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Abstract1

The dielectric constant, which defines the polarization of the media, is a key quantity in2

condensed matter. It determines several electronic and optoelectronic properties important3

for a plethora of modern technologies from computer memory to field effect transistors and4

communication circuits. Moreover, the importance of the dielectric constant in describing5

electromagnetic interactions through screening plays a critical role in understanding funda-6

mental molecular interactions. Here we show that despite its fundamental transcendence, the7

dielectric constant does not define unequivocally the dielectric properties of two-dimensional8

(2D) materials due to the locality of their electrostatic screening. Instead, the electronic po-9

larizability correctly captures the dielectric nature of a 2D material which is united to other10

physical quantities in an atomically thin layer. We reveal a long-sought universal formalism11

where electronic, geometrical and dielectric properties are intrinsically correlated through the12

polarizability opening the door to probe quantities yet not directly measurable including the13

real covalent thickness of a layer. We unify the concept of dielectric properties in any material14

dimension finding a global dielectric anisotropy index defining their controllability through15

dimensionality.16

Keywords17

Dielectric screening, electronic polarizability, two-dimensional material, scaling relation, first prin-18

ciples simulations, dielectric anisotropy19
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Introduction20

The dielectric constant ε (also known as the relative permittivity) plays a crucial role in bridging21

various fundamental material properties, such as bandgap,1,2 optical absorption3 and conductivity4
22

with elemental interactions. The central place of ε in solid-state physics drives the analysis of23

several phenomena where is common to classify a material accordingly to its ability to screen an24

electric field E in terms of insulators, metals and semiconductors. Such definitions determine a25

broad range of condensed matter physics, as well as in related fields in chemistry and materials26

science. The ability to compute and measure ε in bulk materials is well established via different27

theoretical5,6 and experimental techniques7 of distinct flavors where the probe of the dielectric28

properties is made through an external electric field. Despite its obvious appeal, however, it is29

still unknown whether such quantity can determine the electronic and dielectric properties of two-30

dimensional (2D) materials.8 The confined nature of such atomically-thin 2D crystals associated31

with the attenuated and anisotropic character of the dielectric screening9–15 has generated long-32

standing debates whether the dielectric constant truly represents the dielectric features of such33

low-dimensional systems. The controversy of values reported by both theoretical and experimental34

approaches can be widely seen throughout the specialized literature, see Ref.16 for a summary,35

where the variation of ε can be more than one order of magnitude. As a consequence, several key36

physical parameters that scale with ε, such as the exciton binding energy and Debye screening37

length, cannot be reliably estimated due to the discrepancy of the reported magnitudes of ε.38

Here, by using a combination of analytical and numerical models liaised with highly-accurate39

first-principles methods involving high-throughput screening techniques, we show that the dielec-40

tric constant does not provide a reliable description of the screening features of a 2D material. The41

interplay between local electrostatic interactions in the monolayer and the volume dependence in42

the definition of ε makes such quantity questionable. We propose however that the electronic polar-43

izability that describes the electron dipole in the 2D material as the true descriptor of its dielectric44

nature. We overcome several problems intrinsic to thin layers not achievable using conventional45

effective dielectric medium models, such as the real thickness of a monolayer and any dependence46
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on the long-range Coulomb potential. We unveil universal scaling relations between electronic and47

dielectric properties through the electronic polarizability, such as band gaps, optical spectra and48

exciton radius, for the current library of known 2D materials involving different lattice symme-49

tries, atomic elements and chemical and physical properties. Moreover, the concept of electronic50

polarizabilities bridges the gap between the dielectric properties of 2D and 3D systems through a51

novel dielectric anisotropy index that generalized the concept of dielectric control using dimen-52

sionality and bandgap. Our results open a new avenue for the study of the dielectric properties of53

2D compounds using techniques yet to be explored.54

Results and discussions55

Lattice-dependency of macroscopic dielectric constant56

We first approach the discrepancy of macroscopic dielectric constant of 2D materials, by showing57

that the current definition of ε used in layered materials is ill-defined. This can be viewed in a58

model system as illustrated in Figure 1, where an isolated 2D material is placed in the xy-plane of59

a periodically repeating superlattice (SL) with a length L along the z-direction separating the cell60

images. The static macroscopic dielectric tensor from the superlattice ε
pq

SL, is determined through61

fundamental electrostatics by the response of the polarization density P p under small perturbative62

external field Eq, where p, q determine their directions, respectively:4
63

ε
pq

SL = κpq +
∂P p

ε0∂E
q (1a)

P p =
up

Ω
=

Z

SL

ρ(r)rpd3r

AL
(1b)

where κ is the dielectric tensor of the environment, u is the total dipole moment within the SL,64

ρ is the spatial charge density, Ω = AL is the volume of the supercell, A is the xy-plane area of65

the SL and ε0 is vacuum permittivity. Here we limit our study on the electronic contributions to66
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the macroscopic dielectric constant where the dipole P results from the response of the electron67

density under an external field. Ionic contributions17 to εSL have previously been shown to be68

negligible18 and are not considered here. The symmetry of 2D materials leads to inappreciable69

off-diagonal elements of the dielectric tensor (p 6= q), while the diagonal elements εxxSL, ε
yy

SL and εzzSL70

can be different.19 Considering that the 2D material is placed in vacuum (κpp = 1 and κpq = 0), we71

can distinguish two components of εSL, namely the in-plane (ε
k
SL) and out-of-plane (ε?SL) dielectric72

constants, where ε
k
SL = (εxxSL + ε

yy

SL)/2 and ε?SL = εzzSL. The absence of bonding perpendicular to73

the plane confines the induced dipole moments along the z-direction within a range of ⇠5–6 Å74

into the vacuum (Figure 1a and Supplementary Figure 1). Under a given external field, the strong75

confinement of the induced dipole moment u causes the integral in the numerator of Eq. 1b to be76

converged within few Å’s resulting that the dipole moment from the periodic supercell images do77

not mutually interfere.78

Conversely, the increase of L in the denominator of Eq. 1b dilutes the polarization density, and79

in turn makes both ε
k
SL and ε?SL dropping to unity when L is infinitely large, which is not physical.80

Despite the simplicity of this argument, any calculation performed using such definition will intrin-81

sically depend on the magnitude of L, an artificial parameter introduced by the simulation setup.82

This dependence can be clearly demonstrated by plotting ε
k
SL and ε?SL calculated from density83

functional theory (DFT) (see Theoretical Methods for details) as a function of L for P6̄m2 tran-84

sition metal dichalcogenides (TMDCs), 2H-MX2, where M=Mo, W and X=S, Se, Te (top panels85

of Figure 1b and 1c, respectively). To obtain a better description of the electronic band structure,86

the calculations of dielectric properties were performed at the level of Heyd-Scuseria-Ernzerhof87

(HSE06) hybrid functional.20,21 Both components of the dielectric constant decrease with L as ex-88

cepted. To rule out the possibility that the result is affected by the choice of the functional, we89

performed simulations at higher levels of theory using many-body techniques (G0W0), which in-90

variably give alike results (see Supplementary Figure 2). The lattice-size dependency also exists91

for the dielectric function in the frequency domain.92
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Figure 1: 2D polarizability and the breakdown of effective dielectric model (EDM) a, 3D

illustration of the spatial distribution of the charge density change ∆ρ(z) along the z-direction for

monolayer 2H-MoS2 in a periodic superlattice under external eletric field of 0.01 V/Å. The green

and red regions represent negative and positive induced charges, respectively. The macroscopic

ε
k
SL and ε?SL are influenced by the lattice size L, while the 2D polarizabilities α

k
2D and α?

2D are

invariant to L. b, ε
k
SL (top) and α

k
2D (bottom) as functions of L for the 2H TMDCs. c, ε?SL (top)

and α?
2D (bottom) as functions of L for the 2H TMDCs. The polarizabilities in b and c are constant

when L >15 Å, compared with the L-dependence of εSL. d-e, Estimated ε
k
2D and ε?2D, respectively,

using EDM as a function of the uncertainty of the effective layer thickness δ⇤2D. The inset in e,

shows schematically the main parameters utilized in EMD: the vacuum layer (ε0), an approximate

thickness of the layer which is given by δ⇤2D, and the obtained ε2D. The length of the box perpen-

dicular to the surface of the layer is given by L (not shown). Overall, there is a large variation

and associated errors to both components of the dielectric constant for small changes of δ⇤2D in the

range of ±7.5%.
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We carried out similar analysis for frequency-dependent ε
k
SL(ω) and ε?SL(ω) using different ap-93

proaches including Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,22–24 G0W0
25

94

and Bethe-Salpeter equation (G0W0�BSE)26 (see Supplementary Section S1.2 and Supplemen-95

tary Figures 3�8). Despite the various levels of theory analyzed and the increased accuracy of the96

calculated optical properties due to the inclusion of many-body screening and excitonic effects,97

the magnitude of the dielectric function universally decreases with L over the frequency. The98

underlying physical reason for such dependence can be noticed in the definition of the dielectric99

function versus ω shown in Eqs. S1�S2, which also depend on the volume of the unit cell. These100

results indicate that any quantity that depends on ε
k
SL(ω) and ε?SL(ω), such as the optical absorp-101

tion (Im{εSL(ω)}), refractive index (n =
p

Re{εSL}) and electron energy loss spectrum (EELS,102

Im{�1/εSL(ω)}), suffers the same deficiencies for 2D materials.103

The electronic polarizability of 2D materials104

To solve the problem described above, we need to find the L-independent alternative of εSL, which105

is related to both electrostatic and optical properties of a 2D material.27 By multiplying Eq. 1b106

with L, we obtain the sheet polarization density, that is, µ
p

2D = up/A, along the direction p.107

Following the discussion in the previous section, µ
p

2D becomes independent of the lattice size108

when L is large enough, due to the short decay of the induced charge density ∆ρ into the vacuum109

(see Supplementary Figure 1). Similar to the molecular polarizability,28 we utilize the concept of110

electronic polarizability α2D, which has been used previously to solve exciton-related problems in111

2D materials.12,29,30 α2D is a macroscopic quantity that characterizes the ability to induce dipole112

moments in a 2D material, and is associated with µ2D through: µ
p

2D =
P

q α
pq

2DE
q

loc,
31 where Eloc113

is the cell-averaged “local” electric field acting on the 2D material to induce polarization.32 Alike114

to µ2D, Eloc is also a macroscopic quantity that excludes the fields generated by the dipoles of115

the 2D sheet from E. Note the term “local” in Eloc is adapted to resemble the Lorentz model32
116

which has also been used for other low-dimensional materials (e.g. nanotube33 and molecules,31
117

and should be distinguished with the microscopic local field Eloc(r) which is spatially changing.118
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Such macroscopic treatment of polarizability is valid when the length of the superlattice is119

significantly larger than the spatial distribution of induced charges. At L ! 1 limit, Eloc can120

be solved using electrostatic boundary conditions of the slab geometry.34,35 The continuity of the121

electric field along the in-plane direction gives E
k

loc = Ek, while for the out-of-plane component,122

the dipole screening yields E
?

loc = E?+µ?
2D/L,31,35 where Ek and E? are the external field along123

the in-plane and out-of-plane directions, respectively. Combining with Eqs. 1a and 1b, α
k
2D and124

α?
2D can be related with ε

k
SL and ε?SL, respectively:125

ε
k
SL = 1 +

α
k
2D

ε0L
(2a)

ε?SL =

✓

1�
α?
2D

ε0L

◆�1

(2b)

Using these relations, we show that the calculated α
k
2D and α?

2D of the selected TMDCs as a126

function of L in the bottom panels of Figure 1b and 1c, respectively. In contrast to ε
k
SL and ε?SL, we127

observe that both α
k
2D and α?

2D reach convergence when L ⇠10 Å, 15 Å, respectively. Such results128

are in good agreement with the spatially localized induced dipole moment of a 2D material as129

shown in Supplementary Figure 1. Equations 2a�2b can also be used to remove the dependence130

on L for ε
k
SL(ω) and ε?SL(ω), generating lattice-independent electronic polarizability α

k
SL(ω) and131

α?
SL(ω) in the frequency domain, respectively (see details in Supplementary Section S1.2). These132

findings indicate that the electronic polarizability α2D captures the essence of the dielectric proper-133

ties of 2D materials. In contrast to the ill-defined macroscopic εSL, α2D has a unique definition, and134

does not suffer from the dependency on the lattice size. It is worthy mentioning that Eqs.2a�2b135

were obtained using purely electrostatic arguments without any assumption regarding the medium136

where the 2D material is immersed or a capacitance model where an effective dielectric response137

can be extracted. More details about the choice of the 2D polarizability, comparison with other138

methods, simulations at the frequency-dependent domain can be found in Supplementary Section139

S1.2.140
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Comparison with the effective dielectric model (EDM)141

Apart from the 2D electronic polarizability proposed here, the effective dielectric model (EDM) is142

commonly used in literature to treat the 2D material as a slab with an effective dielectric tensor ε2D143

and thickness δ⇤2D. Such method can be found in both experimental and theoretical studies, such as144

to interpret ellipsometry data,36–39 reflectance / transmission spectra,40,41 optical conductance27 and145

many-body interactions19,42 of 2D materials. The EDM allows applying physical concepts of bulk146

systems directly to their 2D counterparts using ε2D. However, there are several drawbacks of such147

approach. For instance, the wavevector q-dependency of dielectric screening in 2D sheets12,29,43 is148

not captured. More severely, here we show that, due to the uncertainty of δ⇤2D, the calculated ε2D,149

in particular its out-of-plane component, is extremely sensitive to the choice of δ⇤2D, making such150

model questionable.151

The basic assumption of EDM can be seen in the inset of Figure 1e, where the macroscopic152

εSL is considered to be composed by (i) a 2D slab with an effective dielectric constant ε2D and153

a thickness δ⇤2D, and (ii) a vacuum spacing with distance L � δ⇤2D. Using the effective medium154

theory (EMT),34,44 the relation between εSL and ε2D can be expressed using capacitance-like equa-155

tions:27,45,46
156

ε
k
SL =

δ⇤2D
L

ε
k
2D +

✓

1�
δ⇤2D
L

◆

(3a)

1

ε?SL
=

δ⇤2D
L

1

ε?2D
+

✓

1�
δ⇤2D
L

◆

(3b)

In principle, both the values of ε2D and δ⇤2D are unknown for a certain 2D material. To minimize157

the modeling error, we used non-linear least-square fitting to extract ε2D and δ⇤2D of selected 2H158

TMDCs simultaneously from ab initio εSL – L data in Figure 1b and 1c (see details in Supple-159

mentary Figure 10). The fitted values of the slab thickness, δ
k,fit
2D and δ

?,fit
2D from in-plane and160

out-of-plane data, respectively, are shown in Supplementary Table 1. Although the uncertainty161

only corresponds to a few percent of the interlayer spacing in the bulk structure of these 2D mate-162

rials, its influence on the calculated values ε
k
2D and ε?2D is substantial. We estimated the dispersion163
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of ε
k
2D and ε?2D considering slightly deviations of δ⇤2D from the best fitted value by ±7.5% (Figures164

1d and 1e). Strikingly, ε
k
2D decays linearly with δ⇤2D, while ε?2D spans over more than one order of165

magnitude. The sensitivity of ε?2D to δ⇤2D explains the discrepancy in literature for both isotropic19
166

and highly anisotropic27,45 ε2D tensors on 2D materials extracted using EDM. As a consequence,167

the estimated values of ε2D, in particular its out-of-plane component, are highly controversial.168

On the contrary, the proposed α2D approach does not suffer from such limitations, despite169

its relatively simple formalism. The relative uncertainty of α2D is generally at the order of 10-4
170

(Supplementary Figure 9). In addition, the calculation of α2D is technically simpler than ε2D: (i)171

α2D can be achieved using single-point calculation of macroscopic dielectric tensor, while ε2D172

requires non-linear fitting of multiple εSL – L data points; (ii) the values of α2D typically converge173

well for L (⇠20 Å), while ε2D suffers from the uncertainties as described above.174

Universal scaling laws of α2D175

For bulk materials, pioneering works from the 1950s had demonstrated empirical equations be-176

tween ε and the bandgap Eg, including the Moss1,2,47 or Ravindra48,49 relations. Such universal177

relations, if exist in the context of α2D, would be of high importance for studying and predicting178

the screening of 2D materials. Inspired by the random phase approximation (RPA) theory5 within179

the k · p formalism,3,30 we propose the following universal relations for α
k
2D and α?

2D, for 2D180

materials (see Supplementary Section S3 for details):181

Eg = Ck/α
k
2D (4a)

δ̂2D = C?α?
2D (4b)

where Eg is the fundamental electronic bandgap and δ̂2D is the intrinsic thickness of the 2D layer,182

with coefficients Ck =
Ne2

2π
,30 where N is a pre-factor associated with the band degeneracy, and183

C? = ε0
�1. It is worth noting, unlike the parameter δ⇤2D that is artificially assigned within the184

EDM picture (see previous section), δ̂2D can be uniquely defined by α
k
2D, a quantity that can be185
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Figure 2: The universal scaling relation of the dielectric nature of 2D materials. a, The struc-

tures of the 2D materials investigated in this study. b, α
k
2D, α?

2D (bar plots) and Eg (blue dots) for

all the 2D materials studied. α
k
2D is observed to descend with increasing Eg, while no apparent re-

lation between α?
2D and Eg is observed. HSE06 functional is used to obtain the data. c, (4πε0)/α

k
2D

(in Å�1) as a function of Eg, showing a linear correlation between each other. The energy range

of visible light is shown in the background. d, α?
2D/(ε0) (in Å) as a function of δcov (definition

schematically shown in the inset), showing a perfect linear relation with a slope very close to 1
(i.e. α?

2D ⇡ ε0δcov ). The universal scaling relation is also revealed using different databank from

from Ref. 50 (squares), and Ref. 51 (triangles) as superimposed on c and d. Data corresponding

to 2H-MX2 (M=Mo, W; X=O, S, Se, Te) is highlighted in d. The very tiny difference in α?
2D/(ε0)

between compounds with different metal atoms gives superposed magnitudes not distinguishable

in the plot.
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computationally and experimentally determined. Despite the simplicity of Eqs. 4a and 4b,186

they generate direct relationships between the electronic polarizability and the electronic/structural187

properties for any 2D material in a new framework.188

Next, we show that these equations are valid for the current library of known layered ma-189

terials involving different lattice symmetry, element composition, optical and electronic proper-190

ties (Figure 2a). A high-throughput screening performed on different families of TMDCs (MX2,191

where M is a metal in groups 4, 6, 10, and X=O, S, Se, Te) and phases (P6̄m2, P3m1), metal192

monochalcogenides (Ga2S2, Ga2Se2), cadmium halides (CdX2, X=Cl, I), hexagonal boron nitride193

(BN), graphene derivatives (fluorographene (C2F2), graphane (C2H2)), phosphorene (P4) and thin194

layer organic-inorganic perovskites (ABX3), shows that our method enables full correlation be-195

tween these disparate variables. Figure 2b compares the calculated fundamental bandgap Eg (blue196

dots) and 2D electronic polarizabilities (bar plots) of all the 2D materials investigated, covering a197

wide spectrum range from far-infrared to ultraviolet. Note that from dimension analysis, it is more198

intuitive to express the polarizability as α2D/(4πε0), which has unit of Å. We find that α
k
2D has a199

general descending trend when Eg increases, while no apparent correlation between α?
2D and Eg200

is observed (see Supplementary Section S4). We then examine Eqs. 4a and 4b using the polariz-201

abilities by first-principle calculations. Figure 2c shows (4πε0)/α
k
2D (in Å�1) as a function of Eg202

(in eV) for the 2D materials investigated using HSE06 hybrid functional (circular dots) and PBE203

(triangles and squares). A linear regression coefficient of R2 = 0.84 indicates a strong correla-204

tion between bandgaps and polarizabilities as predicted in Eq. 4a. We also discovered that the205

linearity between (4πε0)/α
k
2D and Eg (measured by the R2 value) is higher when the bandgap is206

calculated using the HSE06 hybrid functional compared with that from PBE exchange-correlation207

functional (see Supplementary Section S4 and Supplementary Figure 14). This is reasonable as208

the bandgaps for 2D materials obtained at the PBE functional, although may be close to experi-209

mental reported optical transition energies, are an artifact of the simulation due to a fortuitous error210

cancellation.52,53 Thus, the use of a time-consuming hybrid functional in our study is justified. A211

detailed benchmark of Eqs. 4a and 4b using different bandgaps, databases, and levels of theory can212
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be seen in Supplementary Sections S4�S5.213

We further examine the validity of Eq. 4b, that is, the relation between α?
2D and the thickness214

of a 2D material. To test if the quantity δ̂2D is physical, we choose the “covalent” thickness δcov as215

a comparison. δcov is defined as the longest distance along the z-direction between any two atom216

nuclei plus their covalent radii:217

δcov = max(|zi � zj|+ ricov + rjcov) (5)

where i, j are atomic indices in the 2D material and ricov is the covalent radius of atom i (inset in218

Figure 2d). As shown in Figure 2d, α?
2D/ε0 (or equivalently, δ̂2D) is very close to δcov with a good219

linear correlation of R2 = 0.98. This result indicates a strong relation between α?
2D and the geom-220

etry of the 2D layer, which can be approximated by δcov. Similar to the molecular polarizability221

which characterizes the volume of the electron distribution of an isolated molecule,28 α?
2D/ε0 is222

also naturally related to the characteristic thickness of the electron density of a 2D material. Sup-223

plementary Section S3.3 shows an explanation of this behavior from fundamental electrostatics and224

why α?
2D/ε0 is close to δcov. The geometric nature of α?

2D leads to several interesting properties.225

For instance, the points corresponding to 2H-TMDCs with same chalcogenide element (i.e. 2H-226

MO2, 2H-MS2, 2H-MSe22 or 2H-MTe2, where M= Mo, W) lie very close in Figure 2b (detailed227

values see Supplementary Table S2). This can be briefly explained by the fact that the difference228

between covalent radii of transition metals (e.g. ⇠8 pm between Mo and W) is much smaller229

than that between group 16 elements (e.g. ⇠40 pm between O and S). Our proposed definition of230

δ̂2D which is based on Eq. 4b will provide insights on some long-existing controversies about the231

experimental thickness of 2D materials54 through a measurable quantity, e.g. α?
2D.55–57

232

To rule out the possibility that our conclusion are limited by the number of materials used at233

HSE06 level, we further validate Eqs. 4a and 4b using two different 2D-material databases based234

on different codes.50,51 We extracted the dielectric properties of over 300 compounds calculated235

at the PBE level, and superimpose with our results in Figure 2c and 2d. The high-throughput236
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datasets also show linear trends for both (4πε0)/α
k
2D (in Å) vs Eg (in eV) (y = 0.190x � 0.0619,237

R2 = 0.842) and α?
2D vs δcov (both in Å, y = 0.904x + 0.0551, R2 = 0.943) relations. We notice238

that the linear coefficients are similar but not identical to those calculated at the HSE06 level. The239

discrepancies may be due to several factors resulted from different choice of functionals, such as240

the underestimation of the bandgap in PBE, and different description of the exchange-correlation241

potentials. We note that a more accurate estimation of the coefficients should be performed with242

larger datasets and accurate functionals which requires further work. Nevertheless, the validity of243

the linear trends observed for α
k
2D and α?

2D is undeniable. We have also searched for additional244

relations between the 2D polarizabilities with other physical quantities, including the effective car-245

rier mass, quantum capacitance (density of states) and total atomic polarizabilities with no apparent246

correlations being found (Supplementary Section S5.3).247

Application in multilayer and bulk systems248

The concept of electronic polarizability is not limited to monolayer materials, and can be applied249

to multilayer and bulk systems as well. For a 2D-material stack composed of N layers, we can250

define the electronic polarizability αNL similarly to Eqs. 2a�2b by replacing α
k,?
2D to α

k,?
NL . To251

check whether such assumption is valid, Figure 3a and 3b show α
k
NL and α?

NL as functions of N252

for several TMDCs in 2H-phase, respectively. Interestingly, we find that in all cases, αNL exhibits253

nearly ideal linear relation with α2D, such that α
k
NL = Nα

k
2D and α?

NL = Nα?
2D. Due to the254

relatively small applied electric field (0.01 eV/Å), the interlayer interactions within the stack are255

negligible. Under such circumstances, α2D of individual layers is additive, which leads to the256

following general relation:257

α
p

NL =
N
X

i=1

α
p

2D,i, p =k or ? (6)

where α2D,i is the electronic polarizability of layer i, and p is the direction of the polarization. This258

relation can be additionally utilized to calculate screening inside 2D heterostructures.58,59
259
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Figure 3: Application of 2D polarizability to few-layer and bulk systems. a-b, Multilayer

polarizabilities α
k
NL and α?

NL of selected 2D metal dichacolgenides (2H-MX2, M=Mo, W; X=S,

Se, Te) as a function of number of layers N , respectively. Inset in a, shows a scheme of the 2D-3D

transition. α in the 2D material is essentially equivalent to ε in its bulk counterpart. Both α
k
NL and

α?
NL linearly scales with N and the electronic polarizability of the monolayer which indicate that

α2D is an additive quantity under weak interacting regime. c-d, DFT calculated ε
k
Bulk and ε?Bulk,

respectively, as a function of their predicted values from the 2D polarizability model. A strong

correlation is observed in both components with the linear regression slope reaching the unit for

ε
k
Bulk but slightly deviating for ε?Bulk at higher magnitudes. A heat map showing the dependence

of ε
k,?
Bulk with the band gaps is included in d. The model predicted values for ε?Bulk are in good

aggreement with the DFT calculations when Eg > 4 eV. Inset in c, shows the definition of the

interlayer distance in bulk LBulk utilized to calculate ε
k
Bulk and ε?Bulk via Eqs. 7a�7a. Calculations

at the level of HSE06 and PBE are shown in circles and squares, respectively, in all panels that

apply.
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In a bulk material with an equilibrium inter-layer distance LBulk, we can follow a similar pro-

cedure as in multilayer by defining the polarizability as αBulk. Inspired by Eqs. 2a and 2b, the

dielectric constants ε
k
Bulk and ε?Bulk of the bulk layered material can be reconstructed by α

k
Bulk and

α?
Bulk as:

ε
k
Bulk = 1 +

α
k
Bulk

ε0LBulk

⇡ 1 +
α
k
2D

ε0LBulk

(7a)

ε?Bulk =

✓

1�
α?
Bulk

ε0LBulk

◆�1

⇡

✓

1�
α?
2D

ε0LBulk

◆�1

(7b)

Here we neglect the effect of the stacking order of the layers and hypothesized that the basic260

building blocks for the dielectric response of the bulk are the polarizability of the individual layers261

subject to vdW and electrostatic interactions. The dielectric constant ε although not well-defined262

for a monolayer 2D material becomes applicable when the 2D layers are put together as shown263

in the following. We compare the values of ε
k
bulk and ε?bulk computed from DFT simulations (y-264

axis) with those predicted using Eqs 7a and 7b (x-axis) as shown in Figure 3c and 3d. Strikingly265

both HSE06 and PBE datasets give almost identical results which suggest a non-method dependent266

behavior. We observe that ε
k
bulk values calculated by DFT and predicted by Eq. 7a are in sound267

agreement with a linear regression slope of 1.01 and R2 of 0.97. Conversely, ε?bulk values predicted268

from Eq. 7b fairly agree with the DFT-calculated values when Eg > 4 eV, while the deviation269

becomes larger when Eg reduces. The above results indicate that α
k
Bulk can generally be estimated270

with high accuracy from its 2D counterpart, while α?
Bulk differs due to the interlayer coupling and271

overlap between induced dipole.45,59 Nevertheless, as most of the optical response and electronic272

device properties rely on the in-plane dielectric constant for practical applications, the possibility273

to handily estimate α
k
2D from well established magnitudes of ε

k
bulk, for instance, from material274

databases, using reverse engineering in Eq.7a, it is a step forward in the design and understanding275

of the dielectric phenomena in 2D.276
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Unified geometric representation of α2D277

Lastly, we demonstrate that both α
k
2D and α?

2D can be unified using a geometric approach. In merit278

of the unit analysis, α
k
2D and α?

2D both have unit of 4πε0⇥[Length]. In other words, they represent279

in- and out-of-plane characteristic lengths, respectively. It is well-known that the in-plane screened280

electrostatic potential V (r) =
e

4α
k
2D

"

H0(
2ε0r

α
k
2D

)� Y0(
2ε0r

α
k
2D

)

#

from a point charge as a function of281

distance r 9,60 (where H0 is the Struve function and Y0 is the Bessel function of second kind) is282

associated with the in-plane screening radius r
k
0 = α

k
2D/(2ε0), such that V (r, r/r

k
0 � 1) reduces283

to the simple Coulomb potential in vacuum. Combining with the result that α?
2D/ε0 characterizes284

the thickness of a 2D material, we can view the dielectric screening of a point charge sitting in285

the middle of a 2D material as an ellipsoid with the radii of principal axes to be r
k
0 = α

k
2D/(2ε0)286

and r?0 = α?
2D/(2ε0), respectively, as illustrated in Figure 4a. This is analog to the polarizability287

ellipsoid picture of molecules used in spectroscopy.61 The polarizability ellipsoid for a 2D material288

is in general ultra flat, with r
k
0 � r?0 , as demonstrated by layered materials of group 6 of 2H-289

TMDCs (Figure 4b and 4c). The picture of the polarizability ellipsoid provides further insights290

into the physical nature of α2D: r
k
0 is close to the exciton radius that it is confined within the 2D291

plane.60 This radius is generally larger for a smaller bandgap semiconductor, and can be converted292

through the exciton binding energy as proposed in Refs.29,30 r?0 in its turn can be indirectly deduced293

from Stark effect for perpendicular electric fields.62–64 A comparison with available experimental294

data64,65 gives close magnitudes with our predicted values.295

Inspired by the polarizability ellipsoid model, we will show that a general picture of the di-296

electric properties in any dimension can be drawn by studying the dielectric anisotropy. That is,297

the dielectric response of a material along its different geometrical orientations. We define the298

dielectric anisotropy index η as:299

η =

8

>

>

>

<

>

>

>

:

min
i 6=j

✓

εii

εjj

◆

, Bulk Materials

min
i 6=j

✓

αii
2D

α
jj

2D

◆

, 2D Materials

(8)
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Figure 4: Geometric representation of the 2D polarizability. a, Scheme of the polarizability

ellipsoid of a 2D material, with its in-plane (r
k
0) and out-of-plane radii (r?0 ) proportional to α

k
2D and

α?
2D, respectively. b-c, Calculated magnitudes of r

k
0 and r?0 , respectively, for selected 2D TMDCs.

The polarizability ellipsoid is highly anisotropic with screening much stronger at in-plane than

out-of-plane directions. Comparison with available experimental results64,65 for 2H-MoS2 and

2H-WSe2 is included.

η = 1 indicates that the material has isotropic dielectric properties while η ! 0 means that300

the dielectric property is highly anisotropic. Figure 5 shows the phase diagram of η as function301

of Eg for 2D materials and their bulk counterparts. Interestingly, the 2D materials (blue triangles)302

can be clearly distinguished from the bulk layered materials (orange squares) with the boundary303

line determined to be η = 0.048(Eg/eV) + 0.087. The much lower η values for 2D materials304

compared with their bulk counterparts indicates a high dielectric anisotropy, which is responsible305

for the unique 2D optoelectronic properties, such as the electrostatic transparency phenomena66–68
306
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and the large exciton binding energies.60,69–71 From Eqs. 4a, 4b and 8 we can see η is roughly307

proportional to Eg ⇥ δ, which explains the observation that η for 2D materials increase almost308

linearly with Eg, since the layer thickness δ (mostly 3–10 Å) of the 2D materials investigated309

varies much less than Eg in the range of 0.1–7 eV (Figure 2b�2c). Further analysis shows that the310

dielectric anisotropy index of any bulk layered material ηBulk obeys ηBulk �
4η2D

(η2D + 1)2
� η2D,311

where η2D is the anisotropy index of corresponding 2D layer, which is the basis for the separation312

of bulk and 2D regimes in the η�Eg phase diagram (Supplementary Section S7). For comparison,313

we also superimpose the dielectric anisotropy indices of common semiconducting materials in314

other dimensions on the phase diagram in Figure 5. Bulk covalent 3D (e.g. Si, GaN) and 0D (e.g.315

fullerenes) semiconductors show isotropic dielectric properties, scattered along the line η = 1.316

Conversely, reduced dimensionality increases the dielectric anisotropy of materials such as planar317

organic semiconductor (OSc) in 1D-2D (e.g. CuPc), carbon nanotube (CNT) in 1D, linear OSc in318

0D-1D (e.g. polyacene and polyacetylene). Interestingly, most of these materials also scatter along319

the boundary line separating the bulk and 2D regimes, indicating that the criteria distinguishing 2D320

(more anisotropic) and bulk materials (more isotropic) from the η�Eg diagram, can also be applied321

to other dimensions. From the phase diagram, we can see that 2D and bulk layered materials,322

including 2D van der Waals heterostructure (vdWH),8 provides more flexibility in controlling the323

dielectric and electronic properties, compared with covalent semiconductors (without vdW gaps)324

in other dimensions.325
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Figure 5: Phase diagram of dielectric anisotropy η as a function of bandgap Eg. The η-Eg val-

ues of 2D materials (blue triangle) and their bulk counterparts (orange square) can be distinguished

by the line η = 0.048(Eg/eV) + 0.087. η � Eg values of semiconducting materials in other di-

mensions are also superimposed for comparison. Isotropic dielectric property is observed for bulk

covalent materials (3D, red triangle) and fullerenes (0D, green star), while reduced dimensional

materials, including planar organic semiconductor(OSc, 1D-2D, brown triangle), carbon nanotube

(CNT, magenta circle) and linear OSc (0D-1D, violet pentagon) are scattered along the boundary

line. The dimensionality and structure of typical materials are shown along the axis on the right.

Compared with other materials, 2D materials and their bulk counterparts provide more flexibility

of controlling the dielectric anisotropy.

Conclusion326

Our results show that the 2D electronic polarizability α2D is a local variable determining the di-327

electric properties of 2D materials. There exist well-defined relationships between α2D and other328

quantities hidden in the electronic properties. According to our analysis, simple scaling equations329

involving bandgap and layer thickness can be used to describe both dielectric and electronic fea-330

tures at the same footing. A dielectric anisotropy index is found relating any material dimension331
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with its controllability. Thus, our results suggest that the challenge of understanding the dielectric332

phenomena is in general a geometrical problem mediated by the bandgap. We believe the prin-333

ciples presented here will benefit both fundamental understanding of 2D materials as well as a334

rational device design and optimization.335

Theoretical Methods336

Simulations were carried out using plane-wave density functional theory package VASP72–74 us-337

ing the projector augmented wave (PAW) approach with GW pseudopotentials.75 Band gaps were338

calculated using the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06),20,21 with spin orbit cou-339

pling (SOC) explicitly included. The geometries were converged both in cell parameters and ionic340

positions, with forces below 0.04 eV/Å. To ensure the accuracy of dielectric property of monolayer,341

a vacuum spacing of > 15 Å is used. A k-point grid of 7 ⇥ 7 ⇥ 1 was used to relax the superlat-342

tice, with an initial relaxation carried out at the Perdew-Burke-Ernzerhof (PBE)22,24? exchange-343

correlation functional level and a subsequent relaxation carried out at HSE06 level, allowing both344

cell parameters and ionic positions to relax each time. In VASP, the tag PREC=High was used, giv-345

ing a plane wave kinetic energy cutoff of 30% greater than the highest given in the pseudopotentials346

used in each material. This guarantees that absolute energies were converged to a few meV and347

the stress tensor to within 0.01 kBar. Calculation of the macroscopic ion-clamped dielectric tensor348

were carried out with an 18⇥18⇥1 k-grid and electric field strength of 0.001 eV/Å. Local field349

effect corrections are included at the exchange-correlation potential Vxc at both PBE and HSE06350

levels. The materials from Ref. 50 for comparison were choses with the GW bandgap larger than351

0.05 eV. Bulk layered materials were constructed by relaxing the c-axis length of corresponding352

monolayer material with the interlayer van der Waals (vdW) interactions calculated by non-local353

vdW correlation functional.76 The dielectric properties of bulk layered materials using VASP were354

calculated at HSE06 level with 18⇥18⇥6 k-grid with same parameter as for monolayer, while the355

dielectric properties of bulk counterparts of Ref. 50 are calculated at PBE level with a k-point356
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density of 10 Å�1. Local field effect corrections are also used for the dielectric properties of bulk357

systems.358
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43. Trolle, M. L.; Pedersen, T. G.; Véniard, V. Model dielectric function for 2D semiconductors479

including substrate screening. Sci. Rep. 2017, 7, 39844.480

44. Aspnes, D. Optical properties of thin films. Thin Solid Films 1982, 89, 249–262.481

45. Laturia, A.; Van de Put, M. L.; Vandenberghe, W. G. Dielectric properties of hexagonal boron482

nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl.483

2018, 2, 6.484
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S1 Further analysis on the dielectric properties of 2D materials

In this section we provide more analysis on the dielectric properties of 2D materials calculated

using many-body Green function method (G0W0), including electron-hole interactions at the level

of the Bethe-Salpeter equation (G0W0–BSE), and at the frequency-dependent regime.

S1.1 Profile of induced dipoles of 2D material

Here we show in detail the ∆⇢ = ⇢(E) � ⇢(E = 0) profile of the 2H-MoS2 slab in main text

Figure 1. The density ∆⇢ is calculated via ∆⇢(z) = 1
S

R

S
∆⇢(x, y; z)dxdy, where S is the surface

of the unit cell perpendicular to a given direction, in this case z. As can be seen in Figure 1 the

induced charges on the MoS2 layer only extends to a width of ⇠ 12 Å centered at the middle of the

layer. This corresponds to about 5-6 Å from each side. When the SL size L �12 Å as in the first

principle calculations shown in the main text, the induced dipoles from the periodic images do not

interact thus giving the converged values of ↵2D.

Figure 1: ∆⇢ as a function of z around the MoS2 layer, corresponding to main text Figure 1a.
Green and red parts corresponding to negative and positive induced charges. The external electric
field Eext is 0.01 eV/Å.
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S1.2 Dielectric properties calculated using many-body Green function method

and frequency dependency

Here we will show the results of dielectric properties calculated using many-body Green func-

tion method (G0W0) and with electron-hole interactions at the level of the Bethe-Salpeter equation

(G0W0-BSE). Frequency-dependent dielectric functions, "SL(!), were calculated at the level of

G0W0 and G0W0+BSE levels using VASP. For the calculations on G0W0, a 12⇥12⇥1 Γ-centered

k-grid was used along with a 800 eV energy cutoff in the plane waves and in calculation of the

response function. 120 bands (4 occupied and 116 unoccupied) were used in the calculation of

"SL(!) of monolayer BN, with local-field effects being included. For the calculation of the Bethe-

Salpeter equation, the Tamm-Dancoff approximation was used with two occupied and two unoc-

cupied bands being included.

We first compare the case of a monolayer of BN within a varying superlattice L calculated

using PBE and G0W0 as shown in Figure 2. Both "kSL and "?SL do not converge as a function of

L despite of the separation utilized in the simulations (Figure 2a-c). However, corresponding 2D

polarizabilities are almost L-independent (Figure 2b-d). It is worth noting that since the G0W0

method has better estimation of the electronic bandgap, "SL and ↵2D are smaller using G0W0 than

in PBE functionals.

Next we will investigate the frequency-dependent dielectric properties of the 2D materials us-

ing various methods. The imaginary part of the frequency-dependent dielectric function of a peri-

odic system is calculated using the following relation:

"
(2)
αβ(!) =

4⇡e2

Ω
lim
q!0

1

q2

X

v,c,k

2!k�(✏ck � ✏vk � !)

⇥ huck+qeα |uvki huvk|uck+qeβi
(S1)

Through the Kramers-Kronig transformation the real part of the dielectric function can be obtained
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Figure 2: Variation of "?SL as a function of L for monolayer BN calculated at the level of PBE

and G0W0. a-b. "kSL and ↵k
2D as function of L, respectively. c-d. "?SL and ↵?

2D as function of L.
In all cases the values obtained using G0W0 method is smaller than that using PBE method due to
better estimation of the bandgap.

as:

"
(1)
αβ(!) = 1 +

2

⇡

Z 1

0

"
(2)
αβ(!

0)!0

!02 � !2
d!0 (S2)

We calculate the frequency-dependent dielectric properties of BN with varying superlattice L

at PBE, G0W0, and G0W0–BSE. Figure 3 and 4 show that the magnitudes of "kSL(!) and "?SL(!)

reduce with increasing L throughout the whole frequency range at PBE level. The L-dependency

can also be removed using main text Eqs. 2a and 2b, yielding lattice-independent polarizabil-

ities throughout the frequency domain (Figure 3b-d and 4b-d). Note that when extracting the

frequency-dependent 2D polarizabilities from Eqs. 2a and 2b, the peak position in energy ~! from

"SL is preserved. This is explained by the fact that the local extrema from spectra of "SL is also the
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local extrema in corresponding ↵2D, since when @"SL(!)/@! = 0, we have

@↵
k
2D(!)

@!
= "0L

@"
k
SL

@!
= 0 (S3a)

@↵?
2D(!)

@!
= "0L

1

"2SL

@"
k
SL

@!
= 0 (S3b)

which indicates that no corrections in energy are present when transforming "SL(!) to ↵2D(!).

Performing the simulations at the level of G0W0 we observe blue shifts in energy in "SL(!) with

increasing L. Figures 5 and 6 show that not only the magnitudes of the dielectric functions change

with L but also the peak positions. As a result the obtained polarizabilities also show L-dependent

peak shift (Figures 5 b-d and 6b-d). This can be explained by the long-range nature of the Coulomb

interactions into the self-energy Σ = iGW .

The non-interacting Green’s function can be constructed as:

G(0)(r, r0,!) =
X

n

�
(0)
nk (r)�

⇤(0)
nk (r0)

! � ✏n �+i⌘sgn(✏n � ✏F)
(S4)

Here ✏n(k) are the DFT eigenenergies at k, ✏F the Fermi energy, ! the frequency, |unki the cell

periodic Bloch functions, �nk are the one-electron orbitals and ⌘ is an infintesimal complex shift.

It can be seen from equation S1 there is a clear volume dependence on Ω of the dielectric function

from the preceding DFT calculation. Thus, when carrying out a calculation on a slab, the dielectric

function will vary with the vacuum spacing used.

Using the dielectric function we can calculate the screened Coulomb interaction:

W = ✏�1⌫ (S5)

where ⌫ is the bare Coulomb interaction given by e2/|r � r0|. Due to the 1/|r � r0| term, images

in the non-periodic direction have a long-range spurious interaction which varies with vacuum

spacing. From the screened Coulomb interaction and non-interacting Green’s function it is possible
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to calculate the self-energy of the system:

Σ = iGW (S6)

and the quasi-particle eigenenergies are found using:

EQP
nk = <

h

h�nk|�
1

2
∆+ Vext + VH + Σ(✏DFT

nk )|�nki
i

(S7)

Therefore a new set of eigenergies, EQP
nk are found. Using EQP

nk it is then possible to recalculate the

dielectric function using the quasi-particle eigenergies as well as the DFT eigenfunctions.

In general terms excitonic effects are not taken into account at the level of PBE or G0W0. For

the former, this generally leads to an underestimation of the electronic bandgap and results in the

first optical peak being lower in energy in comparison to more accurate methods. To go beyond

PBE, the G0W0 approximation replaces the exchange-correlation energy by the self-energy to in-

clude many-body effects through the interacting Green’s function, G, and the screened Coulomb

potential, W . This generally leads to an overestimation of the first optical peak as electron-hole

coupling is not taken into account. This can be remedied by solving the Bethe-Salpeter equation

using the eigenvalues obtained from G0W0 (G0W0 - BSE) which generally gives good agreement

with experiment.

Due to the volume dependence of Σ in equations S6 and S7, increasing the vacuum spacing

leads to a change in the calculated quasi-particle eigenergies. This, along with the volume de-

pendence in the calculation of the dielectric function, leads to an increase in energy of the peak

position and a decrease in its magnitude with increasing vacuum spacing. Such effect is also dis-

cussed in several other studies,1,2 when full Coulomb interaction is used in a supercell. Including

excitonic effects on top of a G0W0 calculation through solving the Bethe–Salpeter equation correct

this energy shift by localizing the exciton within the slab (Figures 7 and 8). However, the decrease

in the magnitude of the dielectric function on both components of "SL(!) with increasing vacuum

spacing is still observed. Using main text Eqs. 2a and 2b we can remove the dependence on L as
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plotted in Figures 7b-d and 8b-d with fewer variations on "?SL(!).

Combining the accuray of bandgap estimation, reproducible results of frequency-dependent

dielectric properties and calculation efforts, the choice of HSE06 hybrid functional used in the

main text provides best trade off between all aspects.

Figure 3: Dependence of in-plane dielectric properties on L for monolayer BN calculated using
PBE method: a Real part of "kSL, b Real part of ↵k

2D, c Imaginary part of "kSL, d Imaginary part
of ↵k

2D. The same k-sampling is used in all simulations with the only variable quantity being L.
Clearly, the L-dependency of the superlattice dielectric function is removed using 2D polarizabili-
ties.
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Figure 4: Dependence of out-of-plane dielectric properties on L for monolayer BN calculated us-
ing PBE method: a Real part of "?SL, b Real part of ↵?

2D, c Imaginary part of "?SL, d Imaginary part
of ↵?

2D. The same k-sampling is used in all simulations with the only variable quantity being L.
Clearly, the L-dependency of the superlattice dielectric function is removed using 2D polarizabili-
ties.
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Figure 5: Similar to Figure 3 but calculated using G0W0 method. A shift of peak position (fre-
quency) in the dielectric function spectra is observed, resulted from the change of quasi-particle
energy in G0W0 calculations invloving the 2D slab.
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Figure 6: Similar to Figure 4 but calculated using G0W0 method. A shift of peak position (fre-
quency) in the dielectric function spectra is observed, resulted from the change of quasi-particle
energy in G0W0 calculations invloving the 2D slab.
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Figure 7: Similar as in Fig. 5 but taking into account electron-hole interactions at the level of
the Bethe-Salpeter equation (G0W0 + BSE). The peak shift in energies are reduced in comparison
with G0W0. As a result the polarizabilities becomes almost independent of L, consistent to results
obtained by the PBE method.
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Figure 8: Similar as in Fig. 6 but taking into account electron-hole interactions at the level of the
Bethe-Salpeter equation (G0W0 + BSE). As a result the polarizabilities becomes almost indepen-
dent of L, consistent to results obtained by the PBE method.

Figure 9: Convergence of electronic polarizabilities ∆"k2D (a) and ∆"?2D (b) as functions of L for
the selected TMDCs, respectively. For both in- and out-of-plane polarizabilities, convergence is
achieved when L >15 Å

13



S2 Further Data Concerning the Comparison with EDM

The major issue when using rescale relations 3a�3b comes from the determination of �⇤2D. To

eliminate the modeling error caused by the a priori selection of this parameter, we perform the

calculation of "SL of group 6 TMDCs against different L, and use least-square fitting to extract

both " and �, as shown in Figure 10. The values of �⇤2D extracted from both "kSL and "?SL are close

when L > 15 Å. Notably, the �⇤2D values are generally 10% smaller than the interlayer distance

in corresponding bulk materials LBulk, as shown in Table 1. On the other hand, the extracted �⇤2D

values are closer to the covalent thickness �cov as described in the main text, with a difference

generally smaller than 5%. Our results indicate that the conventional estimation of the 2D layer

thickness by its bulk interlayer distance,3,4 will always lead to overestimation. On the contrary, the

out-of-plane polarizability ↵?
2D correctly captures the thickness of 2D materials.

Table 1: Fitted effective thickness �k,fit2D and �?,fit
2D from in- and out-of-plane dielectric data, com-

pared with the interlayer distance of corresponding bulk material LBulk, the covalent thickness �cov,
and ↵?

2D/"0 for 2H TMDC materials.

Material �
k,fit
2D (Å) �

?,fit
2D (Å) LBulk (Å) �cov (Å) ↵?

2D/"0 (Å)
2H-MoS2 5.76 5.49 6.15 5.22 4.98

2H-MoSe2 5.98 5.92 6.46 5.73 5.60
2H-MoTe2 6.43 6.85 6.98 6.37 6.12
2H-WS2 5.63 5.49 6.15 5.20 5.00
2H-WSe2 5.84 5.92 6.49 5.75 5.42
2H-WTe2 6.32 6.58 7.06 6.38 6.33

One main drawback of the EDM approach is the overestimation of the out-of-plane dielectric

response. As can be seen in Figure 10, the extracted "?2D values for the TMDCs studied are com-

parable (within a range of 8-13%) or even larger than "k2D, which does not agree with the physical

picture that electrostatic screening of 2D materials are much smaller perpendicular to the 2D plane.

In fact, combining Eq. 3b and the definition of ↵?
2D, we have:

↵?
2D

"0
= �⇤2D(1� ("?2D)

�1) (S8)
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Figure 10: Calculated (blue dots) and fitted (orange broken lines) "SL as function of L for the group
6 TMDCs: a. MoS2. b. MoSe2. c. MoTe2. d. WS2. e. WSe2. f. WTe2. The extracted values of
"2D and � are shown in each subfigure.
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which indicates that the characteristic length ↵?
2D/"0, is very close but slightly smaller than �⇤2D

estimated by the effective medium theory, if "?2D � 1. Moreover, from Eq. S8, when �⇤2D and

↵?
2D/"0 are close, slight change of the �⇤2D chosen may lead to divergence of "?2D, as shown in Figure

11. Therefore cautions must be taken when treating the dielectric response of the 2D material using

effective medium theory. In comparison, the 2D polarizability does not require the initial guess of

the thickness.

Figure 11: Calculated "?2D value as a function of the difference between �⇤2D and ↵?
2D/"0. A small

change of ↵?
2D/"0 chosen may lead to divergence of the "?2D or even negative values, which is

apparently nonphysical.

To conclude, based on theoretical and technical considerations, there are several advantages of

using the electronic polarizability for describing the dielectric nature of 2D materials, including:

1. ↵2D can be used to describe both the local and macroscopic dielectric properties, while ✏2D

is unable.

2. Calculating ↵2D only requires to calculate the dielectric response at single superlattice length

at relative small L, while ✏2D requires calculation with varied superlattice length. This is a
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big advantage on the computational side since the larger the supercell the larger the compu-

tational cost.

3. ↵2D correctly represents the screening length of 2D material, while ✏2D calculated from EMT

does not.

4. ↵2D correctly represents the different degree of screening in/out-of-plane, while ✏2D does

not.

5. The value of ✏2D hugely depends on the choice of the thickness of 2D material, while such

information is intrinsically embedded in ↵2D.

S2.1 Derivation of Eqs.2a and 2b

To show that Eqs. 2a and 2b do not use any arguments based on EMT but rather basic electrostatics,

we show the derivation of both equations in the following.

S2.1.1 Parallel to the surface

For in-plane electric field, the electrostatic boundary conditions gives the continuity of the applied

electric field as Ek
loc = Ek,5 which resulted in P p = 1

L
µp
2D. Indeed, µp

2D can be written in terms of

the local electric field Ep
loc and the 2D polarizability ↵2D as:

µp
2D = ↵

k
2DE

k
loc (S9)

This gives for the in-plane polarization:

P p =
1

L
↵
k
2DE

k
loc =

1

L
↵
k
2DE

k (S10)

The derivative of this equation relative to the external field Ek resulted in:

@P p

@Ek
=

1

L
↵
k
2D (S11)
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Inserting this equation S11 into Eq.1a with p = q =k:

"
k
SL = 1 +

↵
k
2D

"0L
(S12)

S2.1.2 Perpendicular to the surface

The same procedure can be used along the out-of-plane component but using E?
loc = E?+µ?

2D/"0L

for the local field. We can write this field as:

E?
loc = E? +

↵?
2DE

?
loc

"0L
(S13)

If we re-arrange the terms for E?
loc, we can ended up with:

E?
loc =

E?

1� α⊥

2D

ε0L

(S14)

We can write the polarization P? as:

P? =
↵?
2D

L
(

E?

1� ↵?
2D/"0L

) (S15)

Taking the derivative of this equation relative to E? and inserting in Eq.1a with p = q =? resulted

in:

"?SL = 1 +
↵?
2D

"0L
(

1

1� ↵?
2D/"0L

) (S16)

Re-arranging the terms, it ended up as:

"?SL =
"0L� ↵?

2D + ↵?
2D

"0L� ↵?
2D

= (1� ↵?
2D

"0L
)�1 (S17)
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S3 Polarizability-Based Theoretical Model

The universal relations for ↵k
2D and ↵?

2D revealed by Eqs. 4a and 4b are not coincidental. Com-

bining recent theoretical findings of the linear relation between exciton binding energy Eb and Eg

of 2D materials,6–8 and the fact that the Eb is roughly inversely proportional to ↵k
2D,9 it is reason-

able to have a general relation between ↵k
2D and E�1

g . Moreover, the bandgap-independent relation

of 2D ↵?
2D resembles molecular polarizabilities of conjugate molecules,10 fullerenes11 and carbon

nanotubes,12 which are also shown to be geometry-dependent.

In this section we show in detail the polarizability-based theoretical framework that leads to the

2D Moss-like relations proposed in the main text. Due to its highly anisotropic nature, the wave

function of an isolated 2D material  (r) can be separated into the in- and out-of-plane components

( k(ρ) and  ?(z)) similar to the treatment of quantum wells (QW),13 such that  =  k ?, where

ρ = (x, y) is the in-plane coordinate. Using the Bloch theorem, the periodic  k(ρ) can be further

expressed as  k(ρ) = eik·ρu(ρ), where k is the in-plane wave vector and u(ρ) is periodic function

in the xy-plane. According to the random phase approximation (RPA) theory,14 "SL is the q ! 0

and ! ! 0 limits of the non-interacting dielectric function "(q,!), where q is the momentum

transfer and ! is the frequency:

"SL = lim
q!0

1 +
2e2

"0|q|2Ω

X

k,c,v

| <  v(k)|e
�iqr| c(k+ q) > |2

Ec(k+ q)� Ev(k)
[f( c)� f( v)] (S18)

where e is the unit charge, c, v are the conduction and valence bands, E is the eigenenergy of

individual bands, and f is the Fermi-Dirac distribution function. Taking the limit that L ! 1,

when "?SL ⇡ 1, we have 1 � 1/"?SL ⇡ ("?SL � 1). Therefore ↵k
2D and ↵?

2D at 0 K can be unified by

the same equation:

↵2D =
2e2

|q|2A

X

k,c,v

| <  v(k)|e
�iqr| c(k+ q) > |2

Ec(k+ q)� Ev(k)
(S19)

where the direction is determined by q. Next we will show that the different behavior of  k and
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 ? give rise to the main text Eqs. 4a and 4b.

S3.1 Detailed derivations of main text Eq. 4a

In this section we show how Eq. 2a is derived from Eq. S19. For the in-plane component ↵k
2D, e�iqr

is independent of z, therefore the integral in | <  v(k)|e
�iqr| c(k+ q) > |2 becomes independent

of  ?, due to the orthogonality and normalization. The Bloch-wave form of  k ensures that only

the cell-function u(k) contributes to the final result of ↵k
2D,13 such that:

↵
k
2D =

2e2

(2⇡)2

Z

d2k
X

c,v

| < uc(k)|r|uv(k) > |2

Ec(k)� Ev(k)
(S20)

Following the method of k · p theory from Ref. 8, the matrix element in the numerator of Eq. S20

is approximated by:

| < uc(k)|r|uv(k) > |2 ⇡ ~
2

2m⇤

1

Eg +
~2k2

2m∗

(S21)

plug it into Eq. S20 and integrate within the 2D Brillouin zone from |k| = 0 to |k| = kBZ, where

kBZ is the wavevector at the boundary of the 2D Brillouin Zone, we get:

↵
k
2D = N ·� e2

2⇡

1

Eg + �

�

�

�

�

�

β=
~
2
k
2
BZ

m∗

β=0

⇡ Ne2/(2⇡Eg) = CkE�1
g

(S22)

where N is degeneracy of bands associated with Eg. The approximation in Eq. S22 is due to the

fact that ~
2k2

BZ

m∗ � Eg, and we arrive at Eq. 4a.

The coefficient of Ck adapted from Ref. 8 Ck = Ne2/(2⇡) predicts linear correlation between

↵
k
2D and E�1

g . We validate this by examining the DFT-calculated (4⇡"0)/↵
k
2D (measured in Å�1)

and Eg (measured in eV) in Figure 2c. The coefficient Ck becomes 8⇡2"0/(eN) ⇡ 0.436/N =

0.183, corresponding to N between 2 and 3, which is a reasonable result for the 2D materials
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studied.

S3.2 Detailed derivation of main text Eq. 4b

For main text Eq. 4b, treating the in-plane wave functions as plane wave with form  k(⇢) / eikρ,

the matrix element of <  v(k)|e
�iqr| c(k+ q) >, when q = (0, 0, qz), becomes:15

<  v(k)|e
�iqr| c(k+ q) > =

1

A

Z

dx

Z

dyei(�kρ�qρ+(k+q)ρ)

Z

( ?)⇤v(k)e
�iqzz ?

c (k+ q)

=<  ?
v (k)|e

�iqzz| ?
c (k+ q) >

(S23)

Note that the states perpendicular are bound, the integral is meaningful only when k = k+ q.13

By performing the Taylor expansion of e�iqr ⇡ 1� iqr, we get:

<  ?
v (k)|e

�iqzz| ?
c (k) > ⇡<  ?

v (k)| 
?
c (k) > �iqz <  ?

v (k)|z| 
?
c (k) >

= �iqz <  ?
v (k)|z| 

?
c (k) >

(S24)

plug this into Eq. S19 and express the summation over kx and ky in a continuous form within the

Brillouin Zone, we arrive at:

↵?
2D =

2e2

(2⇡)2

Z

d2k
X

c,v

| <  v(k)|z| c(k) > |2

Ec(k)� Ev(k)
(S25)

The formalism is slightly different from Eq.S20.

The out-of-plane wave function  ?(z) is the solution to the Schrödinger equation with Hamil-

tonian H = �~
2r2/2me+V (z), where ~ is the reduced Planck constant, me is electron mass and

V (z) is the confined Coulomb potential along the z-direction created by the nuclei.13,16 Although

the exact form for  ? depends on the exact distribution of V (z), without loss of generality we can

assume the electrons are confined in a potential well of width �, which is the typical treatment for

semiconductor QWs.16–18 The allowed bound states inside the confined region generally have wave

vector kz / n⇡/�. With the total energy En(k) =
~
2(k2

x + k2
y)

2mk
+

~
2n2⇡2

2m?�2
, where mk and m? are
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the effective masses parallel and perpendicular to the 2D plane. Therefore, the denominator of

Eq. S25 becomes independent of k, that Ec(k) � Ev(k) = (n2
c � n2

v)
~
2⇡2

2m?�2
. On the other hand,

the numerator <  ?
v (k)|z| 

?
c (k) > is proportional to the confinement length � which can be seen

using the particle-in-box solution.13 In combination, the individual terms of the summation in the

right hand of Eq. S25 is independent of neither Eg nor k, proving that ↵?
2D is independent of the

band gap. In the next section we will provide a simple explanation for the ↵ / � relation from

fundamental electrostatics theory.

S3.3 Explanation of main text Eq. 4b from fundamental electrostatics

The dependency of ↵?
2D on the thickness � of a 2D material, can also be regarded using fundamental

electrostatic model. Consider the smallest repeating unit of the 2D material with xy-plane area

A, under small perturbation field E along the z-direction. Note that the surface bound charge

�b = ne/A, where n is the number of unit charges contributes to the bound charges, comes only

from the dipoles of the outer-most atoms, since the induced charges from inner atoms are cancel

out (see Figure 12). From the definition of ↵?
2D, we have:

dmax

rcov
+ + + +

_ _ __

μ2D

Dipole from individual atoms Dipole from outer-most atoms

σb=ne/A

Figure 12: Fundamental electrostatic model for the thickness-dependency of ↵?
2D, using 2H-MoS2

as an example. Left: induced dipoles from individual atoms along the z-direction. The positive and
negative induced charges from inner atoms cancel out. Right: simplified model for the thickness
dependency of ↵?

2D, where the surface dipole density µ comes only from the outer-most atoms.

↵?
2D =

uz

ElocA
=

(dmax + ricov + rjcov)�b
E

(S26)
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where ricov and rjcov are the covalent radii of the outer-most atoms, the characteristic length of

the dipole extension in z-direction, respectively, and dmax is the z-distance between the nuclei of

such atoms. The field E counterbalances the field from the surface bound charges and equals

E = �b/"0. Therefore we have:

↵?
2D = (dmax + ricov + rjcov)"0 = �cov"0 (S27)

which explains the linear relation seen in main text Figure 2d. We can see that such simple model

nicely captures the thickness feature of ↵?
2D, and reproduces the right coefficient between �cov and

↵?
2D.

S4 Dependence of ↵2D on bandgap

In this section we further look into the bandgap dependency of the 2D polarizability. Figure 13

shows the raw data of ↵k
2D and ↵?

2D as functions of Eg of the 2D materials investigated. We observe

that ↵k
2D can be approximated by a reciprocal function of Eg, that ↵k

2D ⇠ 7.295(Eg)
�1. On the other

hand, the plot of ↵?
2D against Eg shows no apparent correlation.

We also investigate the relation of 2D polarizabilities with difference choices of ab initio

bandgaps. It is widely accepted that the PBE exchange correlation, tends to underestimate the

bangap.19–21 Indeed, changing the choice of Eg yields different regression relation with 1/↵
k
2D, as

shown in Figure 14. We see that due to the underestimation of PBE bandgap, the slope of linear

regression is larger than that from HSE-bandgap. We also observe that the 1/↵ � Eg relation is

better presented by using the minimal HSE bandgap than the minimal PBE bandgap, due to higher

regression R2 coefficient of the former. We note that the higher R2 coefficient observed using

the direct PBE bandgap than the minimal PBE bandgap may be solely caused by the fact that the

direct bandgap of 2D materials on the PBE level is closer to the HSE bandgap. From the random

phase approximation theory of dielectric response, the polarizability is contributed by all possible

transition between valence and conduction bands, with the minimal bandgap as the least possible
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Figure 13: Eg-dependence of a, ↵
k
2D and b, ↵?

2D for the 2D materials investigated here using
HSE06.

Figure 14: Relation between 1/↵
k
2D and various choices of Eg: minimal gap from HSE06 (blue),

minimal gap from PBE (orange) and direct gap from PBE (green). The linear regression results
are shown as broken lines.
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transition. In this sense, ↵k
2D is mostly like to be associated with the minimal, not direct bandgap,

as also observed in the original Moss relation. We also examine the validity of such statement

based on the analysis of a different database22 as will be discussed in the following sections.

S5 Using a different dataset of 2D materials

S5.1 Validation of the universal description of 2D polarizabilities

Figure 15: Validation of the linear relation between a, 1/↵
k
2D � Eg(HSE) and b, ↵?

2D � �cov from
Ref. 22 corresponding to main text Figure 2c and 2d.

Due to time-consuming simulations and significant increment in memory overload, high-accurate

calculations at hybrid HSE06 level is limited to about 55 compounds. It is desirable to validate

our proposed relations on an even larger scale database. We select over 248 semiconducting 2D

materials from Ref. 22 with a GW bandgap larger than 0.05 eV and extracted the 2D polarizabil-

ities calculated on the PBE level. The proposed linear relations between 1/↵
k
2D � Eg(HSE) and

↵?
2D � �cov are also valid, as shown in Figure 15. Excellent linear correlation is observed in both

cases with the R2 coefficient larger than 0.9 which indicates the existence of a universal descrip-
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tion of 2D dielectric nature through the proposed relations with the 2D polarizabilities. We note

that the slope of the linear regression is slightly different from the one proposed from the dielectric

response at the HSE06 level.

S5.2 Choice of bandgap

Next we investigate the influence of choice of Eg on the regression of ↵k
2D�Eg relation. Figure 16

shows 1/↵k
2D from Ref. 22 as a function of minimal and direct bandgap calculated on PBE, HSE06

and GW levels. We observe, although the regression R2 coefficient in all cases are around 0.9, the

↵
k
2D � Eg is better described using the HSE and GW bandgaps than the PBE bandgaps. On the

other hand, using indirect or minimal bandgaps on the same level gives almost identical regression

slope. The observations are in good agreement with our calculations on the HSE level discussed

in Section S4. In combination with the physical contribution of Eg to the dielectric screening, we

conclude that the minimal bandgap should be used for quantitative prediction of the in-plane 2D

polarizability. The prediction is greatly improved when more accurate theory level for bandgap is

used (for instance, HSE and GW).

Figure 16: ↵k
2D as function of minimal and direct Eg calculated on different theoretical levels: a,

PBE, b, HSE and c, GW of Ref. 22.

For 2D materials, the exciton effect plays an important role in determining the experimentally

accessible bandgap.9,23–25 The experimentally observed optical bandgap Eopt
g , is usually lower
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than the direct bandgap from band structure Edir
g by the exciton binding energy Eb, which is at

the 10�1 to 101 eV for different 2D materials due to the attenuated dielectric screening. Next we

examine the relation between ↵k
2D and Eopt

g from Ref. 22 with Eopt
g = Edir,QP

g � EBSE
b , where

Edir,QP
g is the direct quasi-particle bandgap calculated using G0W0 method and EBSE

b is the exciton

binding energy calculated using the Bethe-Salpethe equation. Figure 17 shows (4⇡"0)/↵
k
2D as a

function of Eopt
g , with a linear regression slope of 0.154 and R2 of 0.84, similar to the relation

between (4⇡"0)/↵
k
2D and Eg (from HSE06 level, see Figures 13 and 16). The roughly linear

correlation between (4⇡"0)/↵
k
2D and Eopt

g is not coincidental: in fact, theoretical analysis shows

that the binding energy Eb is proportional to the direct bandgap Eg,8 taking into account that

(↵
k
2D)

�1 / Eg, we rationalize that (↵k
2D)

�1 / Eopt
g = Edir

g � Eb. The slightly smaller linearity

than the 2D Moss-like relation is caused from multiple approximations used. Nevertheless we

show that (4⇡"0)/↵
k
2D can be equivalently predicted using the experimentally accessible optical

bandgap.

S5.3 Relation between 2D polarizabilities and other physical quantities

The relatively large size of Ref. 22 database allows us to examine the relation between 2D po-

larizabilities and other physical quantities. We choose the following quantities for comparison,

corresponding to Figures 18 to 20:

1. The effective carrier mass for electron m⇤
e and hole m⇤

h

2. The quantum capacitance at the conduction band edge CC
Q and valence band edge (CV

Q ).

3. The total atomic polarizabilities per area ↵sum
2D .

The quantum capacitance CQ(E) at certain energy level E is calculated using the relation

CQ(E) = DOS(E)e2, where DOS(E) is the density of states at the conduction or valence band

edge (averaged by cell area). The DOS value is calculated at the energy level with a charge cutoff

such that |n2D(E)| = 5 ⇥ 1013 cm�2, calculated by the relation of accumulated charge n2D(E) at
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Figure 17: (4⇡"0)/↵
k
2D as a function of Eopt

g from Ref. 22.

28



Figure 18: Relation between 2D polarizabilities and the effective carrier mass from Ref. 22. a.
↵
k
2D as a function of the electron mass m⇤

e. b. ↵k
2D as a function of the hole mass m⇤

h. c. ↵?
2D

as a function of the electron mass m⇤
e. d. ↵?

2D as a function of the hole mass m⇤
h. No apparent

correlation between the 2D polarizabilities and the effective carrier masses is observed.
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Figure 19: Relation between the 2D polarizabilities with the quantum capacitance. a ↵
k
2D (top)

and ↵?
2D (bottom) as functions of the quantum capacitance of the conduction band edge, CC

Q. b

↵
k
2D (top) and ↵?

2D (bottom) as functions of the quantum capacitance of the valence band edge, CV
Q .

Similar to the case of effective carrier mass, no apparent correlation between 2D polarizabilities
and the quantum capacitance can be found.
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Figure 20: Relation between the 2D polarizabilities (a. ↵k
2D and b. ↵?

2D) with the total atomic
polarizability per area.

CB or VB:

|n2D(E)| =

�

�

�

�

Z E

EBE

DOS(E 0)dE 0

�

�

�

�

(S28)

where EBE is the energy of the CB or VB band edge.

The total polarizability ↵sum
2D is calculated by the summation of the atomic polarizabilities

↵atom
2D

26 of individual atoms per area A, such that:

↵sum
2D =

P

i ↵
atom
i

A
(S29)

From Figures 18 to 20 we can see that none of the above quantities have apparent relation with

the 2D polarizabilities, as compared with the bandgap and covalent thickness proposed in the main

text.
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S6 More discussion about the relation between 2D and 3D prop-

erties

S6.1 Comparing 2D and 3D Moss relations

The 2D Moss-like relation ↵k / E�1
g is similar to the 3D Moss relation " / E

�1/2
g , with a

different power law. Such difference in the power law can indeed be explained by modern theory

of dielectric properties. From the 2D material to a bulk covalent semiconductor, the wave function

becomes periodic in all directions. Considering only one pair of valence-conduction transition and

uniform effective mass m⇤, extending the approach Eq. S25 to the bulk material, and using the

Bloch presentation for wave functions in all dimensions, we get:8

"bulk � 1 /
Z

d3k
1

(Eg +
~
2k2

m⇤
)2

=

Z kBZ

0

4⇡k2

(Eg +
~
2k2

m⇤
)2
dk

(S30)

where kBZ is the boundary for the Brillouin Zone. The last step in Eq. S30 assumes the integral

within the Brillouin Zone is equivalent to integral inside a sphere of k-space. Let ~2/(2m⇤) = �,

the integral becomes:

"Bulk /
2⇡arctan(

p

�k2/Eg)
p

Eg�3
� 2⇡k

�(� + Egk2)

�

�

�

�

kBZ

0

/ 1/
p

Eg

(S31)

when "Bulk � 1. since generally ~
2k2

BZ/(2m
⇤) � Eg.27 The final result "Bulk / E

�1/2
g recovers

the original Moss relation for bulk semiconductors.
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S6.2 Static 2D polarizability and 2D plasma frequency

A common approach for describing the bulk dielectric function of bulk semiconductors is via the

Lorentz oscillator model, where the dielectric function is dominated by the plasma frequencies

!
p
3D and bandgap Eg of individual oscillators.28 At zero optical frequency and the static limit, the

dielectric constant for single oscillator is:

"3D = 1 +
~
2(!p

3D)
2

E2
g

(S32)

where !p
3D =

s

e2n3D

"0me

, where n3D is the 3D number density of valence electrons. Combine Eq.

S32 with main text Eq. 2a, we get:

↵
k
2D =

e2n3DL

meE2
g

=
e2n2D

meE2
g

= "0
~
2(!p

2D)
2

E2
g

(S33)

where n2D = n3DL is the 2D number density of valence electrons and !p
2D = !

p
3D

p
L is the 2D

plasma frequency at static limit,29 as discussed in the main text. Apparently n2D and !p
2D defines

the superlattice-independent 2D quantity ↵k
2D, while its 3D counterpart "3D is dependent on L. By

defining the 2D valence charge density �v
2D = n2De, we have also calculated ↵k

2D as a function

of �v
2D/E

2
g using Ref. 22 database, as shown in Figure 21. It can be seen that, a large number of

materials are close to the theoretical value of ↵k
2D = e2n3DL

meE2
g

(broken line). However there are also

many violations to this simple relation, making such model not suitable for quantitative prediction

of the 2D dielectric nature, due to the oversimplification of single Lorentz oscillator. Nevertheless,

this example shows excellently how the quantities in both dimensions are related to each other.
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Figure 21: Calculated ↵k
2D as a function of �v

2D/E
2
g using data from Ref. 22. The broken line shows

the theoretical prediction from single-oscillator model.
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S6.3 The relation between 2D and 3D physical quantities

As schematically shown in Figure 22, the physical quantities related to the dielectric properties can

be categorized into (i) strictly 2D (microscopic), (ii) strictly 3D (macroscopic) and (iii) valid both

2D and 3D. ↵2D and " are the starting point for the strictly 2D and 3D quantities, which require

distinct definitions when dimensionality changes. Such quantities include (but not limited to):

1. The densities n2D and n3D for charge, polarization, electronic states, etc.

2. The plasma frequencies !p
2D and !p

2D
29 (see Section S6.2 and Figure 21).

3. The optical conductivity �2D and �3D.3,30

These quantities have distinct units in both dimensions, and related by L (for density and optical

conductivity) or
p
L (for plasma frequency), which requires prudent interpretation of theoretical

and experimental results. For instance, the experimentally observed “dielectric constant” of mono-

layer 2D materials31–34 would be questionable without considering the effect of mixed medium.

Instead, the 2D slab polarizability, either transformed from the vacuum-containing macroscopic

dielectric constant, or predicted from the bandgap and geometry as proposed here, will be a bet-

ter descriptor for the true 2D dielectric nature. There are also dimension-independent quantities

that are valid for both 2D and 3D systems, for instance the bandgap Eg, exciton binding energy

Eb, Bohr radius rB of the exciton as well as the Hamaker constant of van der Waals interaction

AH. All these quantities are well-defined and can be measured in both dimensions, while their

relation with the dielectric property varies with dimensionality. The well-known examples are the

different Wannier-Mott laws for exciton binding energy,7 the dielectric-bandgap relation proposed

here, and the distinct power laws for van der Waals interactions.35 To get a accuracy description of

dielectric-related properties of the 2D materials and their heterostructures, one has to distinguish

between the 2D and 3D properties, and choose a suitable relation with the dimension-dependent

and dimension-independent quantities.
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Figure 22: Dielectric-related physical quantities in both 2D (red circle) and 3D (cyan circle)
systems. The dimension-dependent quantities can be related with ↵2D and ", respectively. The
intersection between the circles present the quantities are well-defined in both dimensions, but
may have a different scaling relation with others quantities.

S7 More discussions about the dielectric anisotropy

S7.1 Choice of materials for main text Figure 5

The dielectric anisotropy ⌘ proposed in the main text is also applied to other dimensions. Similar to

the case of 2D and bulk layered materials, ✏ is used to compare the anisotropy when the material is

periodic in all dimensions (bulk covalent materials), while the polarizability ↵ is used for reduced

dimensional materials.

The following types materials are chosen for comparison:

• Bulk covalent materials.

The list of materials and bandgap are chosen according to Ref. 36, including IV-IV, III-V,

II-VI, and IV-VI semiconductors. All these materials have isotropic dielectric properties.

• Planar OSc

The planar OScs include metal phthalocyanines, disk-like polycyclic aromatic hydrocarbon

(PAHs), and benzene derivatives. The dimensionality of these materials are close to 2D ma-

terials due to their planar shape. The bandgap values (mostly at B3LYP density functional

with 6-31G** basis sets) are extracted from the NIST Computational Chemistry Comparison
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and Benchmark Database (http://cccdb.nist.gov, Release 19, April 2018) and the polarizabil-

ity values are obtained from Refs. 37,38.

• Carbon nanotubes (CNT)

Like 2D materials, CNTs are periodic along the 1D directions, and should be treated in a

similar way to get the polarizability proportional to [Length]2.12 Semiconducting zigzag and

armchair CNTs are considered, with their electronic properties obtained from Refs 12,39.

and dielectric properties obtained from Refs. 12,40,41.

• Linear OSc

We choose the linear polyacenes (linear PAHs from benzene to nonacene) and zigzag poly-

acetylene (1–9 repeating units) as model systems of linear OScs. The bandgaps are obtained

from 42 and the polarizabilities are obtained from 43.

• Fullerenes

The bandgap of fullerenes (Cn where n = 60 ⇤m2 where m = 1 ⇠ 7) are taken from 44 and

the polarizabilities are taken from 45. All these materials have isotropic polarizability due

to the high symmetry.

S7.2 Explanation for the separation between 2D and 3D regimes in main

text Figure 5

In this section we give an analytical explanation for the separation between the dielectric anisotropy

indices of 2D and their bulk counterparts. From main text Eqs. 2a, 2b and 8, ⌘Bulk of a bulk layered
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material is expressed as:

⌘Bulk =
"?Bulk

"
k
Bulk

=
1

 

1 +
↵
k
Bulk

"0LBulk

!

✓

1� ↵?
Bulk

"0LBulk

◆

=
1

"

1�
 

↵?
Bulk

↵
k
Bulk

! 

↵
k
Bulk

"0LBulk

!#"

1 +

 

↵
k
Bulk

"0LBulk

!#

(S34)

Name take the fact that ↵k
Bulk ⇡ ↵

k
2D (main text Figure 3b), we name ↵k

Bulk/✏0LBulk ⇡ ↵
k
2D/✏0LBulk

as �. Furthermore we name ↵?
Bulk/↵

k
Bulk as ˆ⌘2D, that ⌘̂2D = ↵?

Bulk/↵
k
Bulk � ↵?

2D/↵
k
2D = ⌘2D, and

Eq. S34 is reduced to:

⌘Bulk =
1

(1� ⌘̂2D�)(1 + �)
(S35)

The minimal value for ⌘Bulk when � > 0 is obtained by solving:

@⌘Bulk

@�
=

2⌘̂2D� + ⌘̂2D � 1

(� + 1)2(1� ⌘̂2D�)2
= 0 (S36)

which gives that ⌘Bulk � 4η̂2D
(η̂2D+1)2

, where the minimal value is taken at � = 1
2
( 1
η̂2D

� 1). Since

4η̂2D
(η̂2D+1)2

monotonically increases when 0 < ⌘̂2D < 1, we get the comparison between the dielectric

anisotropy indices between 2D materials and their bulk counterparts:

⌘Bulk �
4⌘2D

(⌘2D + 1)2
� ⌘2D (S37)

Since � is actually 2r
k
0/LBulk, the ratio between the in-plane screening length r

k
0 and inter-plane

distance LBulk, and in general rk0 � LBulk, we can conclude that the case when ⌘Bulk = ⌘2D

only happens when ⌘2D is much smaller than 1. Therefore the separation between the 2D and 3D

regimes in main text Figure 5 is explained.

38



S8 Raw data from first principles calculations

S8.1 Quantities from first principles calculation

Table S2 shows the parameters and results from the first principles calculations for the 2D materials

studied. The 2D screening lengthes rk0 and r?0 can be obtained by multiplying 2⇡ to the columns

↵
k
2D/(4⇡"0) and ↵?

2D/(4⇡"0), respectively.

Table 2: Raw data of the materials calculated in this study.

Material L (Å) HSE06

Emin
g

(eV)

PBE

Emin
g

(eV)

PBE

Edirect
g

(eV)

ε
xx
SL ε

yy
SL ε

zz
SL α

k
2D/(4πε0)

(Å)

α
?
2D/(4πε0)

(Å)

1T-TiO2 26.668 4.010 3.096 2.467 1.887 1.887 1.123 1.882 0.232

2H-TiO2 27.648 2.520 1.808 1.103 1.852 1.852 1.133 1.875 0.258

1T-TiSe2 33.049 1.360 1.372 0.505 3.029 3.029 1.190 5.336 0.420

1T-ZrO2 26.561 6.320 5.039 4.431 1.569 1.569 1.117 1.203 0.221

1T-ZrS2 32.622 2.010 1.643 1.180 2.329 2.329 1.159 3.450 0.356

1T-ZrSe2 34.056 0.890 0.961 0.371 2.794 2.794 1.172 4.862 0.398

2H-ZrO2 28.188 3.130 2.264 1.690 1.619 1.619 1.121 1.389 0.242

2H-ZrSe2 33.692 1.500 1.382 0.738 2.448 2.448 1.190 3.882 0.428

2H-ZrTe2 35.904 0.900 1.216 0.284 3.171 3.171 1.207 6.203 0.490

1T-HfO2 26.636 6.580 5.471 4.830 1.521 1.521 1.117 1.104 0.222

1T-HfS2 32.558 2.010 1.949 1.224 2.250 2.250 1.204 3.239 0.439

1T-HfSe2 33.916 1.070 1.215 0.435 2.702 2.702 1.180 4.594 0.412

2H-HfO2 28.167 3.400 2.552 1.948 1.555 1.555 1.124 1.244 0.247

2H-HfS2 32.678 1.890 1.831 1.068 2.087 2.087 1.177 2.827 0.391

2H-HfSe2 33.419 1.530 1.754 0.819 2.390 2.390 1.191 3.697 0.426

2H-HfTe2 35.629 0.700 1.251 0.121 3.072 3.072 1.208 5.875 0.488

1T-GeO2 26.526 5.740 6.118 3.466 1.453 1.453 1.115 0.956 0.218

1T-GeS2 31.883 1.580 2.697 0.726 2.302 2.302 1.169 3.303 0.367

1T-GeO2 27.908 2.990 4.643 1.335 1.570 1.570 1.127 1.266 0.250

1T-SnO2 27.147 4.570 5.840 2.649 1.449 1.449 1.114 0.970 0.221
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Table 2: Raw data of the materials calculated in this study.

Material L (Å) HSE06

Emin
g

(eV)

PBE

Emin
g

(eV)

PBE

Edirect
g

(eV)

ε
xx
SL ε

yy
SL ε

zz
SL α

k
2D/(4πε0)

(Å)

α
?
2D/(4πε0)

(Å)

1T-SnS2 32.793 2.530 2.859 1.574 2.059 2.059 1.166 2.764 0.372

1T-SnSe2 34.077 1.490 1.466 0.751 2.437 2.437 1.169 3.897 0.392

2H-SnO2 28.938 1.960 4.661 0.647 1.590 1.590 1.124 1.359 0.254

2H-SnS2 32.873 1.590 1.072 0.750 2.164 2.164 1.180 3.045 0.399

1T-PbO2 27.862 2.600 3.578 1.330 1.709 1.709 1.121 1.572 0.239

BN 29.995 5.640 5.688 5.592 1.366 1.366 1.072 0.874 0.160

C2F2 31.998 5.000 3.173 3.173 1.318 1.348 1.123 0.810 0.279

P4 27.097 1.600 0.888 0.895 2.894 3.115 1.196 4.084 0.353

C2H2 31.015 4.360 3.468 3.468 1.288 1.288 1.094 0.711 0.212

1T-NiO2 26.112 3.170 1.828 1.198 2.763 2.763 1.129 3.663 0.237

1T-PdO2 26.712 3.210 2.475 1.397 2.368 2.368 1.116 2.908 0.221

1T-PdS2 30.361 1.800 2.487 1.178 3.888 3.888 1.169 6.978 0.349

1T-PtO2 26.316 3.540 2.602 1.691 2.114 2.114 1.116 2.333 0.218

1T-PtS2 30.239 2.700 2.022 1.714 3.086 3.086 1.163 5.020 0.337

1T-PdSe2 31.080 0.970 1.917 0.534 4.958 4.958 1.178 9.789 0.374

1T-NiS2 29.616 0.980 1.797 0.523 4.691 4.691 1.173 8.699 0.348

1T-PtSe2 31.058 1.210 2.710 1.180 3.643 3.643 1.175 6.532 0.368

Ga2Se2 30.000 2.810 2.657 1.764 2.640 2.640 1.281 3.915 0.524

Ga2S2 30.000 3.250 3.351 2.358 2.329 2.329 1.256 3.173 0.487

CdCl2 31.085 4.480 3.172 3.172 1.48 1.48 1.157 1.187 0.336

CdI2 35.281 3.150 1.706 1.528 1.804 1.804 1.192 2.257 0.452

2H-MoS2 32.296 2.240 1.594 1.594 3.475 3.475 1.183 6.361 0.398

2H-MoSe2 40.854 1.752 1.449 1.449 3.231 3.231 1.154 7.253 0.433

2H-WS2 32.271 2.280 1.540 1.540 3.214 3.214 1.180 5.686 0.392

2H-WSe2 32.965 1.930 1.253 1.253 3.485 3.485 1.197 6.519 0.432

2H-WO2 29.183 2.000 1.693 1.359 2.519 2.519 1.123 3.528 0.254

2H-MoO2 29.231 1.560 1.648 0.952 2.918 2.918 1.129 4.462 0.266

2H-MoTe2 34.061 1.440 0.946 0.946 4.412 4.412 1.220 9.248 0.489
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Table 2: Raw data of the materials calculated in this study.

Material L (Å) HSE06

Emin
g

(eV)

PBE

Emin
g

(eV)

PBE

Edirect
g

(eV)

ε
xx
SL ε

yy
SL ε

zz
SL α

k
2D/(4πε0)

(Å)

α
?
2D/(4πε0)

(Å)

2H-WTe2 33.883 1.300 0.731 0.731 4.158 4.158 1.230 8.515 0.504

2H-CrS2 31.759 1.400 0.902 0.902 4.647 4.647 1.183 9.217 0.391

2H-CrSe2 32.446 1.150 0.704 0.704 5.364 5.364 1.201 11.268 0.432

2H-CrO2 28.027 0.990 1.596 0.424 3.961 3.961 1.134 6.604 0.264

2H-TiS2 32.199 1.610 1.284 0.692 2.634 2.634 1.184 4.187 0.398

1T-PtTe2 32.005 0.490 1.809 0.366 4.726 4.726 1.200 9.490 0.424

MAPbBr3 23.018 3.163 2.444 2.444 1.608 1.778 1.527 1.265 0.632
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