Electronic Processes on Semiconductor Surfaces during Chemisorption

T. Wolkenstein

Translated from Russian by E. M. Yankovskii

Translation edited in part by Roy Morrison

CONSULTANTS BUREAU • NEW YORK AND LONDON

CONTENTS

CHAPTER 1. ELECTRONS AND HOLES IN A SEMICONDUCTOR

IN A SEM	IICONDUCTOR	1
1.1. Ord	er and Disorder in Crystals	1
1.1.1.	Types of Defects	1
1.1.2.	Properties of Defects	2
1.2. Elec	trical Conduction of Nonmetallic Crystals	4
1.2.1.	Factors Influencing Conduction	4
1.2.2.	Types of Electrical Conduction	6
1.3. The	Mechanism of <i>n</i> - and <i>p</i> -type Conduction	7
1.3.1.	Free Electrons, Holes, and Excitons in a Lattice	7
1.3.2.	Energy Levels of Electrons and Holes	9
1.4. The	Energy Spectrum of an Electron in an Infinite Crystal	
Latt	ice	11
1.4.1.	Statement of the Problem	11
1.4.2.	Eigenfunctions and Eigenvalues	13
1.4.3.	A Three-Dimensional Lattice	15
1.4.4.	The Energy Spectrum of a Hole	17
1.5. The	Energy Spectrum of an Electron in a Finite Crystal	
Latt	ice	. 18
1.5.1.	Statement of the Problem	18
1.5.2.	Eigenfunctions and Eigenvalues	20
1.5.3.	Tamm and Shockley Surface Levels	22
1.6. Stati	istics of Electrons and Holes in Semiconductors	23
1.6.1.	The Fermi–Dirac Distribution Function	23
1.6.2.	<i>n</i> - and <i>p</i> -type Semiconductors	25

1.6.3. 1.6.4.	Statistics of Local States	27 28
1.7. Lim	its of the Band Theory of Semiconductors	30
171	Characteristic Features of the Band Theory	30
1.7.1.	The Validity of the Band Theory	32
1.7.2.	The Valence Band	32
1.7.5.		55
СНАРТЕ	CR 2. THE VARIOUS TYPES OF ADSORPTION	35
2.1. The	Main Laws of Adsorption	35
2.1.1.	The Main Prerequisites for Langmuir's Theory	35
2.1.2.	The Kinetics of Adsorption	36
2.1.3.	Adsorption Equilibrium	38
2.2. Phys	sical and Chemical Adsorption	40
2.2.1.	The Difference between Physical and Chemical	10
	Adsorption	40
2.2.2.	Calculating the Adsorption Minimum	42
2.2.3.	Activated Adsorption	43
2.2.4.	The Nature of the Activation Barrier	45
2.3. "Str	ong" and "Weak" Bonds in Chemisorption	48
2.3.1.	"Weak" and "Strong" Donor and "Strong" Acceptor Forms	10
	of Chemisorption	48
2.3.2.	The Various Forms of Chemisorption on Ionic Crystals	49
2.3.3.	Examples	51
2.4. Rad	ical and Valence-Saturated Forms	
of C	hemisorption	54
2.4.1.	Free Valences of a Surface	54
2.4.2.	The Reactivity of Chemisorbed Particles	55
2.4.3.	Examples of Radical and Valence-Saturated Forms	
	of Chemisorption	56
2.4.4.	The Dissociation of Molecules in Adsorption and the	
1000 MAR 414100	Recombination of Chemisorbed Atoms	60
2.5. The	One-Electron Bond in Chemisorption	63
2.5.1.	Statement of the Problem	63
2.5.2.	Eigenfunctions and Eigenvalues	66
2.5.3.	The Polarization of a Chemisorbed Atom	69
2.6. The	Two-Electron Bond in Chemisorption	71
2.6.1.	Statement of the Problem	71
2.6.2.	Eigenfunctions and Eigenvalues	74
2.6.3.	Free Lattice Electrons as Adsorption Centers	77
2.6.4.	Allowing for "Weak" Bonding	78
2.7. Qua	Intum-Mechanical Calculations in Adsorption Theory	79
2.7.1.	The Cluster Approximation	79

2.7.2.	"Covalent" Clusters for Oxide Lattices	80
2.7.3.	"Ionic" Clusters for Oxide Lattices	81

CHAPTER 3. ELECTRON TRANSITIONS

IN CHEM	IISORPTION	83
3.1. Trai	nsitions between Various Forms of Chemisorption	83
3.1.1.	Transitions between Energy Levels	83
3.1.2.	Transitions between Adsorption Curves	85
3.1.3.	Equilibrium of Various Forms of Chemisorption	87
3.1.4.	The Notion of Electron Transitions	
	in Chemisorption Theories	90
3.2. Adso	orption Equilibrium	92
3.2.1.	Adsorptivity of a Surface	92
3.2.2.	Surface Charging in Adsorption	94
3.3. The	Kinetics of Adsorption	97
3.3.1.	Statement of the Problem	97
3.3.2.	Adsorption at a Constant Surface Potential:	
	The General Case	101
3.3.3.	Adsorption at a Constant Surface Potential:	
	Particular Cases	104
3.3.4.	Adsorption with a Varying Surface Potential	107
3.4. The	Kinetics of Desorption	111
3.4.1.	Desorption with Electronic Equilibrium	111
3.4.2.	Violation of Electronic Equilibrium in Desorption	114
3.4.3.	Incomplete Desorption	117
3.5. The	Role of the Fermi Level in Chemisorption	119
3.5.1.	The Fermi Level as Regulator of the Chemisorptive	
	Properties of a Surface	119
3.5.2.	The Origin of non-Langmuiran Relations	121
3.5.3.	The Approximations of the "Boundary Layer Theory"	123
CHAPTE WITH TH	R 4. THE INTERACTION OF THE SURFACE HE BULK IN A SEMICONDUCTOR	125
4.1. The	Connection between Surface and Bulk Properties	
of a	Semiconductor	125
4.1.1.	The Connection between the Position of the Fermi	
	Levels at the Surface and in the Bulk	
	of a Semiconductor	125
4.1.2.	The Surface Potential	127

xi

4.1.3.	The Dependence of the Surface Potential
	on Various Factors
4.2. Effe	cts due to the Charging of the Surface
4.2.1.	Effect of Adsorption on Work Function
4.2.2.	Surface Conduction
4.2.3.	Effect of External Field and Adsorption
	on Conduction
4.3. The	"Quasiisolated" Surface
4.3.1.	The Notion of a "Quasiisolated" Surface
4.3.2.	Some Properties of "Quasiisolated" Surfaces
4.3.3.	The Continuous and Quasicontinuous Spectra
	of Surface States
4.4. Adso	rptive Properties of a Charged Semiconductor
4.4.1.	The Adsorptivity of a Charged Semiconductor
4.4.2.	The Electroadsorptive Effect
4.4.3.	Adsorption of Ions on a Semiconductor
4.5. The	Influence of the Surface on the Impurity Distribution
insid	le a Semiconductor
451	Statement of the Problem
452	Impurity Distribution in the Surface Layer
4.5.2.	of Semiconductors
453	Effect of Impurity on the Adsorptivity
ч.э.э.	of Semiconductors
151	Irreversible Adsorption
4.J.4.	Adsorptivity of Somiconductor Films on Matals
4.0. 110	The Variation of the Detential in the Film
4.0.1.	The Adcorntivity of the Film for a Desitivaly Charged
4.0.2.	Surface
160	The Advantivity of the Film for a Negatively Changed
4.0.3.	Surface
17 0	Surface
4.7. Gro	Statement of the Decklerer
4.7.1.	
4.7.2.	The Electric Field in the Film
4.7.3.	The Logarithmic Law of Film Growth
4.7.4.	The Parabolic and Linear Laws of Film Growth
4.7.5.	Succession of Laws of Film Growth with Temperature
	and Pressure Variation
CHAPTE	R 5. THE CATALYTIC EFFECT
OF A SE	MICONDUCTOR
5.1. The	Basics

Contents

5.1.2.	The Activity and Selectivity of a Catalyst	200
5.1.3.	The Activation Energy	202
5.1.4.	The Electronic Theory of Catalysis	204
5.2. The	Role of the Fermi Level in Catalysis	206
5.2.1.	Radical Mechanisms of Heterogeneous Reactions	206
5.2.2.	Acceptor and Donor Reactions	211
5.3. Elec	ctronic Mechanisms of Catalytic Reactions	213
5.3.1.	Oxidation of Hydrogen	213
5.3.2.	Decomposition of Alcohol	216
5.3.3.	Oxidation of Carbon Monoxide	221
5.3.4.	Hydrogen–Deuterium Exchange	225
5.4. The	Relationship between the Catalytic Activity	
of a	Semiconductor and Its Electronic Properties	230
5.4.1.	The Origin of the Relationship between Catalytic	
	Activity, Work Function, and Electrical Conductivity	230
5.4.2.	Experimental Results	233
5.4.3.	Variations in Electrical Conductivity and Work	
	Function in the Course of a Reaction	238
5.4.4.	Correlation between Catalytic Activity and the Forbidden	
	Gap Width in the Energy Spectrum	
	of a Semiconductor	240
5.5. The	Effect of Various Factors on Catalytic Activity	242
5.5.1.	The Effect of an External Electric Field	242
5.5.2.	Catalytic Properties of a Semiconductor Film on a Metal	243
5.5.3.	The Mechanism of the Action of an Impurity	246
5.5.4.	The Experimental Data on the Effect of Impurities	250
5.5.5.	The Compensation Effect	255
СНАРТЕ	R 6. PROCESSES ON A REAL SURFACE	261
		-01
6.1. Devi	iations from Langmuir's Theory on a Real Surface	261
6.1.1.	The Concept of an Inhomogeneous Surface	261
6.1.2.	The Concept of Interaction	264
6.2. The	Adsorption-Heat Distribution Function	266
6.2.1.	Inhomogeneity due to Irregularities in the	
	Impurity Distribution	266
6.2.2.	The Relation between the Impurity Concentration	100.000
	Gradient and the Adsorption-Heat Distribution Function	269
6.2.3.	Examples of Inhomogeneous Surfaces	271
6.3. The	Role of Surface Structural Defects in Adsorption	274
6.3.1.	Adsorption on a Structural Defect	274
6.3.2.	Adsorption on Defects of Thermal Origin	278

xiii

Contents	Co	n	ten	ts
----------	----	---	-----	----

6.3.3.	Adsorption on the Surface of a Disordered	
	Semiconductor	28
6.4. Ads	orption on Dispersed Semiconductors	28
6.4.1.	Adsorptive Properties of a Dispersed Semiconductor	28
642	The Compensation Effect on Dispersed Semiconductors	28
65 Con	trolling the Stoichiometry of Crystals	28
651	Theoretical Aspects of the Problem	28
652	Experimental Results	29
0.5.2.		2)
CHAPTE	R 7. THE EFFECT OF ILLUMINATION	
ON THE	ADSORPTIVE AND CATALYTIC PROPERTIES	
OF A SEI	MICONDUCTOR	29
OF A DE	mediabetok	2)
71 The	Photoadsorption Effect	29
711	Positive and Negative Photoadsorption Effects	29
712	The Photoadsorption Effect on Ideal and Real Surfaces	20
7.1.2.	Review of Basic Experimental Data	20
7.1.J.	Photoadcorntion Effect at an Ideal Surface	30
7.2. 1110	The Effect of Illumination on the Amount of Various	50
7.2.1.	Forms of Chamiserntian	20
7 7 7 7	Allowing for the Appibilation of Evolutions	30
1.2.2.	Allowing for the Annihilation of Excitons	20
7 7 7	at Chemisorbed Particles	30
1.2.3.	The Mechanism of the Influence of Illumination	20
7.0.4	on the Adsorptivity of a Surface	30
7.2.4.	Sim and Abad to Welson fills Photoadsorption Effect	30
7.3. The	Sign and Absolute value of the Photoadsorption Effect	20
at a	n Ideal Surface	30
7.3.1.	Statement of the Problem	30
7.3.2.	Solution for a Simplified Potential Function	3.
7.3.3.	The Case of the Excitonic Mechanism of Light	
	Absorption	3
7.3.4.	A Graphic Representation of the Results	31
7.3.5.	The Case of High Excitation	31
7.4. Ads	orption Centers in Photoadsorption	32
7.4.1.	The Nature of Adsorption Centers	32
7.4.2.	The Concentration of Adsorption Centers	32
7.4.3.	Variation of Adsorption Center Concentration	
	under Illumination	32
7.5. The	Photoadsorption Effect at a Real Surface	33
7.5.1.	Adsorption after Illumination	33
7.5.2.	The Sign and Magnitude of the Photoadsorption Effect	33
7.5.3.	"Direct" Photodesorption	33
7.5.4.	The Aftereffect	33

xiv

Contents

7.6. Comparison of the Theory of the Photoadsorption Effect	
with the Experimental Data	341
7.6.1. Influence of Illumination on the Adsorptivity	
of a Surface	341
7.6.2. "Memory" Effects in Photoadsorption	343
7.6.3. Some Theoretical Predictions	347
7.7. The Photocatalytic Effect	349
7.7.1. The Mechanism of the Photocatalytic Effect	349
7.7.2. Hydrogen–Deuterium Exchange	352
7.7.3. Oxidation of Carbon Monoxide: The Experimental	
Data and the Reaction Mechanism	355
7.7.4. Oxidation of CO: Comparison of Theoretical	
Results with Experimental Data	359
7.7.5. Synthesis of Hydrogen Peroxide: The Experimental	
Data and the Reaction Mechanism	361
7.7.6. Synthesis of Hydrogen Peroxide: Comparison	
of Theoretical Results with Experimental Data	365
CHAPTER 8. ADSORPTION AND LUMINESCENCE	367
	2/7
8.1. Basic Facts on Luminescence of Crystals	367
8.1.1. The Various Types of Luminescence	367
8.1.2. Luminescence Centers	368
8.1.3. Traps and Quenching Centers	371
8.2. The Effect of Adsorption on Luminescence	373
8.2.1. The Various Mechanisms of Influence of Adsorption	
on Photoluminescence	373
8.2.2. Recombination Luminescence: Statement	222272
of the Problem	374
8.2.3. Recombination Luminescence: Limiting Cases	375
8.2.4. Recombination Luminescence: Experimental Data	377
8.2.5. Excitonic Luminescence: Statement of the Problem	379
8.2.6. Excitonic Luminescence: A Discussion	381
8.3. The Basic Laws of Radical-Recombination Luminescence	382
8.3.1. The Spectral Composition of Radical-Recombination	
Luminescence Emission	382
8.3.2. The Effect of Temperature on Intensity of RRL Spectra	386
8.3.3. The Effect of Electric Field on Intensity of RRL Spectra	390
8.3.4. The Effect of Illumination on RRL Intensity	392
8.4. The Mechanism of Radical-Recombination Luminescence	395
8.4.1. The Excitation Mechanism	395
8.4.2. The Mechanism of Luminescence	398
2	

Contents

8.4.3	3. The Dependence of RRL Intensity on the Position	
	of the Fermi Level	400
8.4.4	 The Dependence of RRL Intensity on an External 	
	Electric Field	403
8.4.	5. The Temperature Dependence of RRL Intensity	406
8.4.0	6. Radical Photoluminescence	408
8.5. A	Isorption Luminescence	409
8.5.	. The Fundamentals of Adsorption Luminescence	409
8.5.	2. The Mechanism and Kinetics of Adsorption	
	Luminescence	412
8.5.	3. Adsorption Luminescence at Adsorption Equilibrium	414
8.5.	4. Adsorption Luminescence and the Adsorption Emission	
	of Electrons	415
8.5.	5. Luminescence Emission Accompanying Catalytic	
	Reactions at Surfaces	417
CHAPT	TER 9. CONCLUSION	421
9.1. T	ne "Local" and "Collective" Effects in Chemisorption	
ar	d Catalysis	421
9.2. T	ne Basic Concepts of the Electronic Theory	
of	Chemisorption	423
9.3. T	ne Electronic Theory of Chemisorption	
ar	d Experiment	425
REFEF	ENCES	427