Lawrence Berkeley National Laboratory Recent Work

Title
ELECTRONIC PROPERTIES OF COMPLEX CRYSTALLINE AND AMORPHOUS PHASES OF Ge AND Si. II. BAND STRUCTURE AND OPTICAL PROPERTIES

Permalink

https://escholarship.org/uc/item/3r4954vk

Authors

Joannopoulos, J.D.
Cohen, Marvin L.
Publication Date
1973-05-01

ELECTRONIC PROPERTIES OF COMPLEX CRYSTALLINE AND AMORPHOUS PHASES OF Ge AND Si. II. BAND STRUCTURE AND OPTICAL PROPERTIES
J. D. Joannopoulos and Marvin L. Cohen

May 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

0000390030

Electronic Properties of Complex Crystalline and
Amorphous Phases of Ge and Si.II. Band Structure and Optical Properties. *
J. D. Joannopoulos and Marvin L. Cohen

Department of Physics, University of California, Berkeley, Ca. 94720 and

Inorganic Materials Research Division, Lawrence Berkeley Laboratory Berkeley, Ca. 94720

Abstract

We present calculations of the band structures and imaginary part of the dielectric function ϵ_{2} as a function of energy for $G e$ and Si in the diamond, wurtzite, Si III ($\mathrm{BC}-8$) and Ge III (ST-12) structures using the Empirical Pseudopotential Method. In particular we have obtained the symmetries of wavefunctions along important symmetry directions and identified the major contributions to the optical structure. A further study is made into the optical properties of amorphous Ge and Si using our short-range disorder model. We find that, unlike long range disorder models, short range disorder can explain both the amorphous density of states and the amor phous $\epsilon_{\mathscr{2}}$. In particular we find that the ϵ_{2} spectrum has the same form as an averaged matrix element as a function of frequency.

I. INTRODUCTION

In a previous ${ }^{1}$ paper (hereafter referred to as I)
we calculated the band structure and density of states of Ge and Si in the
diamond (FC-2), wurtzite (2H-4), Si III (BC-8), and Ge III (ST-12) structures using the Empirical Pseudopotential Method (EPNI). The trends observed with the increasing complexity of the structures indicated that short-range disorder (deviations in bond angles and bond lengths--which also provide for the presence of odd numbered rings--while all bonds are satisfied) was able to account well for the density of states of amorphous Ge and Si. This suggested that various distinctive features in the amorphous density of states ${ }^{2}$ could be attributed to certain structural aspects of the amorphous phase. For example, deviations in the bond angles could be related to the shifting of states at the top of the valence band to higher energies for the amorphous case and the presence of odd-numbered rings of bonds in ST-12 led us to an argument that suggests that five and seven fold rings of bonds are responsible for the introduction of states between the two s-like peaks in the amorphous density of states.

In this paper we are concerned with the spectra of the imaginary part of the dielectric function ϵ_{2} for the aforementioned structures. From a band structure point of view we present a detailed analysis of the structure in ϵ_{2} for Ge and Si in the $2 \mathrm{H}-4, \mathrm{BC}-8$, and ST-12 cases along with their band structures containing the symmetries of wavefunctions along important directions. This is of interest since the BC-8 and ST'-12 structures may have a variety of applications, e.g. exciton droplets and when doped, superconductivity. From the point of view of understanding the amorphous phase the trends observed in ϵ_{2} as the structures become more and more complex may give some insight into the amount of disorder

$$
00003900,39
$$

necessary to produce the distinctive features of the amorphous ϵ_{2}. We shall show that our short range disorder model is the only theoretical model until now that can account for both the amorphous density of states and the amorphous $\epsilon_{2}^{3,4}$. In particular we shall show that when one measures the amorphous ϵ_{2} spectrum one is essentially just measuring an averaged energy dependent matrix element.

The method of our calculations, the parameters used, and a description of the crystals studied were given in I and will not be repeated here.

In Section II we give a brief group theoretical analysis of the crystals. and a description of the notation used in labelling the band structures. In Section III we give an analysis of the ϵ_{2} spectra. In Section IV we present and discuss results which are of interest to the amorphous data. Finally, in Section V we make some concluding remarks. The reader interested only in the amorphous phase may proceed to sections IV and V with no loss in continuity.

II. SYMMETRY CONSIDERATIONS

We find that the $2 \mathrm{H}-4$ structure has a symmetry classification of $\mathrm{D}_{6 \mathrm{~h}}{ }^{4}$ and is therefore associated with a non-symmorphic space group. The BC-8 and ST-12 structures ${ }^{5}$ have symmetry classifications $T_{h}{ }^{7}$ and D_{4}^{4} respec-
are thus also associated with space groups which are non symmorphic. The tively and Brillouin zones (BZ) for these structures are shown in Fig. 1 with the notation used by Leurhmann. ${ }^{6}$ In order to label the symmetries of our wavefunctions, shown in Figs. 2, 4, 6, 8, 9 and 11, we have used the notation for point group elements and the character tables found in Zak. ${ }^{7}$ In our case, of course, these point operations must be followed by the appropriate translations. However, several remarks must be made relating to the additional symmetry, in some cases, demanded by time reversal
invariance, and to the symmetry notation for points located in the interior of the zone.

In the $2 \mathrm{H}-4\left(\mathrm{D}_{6 \mathrm{~h}}^{4}\right)$ structure time reversal invariance adds additional symmetry to R. Thus R_{1} and R_{2} in our notation areobtained from $R_{1}+R_{4}$ and $R_{2}+R_{3}$, respectively, using Zak's character table. In the case of M $\left(D_{2 h}\right)$ our notation is identified by replacing U^{X} and σ^{x} with U^{1} and σ^{1} in the character table for $D_{2 h}$ in Zak. For $\Sigma\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ we obtain our character table by replacing C_{2}, σ_{v}, and σ_{v} with U^{1}, σ, and σ^{2} respectively in the character table for $C_{2 v}$ in Zak. Similarly for $\Pi\left(D_{6 h}\right)$ and $\Delta\left(C_{6 v}\right)$ our notation is identified by replacing $\sigma_{h}, 3 \sigma_{v}$ with $\sigma^{z}, \sigma^{(x)}$ and $3 \sigma_{V}, 3 \sigma_{d}$ with $3 \sigma^{(x)}, 3 \sigma^{(1)}$ respectively in the appropriate character tables found in Zak.

In the $B C-8\left(\mathrm{~T}_{\mathrm{h}}^{7}\right)$ structure time reversal invariance adds additional symmetry to Λ, P, D, Γ, and H.' Thus for $\Lambda\left(C_{3}\right), \Lambda_{1}$ and Λ_{2} in our notation is obtained from 1 and $2+3$, respectively, using Zak's character table. Similarly for P, time reversal invariance requires P_{1} remain P_{1} and $P_{2}+P_{3}$ becomes P_{2}. For $D\left(C_{2}\right), D_{1}+D_{2}$ becomes D_{1} and for $I\left(T_{h}\right), 1$ becomes $\Gamma_{1}, 2+3$ become $\Gamma_{2}, 4$ becomes $\Gamma_{3}, 5$ becomes $\Gamma_{4}, 6+7$ become Γ_{5} and 8 becomes Γ_{6}. The character table for H is the same as for T_{h}; it can be treated the same way as Γ. In the case of $\Delta\left(C_{2 v}\right)$ our notation is identified by replacing C_{2}, σ_{v}, and σ_{v} with C_{2}, σ^{y}, and σ^{z} respectively in the character table for $\mathrm{C}_{2 \mathrm{v}}$ in Zak.

In the $\mathrm{ST}-12\left(\mathrm{~T}_{4}^{4}\right)$ structure our notation regarding labelling of symmetry points and directions is that of Leuhrman, as mentioned before, and for this case it differs from Zak's notation. Aside from this, time reversal

$$
010030040
$$

invariance requires that U^{y}, M^{Z}, S, R, T, M, and U^{Z} have additional symmetry. Thus $Y_{1}+Y_{2}$ using Zak's notation becomes U_{1}^{y} using our notation. Similarly for M^{Z}, we have M_{1} becomes $M_{1}^{2}, M_{2}+M_{3}$ become M_{2}^{Z}, and $M_{4}+M_{5}$ become M_{3}^{2}, and for S we have $S_{1}+S_{2}$ become S. For R we have $A_{1}+A_{2}$ become R_{1}, and for $T, T_{1}+T_{2}$ become T_{1}. Finally for M we obtain M_{1} from $R_{1}+R_{2}$ and M_{2} from $R_{3}+R_{4}$ and for U^{Z} we obtain U_{1}^{Z} from $W_{1}+$ W_{2}. In the case of $\Gamma\left(D_{4}\right), \Delta\left(C_{2}\right), \Sigma\left(C_{2}\right)$, and $\Delta^{Z}\left(C_{4}\right)$, which are internal symmetry points, our notation is identified using the character tables for D_{4}, C_{2}, C_{2}, and C_{4} respectively found in Zak.

III. Band Structures and Optical Spectra

The band structures of Ge and Si in the $2 \mathrm{H}-4, \mathrm{BC}-8$, and $\mathrm{ST}-12$ structures, shown in Figs. 2, 4,6, 8, 9, and 11, were obtained from EPM calculations and the form factors used were given in I. \quad In Figs. 3, 5, 7, 10 and 12 we show the ϵ_{2} spectra calculated from these band structures using:

$$
\begin{equation*}
\left.\epsilon_{2}(E)=\frac{1}{3} \cdot \frac{e^{2} \hbar^{4}}{\pi m^{2} E^{2}} \sum_{c, v} \int_{B Z} \delta\left(E_{c}(\vec{k})-E_{v}(\vec{k})-E\right)|\langle\vec{\sim}, c| \vec{\nabla}| \vec{\sim}, v\right\rangle\left.\right|^{2} d^{3} \underset{\sim}{k} \tag{1}
\end{equation*}
$$

where $|\vec{k}, v\rangle$ is a Bloch state in the valence band and the integral is over the entire BZ.

For the 2H-4 and ST-12 structures we can distinguish between the polarization of the electric vector and the c axis taken to be in the $z-$ direction. In this case the factor of $1 / 3$ in Eq. (1) is removed and we have parallel polarization if we use $d / d z$ in the matrix element and perpendicular polarization if we use $d / d x$ or $d / d y$. The integration was performed using
the Gilat-Raubenheimer scheme. ${ }^{8}$ Tables I-VI summarize the major contributions to the various peaks in the ϵ_{2} spectra for the six compounds. The first column identifies the energy of a particular peak and the second column contains the major contributions to this peak identified by interband transitions which are listed in order of decreasing strength. In particular, we list the bands which contribute more strongly once we are away from symmetry points and lines. The third column assigns \because the interband transitions to various regions of the BZ. Finally, in columns four and five we list the symmetries of the critical points and their associated energies respectively. In some cases the symmetries were obtained from a preliminary analysis and warrant further investigation. These are designated in the Tables by a tilde. The complexity of the BC- 8 and the ST-12 structures introduces the possibility that we may have critical points which are also inflection points along certain directions. Although it is rather difficult to determine this, it is conceivable that some of the critical points whose symtries are uncertain may be of this type.

For completeness we present an analysis for all six compounds and although experimental optical data are not available at the present, the contributions and identification of strong interband transitions to the optical properties will not vary appreciably with small changes in the form factors.

$$
0006300301
$$

A. Ge $2 \mathrm{H}-4$

The threshold in ϵ_{2}^{1} (Figs. 2 and 3) at 1.46 eV is caused by $\Gamma_{5}-\Gamma_{8}$ transitions and the threshold in $\epsilon_{2}^{\prime \prime}$ at 1.77 eV is caused by $\Gamma_{1}-\Gamma_{8}$ transitions. The rise in ϵ_{2}^{1} around 2.25 eV is caused by $\Gamma_{6}-\Gamma_{10}$ transitions which are associated with an M_{0} critical point ($c p$) and a region along $\Delta\left(\Delta_{6}-\Delta_{3}\right)$ with small energy derivatives and large matrix elements. The shoulder at 2.25 eV is caused by an $\mathrm{M}_{1} \mathrm{cp}$ and associated transitions $\mathrm{A}_{3}-\mathrm{A}_{1}$ at 2.26 eV . The small shoulder near 2.50 eV in $\epsilon_{2}^{\|}$seems to be caused by an $M_{0} \mathrm{cp}$
near the center of the ГАLM face from bands 7-9. However, the shoulder near 2.50 eV in ϵ_{2}^{1} is caused by $\Delta_{5}-\Delta_{1}$ transitions and an $M_{1} \mathrm{Cp}$ approximately $3 / 5$ of the way from Γ to A. The small peak at 2.68 eV in ϵ_{2}^{1} is caused by $\mathrm{U}_{4}-\mathrm{U}_{2}$ transitions and what seems like an $\mathrm{M}_{1} \mathrm{cp}$ at about $7 / 10$ of the way from M to L. Although regions off symmetry directions around this critical point also contribute to $\epsilon_{2}^{\prime \prime}$ near 2.68 eV , this effect is overshadowed by $\mathrm{U}_{2}-\mathrm{U}_{2}$ transitions and an M_{1} cp near $(0.5,0,0.4)$ at about 2.78 eV . These transitions are responsible for the peak observed around 2.75 eV in $\epsilon_{2}^{\prime \prime}$. The shoulder near 3.15 eV in $\epsilon_{2}^{\prime \prime}$ is caused by $7-10$ transitions from a region near the T symmetry direction from an M_{0} critical point at about ($0.08,0.08,0.2$) with energy 3.03 eV . In addition $7-9$ transitions contribute to this shoulder from a probable $\mathrm{M}_{2} \mathrm{cp}$ at 3.14 eV and near $(0.11,0.11,0.2)$. The shoulder in ϵ_{2}^{1} at 3.35 eV is caused by transitions from bands 6-9 in a large region mainly in the 「ALM plane around an $M_{1} \mathrm{cp}$ approximately at $(0.2,0,0.25)$. A similar shoulder in $\epsilon_{2}^{\prime \prime}$ at 3.57 eV is caused by a region with large matrix elements around what appears to be an M_{1} cp near ($0.2,0.2,0.35$) at about 3.57 eV . The strongest peak in ϵ_{2}^{1} occurs at 3.60 eV and is caused mainly by 6-9 transitions in a large region with strong matrix elements around $M_{7}-M_{1}$ particularly along $U_{3}-U_{1}$ and $\Sigma_{4}-\Sigma_{1}$. However, additional strength is obtained by $8-10$ transitions in a region around $R_{2}-R_{1}$ about $1 / 2$ of the way from A to L and from an $M_{2} c p$ near ($0.2,0,0.4$) at 3.80 eV . The matrix elements are large for $\hbar \omega<3.80$ eV and very small for $\hbar \omega>3.80 \mathrm{eV}$. The largest peak in $\epsilon_{2}^{\mathrm{H}}$ occurs at 3.72 eV caused mainly by an $\mathrm{M}_{1} \mathrm{cp}$ near H at the same energy. The peak in ϵ_{2}^{1}
at 4.52 eV is caused by small contributions from three different interband transitions. The main contribution is from 8-11 transitions in a region (U_{4} U_{2}) around $L_{2}-L_{1}$, tentatively designated an M_{0} cp at 4.40 eV . A slightly weaker contribution is from bands 8-9 caused by a region around the T. symmetry direction with what seems like an M_{0} cp near ($0.23,0.23,0$) at 4.45 eV . The final contribution to the peak at 4.52 eV for ϵ_{2}^{1} is probably caused by : an $M_{1} c p$ near the center of the $\Gamma A L M$ face at 4.53 eV . This critical point provides the strongest contribution to the peak at 4.52 eV for $\epsilon_{2}^{\prime \prime}$ because of/matrix elements. The other main contribution to this peak is caused by 8-9 transitions with an $M_{2} c p$ at K and a region along T^{\prime}. The shoulder around 4.70 eV in ϵ_{2}^{1} is mainly caused by $7-9$ transitions with a probable $\quad \mathrm{M}_{2} \mathrm{cp}$ at K and a small region extending along T^{\prime}. Additional contributions to this shoulder are from 8-9 transitions in a small region around ($0.4,0.15,0.15$) with an $\mathrm{M}_{3} \mathrm{cp}$ at 4.72. The final contribution to this shoulder is from a region around A particularly along S with a probable an M_{2} cp near ($0.03,0.03,0.45$) at 4.71 eV . The shoulder in $\epsilon_{2}^{\prime \prime}$ around 4.70 eV is caused by an M_{0} cp near M about 0.1 of the way along T ' and from 7-9 transitions in a region near K along P with a probable $\quad M_{3} c p$ at about 4.9 eV near ($0.33,0.33,0.15$). The last discernible peak in ϵ_{2}^{1} occurs at 5.23 eV and is caused mainly by $\Gamma_{5}-\Gamma_{12}$ transitions which are associated with an M_{2} cp at 5.23 eV . Additional contributions to this peak are from 8-11 transitions ina small region around $(0.08,0.08,0.35)$ which has an $\mathrm{M}_{3} \mathrm{cp}$ at 5.30 eV . The last discernible shoulder in $\epsilon_{2}^{\prime \prime}$ around 5.29 eV is caused by $M_{5}-M_{4}$ and $\Sigma_{3}-\Sigma_{4}$ transitions at 5.33 eV and 5.31 respectively. We
have not determined the symmetry of these critical points. Other contributions to this shoulder are from 8-11 transitions in a small region around $(0.3,0.1,0.15)$ at 5.29 eV .

B. $\mathrm{Si} 2 \mathrm{H}-4$

The threshold in ϵ_{2}^{1} (Figs. 4 and 5) at 2.60 eV is caused by $\Sigma_{1}-\Sigma_{1}$ transitions and a probable $\quad M_{0} c p$ near $(0,3,0,0)$ while the region around this cp off symmetry directions contributes to the threshold in $\epsilon_{2}^{\prime \prime}$ at nearly the same energy. The first shoulder in ϵ_{2}^{11} at 3.10 eV is caused by an M_{0} cp near the center of the ГALM face from bands 7-9. The next shoulder in $\epsilon_{2}^{\prime \prime}$ occurs around 3.35 eV and is caused by $\mathrm{U}_{2}-\mathrm{U}_{2}$ transitions with an $M_{1} \mathrm{cp}$ near ($0.5,0,0.35$) at about 3.34 eV . The rise in ϵ_{2}^{\perp} around 3.35 eV is caused by $\Gamma_{6}-\Gamma_{10}$ transitions which are associated with an $M_{0} c p$ and a region along $\Delta\left(\Delta_{6}-\Delta_{3}\right)$. The shoulder at 3.35 eV is caused by an $M_{1} \mathrm{cp}$ and associated transitions $A_{3}-A_{1}$. The next shoulder in ϵ_{2}^{1} at 3.60 eV is a result of $\Delta_{5}-\Delta_{1}$ transitions and an $M_{1} c p$ approximately $1 / 2$ of the way from Γ to A. The largest peak in ϵ_{2}^{1} at 4.10 eV is caused mainly by $6-9$ transitions in a large region with strong matrix elements around $M_{7}-M_{1}$ particularly along $U_{3}-U_{1}$ and $\Sigma_{4}-\Sigma_{1}$. To a much lesser extent additional strength to this peak is obtained from a region around $R_{2}-R_{1}$, specifically $1 / 2$ of the way from A to L. Here we find an $M_{2} c p$ near ($0.15,0,0.5$) at about 4.13 eV . The first large peak in $\epsilon_{2}^{\prime \prime}$ occurs around 4.25 eV and is caused by a region with large matrix elements around what appears to be an M_{1} cp near ($0.2,0.2,0.35$) at about 4.21 eV . In addition a region near H along S^{\prime} which also has large matrix elements contributes around 4.26 eV .

$$
0000390-10^{3}-43
$$

The shoulder at ϵ_{2}^{1} near 4.38 eV is a result of an $M_{2} \mathrm{cp}$ around ($0.2,0,0.4$) at 4.38 eV and transitions in a region around $R_{2}-R_{1}$ near ($0.2,0,0.5$). The second large peak in $\epsilon_{2}^{\prime \prime}$ occurs around 4.68 eV and is the result of several contributions. First we have $8-10$ transitions in a region near \mathbb{N}_{1} about 0.2 of the way along T^{\prime} where we have a probable M_{2} cp at 4.64 eV . Next there are 8-9 transitions in a small region around ($0.3,0.1,0$) with an $M_{1} \mathrm{cp}$ at 4.68 eV and 7-11 transitions with an $\mathrm{M}_{0} \mathrm{cp}$ at 4.61 near ($0.4,0$, 0.35). Finally, we have contributions from the shoulder of a non-discernible peak around 4.75 eV caused by 7-9 transitions along T with what is probably an M_{2} cp at 4.74. The peak in ϵ_{2}^{1} at 4.69 eV is caused mainly by 8-9 transitions along the T symmetry direction with an $M_{0} c p$ at 4.57 eV and to a lesser extent from $\Delta_{6}-\Delta_{5}$ transitions with what seems like an $M_{1} \mathrm{cp}$ at 4.69 eV near $(0,0,0.3)$. The peak in ϵ_{2}^{\perp} at 4.89 eV is a result of what appears to be an $\mathrm{M}_{2} \mathrm{cp}$ at K around 4.87 eV and a probable $\mathrm{M}_{2} \mathrm{cp}$ near $(0.3,0.25,0.25)$ around 4.89 eV . The shoulder in $\epsilon_{2}^{\prime \prime}$ at 4.91 eV is caused by a probable $\quad \mathrm{M}_{2}$ cp for 7-10 and 8-10 transitions at 4.91 eV and 4.93 eV near $(0.2,0.08,0)$ and $(0.2,0.1,0)$ respectively. The shoulder in $\epsilon_{2}^{\frac{1}{2}}$ at 4.96 eV is caused mainly by $8-11$ transitions slightly off the Σ direction at a probable $\quad \mathrm{M}_{2}$ cp near ($0.35,0.05,0.05$) at 4.96 eV , while the shoulder at 5.50 eV is a result of $\Gamma_{5}-\Gamma_{12}$ transitions with an associated $M_{1} c p$ at 5.47. Finally the shoulder around 5.55 eV in $\epsilon_{2}^{\|}$is caused by $M_{5}-M_{4}$ and $\Sigma_{3}-\Sigma_{4}$ transitions at 5.61 and 5.54 eV respectively. C. $\mathrm{Ge} \mathrm{BC}-8$

The first peak in ϵ_{2} (Figs. 6 and 7) at 2.03 eV is caused by $\Sigma_{1}-\Sigma_{2}$
transitions with an $M_{1} c p$ about $4 / 5$ of the way from Γ to N. The shoulder at 2.46 is caused by a small region around $\Sigma_{2}-\Sigma_{2}$ with a probable cp near $(0.4,0.4,0)$ at 2.46 eV whose symmetry we have not determined. Additional contributions to this shoulder are from $\Delta_{4}-\Delta_{4}$ transitions and an $M_{0} \mathrm{cp}$ about $1 / 2$ the way along Δ at 2.41 eV . The main contribution to the peak at 2.70 eV is from 13-17 transitions in a small region around an $M_{0} \mathrm{cp}$ near $(0.2,0.8,0.15)$ at 2.67 eV . A smaller contribution is from $\mathrm{G}_{2}-\mathrm{G}_{1}$ transitions with what appears to be on $M_{0} c p$ near $(0.15,0.85,0)$ at 2.65 eV . we have The large peak at 3.21 eV is a result of many contributions. First/16-19 transitions in a region of large matrix elements around an $M_{0} \mathrm{cp}$ near we have $(0.25,0.35,0.25)$ at $3.19 \mathrm{eV} . \mathrm{Next} / \mathrm{G}_{1}-\mathrm{G}_{2}$ transitions with an M_{2} cp near $(0.4,0.6,0)$ at 3.24 eV and a region of large matrix elements around (0.3 , there are $0.4,0.15)$ at about 3.23 eV . Thirdly $/ 4-17$ transitions in a region around we have $(0.2,0.4,0.15)$ with what appears to be an $M_{2} \mathrm{cp}$ at 3.21 eV . Finally, $/ 13-18$ transitions near ($0.3,0.45,0$) with an $M_{1} c p$ at 3.21 and $G_{1}-G_{1}$ transitions with a probable cp at $(0.22,0.78,0)$ whose symmetry we have not determined. The shoulder around 3.76 eV is also the result of several contributions. The first is from 15-19 transitions in a region near N with $G_{2}-G_{1}$ transitions and an M_{3} cp near $(0.4,0.55,0)$ at 3.78 eV . Next/ $12-18$ transitions near N with $G_{2}-G_{1}$ transitions and an $M_{1} c p$ near $(0.35,0.65,0)$ at 3.76 eV . Finally, we have contributions from a small region around Γ with $\Gamma_{2}-\Gamma_{6}$ transitions and an $M_{3} \mathrm{cp}$ at 3.74 eV . The shoulder at 3.98 eV is caused by 14-19 transitions in a large region around $(0.25,0.65,0.15)$ at 4.0 eV . The last discernible peak occurs at 4.50 eV and is caused by 12-19

$$
0 \because 0039 \text { 3-12-4 }
$$

transitions in a region around $(0.26,0.63,0.15)$ and $14-20$ transitions in a large region around ($0.1,0.5,0.1$) both with strong matrix elements. In addition we have contributions from 16-21 transitions in a region aro und ($0.15,0.2,0.1$) with an $M_{2} c p$ near 4.48 eV and $\triangle_{1}-\Delta_{4}$ transitions with an $\mathrm{M}_{0} \mathrm{cp}$ near $(0.25,0,0)$ at 4.42 eV .
D. $\mathrm{Si} \mathrm{BC}-8$

The threshold in ϵ_{2} (Figs. 7 and 8) at 0.43 eV is caused by $\mathrm{H}_{3}-\mathrm{H}_{4}$ transitions. The small bump around 1.70 eV is a result of $\Delta_{1}-\Delta_{4}$ transitions with an M_{0} cp near ($0.55,0,0$) at 1.65 eV . The next small bump at 2.04 eV is caused by what appears to be an M_{2} cp near ($0.3,0.55,0$). The shoulder at 2.60 eV is primarily caused by $\Sigma_{1}-\Sigma_{2}$ transitions with an M_{2} cp near $(0.4,0.4,0)$ at 2.62 eV . Additional structure is obtained by $15-17$ transitions in a region around an $M_{0} c p$ near $(0.3,0.5,0)$ at 2.54 eV . The shoulder at 3.0 eV is caused by 13-17 transitions in a small region around an M_{0} cp near $(0.2,0.7,0.15)$ at 2.96 eV . The large peak at 3.45 eV is the result of many contributions. The first is from 13-17 transitions in a region of very we have large matrix elements around (0.1,0.5,0.1) at about 3.46 eV . Next/14-17 transitions in a region around what appears to be an M_{2} cp near ($0.2,0.4,0.15$) at 3.45 eV with strong matrix elements. Also, there are 16-19 transitions in a small region with very large matrix elements and an \mathbb{M}_{1} cp near ($0.3,0.4,0.2$) there is
at 3.43 eV . Finally/a region around $\Gamma_{1}-\Gamma_{6}$ transitions with an associated $\mathrm{M}_{0} \mathrm{cp}$ at 3.38 eV .

The shoulder at 3.7 eV is caused by a small region around $G_{1}-G_{2}$ transitions with an $\mathrm{M}_{2} \mathrm{cp}$ at 3.7 eV near $(0.45,0.55,0)$ and by a small region around
$D_{1}-D_{1}$ transitions with large matrix elements and an $M_{1} \mathrm{cp}$ at 3.68 eV around ($0.5,0.5,0.15$). The shoulder at 4.05 eV is the result of several types of transitions. First we have 16-21 transitions in a small region around $(0.2,0.6,0.15)$ with large matrix elements and $\Delta_{1}-\Delta_{2}$ transitions with an M_{2} cp near $(0,5,0,0)$ at 4.04 eV . Next we have $15-21$ transitions in a small region around ($0.2,0.6,0.1$) with an associated M_{0} cp at 4.02 eV and G_{1} -$G_{1}(13-18)$ transitions with a probable cp near $(0.2,0.8,0)$ whose symmetry we have not yet determined. Finally we have 14-19 transitions in a region around what appears to be an $\mathrm{M}_{1} \mathrm{cp}$ near $(0.25,0.65,0.1)$ at 4.07 eV . The large peak at 4.20 eV is mainly caused by 16-22 transitions in a region of very large matrix elements around what appears to be an $\mathrm{M}_{2} \mathrm{cp}$ near (0.2 , $0.5,0)$ at 4.20 eV . In addition we have contributions from $12-18$ and 15-22 transitions in a small region around an M_{2} cp near ($0.15,0.7,0.15$) at 4.22 eV and an M_{0} ep near $(0.15,0.7,0)$ at 4.14 eV respectively. Finally the shoulder at 5.05 eV can be attributed to $14-21$ transitions in a small region around an M_{2} cp near $(0.2,0.6,0.1)$ at 5.05 eV and $D_{1}-D_{1}$ transitions with a probable cp near $(0.5,0.5,0.1)$ at 5.0 eV whose symmetry we have not determined. E. GeST 12

In this section and the section on $\mathrm{Si} \mathrm{ST}-12$ we shall treat the perpendicular component of ϵ_{2}^{1} first and discuss the parallel component in the last paragraph.

The threshold in ϵ_{2}^{1} (Figs. 9 and 10) occurs at 1.46 eV and is caused by $\Sigma_{1}-\Sigma_{1}$ transitions. The shoulder at 2.10 eV is caused by equal contributions from 24-25 and 23-25 transitions in small regions (tubular along

$$
0000390-14-45
$$

the z direction) around an M_{0} cp near ($0.4,0.1,0.3$) at 2.08 eV and an M_{1} cp near ($0.4,0,0.3$) at 2.18 eV respectively. The shoulder around 2.55 eV is caused mainly by 24-26 transitions in a region around an M_{1} cp near ($0.5,0.1,0.3$) at 2.48 eV along with much weaker contributions from $\mathrm{T}_{1}-\mathrm{T}_{1}$ $(0.5,0.5,0.4)$ and $U_{1}^{Z}-U_{1}^{Z}(0.5,0,0.3)$ transitions at' 2.52 eV and 2.50 eV respectively whose critical point symmetries have not been determined. Next we have 23-26 transitions in a region of relatively large matrix elements around $(0.4,0.15,0.25)$ contributing at 2.62 eV . Other contributions to this shoulder are from 22-25 and 21-25 transitions, with a probable $M_{2} c p$ near ($0.4,0,0.25$) at 2.62 eV and an M_{1} cp near (0.4,0.15,0.25) at 2.60 eV respectively, along with transitions at M in a much weaker sense at 2.60 eV . Finally, we have $24-25$ transitions with an M_{0} cp near ($0.1,0.1,0.4$) at 2.54 eV .

The peak around 2.80 eV is the result of several types of transitions whose contributions are all of comparable weight. First we have 23, 24-26 transitions in a region (mostly along z direction) around $S_{1}-S_{1}$ with an M_{2} cp near ($0.4,0.4,0.5$) at 2.87 eV . Next there are $21-25$ transitions in a region around an M_{1} cp near ($0.4,0.15,0.25$) at 2.60 eV which contributes to 2.75 eV because of matrix elements and in a weaker sense $\Delta_{1}-\Delta_{1}$ ($0.4,0,0$) transitions with a cp of undetermined symmetry at 2.80 eV . Next we have 24-25 transitions near the U^{X} symmetry direction with an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.2,0,0.4$) at 2.70 eV . Finally, we have 24-27 transitions in a small region (tubular along z-direction) around an M_{1} cp near ($0.5,0.1,0.3$) at 2.76 eV along with some weaker $\Gamma_{3}-\Gamma_{5}$ transitions with an $M_{0} \mathrm{cp}$ at 2.75 eV .

The shoulder around 3.0 eV is caused mainly by $20-25$ transitions in a region (tubular along z-direction) arourid an M_{0} cp near $(0.4,0.15,0.25)$ at 2.93 eV and $22-25$ transitions in a region around $Z_{2}-Z_{2}$ with an associated M_{0} cp at 2.98 eV along with much weaker $T_{1}-T_{1}(0.5,0.5,0.3)$ transitions at 3.0 eV . Additional contributions to this shoulder are from $24-27$ transitions in a small region near R along T^{Z} with an M_{1} cp near ($0.5,0.5,0.45$) at 3.11 eV and 19-25 transitions in a region of relatively large matrix elements around $(0.35,0.18,0)$ at 2.97 eV along with weaker $\mathrm{M}_{2}^{\mathrm{Z}}-\mathrm{M}_{1}^{\mathrm{Z}}$ transitions with what appears to be an $M_{2} \mathrm{cp}$ at 3.0 eV . Finally, we have 22-27 transitions with an M_{0} cp near ($0.5,0.15,0.3$) at 3.04 eV .

The next shoulder around 3.20 eV is caused mainly by $\mathrm{Z}_{1}-\mathrm{Z}_{1}$ transitions with an associated $\mathrm{M}_{0} \mathrm{cp}$ at 3.18 eV along with much weaker transitions $Z_{1}^{x}-Z_{1}^{x}$ with an M_{3} cp at 3.20 eV . Other contributions to this peak are from 21-25 transitions in a small region around U^{X} with an $M_{2} c p$ near ($0.2,0,0.5$) at 3.21 eV and 23-28 transitions in a region (tubular along z-direction) near R mostly along T^{Z} with a probable $\mathrm{M}_{1} \mathrm{cp}$ at 3.20 eV . Finally, we also have contributions from $19-25$ transitions with an M_{2} cp near (0.5 , $0.15,0.3$) at 321 eV along with weaker $\Delta_{1}-\Delta_{1}$ transitions near $(0.38,0,0)$ at 3.20 eV . The peak at 3.50 eV is caused mainly by $19-25,26$ transitions and a region (along z-direction) around $R_{1}-R_{1}$ with an $M_{0} \mathrm{cp}$ at 3.46 eV and 18-25 transitions in a small region around $\mathrm{T}_{1}-\mathrm{T}_{1}$ near ($0.5,0.22,0.5$) with a prowable $M_{0} c p$ at 3.49 eV . Additional contributions are from $s_{1}-s_{1}$ (20-25) transitions with in M_{0} cp near ($0.06,0.06,(0.6)$ at 3.45 ov and what appears to be an M_{1} cp near $(0.45,0.45,0.5)$ also at 3.45 eV . Other contri-
'butions are from 17-25 transitions in a small region along T^{2} near (0.5, $0.5,0.3$) with a probable $\mathrm{M}_{1} \mathrm{cp}$ at 3.53 eV and $24-27$ transitions with a probable M_{2} cp near ($0,0.1,0.25$) at 3.47 eV and to a lesser extent $T_{1}-T_{1}$ transitions near $(0.5,0.3,0.5)$ at about 3.50 eV . Finally, we have $\mathrm{T}_{1}-\mathrm{T}_{1}$ (20-26) transitions with an $M_{2} c p$ at 3.47 eV and $22-27$ transitions with an $M_{2} \mathrm{cp}$ near 3.54 eV and to a lesser extent $\Delta_{1}-\Delta_{1}$ transitions near (0.45 , 0,0) contributing at 3.50 eV .

The shoulder at 3.65 eV is caused by $17-25$ transitions in a region (tubular along z -direction) around an $\mathrm{M}_{2} \mathrm{cp}$ at 3.67 eV near ($0.5,0.25,0.3$) and in a weaker sense by $Z_{1}-Z_{2}$ transitions with an $M_{0} c p$ at 3.65 eV . Other contributions to this shoulder are from 23-27 transitions in a relatively large region around $(0.1,0,0.25)$ which contributes around $3.65 \mathrm{eV}, 24-29$ transitions in a region around U^{X} with an $M_{0} c p$ near $(0.22,0,0.5)$ at 3.60 eV , and 24-30 transitions at R with an $\mathrm{M}_{1} \mathrm{cp}$ at 3.60 eV . The peak at 4.20 eV is caused by 24-30 transitions in a region (mostly in z-direction) near U^{X} around ($0.3,0,0.4$) which contributes at about 4.18 eV along with weaker transitions in a region around M at 4.20 eV . In addition we have 21-27 transitions with an $\mathrm{M}_{2} \mathrm{cp}$ near $(0.15,0.15,0.2)$ at 4.22 eV and $23-28$ transtions in a region around $\Delta_{2}-\Delta_{1}$ with most of the contributions near ($0.1,0$, $0.05)$ at 4.20 eV . Other transitions contributing to this peak are 21-28 transitions in a small region near U^{X} around $(0.15,0,0.4)$ at 4.20 eV and 20-25 transitions around $\Sigma_{2}-\Sigma_{1}$ with an M_{1} cp near ($0.07,0.07,0$) at .4.21 eV. Finally, we also have some weak structure from $S_{1}-S_{1}(23-32)$ transitions with a cp of undetermined symmetry near ($0.22,0.22,0.5$) at

4.20 eV .

The last peak that we shall consider in ϵ_{2}^{1} occurs at 4.50 eV and is the result of many different contributions. First we have $23-31$ transitions in a region around $U_{1}^{Z}-U_{1}^{Z}$ with a probable M_{3} cp near $(0.5,0,0.2)$ at 4.57 eV and $\Sigma_{2}-\Sigma_{1}(21-23)$ transitions with a cp of undetermined symmetry near ($0.4,0.4,0$) at 4.48 eV . Next we have $22-30$ transitions in a small region near $U^{\bar{y}}$ with an $\mathrm{M}_{1} \mathrm{cp}$ around $(0.45,0.1,0.05)$ at 4.36 eV and an M_{1} cp near $(0.3,0.15,0.4)$ at 4.52 eV . In addition we have $20-26$ transitions with an $\mathrm{M}_{3} \mathrm{cp}$ near $(0.15,0,0.1)$ at 4.54 eV and $20-28$ transitions with an $\mathrm{M}_{0} \mathrm{cp}$ near $(0.15,0.15,0.25)$ at 4.47 eV . Finally for completeness we also list in Table III a set of much weaker transitions along symmetry directions at critical points of undetermined symmetry, starting with $M_{3}^{Z}-M_{1}^{Z}$ transitions and ending with $U_{1}^{y}-U_{1}^{y}$ transitions. Taken as a whole they are of comparable weight to the others discussed above.

The threshold in $\epsilon_{2}^{\prime \prime}$ occurs around 1.60 eV with minute matrix elements from $\Sigma_{2}-\Sigma_{1}$ transitions at 1.46 eV and very small matrix elements near 1.6 and appreciable contributions only from $\triangle_{2}-\triangle_{1}$ transitions with a probable M_{1} cp near $(0.4,0,0)$ at 1.7 eV . The shoulder around 2.15 eV is caused mainly by $\Sigma_{2}-\Sigma_{1}$ transitions with an M_{0} cp near ($0.37,0.37,0$) at 2.07 eV . In addition we have contributions from 24-25 and 23-25 transitions in small regions around what appears to be an $M_{0} c p$ near ($0.4,0.1,0.3$) at 2.08 eV and an M_{1} cp near $(0.4,0,0.3)$ at 2.18 respectively. The shoulder around 2.65 eV is caused mainly by 21-15 transitions in a region around an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.4,0.15,0.25$) and 2.60 eV and a region (particularly along U^{V}) around

$$
0.000390 \quad 218-47
$$

$Z_{1}^{X}-Z_{1}^{X}$ with a probable M_{2} cp at 2.65 eV and $U_{1}^{y}-U_{1}^{y}$ transitions contributing at 2.63 eV . Additional contributions are from 22-26 transitions with an $\mathrm{M}_{1} \mathrm{cp}$ near $(0.5,0.2,0.25)$ at 2.74 eV and $22-25$ transitions in a region around $M_{3}^{Z}-M_{1}^{Z}$ with a probable M_{2} cp at 2.70 eV . Finally, to a much lesser extent, we have contributions from $\Gamma_{3}-\Gamma_{4}$ transitions with an $M_{0} \mathrm{cp}$ at 2.64 eV .

The peak at 3.20 eV is a result of several interband contributions of a pproximately the same weight. First we have 24-27transitions in a region around $Z_{1}-Z_{1}$ with an M_{0} cp at 3.18 eV along with weaker $Z_{1}^{\mathrm{X}}-\mathrm{Z}_{1}^{\mathrm{X}}$ transitions with an $M_{3} c p$ at 3.20 eV and $\Delta_{2}-\Delta_{1}$ transitions with a probable M_{2} cp near ($0.45,0,0$) at 3.18 eV . Next we have 21-25 transitions in a small region (mostly along z-direction) around U^{X} with an M_{2} cp near ($0.2,0,0.5$) at 3.21 eV and a region of large matrix elements near ($0.2,0.2,0.3$) contributing to 3.20 eV . In addition we have 24-26 transitions in a region around $S_{1}-S_{1}$ with an $M_{3} \mathrm{cp}$ near ($0.26,0.26,0.5$) at 3.26 eV and in a weaker sense $R_{1}-R_{1}(23-28)$ transitions at 3.20 eV and $\Sigma_{2}-\Sigma_{1}(24-28)$ transitions with a probable M_{1} cp near $(0.25,0.25,0)$ at 3.20 eV . The next peak at 3.50 eV is a result, in part, of $20-25$ transitions in a region around $Z_{2}-Z_{2}$ with a cp of undetermined symmetry at 3.48 eV and $\mathrm{S}_{1}-\mathrm{S}_{1}$ transitions with an M_{0} cp near ($0.06,0.06,0.5$) at 3.45 eV . In addition there are contributions from 22-27 transitions in a small region around an \mathbb{M}_{2} cp near ($0.3,0.1$, 0.3) at $3.54 \mathrm{eV}, \Gamma_{5}-\Gamma_{5}$ transitions with an associated M_{0} cp at 3.44 eV and 20-26 transitions in a region (tubular along z-direction) of relatively large matrix elements around $(0.3,0.1,0.3)$ at 3.53 eV . Finally, there are weaker contributions from $\Sigma_{2}-\Sigma_{1}(24-29)$ and $\Delta_{1}-\Delta_{2}(24-26)$ transitions
with critical points of undetermined symmetry near $(0.35,0.35,0)$ at 3.45 eV and near ($0.3,0,0$) at 3.48 eV respectively.

The shoulder at 3.70 eV is caused by $24-28$ transitions in a small region around $\Delta_{1}-\Delta_{2}$ with a $c p$ of undetermined symmetry near $(0.26,0,0)$ at 3.70 eV and $\mathrm{S}_{1}-\mathrm{S}_{1}$ transitions with a probable M_{2} cp near $(0.2,0,0)$ also at 3.70 eV . Other contributions to this shoulder are from 21-27 transitions around $\mathrm{Z}_{1}^{\mathrm{x}}-\mathrm{Z}_{1}^{\mathrm{X}}$ with an $\mathrm{M}_{1} \mathrm{cp}$ at 3.69 eV and $\mathrm{U}_{1}^{\mathrm{Z}}-\mathrm{U}_{1}^{\mathrm{Z}}$ transitions with a cp of undetermined symmetry near $(0.5,0,0.2)$ at 3.71 eV . The peak at 3.90 eV is caused in part by 19-25 transitions in a small region (mostly in z-direction) around an $\mathrm{M}_{3} \mathrm{cp}$ near $(0.2,0.15,0.3)$ at 3.92 eV and $24-29$ transitions around $\Delta_{2}^{Z}-\Delta_{2}^{Z}$ with an M_{2} cp near $(0,0,0.18)$ at 3.94 eV . Additional contributions are from 23-29 transitions around $\Delta_{1}-\Delta_{2}$ with what appears to be an M_{2} cp at $3.9 \mathrm{eV}, \mathrm{S}_{1}-\mathrm{S}_{1}$ transitions with a cp of undetermined symmetry at 3.9 eV , and $\Delta_{2}-\Delta_{1}(21-26)$ transitions with a probable $M_{1} \mathrm{cp}$ near $(0.15,0,0)$ at 3.88 eV . The peak at 4.20 eV is caused in part by $24-$ 29 transitions in a region of very large matrix elements around $\Gamma_{3}-\Gamma_{4}$ with an $\mathbb{M}_{3} \mathrm{cp}$ at 4.22 eV and $20-25$ transitions in a region around $\Gamma_{3}-\Gamma_{4}$ with an M_{0} cp at 4.16 eV along with an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.07,0.07,0$) at 4.21 eV from $\Sigma_{2}-\Sigma_{1}$ transitions. Other contributions to this peak are from 21-28 transitions in a region around $\Gamma_{2}-\Gamma_{1}$ with an $M_{0} c p$ at 4.22 eV including in particular $\Delta_{1}^{z}-\Delta_{1}^{z}$ transitions at 4.23 eV , transitions in a small region near U^{X} around $(0.15,0,0.4)$ at 4.20 eV , and to a lesser extent $\mathrm{S}_{1}-\mathrm{S}_{1}$ transitions with a cp of undetermined symmetry at 4.20 eV . Still other contributions are from 22-29 transitions with an M_{0} cp near $(0.15,0.15,0.2)$ at 4.21 eV
and weaker $Z_{1}^{X}-Z_{1}^{X}$ transitions with an $M_{2} c p$ at 4.24 eV . Finally, we have 24-30 transitions with an M_{1} cp near ($0.1,0.1,0.3$) at 4.26 eV and $22-30$ transitions in a region around ($0.3,0.25,0.25$) contributing at 4.21 eV .

The last peak that we shall consider in $\epsilon_{2}^{\prime \prime} \quad$ occurs at 4.40 eV and is the result of many different contributions. First we have 20-26 transitions in a region (tubular along z-direction) around an $\mathrm{M}_{2} \mathrm{cp}$ near ($0.17,0.17$, $0.1)$ at 4.42 eV and 18-27 transitions in a region around $\mathrm{Z}_{1}-\mathrm{Z}_{1}$ with an M_{0} cp at 4.36 eV . Next we have 23-28 $\left(\Sigma_{1}-\Sigma_{2}\right)$ transitions and $22-27\left(\Sigma_{1}-\right.$ Σ_{2} transitions with critical points of undetermined symmetry near (0.14, $0.14,0)$ at 4.40 eV and 4.37 eV respectively along with $\Delta_{1}-\Delta_{2}$ transitions with a cp near $(0.25,0,0)$ at 4.40 eV . Other contributions are from 23-24 transitions around $M_{2}^{Z}-M_{1}^{Z}$, with a probable $M_{2} c p$ at 4.40 eV and $\Sigma_{1}-\Sigma_{2}$ transitions with a cp of undetermined symmetry near $(0.35,0.35,0)$ at 4.40 eV. In addition we have weaker contributions from 16-26 transitions in a small region around $Z_{2}-Z_{2}$, particularly along $\Delta_{2}^{Z}-\Delta_{3}^{Z}$ at 4.40 eV , with a probable \mathbb{M}_{1} cp at 4.37 eV . Finally we have 23-30 transitions with an M_{3} cp near ($0.35 ; 0.15,0.3$) at $4.42 \mathrm{eV}, \Delta_{1}-\Delta_{2}$ transitions with a cp of undetermined symmetry near $(0.37,0,0)$ at 4.40 eV , and 22-31 transitions around $U_{1}^{y}-U_{1}^{y}$ with a cp near $(0.5,0.3,0)$ at 4.40 eV . F. Si ST-12

The threshold in ϵ_{2}^{1} (Figs. 11 and 12) occurs at 1.76 eV and is the result of $24-25$ transitions around an M_{0} cp near ($0.4,0.2,0$). The shoulder at 2.33 eV is caused by 23-25 transitions and 24-25 transitions in a region (tubular along z-direction) around an M_{0} cp near ($0.4,0,0.3$) at 2.31 eV and around an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.4,0,0.45$) at 2.33 eV respectively.

The shoulder at 2.50 eV is caused by $23-26$ and mainly $24-26$ transitions in a region around M with a probable $\mathrm{M}_{1} \mathrm{cp}$ at 2.50 eV . In particular, we have contributions from $\mathrm{T}_{1}-\mathrm{T}_{1}$ transitions with an M_{1} cp near (0.5,0.15,0.5) at 2.52 eV and $\mathrm{U}_{1}^{\mathrm{Z}}-\mathrm{U}_{1}^{\mathrm{Z}}$ transitions at 2.51 eV . [inally, we have weaker transitions from a region near Z^{X} along $U_{1}^{Y}-U_{1}^{Y}$ contributing to 2.45 eV .

The peak at 2.80 eV is a result in part of $23,24-26$ transitions in a region around $S_{1}-S_{1}(0.4,0.4,0.5)$ at 2.76 eV with particularly strong contributions off the symmetry axis with an M_{1} cp near $(0.4,0.4,0.4)$ at 2.80 eV . Other contributions are from $21-25$ transitions with an $\mathrm{M}_{0} \mathrm{cp}$ near $(0.45,0.15,0.3)$ at $2.73 \mathrm{eV}, \Delta_{2}-\Delta_{1}$ transitions with a cp of undetermined symmetry near $(0.45,0,0)$ at 2.80 eV , and $U_{1}^{\mathrm{y}}-\mathrm{U}_{1}^{\mathrm{y}}$ transitions with an $\mathrm{M}_{1} \mathrm{cp}$ near $(0.5,0.2,0)$ at 2.79 eV along with $22-26$ transitions in a large region (along z-direction) around ($0.5,0.3,0.15$) contributing at 2.82 eV. Finally we have contributions from $Z_{1}-Z_{1}(23-28)$ transitions with an $\mathrm{M}_{0} \mathrm{cp}$ at 2.78 eV and 22-25 transitions with an $\mathrm{M}_{2} \mathrm{cp}$ near ($0.4,0,0.25$) at 2.74 eV . The shoulder at 3.20 eV is caused mostly by $20-25$ transitions in a region of relatively large matrix elements around $\Delta_{1}-\Delta_{1}$, with an M_{0} cp near ($0.39,0,0$) at 3.17 eV and a region around $\Sigma_{1}-\Sigma_{1}$ with an $\mathrm{M}_{2} \mathrm{cp}$ near $(0.37,0.37,0)$ at 3.21 eV , along with $19-25$ transitions in a region (along z-direction) around $\Sigma_{1}-\Sigma_{2}$ with a probable M_{1} cp near $(0.4,0.4,0)$ at 3.18 eV . Additional contributions are from $22-$ 25 transitions in a region around $Z_{2}-Z_{2}$ with an $M_{0} c p$ at 3.18 eV and an N_{1} cp near ($0.2,0.2,0.25$) at 3.16 eV and $20-26$ transitions in a region around U^{y} with an M_{1} cp near ($0.5,0.35,0.05$) at 3.17 eV and a cp of undetermined symmetry near $(0.4,0.4,0)$ from $\Sigma_{1}-\Sigma_{1}$ transitions at 3.20

0 \& $0390922-49$

eV . Other contributions are from 22-28 transitions, from a cp of undetermined symmetry around $U_{1}^{y}-U_{1}^{y}$ near ($0.5,0.4,0$) at 3.20 eV and $R_{1}-R_{1}$ transitions at 3.20 eV , and 21-26 transitions in a region around T^{z} with an $\mathrm{M}_{2} \mathrm{cp}$ near $(0.5,0.5,0.4)$ at 3.23 eV .

The largest peak in ϵ_{2}^{1} occurs at 3.38 eV and is the result of many types of transitions. First we have 20-25 transitions in a region near R along T^{Z} with an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.5,0.5,0.45$) at 3.39 eV and $19-25$ transitions in a similar region around T^{2} with a probable M_{3} cp near $(0.48,0.48,0.4)$ at 3.45 eV , along with $\Sigma_{2}-\Sigma_{1}$ transitions near ($0.35,0.35,0$) with a cp of undetermined symmetry at 3.35 eV . Next we have $22-26$ transitions, with a large region (along z-direction) around an M_{2} cp near $(0.25,0.25,0.3)$ at 3.36 eV . Additional contributions are from 18-25 transitions, with an M_{0} cp near $(0.4,0.2,0)$ at 3.35 eV and $\mathrm{U}_{1}^{\mathrm{y}}-\mathrm{U}_{1}^{\mathrm{y}}$ transitions near ($0.5,0.38,0$) with a cp at 3.4 eV , and 24-27 transitions with an $M_{1} \mathrm{cp}$ near $(0.15,0,0.3)$ at 3.38 eV and $\mathrm{U}_{1}^{\mathrm{Z}}-\mathrm{U}_{1}^{\mathrm{Z}}$ transitions near $(0.5,0,0.15)$ with a cp around 3.38 eV . Finally we have 22-28 transitions, with an $M_{0} c p$ at 3.37 eV from $\mathrm{Z}_{2}-\mathrm{Z}_{1}$ transitions and an M_{1} cp near ($0.45,0.4,0.3$) at 3.35 eV , and 23-27 transitions with contributions from various regions of the zone contributing at around 3.35 eV . The shoulder at 3.60 eV is caused in part by $20-25$ transitions in a region near Z around U^{X} with an M_{0} cp near ($0.1,0,0.5$) at 3.60 eV and 21-25 transitions with a probable $\mathbb{M}_{1} c p$ near ($0.3,0.2,0.25$) also at 3.60 eV . Other contributions are from 22-27 transitions in a region around $\Sigma_{2}-\Sigma_{1}$ with an M_{0} cp near ($0.3,0.3,0$) at $3.50 \mathrm{eV}, 21-29$ transitions in a region around $R_{1}-R_{1}$ with an $M_{0} c p$ at 3.59 eV and 23-27 transitions with an $M_{0} \mathrm{cp}$ near ($0.1,0.1,0.25$) at 3.54 eV . Finally we have $23-23$
transitions with an $M_{1} c p$ near $(0.5,0.15,0.3)$ at $3.58 \mathrm{eV}, 22-26$ transitions in a region around $\Delta_{2}^{z}-\Delta_{4}^{z}$ with a cp of undetermined symmetry near $(0,0$, $0.3)$ at 3.60 eV and 22-28 transitions in a region around $\Sigma_{2}-\Sigma_{1}$ with a cp near $(0.32,0.32,0)$ at 3.60 eV .

The peak around 3.85 eV is the result of many types of transitions contributing approximately equally to ϵ_{2}^{1}. First we have $24-29$ transitions in a region around $\mathrm{Z}_{1}^{\mathrm{X}}-\mathrm{Z}_{1}^{\mathrm{X}}$ with an $\mathrm{M}_{2} \mathrm{cp}$ at 3.92 eV and $23-28$ transitions in a region (tubular abng z -direction) around $\Gamma_{5}-\Gamma_{1}$ with an M_{0} cp at 3.71 eV along with $\Delta_{4}^{\mathrm{Z}}-\Delta_{1}^{\mathrm{Z}}$ transitions with an M_{2} cp near $(0,0,0.24)$ at 3.85 eV . Next we have 23-29 transitions in various regions of the zone with strongest contributions from a large tubular region in the z-direction around (0.35 , $0.15,0.25$) contributing at 3.85 eV and 17-25 transitions in a large region around $U_{1}^{Z}-U_{1}^{Z}(0.5,0,0.33)$ parallel to the T direction contributing at 3.85 eV. Other contributions are from 22-27 transitions, with a probable M_{1} cp near $(0.15,0.15,0.2)$ at $3.81 \mathrm{eV}, 21-29$ transitions, with contributions from a small region around $\Sigma_{1}-\Sigma_{2}$ and an M_{1} cp near ($0.42,0.42,0$) at 3.88 eV , and 20-26 transitions with what appears to be an M_{1} cp near ($0.15,0.1$, $0.4)$ at 3.89 eV . Finally, we have 16-25 transitions in a region around $\mathrm{M}_{3}^{\mathrm{Z}}$ $\mathrm{M}_{2}^{\mathrm{Z}}$ with an $\mathrm{M}_{1} \mathrm{cp}$ at 3.86 eV and 23-20 transitions with a probable $\mathrm{M}_{1} \mathrm{cp}$ near ($0.35,0.35,0.25$) at 3.81 eV .

The last structure we shall consider in the ϵ_{2}^{1} spectrum occurs at 4. 45 eV . This shoulder is caused in part by $20-26$ transitions in a region (aiong z direction) around what appears to be an M_{2} cp near ($0.1,0,0.1$) at $4.48 \mathrm{eV}, \Sigma_{1}-\Sigma_{1}$ transitions with a cp of undetermined symmetry near
$(0.12,0.12,0)$ at 4.44 eV and $23-25$ transitions with a cp at $M_{2}^{2}-\mathrm{M}_{3}^{2}$ at 4.46 eV . Other contributions are from 15-27 transitions in a region around $M_{3}^{2}-M_{1}^{2}$ with a probable M_{1} cp at 4.45 eV and $15-26$ transitions near M^{2} with acp from $\Sigma_{2}-\Sigma_{1}$ transitions near ($0.44,0.44,0$) at 4.42 eV along with $\mathrm{U}_{1}^{Z}-\mathrm{U}_{1}^{Z}$ transitions with a cp near $(0.5,0,0.34)$ at 4.45 eV . Next we have $14-26$ transitions, with a cp at $M_{3}^{Z}-M_{2}^{Z}$ at 4.41 eV and a cp from $\mathrm{T}_{1}-\mathrm{T}_{1}$ transitions near $(0.5,0.28,0.5)$ at 4.45 eV , and 21-27 transitions with a probable M_{1} cp near $(0.2,0,0.2)$ at 4.40 eV and a cp from $\Delta_{3}^{\mathrm{Z}}-\Delta_{2}^{\mathrm{Z}}$ transitions near $(0,0,0.27)$ at 4.45 eV . Finally we have contributions from Σ_{2} -$\Sigma_{1}(22-33)$ transitions with a cp near $(0.44,0.44,0)$ at $4.45 \mathrm{eV}, \Sigma_{1}-\Sigma_{1}$. $(22-33)$ transitions with a cp near $(0.4,0.4,0)$ at $4.45 \mathrm{eV}, 19-27$ transitions with an M_{2} cp near ($0.35,0.15,0.3$) at 4.48 eV and a series of weaker transitions listed for completeness in Table (V).

The threshold in ϵ_{2}^{11} occurs at 1.76 eV and is the result of $24-25$ transitions around an M_{0} cp near ($0.4,0.2,0$) which are weaker than in the ϵ_{2}^{1} case. The shoulder starting at 2.32 eV is caused in part by 23-25 transitions and 24-25 transitions in a region (mostly along z-direction) around an $M_{0} c p$ near $(0.4,0,0.3)$ at 2.31 eV and around an M_{1} cp near ($0.4,0,0.45$) at 2.33 $e \mathrm{~V}$ respectively. Other contributions are from 24-26 transitions in a region around $U_{1}^{Z}-U_{1}^{Z}$ with an M_{0} cp near $(0.5,0,0.4)$ at 2.46 eV and $22-25$ transitions in a region around $\Sigma_{2}-\Sigma_{1}$ with an M_{0} cp near ($0.35,0.35,0$) at 2.32 eV . The shoulder around 2.80 eV is caused to a large extent by $24-26$ transitions in a small region around an M_{0} cp near ($0.1,0.1,0.4$) at 2.81 eV and an M_{0} cp near $(0.2,0.2,0.5)$ at 2.79 eV . Other strong contributions are from

21-25 transitions with an M_{0} cp near ($0.45,0.15,0.3$) at $2.73 \mathrm{eV}, \mathrm{U}_{1}^{\mathrm{y}}-\mathrm{U}_{1}^{\mathrm{y}}$ transitions with an $M_{1} c p$ near ($0.5,0.2,0$) at 2.78 eV and $22-26$ transitions in a region (along z-direction) around $(0.5,0.3,0.15)$ at 2.82 eV and an M_{0} cp at M at about 2.65 eV . Weaker contributions are from $\mathrm{Z}_{1}-\mathrm{Z}_{1}(24-27)$ transitions with an $M_{0} \mathrm{cp}$ at 2.79 eV and $24-25$ transitions with an $M_{2} \mathrm{cp}$ near $(0.2,0.05,0.4)$ at 2.81 eV .

The peak at 3.30 eV is caused in part by $21-25$ transitions in a region (tubular along z -direction) around U^{X} with an $\mathrm{M}_{2} \mathrm{cp}$ near ($0.2,0,0.5$) at 3.33 eV and 23-27 transitions with an $\mathrm{M}_{1} \mathrm{cp}$ near ($0.35,0.15,0.3$) at 3.31 eV . Additional contributions to this peak are from $22-26$ transitions in a region around what appears to be an M_{2} cp near $(0.25,0.25,0.3)$ at 3.36 eV and 23-26 transitions in a region near Γ with particularly strong contributions from $\Delta_{4}^{\mathrm{Z}}-\Delta_{4}^{\mathrm{Z}}$ transitions at about 3.3 eV . Finally we have contributions from 24-26 transitions with an M_{2} cp near ($0.12,0.12,0.25$) at 3.25 eV and $21-28$ transitions in a region around $\Sigma_{2}-\Sigma_{1}$ with a cp of undetermined symmetry near $(0.4 ; 0.4,0)$ at 3.3 eV . The peak at 3.65 eV is the result of three main types of contributions. First we have 22-27 transitions in a region near Z off the S direction with a probable $M_{1} c p$ near $(0.15,0.1,0.45)$ at 3.64 eV along with an M_{1} cp near $(0.2,0,0.4)$ at 3.69 eV, and 21, 22-27 transitions in a region of relatively large matrix elements near M off the U^{X} direction with a probable \mathbb{M}_{0} cp near ($0.37,0.1$, $0.4)$ at 3.62 eV and an $\mathrm{M}_{0} \mathrm{cp}$ near $(0.3,0.3,0.25)$ at 3.60 eV . Secondly, we have 19-25 transitions, in a region near Z around $S_{1}-S_{1}$, with an M_{0} cp near ($0.1,0.1,0.5$) at 3.65 eV , and $20-25$ transitions also near Z

$$
00006 \text { y } 10 \quad 0-26-1
$$

but around U^{X} with an M_{0} cp near ($0.1,0,0.5$) at 3.60 eV and what appears to be an M_{0} cp near ($0.2,0.1,0.3$) at $3.62 \in \mathrm{~V}$. Thirdly, we have $24-28$ transitions, with a cp of undetermined symmetry near $S_{1}-S_{1}(0.25,0.25,0.5)$ at 3.65 eV and a region around $\mathrm{T}_{1}-\mathrm{T}_{1}$ with an $\mathrm{M}_{3} \mathrm{cp}$ near ($0.5,0.21,0.5$) at 3.74 eV , and 23-28 transitions with an $\mathrm{M}_{1} c \mathrm{p}$ near T at about ($0.5,0.15,0.4$) at 3.60 eV along with weaker $\Delta_{1}-\Delta_{2}(24-27)$ transitions with a cp near $(0.35,0,0)$ at 3.65 eV .

The large peak at 3.90 eV is caused in part by $24-30$ transitions in a region around an M_{1} cp near $(0.5,0.22,0.25)$ at $3.92 \in \mathrm{~V}$ and $24-29,30$ transitions in a region around $Z_{1}^{X}-Z_{1}^{X}$ with an $M_{0} c p$ at 3.93 eV and particularly strong contributions along $U_{1}^{\mathrm{y}}-\mathrm{U}_{1}^{\mathrm{Y}}$ at 3.95 eV . Other important contributions are from 24-29 transitions in a region with very large matrix elements around $F_{3}-\Gamma_{4}$ with an M_{2} cp at 3.98 eV and 23-29 transitions with an M_{0} cp near $(0.2,0,0.3)$ at 3.91 eV . Next we have 18-25 transitions in a region around ($0.3,0,0.4$) contributing at $3.90 \mathrm{eV}, \Delta_{2}-\Delta_{1}$ transitions with a $c p$ near $(0.35,0,0)$ also at 3.90 eV , and $21-26$ transitions in a region around $\Sigma_{2}-\Sigma_{1}$ with an M_{1} cp near ($0.16,0.16,0$) at 3.92 eV . Finally we have 22-30 transitions with an M_{0} cp near ($0.35,0.35,0.1$) at 3.81 eV and $23-$ 28 transitions with a cp near $(0,0,0.22)$ at 3.88 eV .

The shoulder around 4.26 eV is caused in part by $20-25$ transitions in a region (along z-direction) of large matrix elements around $\Gamma_{3}-$ Γ_{4} with an M_{0} cp at $4.07 \mathrm{eV}, 22-29$ transitions in a region (along z-directionaround M with a probable M_{1} cp at 4.23 eV , and $22-32$ transitions in a region around $M_{3}^{Z}-M_{3}^{Z}$ with a $c p$ at 4.30 eV and in a region around
$U_{1}^{\mathrm{y}}-\mathrm{U}_{1}^{\mathrm{y}}$ with a cp near $(0.5,0.3,0)$ at 4.26 eV . Additional contributions to this shoulder are from 20-28 transitions in a region around ($0.4,0.2$, 0.25) at $4.30 \mathrm{eV}, 18-27$ transitions in a region around $Z_{1}-Z_{1}$ with an M_{1} cp at 4.25 eV and $19-25,26$ transitions in a region around $(0.25,0.25,0.3)$ at 4.28 eV . Finally we have 24-30 transitions with critical points of undetermined symmetries near $\mathrm{U}_{1}^{\mathrm{Z}}-\mathrm{U}_{1}^{\mathrm{Z}}(0.5,0,0.15)$ at $4.26 \mathrm{eV}, \mathrm{S}_{1}-\mathrm{S}_{1}(0.3,0.3$, $0.5)$ at $4.27 \mathrm{eV}, \Delta_{1}-\Delta_{2}(0.36,0,0)$ at 4.26 eV and an M_{3} cp near ($0.3,0.1$, $0.2)$ at 4.41 eV . The last structure we shall consider in the ϵ " spectrum occurs at 4.96 eV . This shoulder is caused in part by $20-28,29$ transitions in a region (mostly along z-direction) around ($0.3,0,0.25$) at 4.95 eV . Other contributions to this shoulder from critical points of undetermined symmetry are listed in Table VI.

$$
0000390-28 i-32
$$

IV. Discussion of Amorphous Phases

The experimental amorphous dielectric function $\epsilon_{2}(E)^{3,4}$ (Figs. 13 and 14) consists of a seemingly featureless spectrum with one broad peak positioned near the Λ peak in the $\mathrm{FC}-2 \epsilon_{2}$. This spectrum is quite different from any known crystalline ϵ_{2} (except for ST-12) and cannot be obtained by simply averaging the peaks in the FC-2 spectrum.

The theoreticalattempts ${ }^{9-14}$ to explain the amorphous ϵ_{2} have all assumed that long range disorder is of primary importance. They have taken the FC-2 band structure as a starting point and have applied various modifications to study the effect of long range disorder. In some cases ${ }^{9,13}$ complete k non-conservation was considered in the sense of a non-direct transition (NDT) and in other cases ${ }^{10-12,14}$ partial $\overrightarrow{\mathrm{k}}$ nonconservation was proposed which enabled the introduction of some type of short range order parameter. In all cases, however, the results are similar, in good agreement with experimental ϵ_{2} data, and the authors agree that strong \vec{k} non-conservation (long range disorder) is a requisite in explaining the amorphous ϵ_{2}. None of these theories, however, predicts even a correct trend to the density of states of the amorphous phase. The single broad peak ${ }^{2}$ at the bottom of the valence band density of states for the amorphous case is very striking and cannot be accounted for by a simple broadening of the two s-like peaks in the FC-2 structure. This problem was discussed in I where we suggested that the experimental results could be explained by a short range disorder which would make the presence of five and seven fold rings of bonds appreciable. It is precisely the lack of
this short range disorder in these theories that produces this inconsistency with the experimental data. To see this let us examine one of the most interesting and sophisticated of the abrementioned theories, which is that of a complex band structure ($\mathbb{C B S})^{12,14}$. It was instigated by the work of Maschke and Thomas ${ }^{11}$ and developed by Kramer. A one electron Green function is expanded in a Born series and a configurational averaging is applied by introducing in each term containing n scattering centers an n-particle correlation function which is integrated over all n sites. It is then assumed that the n-particle correlation functions can be approximated by products of two particle correlation functions which are taken to be sums of Gaussian-like functions centered on lattice sites, with half-widths which increase with increasing distance from a given lattice point and are proportional to a small parameter a which describes the amount of disorder. This type of approximation treats correctly multiple scattering at one atom only while higher multiple scattering terms are treated approximately correctly if one has $a \ll 1$. The two body correlation functions can be related to experimental amorphous radial distribution functions (RDF), however we notice that in Ge for example it would be difficult to reproduce the second and third hump in the RDF^{15} curves by simply placing Gaussian-like functions at FC-2 lattice points.

Nevertheless, the averaged Green function series, which is written in terms of pseudopotentials $\mathrm{v}(\mathrm{q}),{ }^{16}$ can be reduced if one assumes slowly varying potential functions and small enough a so as to take $v(q)$ constant in the \vec{k}-integration which in turn permits decoupling of terms and a

$$
0000 \cdot 49 \text { o } 0-30-3
$$

resummation of the series. The poles of this averaged Green function are now obtained from a generalized pseudoptential secular equation which is now no longer Hermitian. Kramer then finds that he obtains complex energies whose real parts are approximately the energies of the crystal and whose imaginary parts can be interpreted as average reciprocal life-. spectrum times or equivalently average energy widths. The average $\epsilon_{2} /$ is obtained by using the Kubo formula and performing a similar configurational averaging on a product of two one electron Green functions. With some approximations the forms for the averaged ϵ_{2} and density of states are similar in that they are written as a sum over partial spectra belonging to different regions of the BZ where the reciprocal lifetimes can be taken constant. The partial spectra are then given by a convolution of the crystalline spectrum (shifted in energy when appropriate as shown below) with a Lorentzian which depends on an average reciprocal lifetime. The parameter a was chosen to fit the ϵ_{2} spectrum of amorphous Ge and Si .

Kramer's results show the valence band being affected very slightly while the conduction band is broadened considerably. In particular, for Ge the $\Gamma_{25}-\Gamma_{2}$ and $L_{1}-L_{3}$ gaps become smaller while the $X_{4}-X_{1}$ gap becomes larger. Furthermore, Γ_{2} is very slightly broadened, L_{2} is slightly broadened, and X_{1} is largely broadened. This is not surprising nor difficult to understand. In principle, we would expect the electrons in the conduction band to be affected more by long range disorder than the very well localized valence electrons. In fact, if we look at the charge density at symmetry points in the conduction band, we find that X_{1} is
largely spread out while L_{3} is somewhat localized and Γ_{2} shows definite signs of localization. This is exactly the same trend observed in the reciprocal life times mentioned above. The effect of this on ϵ_{2} is then to average out most of the X peak while preserving the Λ peak and shifting it to slightly lower energies. The agreement with the experimental amorphous ϵ_{2} is good. The effect of Kramer's disorder on the density of states, however, is a strong averaging of the conduction band and a very small averaging of the valence band peaks for FC-2. This is certainly not in agreement with experiment. ${ }^{2}$ The problem is that one is dealing here with a system that has the short range order of diamond. In fact, the parameter a, used to fit ϵ_{2}, is very small and corresponds, for example, to all first, second and half the third nearest neighbors being within a deviation of only 0.04 a of the crystalline FC-2 positions. It could be suggested that the density of states might agree better with experiment if a was taken to be larger. But now the ϵ_{2} would be shifted to lower energies and agreement with experiment here would be considerably marred. Besides, the approximations involved in obtaining Kramer's final expressions may not be valid for large a.

Thus we believe that the conclusions drawn by applying the CBS theory to the FC-2 structure are not valid for the amorphous case. The suggestion ${ }^{17}$ that the peak in the amorphous ϵ_{2} is due to Λ transitions because of the preservation of the bonding direction is highly questionable and is only a conjecture supported by analyzing a hypothetical "amorphous" system that is too close to the FC-2 structure.

The results from these theories lead us to suspect that the ϵ_{2} spectrum

$$
0 \quad 0 \quad 39 \quad 0 \quad 3-32-4
$$

may not be a good judge of the microscopic structural aspects of the amorphous state and that one needs a theory that will be able to account for both the density of states and ϵ_{2} in the amorphous phase. In I we applied the concept of short range disorder to the density of states and obtained good agreement with experiment. We shall how do the same for the ϵ_{2} spectrum.

There are two features of the amorphous ϵ_{2} spectrum which are of primary importance. These are, of course, the one hump form of the spectrum and the position in energy of this hump. We shall attempt to account for these features in the following analysis.

The crystalline $\epsilon_{2}(E)$ may be written as:

$$
\begin{equation*}
\left.\epsilon_{2}(E)=C J(E) \sum_{\overrightarrow{\mathrm{k}}} \sum_{c, v} \delta\left(E_{c}(\overrightarrow{\mathrm{k}})-E_{\mathrm{v}}(\overrightarrow{\mathrm{k}})-E\right)\left|\left\langle\psi_{c}(\overrightarrow{\mathrm{k}})\right| \overrightarrow{\mathrm{r}}\right| \psi_{\mathrm{v}}(\overrightarrow{\mathrm{k}})\right\rangle\left.\right|^{2} / J(\mathrm{E}) \tag{2}
\end{equation*}
$$

where C is a constant and $J(E)$ is the joint density of states given by:

$$
\begin{equation*}
J(E)=\sum_{\vec{k}} \sum_{c, v} \delta\left(E_{c}(\vec{k})-E_{v}(\vec{k})-E\right) \tag{3}
\end{equation*}
$$

Equation (2) is just an expression for an average matrix element $P(E)$ multiplied by the joint density of states $J(E)$. If we now incorporate the constant C into $J(E)$ we can write:

$$
\begin{equation*}
\epsilon_{2}(E)=J(E) P(E) \tag{4}
\end{equation*}
$$

The is a physically reasonable expression and could be used to stuay the amorohous phase since it is essentially the number of states accessible for
transitions at an energy E, multiplied by an average probability for those transitions. When one does band structure calculations, however, it is easier to calculate an associated average matrix element $M(E)$ obtained by a weighted averaging of $\left.\left|\left\langle\psi_{c}(\overrightarrow{\mathrm{k}})\right| \vec{\nabla}\right| \psi_{\mathrm{v}}(\overrightarrow{\mathrm{k}})\right\rangle\left.\right|^{2}$. Then Eq. (3) can be written as: 18

$$
\begin{equation*}
\epsilon_{2}(E)=J(E) \cdot \frac{M(E)}{E^{2}} \tag{5}
\end{equation*}
$$

Equation (3) or (4) can now be used to qualitatively account for the amorphous ϵ_{2} spectrum in a simple way. In the amorphous case we would expect $J(E)$ to be a monotonically increasing function of energy without any sharp structure from specific localized regions in the BZ. Similarly we would expect the average dipole matrix element $P(E)$ to be a smooth monotonically decreasing function of energy. The product of these two functions would then give a one hump structure which would explain the shape of the amorphous ϵ_{2}. To examine this in more detail we have calculated $\epsilon_{2}, J / E^{2}$ and M, and J and M/E ${ }^{2}$ as functions of energy for $G e$ and $S i$ in the $\mathrm{FC}-2,2 \mathrm{H}-4, \mathrm{BC}-8$ and ST-12 structures using the Gilat-Raubenheimer ${ }^{8}$ integration scheme. The results are shown in Figs. 13 and 14. For each row the product of the two curves in the second and third columns gives the ϵ_{2} spectrum in the first column. In the cases of $2 H-4$ and ST-12 structures we show the weighted average of the parallel and perpendicular components of ϵ_{2}. We are interested in observing the trends as we go from FC-2 down the columns to more and locally disordered and complicated crystal structures. For the moment let us concentrate on the third column in each figure. We notice that with the increasing complexity of the crystal structures, J gradually loses the sharp

$$
0040390534-35
$$

structure prominent in the FC-2 case which was caused by the simplicity and symmetry of this band structure. When we reach ST-12, J is almost a smooth and featureless spectrum which would compare well with what we expected in the amorphous case. In addition the average dipole matrix element $\mathrm{M} / \mathrm{E}^{2}$ for ST-12 is for the most part a smooth decreasing function of energy. This is particularly the case for Ge ST-12 in a large energy region while in ST-12 this is true for $\mathrm{E}>3 \mathrm{eV}$ which, however, contains the peak of ϵ_{2}. If we now examine the ϵ_{2} spectra we notice that it is precisely the ST-12 structure that has the qualities of the superimposed amorphous ϵ_{2} spectrum obtained by Donovan and Spicer ${ }^{3}$ for Ge and by Pierce and Spicer ${ }^{4}$ for Si. The agreement between the ST-12 spectra and the amorphous spectra is quite encouraging and shows that the kind of short range disorder ${ }^{1}$. which accounted for the amorphous density of states also accounts for the important features of the amorphous ϵ_{2} spectrum. The discrepancy in magnitude of the ϵ_{2} curwes is irrelevant in this discussion and is caused in part by the differences in bulk density of the ST-12 and amorphous structures. An interesting feature that comes out of this analysis is that $\mathrm{J} / \mathrm{E}^{2}$ should look something like a step function in the amorphous case since J is such a smooth polynomial-like increasing function of energy. This would gradient
then suggest that the average/matrix element M must contain most of the information about ϵ_{2}. This is shown in Figs. 13 and 14 as we go down the second column where we have plotted J / E^{2} and M. In the $F C-2$ case the ϵ_{2} spectrum looks mostly like J / E^{2} while M simply modulates the J / E^{2} spectrum. In the $2 \mathrm{H}-4$ structure we find that the form of the ϵ_{2} spectrum
is now shared between J / E^{2} and M where M contributes most of the first peak and J / E^{2} contributes the second peak. When we examine the $\mathrm{BC}-8$ case we find that the ϵ_{2} spectrum now looks mostly like M while $\mathrm{J} / \mathrm{E}^{2}$ just modulates the M spectrum. Finally, in the $\mathrm{ST}-12$ structure we find that J / E^{2} is a relatively featureless step-like function of energy and again ϵ_{2} looks like M.
gradient
Therefore, we can safely conclude from this that the average/matrix element \mathbb{M} determines the position in energy of the hump in the amorphous ϵ_{2}, and most important, when one measures the amorphous ϵ_{2} spectrum, one is essentially just measuring the average matrix element M.

V. Conclusions

Our aim in this work has been two-fold. First to make a complete band structure analysis of Ge and Si in a series of novel, interesting and complicated crystal structures. This included calculating energy eigenvalues, densities of states, optical functions, determining the symmetry of wavefunctions and identifying optical structure. Secondly, to use the increasing complexity of the crystal structures to study the trends observed in the density of states and the imaginary part of the dielectric function as we approach the amorphous phase. To this end we have made particular use of the ST-12 structure which has deviations in bond lengths and angles and has odd-numbered rings of bonds. We have not used the ST-12 structure as a replica of amorphous Ge and Si , but rather as a tool to probe the important microscopic structural aspects of the amorphous phase.

We have found that if one is to make a reliable model of the amor phous
phase, one cannot start with a long-range disorder model applied to the FC-2 structure. On the other hand, a short-range disorder model, defined as a system with deviations in bond angles, bond lengths, with all bonds, satisfied and with odd-numbered rings of bonds, could account for both the amorphous density of states and imaginary part of the dielectric function. In particular we found that the amorphous ϵ_{2} is just the spectrum of an average matrix element.

If we now include long-range disorder to our short-range disorder, we would expect to have a much better model for the amorphous phase. Our point is, however, that the effects of long-range disorder are of secondary importance.

References

* Supported in part by National Science Foundation Grant GH 35688.

1. J. D. Joannopoulos and M. L. Cohen, Phys. Rev. 1973 (in press).
2. L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, Phys. Rev. Letters 29, 1088 (1972).
3. T. M. Donovan and W. E. Spicer, Phys. Rev. Leters 21,1572 (1968).
4. D. T. Pierce and W. E. Spicer, Phys. Rev. B5, 3017 (1972).
5. J. S. Kasper and S. M. Richards, Acta. Cryst. 17, 752 (1964).
6. A. W. Luehrmann, Thesis, University of Chicago, 1967.
7. J. Zak, A. Casher, M. Gluck, Y. Gur, The Irreducible Representation of Space Groups, ed. J. Zak, W. A. Benjamin, N. Y., 1969.
8. G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).
9. F. Herman and J. P. Van Dyke, Phys. Rev. Letters 21, 1575 (1968).
10. D. Brust, Phys. Rev. Letters 23, 1232 (1969).
11. K. Maschke and P. Thomas, phys. stat. sol. 39, 453 (1970).
12. B. Kramer, phys. stat. sol. 41, 649 (1970).
13. K. Maschke and P. Thomas, phys. stat. sol. 41, 743 (1970).
14. B. Kramer, phys. stat. sol. 47, 501 (1971).
15. D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Letters 27, 1204 (1971).
16. M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966).
17. J. Stuke, J. Non.-Cryst. Solids 4, 1 (1970).
18. A similar expression has also been used by Maschke and Thomas (Ref. 13).

Table Captions

Table I Theoretical ϵ_{2} structure and identifications, including the location in the BZ , symmetry and energy of critical points for Ge and Si in the $2 \mathrm{H}-4$ structure. Details are given in the text.

Table II Theoretical ϵ_{2} structure and identifications, including the location in the $B Z$, symmetry and energy of critical points for Ge and Si in the $\mathrm{BC}-8$ structure. Details are given in the text.

Table III Theoretical ϵ_{2} structure, with perpendicular polarization, and identifications, including the location in the BZ, symmetry and energy of critical points for Ge ST-12. Details are given in the text.

Table IV Theoretical ϵ_{2} structure, with parallel polarization, and identifications including the location in the BZ, symmetry and energy of critical points for Ge ST-12. Details are given in the text.

Table V Theoretical ϵ_{2} structure, with perpendicular polarization, and identifications, including the location in the BZ, symmetry and energy of critical points for Si ST-12. Details are given in the text.

Table VI Theoretical ϵ_{2} structure, with parallel polarization, and identifications, including the location in the $B Z$, symmetry and energy of critical points for Si ST-12. Details are given in the text.

Figure Captions

Fig. 1. Brillouin zones and associated symmetry points and lines for the $2 \mathrm{H}-4, \mathrm{BC}-8$ and ST-12 structures.

Fig. 2 Band structure of Ge in the $2 \mathrm{H}-4$ or wurtzite structure.
Fig. 3 Imaginary part of the dielectric function, ϵ_{2}, for Ge $2 \mathrm{H}-4$ with parallel (top) and perpendicular (bottom) polarizations.

Fig. 4 Band structure of Si in the $2 \mathrm{H}-4$ or wurtzite structure.
Fig. 5. Imaginary part of the dielectric function, ϵ_{2}, for $\mathrm{Si} 2 \mathrm{H}-4$ with parallel (top) and perpendicular (bottom) polarizations.

Fig. 6. Band structure of Ge in the $\mathrm{BC}-8$ structure.
Fig. 7 Imaginary part of the dielectric function, ϵ_{2}, for $\mathrm{Ge} \mathrm{BC}-8$ (top) and Si BC-8 (bottom).

Fig. 8 Band structure of Si in the $\mathrm{BC}-8$ structure.
Fig. 9 Band structure of Ge in the ST-12 structure.
Fig. 10 Imaginary part of the dielectric function, ϵ_{2}, for GeST-12 with parallel (top) and perpendicular (bottom) polarizations.

Fig. 11 Band structure of Si in the $\mathrm{ST}-12$ structure.
Fig. 12 Imaginary part of the dielectric function, ϵ_{2}, for Si ST-12 with parallel (top) and perpendicular (bottom) polarizations.

Fig. 13 Imaginary part of the dielectric function ϵ_{2}, average gradient matrix element M, associated joint density of states J / E^{2}, average dipole matrix element M / E^{2}, and joint density of states J for $G e$ in the $F C-2$, $2 \mathrm{H}-4, \mathrm{BC}-8$, and ST-12 structures. For each row the product of the two curves in the second and third columns gives the ϵ_{2} spectrum in the first column. The ϵ_{2} for the $2 \mathrm{H}-4$ and ST-12 structures was obtained
$00003690-3028$
by averaging over parallel and perpendicular polarizations. The matrix element M is in units of $\left(\frac{2 \pi}{a}\right)^{2}$ where a is the smallest lattice constant of each crystal and J in the figure is in units of $\left(\frac{a}{2 \pi}\right)^{2}(\mathrm{eV})^{2}$. The un-normalized $J(E)$ defined in equation (3) can be obtained from the values of J in the figure by taking J to be in units of $\left(\frac{3 \pi m^{2}}{e^{2} \hbar 4}\right)\left(\frac{a}{2 \pi}\right)^{2} \frac{1}{(\mathrm{~cm})^{3} \mathrm{eV}}$. The amorphous ϵ_{2} is from Donovan and Spicer (Ref. 3).
Fig. 14 Imaginary part of the dielectric function ϵ_{2}, associated average matrix element M, associated joint density of states J / E^{2}, average dipole matrix element M / E^{2}, and joint density of states J for Si in the $\mathrm{FC}-2,2 \mathrm{H}-4, \mathrm{BC}-8$, and $\mathrm{ST}-12$ structures. The convention is the same as in Fig. 13. The amorphous ϵ_{2} is from Pierce and Spicer (Ref. 4).

[^0]I $378 \forall 1$
 (N) $5 x \not y=y^{7} \rightarrow$

Fig. 1

Fig 2

Fig. 3,

Fiq. 4.

Fgr

Fig. 6

Fig. 7

Fig. 8

Fig. 10

Fig. 12

$F=13$

∞
c
∞
∞
∞
c

Fig: 14

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: $\mathrm{h}-\mathrm{Hr}$ is
 $\mathrm{H}-\mathrm{HC} 29$

