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Abstract: This paper introduces a miniaturized personal electronic nose (39 mm × 33 mm), which is

managed through an app developed on a smartphone. The electronic nose (e-nose) incorporates four

new generation digital gas sensors. These MOx-type sensors incorporate a microcontroller in the

same package, being also smaller than the previous generation. This makes it easier to integrate them

into the electronics and improves their performance. In this research, the application of the device is

focused on the detection of atmospheric pollutants in order to complement the information provided

by the reference stations. To validate the system, it has been tested with different concentrations of NOx

including some tests specifically developed to study the behavior of the device in different humidity

conditions. Finally, a mobile application has been developed to provide classification services. In this

regard, a neural network has been developed, trained, and integrated into a smartphone to process

the information retrieved from e-nose devices.
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1. Introduction

Most research studies and media emphasize that air pollution is one of the greatest environmental

health risks worldwide. Nevertheless, it is often imperceptible to people, which makes it go unnoticed.

According to the latest data from the World Health Organization (WHO), air pollution causes up to

7 million deaths a year [1]. In addition, there are numerous research studies demonstrating the adverse

effects of pollution on almost every system of the human body [2–4]. However, although the poor

quality of air is widespread, it is invisible to the naked eye, and therefore people are not really aware

of the levels of air quality to which they are exposed at every time and place. Normally, reference

air quality measurement systems are found in a few locations. It is generally due to the high cost of

air quality monitoring stations, which makes it difficult to get real-time relevant data with sufficient

spatial resolution.

Consequently, several organizations and countries worldwide have established air quality

monitoring systems. Therefore, this approach requires a high budget, which in general implies an

insufficient number of measurement points. However, these systems have a high cost and size, resulting

in an insufficient number of measurement points. Furthermore, the location of air quality stations

is not always sufficiently representative. Therefore, there is a need for small, low-power devices

for personal air quality monitoring. As a result, different small, portable, and low-power devices

have emerged [5–10]. While these devices are less accurate and show a higher uncertainty compared

with reference systems, they increase the spatial density of measurements and could provide useful
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information to citizens. Namely, they are not a replacement for reference instruments, especially for

official purposes, but rather they are complementary sources of air quality information [11].

The most efficient solution to obtain measurements of a high number of locations is by means of

wireless sensor networks (WSN) [12]. With the increasing acquisition of smart personal mobile devices

with Internet connection, such as smartphones, it is interesting to consider their incorporation into this

kind of system. In this way, each mobile device user could be viewed as a sensor node integrated in a

wireless network. This would create a higher resolution air quality indicative map. For this purpose,

the air quality measurement device must be small, so that it can be easily carried and does not cause

any inconvenience to the holder or citizen. In this regard, Mobile Sensing Systems (MSS) have emerged,

which are mobile sensor systems made up of smartphones (to control the sensors), a web server to

store data, and the use of protocols and cloud computing to send and retrieve the data. These systems

have been reviewed by several authors [13–15].

In the field of gas sensors suitable for electronic noses (e-noses), there are five main types: resistive,

surface acoustic wave, catalytic, optical, and electrochemical [16]. According to the literature [17],

electrochemical gas sensors exhibit better behavior in comparison with the reference methods; however,

resistive gas sensors are the most commonly used in portable and miniaturized devices due to their

small size and low power consumption, in particular those based on semiconductor metal oxides

(MOx). They also offer fast response and recovery times at very low costs. In addition, thanks to

the technology of Microelectromechanical Systems (MEMS), these sensors have drastically reduced

their dimensions, reaching sizes of up to 3 × 3 mm. As a consequence, power consumption has also

been reduced considerably. The MOx sensors are made up of a metal oxide film or filament (usually

tin dioxide) doped with other compounds such as tungsten trioxide or zinc oxide (type n) or nickel

oxide (type p). When it comes into contact with the volatiles in the air, an electronic depletion layer is

formed, resulting in a change in the conductivity of the sensors [18]. In recent years, miniaturized

MOx sensors have emerged with a processing unit integrated in the same package. These sensors

include the electronic reading (reducing electrical noise derived from external conditioning circuits), a

preprocessing (manufacturer’s algorithms), and also provide the readout via a digital output (I2C/SPI).

Moreover, in some cases, temperature, humidity, and pressure sensors are integrated besides the gas

sensor. These sensors are of great novelty and interest in personal devices such as those that are intended

to develop in this work. However, nowadays, there are still few studies in the bibliography that include

them. Some of these sensors have previously been used to monitoring plants activity [19], to study

their individual response to BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) compounds [20], or

to investigate their architecture and operation (specifically Sensirion’s SGP30 model) [21].

Among the main atmospheric pollutants are nitrogen oxides (NOx). These oxides are formed due

to the oxidation suffered by atmospheric nitrogen (N2), the main component of air, at high temperatures.

The term NOx is commonly used to designate the nitrogen oxides that affect air pollution: nitric

oxide (NO) and nitrogen dioxide (NO2). These gases are the principal agents of smog, acid rain, and

precursors of the tropospheric ozone. It is worth noting that part of the NOx emissions is due to

natural causes (bacterial decomposition of organic nitrogen, forest fires, volcanic activity, storms, etc.).

However, the biggest source of emissions is from anthropogenic causes: the use of fossil fuels and

exhaust from combustion vehicles [22].

The miniaturized electronic nose presented in this paper integrates four of these processing-capable

MOx sensors. The device is small sized in order to be easily portable, and each user can be a network

node. It communicates wirelessly with an intelligent device (smartphone) and is controlled through an

app developed in Android. Since MOx sensors react to a high number of compounds, it is necessary

to apply pattern recognition techniques for increasing the selectivity of the detection system to the

target compounds. There are several techniques that have been used previously and reviewed in

the literature dealing with applications for electronic noses [23–25]. For this case, it was decided to

program and train a neural network (NN) integrated into a smartphone to manage and monitor the
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electronic nose. It allows fast data processing and a decrease in the flow of data to be sent and received

from the smartphone.

The complete system is described in detail throughout the paper. First, the design of the electronic

nose is described, focusing on the included sensors. The following part deals with the development

of the mobile application in charge of processing the data retrieved from the e-nose device. In order

to study the detection and discrimination capacity of the device, some laboratory tests have been

performed. These experiments have been carried out with different concentrations of NOx, which is

one of the main contributors to air pollution. The measurement procedure and the obtained results are

presented and discussed in Section 3. Finally, the conclusions are presented.

2. Materials and Methods

2.1. Electronic Nose Description

The block diagram of the developed electronic nose prototype is depicted in Figure 1. The power

source is composed of a battery charger, a +3.7 VDC Li-ion battery, a +3.3 V dc-dc converter, and a

+1.8 V low drop-out linear regulator.

Figure 1. Block diagram of the developed electronic nose.

The core of the system is a 32-bit microcontroller, model PIC32MM0256GPM048 from Microchip,

which performs the main operations: sensor control through two I2C serial interfaces; communications

with smart devices by using a Bluetooth low-energy RN4871 tiny module from Microchip; and wired

UART communications with other devices. This microcontroller has been chosen because of its low

current consumption thanks to its low operating frequency (24 MHz). Despite of that, it has a great

processing power due to its 32-bit architecture, which is complemented with a 256 KB program memory

and a 32 KB data memory.

Four digital gas sensor chips have been installed. However, due to their different supply voltages

(+1.8 V and +3.3 V), it has been decided to use two separate I2C interfaces to achieve more simplicity.

Regarding the power consumption of the electronic nose, a theoretical maximum current

(according to manufacturers) of 412 mA has been calculated, although the operating current measured

experimentally was up to 185 mA.

In Figure 2, a picture of the developed electronic nose is shown. The dimensions of the device are

39 mm × 33 mm.
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Figure 2. Developed electronic nose.

2.2. Gas Sensors

The four chips, which integrate metal oxide (MOX) sensors, are the following: BME680 from

Bosch [26], SGP30 from Sensirion [27], and CCS811 [28] and iAQ-Core [29] both from AMS. All of

them are miniaturized intelligent gas sensors. These devices are characterized by the integration of

analog and digital electronics combined with a hot microplate and the detecting elements on a single

chip. In general, the signals coming from the resistive sensing elements are received by the processor

through conditioning analog circuits. Then, these signals are processed with different algorithms

(averaging, baseline compensation, humidity correction, etc.). Furthermore, some of them allow users

to write calibration parameters. Finally, the output signals (calibrated and/or raw) are transmitted using

digital communication protocols. This integrated digital interface greatly simplifies the integration of

these sensors into the electronic nose. Figure 3 shows a block diagram of the main components and

functionalities of digital gas sensors.

Figure 3. General block diagram of digital gas sensors.

The main characteristics of the gas sensors are indicated in Table 1. All sensors, except BME680,

include intelligent algorithms to process the raw signals to output TVOC (Total Volatile Organic

Compounds) and equivalent CO2 (eCO2) prediction values. Additionally, SGP30 provides raw signals

for H2 and ethanol.
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Table 1. Digital metal oxide (MOX) gas sensors main characteristics. TVOC: total VOC.

Sensor BME680 SGP30 CCS811 iAQ-Core

Manufacturer Bosch Sensirion AMS AMS
Supply Voltage [V] 1.71 to 3.6 1.62 to 1.98 1.8 to 3.6 3.3

eCO2 range [ppm] see note 1 400 to 60,000 400 to 29,206 450 to 2000

TVOC range [ppb] see note 1 0 to 60,000 0 to 32,768 125 to 600

I2C Interface [kHz] up to 3400 up to 400 up to 400 up to 100
SPI Interface [MHz] up to 10 No No No

Size [mm] 3.0 × 3.0 × 0.93 2.45 × 2.45 × 0.9 2.7 × 4.0 × 1.1 15.24 × 17.78 × 4.3

1 BME680 provides a unique gas reading, which corresponds to sensor resistance in ohms.

The BME680 also includes temperature, relative humidity, and atmospheric pressure sensors,

whose ranges are −40 to +85 ◦C, 0% to 100%, and 300 to 1100 hPa, respectively.

2.3. Communication Protocol

A simple ASCII-based protocol has been established for the Bluetooth communication between

the microcontroller and an external smart device. There are some commands for retrieving data from

individual sensors and some for changing sensor parameters, setting heaters values, etc. Every sample

time, the microcontroller reads sensor values and sends them via Bluetooth in a formatted frame. Each

data frame is composed of columns separated by horizontal tabs and finished with carry return and

line feed characters. The meaning of each column can be found in Table 2.

Table 2. Column information for each data frame.

Column Description Sensor

1 Sample number
2 Temperature [◦C] BME680
3 Pressure [hPa] BME680
4 Humidity [% RH] BME680
5 Gas measurement [Ω] BME680
6 eCO2 [ppm] SGP30
7 TVOC [ppb] SGP30

8 H2 (see note 1) SGP30

9 Ethanol (see note 1) SGP30
10 eCO2 [ppm] CCS811
11 TVOC [ppb] CCS811
12 Sensor resistance [Ω] CCS811
13 CO2 [ppm] iAQ-Core
14 TVOC [ppb] iAQ-Core
15 Sensor resistance [Ω] iAQ-Core
16 Clean air/Sample
17 Warning

1 Raw data. Concentration can be computed from measurement with a reference concentration.

The 16th column shows a 0 when the electronic nose is smelling clean air (desorption), and it

shows a 1 when is smelling a sample (absorption). The 17th column is used to notify the user (who has

an app in the smart device) when to manually switch from a desorption phase to absorption phase or

vice versa.

2.4. App and Neural Network

A software tool (app) has been developed for processing the data provided by the electronic nose.

The following requirements have been considered:
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1. Portability: As the small size and light weight are some of the main advantages of the e-nose

device, it is most suitable for outdoor environments. To get more benefits from these advantages,

this work has considered mobile devices as the target hardware where a software application

should be install to monitor and control e-nose data.

2. Connectivity: The tool must support connection with the e-nose device and it is also required to

implement the correct communication protocol to interchange data between both systems.

3. Data processing: Sensor data need to be processed before they can be used. In this regard, the

tool should apply data processing algorithms.

4. Data classification: A data classification algorithm must be applied to categorize sensor data and

provide useful information for the users.

5. Performance: The tool must receive sensor data in short intervals of time while processing and

classifying the information without affecting the overall system operation.

6. Response time: User requests must be processed and served immediately.

To deal with all this specifications, first, Android has been selected as the mobile operating

system, because its great advantage is that it is widely spread over millions of devices around the

world. A Bluetooth low-energy communication module has been selected to interconnect both systems

(e-nose device and the smartphone) because of the long autonomy that this alternative provides. Next,

data normalization and feature extraction algorithms have been applied. Finally, machine learning

algorithms have been selected as the best approach to classify data retrieved from the e-nose. In this

case, neural networks have been applied, since performance and short response times are achieved

once the neural network has been previously trained.

According to system requirements, different technologies can be applied for software development.

Cloud-based approaches offer a technology that provides magnificent elastic computation and data

management abilities for the Internet of Things (IoT). This approach is aimed at formulating a complex

information system with the combination of sensor data acquisition [30]. A previous work [31]

presented a cloud-based proposal to integrate services for e-nose devices. However, this approach

was more appropriate when short response times were not required and connectivity was always

guaranteed. In scenarios where response time is a priority and/or connectivity cannot be achieved,

this approach is not applicable and different alternatives must be addressed, which is the scenario

on which this work focuses. To deal with this problem, this section proposes the integration of the

processing and classifying algorithms into smartphones. Figure 4 shows the methodology followed for

developing the proposed tool, which is divided into the following steps.

Figure 4. Methodology followed to develop the mobile application.
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1. Neural network building: The aim of this level is building and training a neural network

using e-nose data extracted from a set of experiments. As smartphones do not provide enough

performance to process all the information, a high capacity computer has been chosen for neural

network training. In this level, Neuroph software has been used to build and train a multilayer

neural network composed by three layers with 10 inputs (one for each sensor signal) and nine

outputs (one for each compound classified). This is an open source tool for machine learning

development and has been selected among others because it provides specific libraries to connect

mobile applications with neural networks.

2. Mobile application development: A mobile app has been implemented to monitor and process all

the information retrieved from the e-nose device. The Android Studio tool has been used for

developing this software and Neuroph libraries have been integrated in order to manage the

neural network. The functionality of this tool is diverse: from connecting with the external device

through Bluetooth low energy to applying classification algorithms to categorizing sensor data,

passing by the processing and the storing of the data for later analysis.

3. Results

In order to study the performance of the electronic nose for detecting and discriminating

contaminants, some measurements have been made in the laboratory. Specifically, NO and NO2 have

been measured at different concentrations.

3.1. Measurements Set-Up

A homemade gas line has been developed and used to perform pulses of NO2 and NO at different

concentrations. This system (Figure 5) allows to mix up to four gases from gas cylinders at the desired

concentration. It is composed by mass flow controllers, electrovalves, and a gas expansion module,

and it is controlled by a PLC (programmable logic controller) with a touch screen. The gas line

allows programming customized and timed cycles to generate gas mixtures. In this specific case,

10 measurement cycles have been programmed for each concentration, in which dry air is delivered

to the sensors for 4 min and a mix of the pollutant to be measured at the desired concentration with

dry air is generated for 2.5 min. At the output, it is mixed with an adjustable humidity flow, which is

also taken into account when calculating the desired concentration. During the whole experiment, the

relative humidity was 0%. The flow rate to the electronic nose was always fixed to 200 mL/min.

Figure 5. Measurements setup.
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The used cylinders have an initial composition of 0.81 molppm in the case of NO2 and 125 ppbvol

in the case of NO. The concentrations generated for NO2 are 40 µg/m3, 80 µg/m3, 120 µg/m3, 165 µg/m3,

and 200 µg/m3. With regard to NO, four different concentrations have been generated: 7.7 µg/m3,

15.5 µg/m3, 38.5 µg/m3, and 77 µg/m3. It is remarkable that the concentrations chosen for the case

of NO2 are governed by the official 1-h exposure limit of 200 µg/m3 according to the air quality

standards of the European Union [32]. Since there are no standards for NO because it is a precursor,

low concentrations easily generated by the system have been chosen.

On the other hand, humidity tests have been carried out with the purpose of studying how this

could affect the detection capability of the device and to be able to take future precautions. Variations

in humidity have been measured in the same way as described above. Throughout, 40 µg/m3 of NO2

has been generated in cycles of 4 and 2.5 min. Five different relative humidities have been produced:

0%, 10%, 40%, 70%, and 90%. As in the previous test, 10 measurement cycles have been carried out for

each relative humidity generated.

To carry out these tests with gas cylinders, a watertight methacrylate housing has been designed

with two pneumatic couplings that allow the gases to flow through the electronic nose. The

volume corresponding to the cell through which the gas flows is 33 cm3 (with dimensions of

4 × 5.5 × 1.5 cm). The housing also includes an insulated bottom compartment to accommodate the

battery. It is worth pointing out that this chamber and the calibration process will only be used for the

laboratory tests carried out in this study in order to obtain an initial evaluation of the performance of

the system. In future work, additional calibrations will be applied for the field tests in real conditions

that are scheduled to be performed near reference stations for correlation tasks.

3.2. Pollutant Discrimination Results

Once the electronic nose takes measurements, the sensor signals are received in the smartphone.

These signals are those specified between the fifth and 15th column listed in Table 2. However, the

signal from SGP30 relating to eCO2 has been discarded because this signal has a minimum of 400 ppm

that is never exceeded throughout the experiments. Therefore, the signals that are considered in these

experiments will be named from now on as follows: BME680, SGP30_1 (H2 in Table 2), SGP30_2

(ethanol in Table 2), SGP30_TVOC, CCS811, CCS811_TVOC, CCS811_CO2, iAQCore, iAQCore_TVOC,

and iAQCore_CO2.

Before data processing, it is necessary to pre-process the signals in order to obtain a characteristic

value for each measurement cycle. Therefore, to perform this feature extraction, a baseline manipulation

algorithm has been used. In the selected algorithm in this study, the obtained characteristic value is

proportional to the difference between the baseline value (corresponding to the dry air flow) and the

value reached during the pollutant measurement phase:

(Vref − Vp) × 100 − 1, (1)

where Vref is the value obtained from the sensor during the air measurement phase and Vp is the value

in the pollutant measurement phase.

As a result, after having made all the measurements, a matrix of 10 (sensor signals) by 90

(10 cycles multiplied by nine NOx concentrations) will be obtained. Nevertheless, the first value of

each concentration of each measured compound is discarded. Therefore, the final matrix will be 9 × 81.

Subsequently, a reduction in dimensionality has been carried out using the Principal Component

Analysis (PCA) [33]. This technique can describe a dataset in terms of new non-correlated variables

(“components”). Components are sorted by the amount of original variance they represent, so the

technique is useful for reducing the dimensionality and the redundancy of the dataset. In this way, just

the first two main components (which will contain most of the information) can be represented in a

plot to observe the distribution of the data. The resulting plot is shown in Figure 6. In this case, the

first main component contains 67% of the information and the second one contains the remaining 18%.
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In general, it can be noticed that the different clusters can be differentiated, although there is overlap

between zones such as NO2 120 µg/m3, NO 165 µg/m3, NO2 205 µg/m3, and NO 15.5 µg/m3. In some

areas, such as NO2 at a concentration of 80 µg/m3, drift problems appear. Such problems are probably

related to an insufficient sensor stabilization time before performing these measurements.

Figure 6. Principal component analysis (PCA) plot.

On the other hand, correlation tests have been performed in order to evaluate the predictive

capacity of the device in quantification tasks. For this purpose, a Partial Least Squares (PLS) regression

has been performed and the predictions made by the model from the sensor responses have been

represented (Figure 7). The actual value is represented on the X-axis, and the value estimated by the

model is represented on the Y-axis. The coefficient of determination (R2) obtained is 0.947 for NO2

measurements and 0.951 for NO measurements.
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Figure 7. Partial Least Squares (PLS) plots.

Finally, for classification purposes, a neural network has been programmed into the smartphone

app (externally trained). A multiperceptron architecture [34] has 10 neurons in the input layer, a
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hidden layer containing four neurons, and one neuron in the output layer. Afterwards, the LOOCV

(leave-one-out cross-validation) validation technique was used to study the classification capability.

Results are shown in the Confusion Matrix (Table 3). In this matrix, each column represents the predicted

pollutant concentration and each row represents the real pollutant concentration. Consequently, the

main diagonal contains correct predictions, while outside values correspond to erroneous predictions.

Finally, a success rate of 92.59% is achieved in the classification, with six mistakes being committed out

of 81.

Table 3. Confusion matrix obtained in leave-one-out cross-validation (LOOCV).

NO2

40µg/m3
NO2

80µg/m3
NO2

120µg/m3
NO2

165µg/m3
NO2

205µg/m3
NO

7.7µg/m3
NO

15.5µg/m3
NO

38.5µg/m3
NO

77µg/m3

NO2 40 µg/m3 9 0 0 0 0 0 0 0 0

NO2 80 µg/m3 0 9 0 0 0 0 0 0 0

NO2 120 µg/m3 0 0 8 1 0 0 0 0 0

NO2 165 µg/m3 0 0 1 6 2 0 0 0 0

NO2 205 µg/m3 0 0 0 1 7 0 1 0 0

NO 7.7 µg/m3 0 0 0 0 0 9 0 0 0

NO 15.5 µg/m3 0 0 0 0 0 0 9 0 0

NO 38.5 µg/m3 0 0 0 0 0 0 0 9 0

NO 77 µg/m3 0 0 0 0 0 0 0 0 9

Figure 8 shows a screenshot of the classification result obtained on the smartphone app as

an example.

Figure 8. Smartphone screenshot classifying NO2 to a concentration of 205 µg/m3.

3.3. Limit of Detection (LOD) Estimation

In addition, an estimation of the limit of detection of the electronic nose for NO and NO2 has been

obtained. It has been calculated for each of the four sensors integrated in the device. For this purpose,

the raw signal obtained from each sensor (Ω) is used, since all other signals are algorithms offered by

the manufacturer that may be non-linear and in some cases have lower and upper limits implemented.

The estimated LOD (µg/m3) has been determined according to the simplified LOD formula [35,36]:

LOD = 3.3 × s0/Â, (2)
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where Â is the slope of the resistive response of the sensor against the pollutant concentration and s0 is

the standard deviation of blank measurements, i.e., measurements performed in clean air.

As an example, Figure 9 shows a chart with the data obtained by the CCS811 gas sensor for

the different NO concentrations. The red line represents the trend line whose slope is used for the

calculation of the LOD (Equation (2)), which is also represented in the figure (black line).

Figure 9. Measurements, trend line, and estimated limit of detection (LOD) of CCS811 for NO detection.

Table 4 summarizes the estimated NO2 and NO limits of detection for each sensor expressed

in µg/m3.

Table 4. Estimated LOD (µg/m3).

BME680 SGP30_1 SGP30_2 CCS811 iAQCore

NO2 40.44 38.64 18.87 15.28 48.04
NO 2.3 2.52 1.60 4.47 25.75

3.4. Humidity Tests

NO2 measurements at a concentration of 40 µg/m3 have been performed under five different

relative humidity conditions, with the aim of studying the response of the sensors under these different

environmental conditions. The results have revealed that as the relative humidity increases, the

response of the sensors decreases, or is even non-existent in this scenario. For each humidity value,

10 measurement cycles have been carried out. Figure 10 shows a radial graph of the averaged values

of the 10 measurement cycles for each gas sensor. It can be verified that sensor responses are low for

high values of relative humidity, except in some cases, such as the CCS811 TVOC response. This might

be related to the internal algorithm implemented by the manufacturer.
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Figure 10. Radial diagram of the average responses of gas sensors at different relative humidity values.

Sensor time responses can also be studied, as shown in Figure 11, where a comparative graph of

the SGP30_2 response signals is depicted. It can be appreciated that below 40% of relative humidity,

the responses are almost imperceptible.

Figure 11. Time responses of sensor SGP30_2 (Ω) at different relative humidity values.

However, the operating range in this test is not the same for all installed sensors. Figure 12 depicts

the resistive responses of the CCS811 sensor, which are, indeed, inversely proportional to relative

humidity. Nevertheless, even at 90% relative humidity, a significant variation of the response to NO2

can be detected.
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Figure 12. Time responses of sensor CCS811 (Ω) at different relative humidity values.

Therefore, a filtering unit or a humidity correction algorithm should be added in high humidity

environments for the detection of low concentrations of pollutants. This must be taken into account for

future improvements and developments.

4. Conclusions

In this paper, a low-cost, low-consumption, and very small size electronic nose for air quality

monitoring has been illustrated. Typical gas sensors based on metal oxide technology that have

been used in electronic noses for decades are not appropriate for miniaturized instruments due

to their high power consumption and size. MEMS technology has allowed the integration of gas

sensors within CMOS technology modules, which embed signal processing, A/D converter, and

communication circuits. These digital sensors that have appeared in the market in the last years

normally incorporate several gas sensors or even others such as atmospheric pressure, humidity, or

ambient temperature sensors.

On the other hand, the use of miniaturized measurement devices of small size, low power

consumption, and cost in combination with smartphones allows the creation of sensor networks

in which each citizen acts as a node of a huge network with a very high number of nodes. This

configuration, together with the great computation capacity of the processors of the latest telephones,

makes it possible to execute complex signal processing techniques in the device itself without having

to increase the amount of data sent or received.

The detection and discrimination capability of the device with different concentrations of NOx

compounds (some of the main atmospheric pollutants) have been checked. For this purpose, a

multiperceptron neuronal network has been programmed in the app developed for smartphones. It

has been performed several tests with different conditions of relative humidity to study whether it

affects the detection performance of the gas sensors. It was concluded that high humidity conditions

could significantly affect the operation of the device for this application, especially in the detection of

low pollution concentrations.

The results obtained indicate that significant future work will be required to improve the reliability

of MOx sensors in the presence of humidity in order to obtain a good prediction in the concentration of

pollutants in air. However, these digital sensors may be integrated in the near future in smart devices,

such as phones, watches, or tablets, following the trend of increasing the number of sensors in these

devices. This integration, and its massive use, will allow the appearance of numerous applications that
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will make use of the sensor data as it happened some years ago with the cameras integrated in the

smartphones and the apps of artificial vision. Such prototypes and advanced algorithms for signal

processing are already under development, as discussed, and will likely be required for the widespread

and successful deployment of e-noses as personal devices for air quality monitoring.
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