstrated a sensitive and reusable EN
based on six catalytic nanomaterials, namely, Pt/Ba/Al, MgO,
ZrO2, �-Al2O3, MgCO3, and SrCO3 [131].�e CL e�ciencies
improve to varied degrees for a given protein or cell line
on catalytic nanomaterials. Distinct CL response patterns as
“�ngerprints” were obtained on the array and then identi�ed
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205∘C

Figure 9: �e schematic of the sensing process. �e protein
solutions or cell suspensions (10�L) are directly added on ceramic
heaters sintered with catalytic nanomaterials. �en the proteins
or cells are trapped onto the surface of nanomaterials a�er the
volatilization of water. When the temperature is raised to 205∘C,
analytes are thermally oxidized with the generation of distinct TCL.
A�er TCLdecays, remains of analytes arewiped out from the surface
of nanomaterials at 500∘C. Published with permission from Kong et
al. [131], Copyright © 2013 American Chemical Society.

through linear discriminant analysis (LDA). Figure 9 shows
the schematics of the sensing process.�e sensing of 12 kinds
of proteins at three concentrations, as well as 12 types of
human cell lines among normal, cancerous, and metastatic,
has been successfully performed.

5.4. Conductive Polymer Nanocomposites. Nanomaterial
incorporated polymer nanocomposites are one of the
attractive class of materials for developing a room
temperature sensors. Besides, room temperature operation
they oer the advantages like light weight, inexpensive,
possibility of control over the properties by adjustment of
nanomaterial content, and chemical nature of the polymer
matrix. Castro et al. have investigated the eect of amount
of CNTs in the �ve dierent polymer matrices (polymer
nanocomposites [PNC]), namely, poly(caprolactone) (PCL),
poly(lactic acid) (PLA), poly(carbonate) (PC), poly(methyl
methacrylate) (PMMA), and a biobased polyester (BPR)
on the responses towards VOCs [135]. �e EN based on
CNT-PNC could successfully distinguish the nine types of
volatile organic compounds as shown in Figure 10.

Similarly, EN based on other polymer nanocomposite
have been demonstrated to be successful in determination of
lung cancer biomarkers, VOCs, alcohols, relative humidity,
andmetal ions in solution [136]. You et al. have demonstrated
an EN based on Au NPs-�uorescent polymer conjugates
that can detect, identify, and quantify protein targets in a
rapid, e�cient, and general fashion [137]. Figure 11 shows
the basic principle involved in the detection. Presence of
Au NPs quenches the polymer �uorescence and that of
protein disrupts the Au NP and polymer interaction thereby
resulting in a distinct �uorescence response pattern. Using
an array of six noncovalent Au NP-�uorescent polymer
(poly(p-phenyleneethynylene) (PPE) derivative, PPE-CO2)
conjugates, and LDA, 52 unknown protein samples (seven
dierent proteins) with an accuracy of 94.2% as shown in
Figure 11(b) were identi�ed. �e demonstrated method does

not require any special instruments, and its sensitivity and
speed facilitate protein detection.

5.5. Microcantilever-Based EN. A nanomechanical transla-
tion using cantilevers have been used as a common platform
for the high throughput analysis such as protein, DNA,
and cells. �e cantilevers can be modi�ed with receptor
speci�c moieties and hence can result into sensors with
high sensitivity, selectivity, and fast response kinetics. �e
binding of the analyte on the cantilever surface causes a
shi� in the resonant frequency. With advances in MEMS and
NEMS, novel cantilever-based sensors have been fabricated
with a potential to be incorporated in EN and exhibiting

sensitivity down to zeptogram level (1 zg = 10−21 gm) [138,
139]. Recently, Yang et al. have demonstrated a very high
frequency silicon NW electrochemical resonators [138]. �e
epitaxially grown single crystal SiNWs were demonstrated to
be a robust resonators operating at frequencies in very high
frequency (VHF) rangewith highQ’s (13100), zeptogram level
mass sensitivity, and potential very large scale (VLS) device
integration. Figure 12 shows the SEM image of one of the Si-
NW resonator.

Cantilever-based EN have also been demonstrated for
successful determination of explosives like trinitrotoluene
(TNT), dinitrotoluene (DNT), dinitrobenzene (DNB) [140,
141], hydrogen, primary alcohols, natural �avors, and water
vapor [142, 143].

6. State of the Art: Issues, Challenges, and
Future Scope

�e prime outcome of the EN is the qualitative and quanti-
tative determination of the odor, that is, information related
to the type of gas/analyte and its concentration [144, 145].
To achieve the desired information there are various pattern
recognition algorithms, available.�e discriminationmodels
include the common classi�ers like nearest neighbor classi-
�ers, local Euclidean distance templates, local Mahalanobis
distance templates, multilayer perceptrons (MLPs), and sup-
port vector machines (SVMs) with Gaussian or polynomial
kernels. Similarly, the quanti�cation models are multivariate
linear regressions, partial least squares regressions,multivari-
ate quadratic regressions, MLPs, and SVMs. Very recently,
Gao et al. have developed several types of hierarchical
model and compared their capabilities for quantifying 12
kinds of volatile organic compounds with the improved
electronic nose based on Taguchi gas sensors [146]. �eir
study indicated that the hierarchical model is composed of
multiple single-output MLPs followed by multiple single-
output MLPs with local decomposition, virtual balance and
local generalization techniques, has advantages over the
others in the aspects of time complexity, structure complexity
and generalization performance.

Another challenge is the discrimination and quanti�ca-
tion of odor existing in a very small concentration. A small
concentration implies a high probability of strong interfer-
ence from the other low or small concentration signals. �is
implies that the signal arising from dierent odors will lie
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close to or intersect with each other in the measured space.
�is will increase the complexity in successfully discrimi-
nating and quantifying a particular odor at the background
of other odors [147] and hence demands an improvement

in the existing sensors and pattern recognition algorithms
[148, 149].

Another important challenge is to realize a contact to
nanomaterials without altering the properties and if done
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Figure 12: Scanning electron micrographs of pristine suspended
SiNWs. (a) A typical silicon NW (SiNW) grown in a microtrench
de�ned by two heavily doped supporting pads. Insets in (a) (le�)
orientation of the SiNW cross-section; (right) illustration of magne-
tomotive transduction of a SiNW. Published with permission from
Yang et al. [138], Copyright © 2013 American Chemical Society.

then in a controlled way [150]. Additionally, the nanomate-
rials are functionalized using various organic molecules for
generating the speci�c response and these organic molecules
are prone to damage when attempted for electrical contacts.
Recently, Haick et al. have reviewed the dierent ways to
realize a contact on organic molecules with minimal and
controlled alteration [151]. Various approaches including
direct deposition of the conducting contact material on the
molecules, using physical interactions and chemical bond
formation betweenmolecule and electrodematerials, “ready-
made” contacts and contacts that are prepared in situ were
explored and compared.

For realizing a complete lab-on-a-chip type EN requires
a controlled analyte transport to the surface of nanomaterials
through optimizing the �ow patterns inside the micro�uidic
channel. �is will assist in the reduction of the response
time of biosensors [152]. Of the dierent processes, namely,
fundamental surface reaction and convection and diusion
processes, enhancing the diusional transport was found to
improve the response kinetics.

All the above discussions clearly elucidates that nano-
materials do hold the promise for realizing an ultimate EN.
However, before any practical or commercial application is
envisaged it needs to address various daunting challenges.
One of the important challenges is to gain complete under-
standing of the nanomaterials growth mechanism. �is is
crucial to achieve reproducible growth at prede�ned position
with desired crystal quality and aspect ratio thereby assuring
the repeatability and reproducibility of the EN. Controlled
growth of metal NPs (e.g., Au), metal oxide NWs (e.g., ZnO),
and organic NTs (CNT) has been achieved to a greater extend
and accordingly are being widely employed.

�e assembly of 1-D nanomaterials into ordered arrays
is critical to the realization of integrated electronic archi-
tectures. Methodologies for development of large-scale hier-
archical organization of nanomaterials arrays have been

recently developed [153–158]. A review paper by Yu et al.
discusses extensively dierent way of assembling NWs to
achieve thin �lm ordering on microscale and corresponding
device-based architectures [159, 160]. However, one of the
major disadvantages of the assembly techniques is that most
of them are destructive in nature and the resultant alignment
or assembly is not perfect. Moreover, nanomaterials in the
�nal device are dierent thereby raising the question over
reproducibility. It is thus crucial to come up with the solution
wherein the nanomaterials can be assembled or aligned
during the growth period itself [161, 162]. Another important
challenge is to align nanomaterials between prede�ned elec-
trodes and form proper contacts which directly in�uences
the performance of the device [163]. Using a VLS mechanism
and conventional CMOS technology Pevzner et al. have
demonstrated a con�nement guided shaping of semiconduc-
tor NWs, which they refer to as “Writing with Nanowires”
[164]. �ey have demonstrated the ability to get NWs in
practically any desired shape and size and various substrates
including silicon wafers, quartz, glass slides, and even on
plastic substrates. �is work is of critical importance and a
valuable step towards achieving designer devices comprising
NWs integrated to microstructures with desired and tunable
properties. A review by Lee et al. discusses the recent progress
in the development of integrated devices based on networks
of NTs and NWs. �e most commonly adopted methods
for the integration includes directed assembly, printing, and
directed growth. Recently, Min et al. have demonstrated
a high-speed electrohydrodynamic organic NW printer to
print large-area organic semiconducting NW arrays directly
on device substrates in a precisely, individually controlled
manner as shown in Figure 13 [165].�emethod provides the
advantage of high-speed, large-area printing of highly aligned
individual or array of organic NWs that allows control of the
exact numbers, position, and dimensions.

Now the most signi�cant limitations for the widespread
use of nanomaterial arises from the inability to grow them
with industrial-scale production rate. It has been demon-
strated that the well-adherent �lm of ZnO NWs could easily
be grown on larger substrates sizes, 2�–4� with precise control
over the aspect ratio using hydrothermal method [17, 109,
129]. Accordingly, the hydrothermal growth and other low
temperature methods are also looked upon as a potential
scale-up method. �e larger substrate sizes could easily be
coupled with the Si-microprocessing andmicroelectronics so
as to realize commercial level devices. �ere are concerns
related to the quality of theNWs resulting from this and other
low temperature solution method. However, with appropri-
ate modi�cations like postdeposition, annealing at higher
temperature could possibly help to overcome the mentioned
drawback. Very recently, Heurlin et al. have demonstrated
a novel approach called “aerotaxy” from which production
rates of GaAs NWs exceeding those available for substrate-
nucleated NWs were achieved [166]. �is continuous and
potentially high-throughputmethod is expected substantially
to reduce the cost of producing high-quality NWs and may
enable the low-cost fabrication of NWs-based devices on an
industrial-scale. A review by Fan et al. on the development
of printable NWs-based electronics and sensors covers the
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dierent aspects and challenges involved in the �eld [167].
�ey have demonstrated the feasibility to realize the direct
transfer and assembly of parallel-array NWs on various
types of substrates by utilizing contact printing enabling
the development of an all-printed technology for inorganic
electronics and sensors.

As use of nanomaterials in the fabrication of EN is
increasing, a demand over the development of the wireless
EN sensor node is also increasing. �e advantage of nano-
materials incorporation in particular the possible miniatur-
ization raises the alarm over the use of conventional data
acquisition system. Very recently, Bambang Dwi Kuncoro et
al. have investigated the state of the art situation in devel-
opment of the wireless EN sensor nodes [168]. Development
in this direction is mainly characterized by the total power
consumption, complexity, cost, and data acquisition rate.
Recent technological advancements in the �eld of MEMS,
NEMS, very large scale integration (VLSI), and wafer level
3D packaging have and are contributing towards the realiza-
tion of miniaturized, low cost, and low power wireless EN
sensor nodes. New idea is to use the energy harvesting as
demonstrated successfully for ZnO NWs for powering the
miniaturized devices enabling self-powered devices [169].

Since the nanotechnology is revolutionizing at a greater
speed the demand for EN with compatibility for �exible
electronic devices is emerging. Nanomaterial does hold the
promise for the same. Recently, Park et al. have demonstrated
a ultrasensitive �exible graphene-based �eld-eect transistor-
(FET-) type bioelectronic nose [170].�e EN could recognize
amyl butyrate with single carbon atom resolution having
the detection limit of 0.04 fM. On the similar grounds
Chou et al. have demonstrated a nanoscale grapheme oxide
as arti�cial receptors for detection of protein molecules
[171]. �e developed EN could successfully dierentiate the
response from protein, namely, BSA, �-galactosidase (�-Gal,
from E. coli), hemoglobin (Hem, from equine heart), histone
(His), lipase (Lip), lysozyme (Lys), myoglobin (Mayo), and
ribonuclease A (Rib-A). Another interesting development is
in the direction of EN system with textile integration. Such

types of fabrics can be used in clothing to detect body param-
eters or as sensors in textiles to monitor the environment
[172]. Kinkeldei et al. have demonstrated an incorporation
of EN developed on �exible polymer substrate into a smart
textile [173]. In particular, four carbon black/polymer gas
sensors were �rst fabricated onto a �exible polymer substrate
and then the substrate was cut into yarn like strips and
integrated into a textile to create a smart textile with gas
sensing functionalities. Figure 14 shows the steps involved
in the fabrication of EN incorporated into textile. It was
found that the harshweaving conditions that bend the �exible
polymer strip during fabrication (bending radii below 1mm)
do not alter the sensor functionalities. Using the EN and the
PCA four dierent solvents, namely, methanol, acetone, iso-
propanol (IPA), and toluene were easily dierentiated. On
the similar ground Han et al. have demonstrated a CNT-
based NH3 sensor on a cotton textile [174]. �ese works
are of critical importance as it demonstrated that sensor
technologies can easily be integrated into the textiles with
original sensor functionalities being preserved. �e sensors
embedded on garments are crucial in terms of designing
a complete health care especially for the patients and the
athletes [175].

All these results clearly demonstrate that the future of
nanomaterials-based devices especially EN is very bright and
a completely commercial device is within a reach and soon
will be available in the market.

7. Conclusions

�e faster reaction kinetics evident in nanomaterials hold the
promise for fast and reliable sensors thereby enabling the real-
time monitoring of various odors or gaseous species. Of the
dierent ways inwhich nanomaterials are being employed for
the fabrication of sensors, optical and chemiresistive sensors
have demonstrated the potential for multiplex, label free, and
real-time detection. �e high surface area-to-volume ratio
coupled with the tunable surface reactivity has resulted in
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sensors with near single molecule detection capacity with
faster response kinetics. �e possibility of high integration
density leading to devices with smaller size and superior
performance than the existing materials is the driving force
behind the research performed for prospective commer-
cial viability. �e reproducible and reliable integration of
nanomaterials in the actual devices and the device-to-device
variation pose the threat to their ultimate commercial utility.
However, recent studies have clearly indicated the possibility
of overcoming the hurdles making the commercial viability
within reach thereby opening the huge commercial market
for nanomaterials-based EN devices.
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