
Electronic Payments of Small Amounts

Torben P. Pedersen�

Computer Science Department, Aarhus University

Abstract

This note considers the application of electronic cash to transactions in which

many small amounts must be paid to the same payee and in which it is not possible

to just pay the total amount afterwards. The most notable example of such a trans-

action is payment for phone calls. If currently published electronic cash systems

are used and a full payment protocol is executed for each of the small amounts,

the overall complexity of the system will be prohibitively large (time, storage and

communication). This note describes how such payments can be handled in a wide

class of payment systems. The solution is very easy to adapt as it only in
uences the

payment and deposit transactions involving such payments. Furthermore, making

and verifying each small payment requires very little computation and communi-

cation, and the total complexity of both transactions is comparable to that of a

payment of a �xed amount.

1 Introduction

The introduction of public key crypto-systems and digital signatures ([DH76] and [RSA78])

has led to the construction of many di�erent types of payment systems. During payment

at least one and often more digital signatures must be created and veri�ed. This has the

advantage that it can often be argued (although not always formally proved) that the

payment system is as secure as the digital signature system. However, it also has the

disadvantage that the e�ciency of the payment system depends on the e�ciency of the

signature scheme. In particular, the time to perform a payment transaction is closely
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related to that of verifying a signature and the storage requirements depend on the length

of signatures.

Since the computations on the users side must be performed by small devices with

relatively little computation power such as smart cards or electronic wallets (see [EG84]

and [Cha92] for two di�erent types of wallets), it is important that the users part of all

transactions can be done very e�ciently.

Although recent research has improved the e�ciency of (privacy protecting) electronic

payment systems, they are still too ine�cient in certain applications. One such application

is phone calls. Here the total amount to be paid is composed of many payments of small

amounts, and each of these small amounts must be paid in real time upon receipt of a tick.

Depending on the type of phone call (local, long distance, etc.) these ticks may come with

relatively short time interval. The timing requirements imposed by this cannot possibly be

met by publicly suggested payment systems if each tick is paid for by executing a payment

transaction. Furthermore, such an approach would require quite a lot of storage at the

recipient side increasing linearly in the number of ticks during the phone call. Although

this may not be a serious problem considering todays cheap storage media, it does increase

the cost of the payment system and it implies a large communication overhead. Other

settings where similar payments could be useful include parking and access to electronic

services. We shall in general denote such payments tick payments.

This note describes a method for adding tick payments to systems in which the payer

during payment makes (something like) a signature on a message describing the recipient

and the amount to be paid. The method is most easily explained as an application of

Lamport's password scheme (see [Lam81]) to encode amounts in payments. An earlier

application of repeated computations of one-way functions is described in [Mer90] and

attributed to Winternitz (1979). In relation to payment systems a similar idea is used in

[BC90] to encode amounts. The encoding suggested in the following is a simpli�cation of

that in [BC90] speci�cally designed for tick payments and can be used in many di�erent

systems.

The proposed solution is very easily applicable since only payment and deposit trans-

actions involving tick payments are a�ected. A tick payment initially requires the same as

a normal payment. Then the payment for the i'th tick requires at most T�i computations

of an easily computable function. Veri�cation of each tick only requires one computation

of this function. After the required number of ticks have been paid only a few hundred

bits more than in a normal payment must be stored (the exact number depends on the

actual choice of the function mentioned above).

The next section describes the general payment system considered and relates it to

other proposed systems. Section 3 then presents the solution, and Section 4 describes a
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few simple variations.

2 Electronic Payment Systems

2.1 The General System

We consider an electronic payment system in which an execution of the payment protocol

can be described by a triple (v;m; �(m)). Herem 2 f0; 1g� and �(m) are special messages,

and v denote all other messages exchanged during the payment. The message, m, must

describe the amount to be paid and it may contain additional information such as a

description of the recipient and some bits chosen at random by the recipient. No part of

v may depend on the amount paid. In most situations �(m) is a signature corresponding

to a public key, which is either certi�ed as part of v or can be recognised by other means.

The veri�cation of such a payment involves the veri�cation that m contains the required

information and that �(m) is correct with respect to m and v. The assumption that

m 2 f0; 1g� is reasonable since a hash value of m and not m itself is normally used to

compute �(m).

In order to be credited the received amount the payee must show (m;�(m)) and

possibly v to her bank. This can either be done during the payment transaction or in a

later deposit transaction. Thus no assumption is made whether the system is on- or o�-

line. Furthermore, such payment systems can be used in both pre- and post-paid systems.

Examples of such schemes are

� Cheque-like systems, where the payer signs a message transferring the signed amount

from the payer to the payee (see [EG84] for such an o�-line system).

� Anonymous cheques with counters. In such systems the payer gets during with-

drawal a number of cheques and a permission to spend a certain amount (by setting

a counter). During payment the payer �lls out the cheque, and the payee may be

credited the amount. In pre-paid systems this can be done anonymously, i.e., with-

out revealing the anonymity of the payer. See [BC90, BBC+94, Bra95] for examples

of such systems.

The security of payment systems following this model depends on the infeasibility of

creating a false pair (m;�(m)) which will be accepted by the bank. This would enable

the receiver to get extra money, and in pre-paid systems it would enable a payer to spend

money that he didn't withdraw.
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2.2 Di�erent O�-line Systems

Other types of o�-line electronic payment systems have been proposed in the literature.

In an electronic coin system, the user gets during withdrawal a number of electronic coins

with �xed denominations (guaranteed by a signature from the issuer). During payment

the user must spend a number of coins whose values add up to the required amount (e.g.,

see [CFN90, Fer93, Bra94]). As this often requires a large number of coins in a payment,

leading to ine�ciency with respect to time, storage and communication, electronic cheques

with refund were proposed in [CFN90]. Here, the user obtains (buys) a number of cheques

during withdrawal. Each cheque has an upper limit and can be spent for any amount

up to this limit. A possibly remaining amount of a cheque can later be refunded. This

is obviously more 
exible than coin based systems, but still less practical than encoding

amounts as described above since the user must contact the bank in order to convert

\refundable" money to \spendable" money.

Another proposal, in [OO92], is to use so called divisible coins. Here the user can split

a coin arbitrarily (i.e., this is much like a cheque with refund, where the refund can be

spend). These systems o�er more 
exibility than cheques with refund, but they have not

been obtained with the same level of privacy protection and the proposed systems seem

to be too ine�cient for practical purposes.

In all these pre-paid systems a tamper resistant device (trusted by the issuer) is used

to prevent that the user spends more money than allowed. Furthermore, even in payment

systems protecting the anonymity of the user it is possible to identify persons who break

this tamper resistant device and spend too much money. Very brie
y, the price we have

to pay for the greater 
exibility implied by including the amount in m is less fall-back

security when the tamper resistant protection is passed.

2.3 Limitation of the Systems

As noted above the enhanced 
exibility is the main reason for encoding the amount in

m. Furthermore, such a scheme can be relatively e�cient since its complexity depends

on the complexity of creating and verifying �(m).

However, in the application to tick payments this is not su�cient, because if a full

payment is done for each tick then

� The user has to create and the payee has to verify and store a large number of pairs

(m;�(m)).

� The time needed to make and verify a paymentmay exceed the time interval allowed.
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Thus the main advantage of these systems vanishes when it comes to tick payments.

3 Adding Tick Payments

In the following we shall denote the security parameter of the payment scheme by k. It

will be assumed that T is polynomial in k. Another security parameter n = n(k) will

depend on k in such a way that n and k are polynomially related (e.g., n = kc for some

constant c > 0).

3.1 The Idea

This section shows how a payment system as described above can be adapted to handle

tick payments.

Let f be a length preserving function f0; 1g� ! f0; 1g� (i.e., f maps n-bit strings to

n-bit strings for all n 2 IN). Let f i denote i evaluations of f for i 2 IN. Thus, f0 is

the identity and f i = f �f i�1 for i = 1; 2; : : :. For the moment f can be any e�ciently

computable function, but later we shall impose some restrictions on f for security reasons

(one-way in a certain sense).

Let a payment system as described in Section 2.1 be given. In the following the

system is extended to provide for e�cient tick payments. This is done by providing a new

way of encoding amounts in the message, m. In case of normal payments the encoding

of amounts is unchanged. For tick payments the amount is encoded as follows. The

message, m is computed as before except that it encodes the amount 0. Then a new

message m0 is computed as m0 = mkTk�0, where k denotes concatenation, T is a possibly

�xed parameter, and �0 2 f0; 1gn is computed by the payer as �0 = fT (�), where � is

chosen at random in f0; 1gn (recall that the message can be an arbitrary string of bits).

In case of pre-paid systems, where a tamper resistant device manages a counter de�ning

the amounts that may be spent, this device must do the computation of �0 (see also

Section 4). The payer then computes �(m0) and sends (m0; �(m0)). This pair is veri�ed

as in a normal payment. Until now the payee has not received payment of any ticks. In

order to get payment for the i'th tick (i � 1) the following takes place:

1. The payer sends �i = fT�i(�) to the recipient.

2. The recipient veri�es that f(�i) = �i�1 (�i�1 was received in the previous round,

and �0 was received in m0).
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This can continue for payment of at least T ticks. Thus an amount corresponding to t

ticks is encoded as �t 2 f0; 1g
n satisfying f t(�t) = �0. Only �0 (which is part of m) and

the last received value, �t, need to be remembered.

A simple variation of this scheme allows a combination of normal payments and tick

payments, by just encoding a non-zero amount in m as described above. Furthermore, if

one tick corresponds to one unit in the given currency, then u units can be paid in the

i'th round by sending �i satisfying fu(�i) = �i�1.

3.2 Security of the Solution

It is now shown that if f is one-way in a certain sense then it is not feasible to obtain a

larger amount than that received in the payment.

As mentioned in Section 2.1 the payment systems in question can be used in two

ways. If the bank can identify the payer from the payment, it can always hold the payer

responsible for the paid amount. In this case the main security concern is whether it is

possible for a dishonest payee to change (increase) the encoded amount after the payer

executed the payment transaction properly (i.e., following the given protocol).

In case the bank is not able to identify the payer, a tamper resistant unit trusted by

the bank and used by the payer must decrement a counter corresponding to the amount

in the payment. In this case, the main security concern is whether it is possible to encode

a di�erent amount than that used by the tamper resistant device, under the assumption

that the tamper resistant device does its part of the protocol properly. Thus it can in

both cases be assumed that �0 is has been computed correctly.

The security of the extended system depends on the security of the given payment

system and the properties of f . Consider the following property of a payment system as

described in Section 2.1:

De�nition 3.1 Let a payment system with security parameter k be given. The system

is said to be unchangeable if whenever a payee receives payment (v;m; �(m)) from a

device properly following the payment protocol she cannot deposit it as if she received

(v0;m0; �C(m
0)) with m0 6= m except with negligible1 probability in k. This probability is

over all random choices during payment and deposit.

Unchangeability ensures that amounts and other information encoded in m cannot be

changed. The function f must be one-way on its iterates (see also [Lev85]):

1A function g : IN ! IR is negligible if for all c > 0 and k su�ciently large jg(k)j � k�c.
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De�nition 3.2 Let f : f0; 1g� ! f0; 1g� be a length preserving function. f is said

to be one-way on T iterates if for every probabilistic polynomial time algorithm, A, the

probability that A given y = f t(x) and t for 1 � t � T and a randomly chosen x 2 f0; 1gn

outputs z such that f(z) = y is negligible in n (the probability is over the choice of x and

the random coins of A).

The assumption that A also gets t as input is not important as it might as well guess this

value whenever T is polynomial in k.

Given a length preserving function, f , consider the following game between two poly-

nomially bounded parties A and B:

1. A chooses x 2 f0; 1gn at random, computes fT (x) and sends it to B.

2. For i = T � 1; T � 2; : : : until B decides to stop (B must do this at latest when

i = 1): A sends f i(x) to B.

3. Assume f t(x) was the last value B received, where t 2 f1; : : : Tg. Then B outputs

y 2 f0; 1gn.

4. B wins if f(y) = f t(x).

Lemma 3.3 If f is one-way on T iterates (T is polynomial in n), then the probability

that B wins is negligible in n and hence in k (the probability is over the choice of x and

the random choices of B).

Proof Assume that there is a polynomially bounded B, which is able to win with

probability at least n�c for some c > 0 and in�nitely many values of n.

There is a t0 such that the probability that B outputs a pre-image of f t0(x) with

non-negligible probability (over the choice of x and the random choices of B) is at least

n�d for some d and in�nitely many values of n (since T is polynomial in n). Consider

such n's.

Now consider the following machine for �nding a pre-image of y = f t(x), given y and

t:

1. First compute z = fT�t(x).

2. Simulate the above game.

3. If B stops for a value of i di�erent from t, the algorithm outputs fails.
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4. Otherwise if B stops for i = t and outputs yB, then the algorithm outputs yB.

For t = t0 the algorithm outputs yB satisfying f(yB) = y with probability at least n�d.

This contradict the assumption that f is one-way on T iterates. ut

From this technical lemma it is not hard to see that the encoding of amounts is secure if

f is one-way on T -iterates. The details are given in the following proposition.

Proposition 3.4 If the given payment system satis�es De�nition 3.1, and if f is one-way

on T iterates then the following holds except with negligible probability in k: If a payee

receives the amount, a, in a payment transaction then, except with negligible probability

in k, she can at most obtain an amount a during deposit.

Proof A payment in the new system can either be a normal or a tick payment. In the

�rst case the claim follows immediately from the assumption that the original system

satis�es De�nition 3.1.

Now assume that after N tick payment transactions a payee has been able to cash a

payment received for t ticks as t0 > t ticks with non-negligible probability.

Then it is possible to construct a machine which wins in the above game, by simply

simulating a payment system and using this payee to obtain the required pre-image. This

machine for interacting with A in the above game works as follows:

1. Setup and simulate the entire payment system by selecting all keys and perform all

protocols as described acting both as payer, payee and bank. Furthermore choose

l 2 f1; 2; : : : ; Ng at random.

2. Whenever a normal payment is performed follow the payment with the given dis-

honest payee).

3. If the payment is a tick payment and this is the l'th tick payment, then use the

value fT (x) received from A as �0. Furthermore, interact with A to get payment

for the required number of ticks. Assume this payment is for t ticks.

4. If the payment is another tick payment then make this payment correctly (using the

dishonest payee).

5. After all payments have been performed, the payee tries to deposit one of the re-

ceived tick payments for more ticks than received.
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If the payee is able to get money for t0 > t ticks for the l'th payment, then from the

messages sent it is possible to �nd z such that �0

0
= f t

0

(z), where �0

0
in contained

in m0 corresponding to the l'th payment. The machine outputs u = f t
0
�t�1(z).

Otherwise, the machine loses the game to A.

The dishonest payee will output u in the last step with non-negligible probability since l

was chosen at random (and N is polynomial in k). By the property of unchangeability,

�0

0 = �0, except with negligible probability, and hence the machine will output a number

u winning the game against A. By Lemma 3.3 this contradicts that f is one-way on T

iterates. ut

This proposition shows that the recipient cannot increase the received amount. Of course

she can decrement it (corresponding to losing coins from a purse), but that should not be

of her interest. Thus the extended system is not unchangeable, but still secure.

4 Variations

4.1 Possible Choices of f

In the previous section it was shown that if f is one-way on its iterates then the solution

for tick payments is secure.

In a practical implementation f could be derived from a hash function f0; 1g� !

f0; 1gn by restricting the input to n-bit strings (e.g., [Riv91, SHS92, BBB+93]). Such

a function would be e�cient and it often comes for free in the sense that it is needed

anyways in the implementation of the payment system. If the hash function distributes

its input su�ciently randomly it can be assumed to be one-way on its iterates for practical

values of T .

Alternatively, a one-way permutation can be used. Such a function is one-way on T

iterates whenever T is polynomial in k since y in De�nition 3.2 is uniformly distributed.

This again leads to the possibility of choosing f as a trapdoor permutation. If only (the

tamper resistant device of) the payer knows the trapdoor information (i.e., the secret

key needed to compute f�1), then the payer can avoid T and have �0 = �. If �i�1 has

been used to pay for tick (i � 1), then �i = f�1(�i�1) can be used to pay for the i'th

tick. This has the advantage, that a priori no upper limit on the number of ticks must be

determined. Furthermore, it could lead to better e�ciency although this is not clear if f

is the RSA function with small public exponent and T is at most a few hundreds (see also
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[Lam81] for some suggestions for speeding up the repeated computations of the one-way

function).

Finally, we mention that if f0; 1gn is replaced by a group An (with group operation,

say, �) a one-way homomorphism: An ! An could be a good choice in wallets with

observers (again the RSA function is a candidate). In that case observer and user could

choose � 2 An mutually at random as follows

1. Observer chooses � 2 An at random and sends a commitment to �0 = fT (�) to the

user.

2. The user chooses 
 2 An at random and sends fT (
) to the observer.

3. The observer opens the commitment to fT (�)

4. The observer and user compute �0 = fT (�)� fT (
) and include it in m0.

To pay for the i'th tick the observer sends �i = fT�i(�) to the user and the user veri�es

that f(�i) = �i�1 and sends �i = �i � fT�i(
) to the recipient.

The advantage of this approach is that the observer can control the number of ticks

paid and the user can blind the numbers sent for each tick.

4.2 Variations in On-line Systems

If the proposed method is applied to on-line systems, two alternatives are possible:

1. (v;m0; �(m0)) is veri�ed on-line, but the payment for each tick is veri�ed o�-line.

2. (v;m0; �(m0)) as well as the payment for each tick is veri�ed on-line.

Here the �rst alternative is most attractive as it obtains the advantage of on-line security

while keeping the communication requirements independent of the number of ticks paid.

5 Conclusion

It has been shown that tick payments can be done very e�ciently for payment systems

where amounts are encoded in a special message during payment. It seems to be contra-

dictory to the notion of coins to obtain the same property for coin based systems, but it

is an interesting question if a similar hack can be used for cheque systems with refund as

described in [CFN90].
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